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Abstract

Language models have been successfully used to model natural signals, such as
images, speech, and music. A key component of these models is a high quality
neural compression model that can compress high-dimensional natural signals
into lower dimensional discrete tokens. To that end, we introduce a high-fidelity
universal neural audio compression algorithm that achieves 90x compression of
44.1 KHz audio into tokens at just 8kbps bandwidth. We achieve this by combining
advances in high-fidelity audio generation with better vector quantization tech-
niques from the image domain, along with improved adversarial and reconstruction
losses. We compress all domains (speech, environment, music, etc.) with a single
universal model, making it widely applicable to generative modeling of all audio.
We compare with competing audio compression algorithms, and find our method
outperforms them significantly. We provide thorough ablations for every design
choice, as well as open-source code and trained model weights. We hope our work
can lay the foundation for the next generation of high-fidelity audio modeling.

1 Introduction

Generative modeling of high-resolution audio is difficult due to high dimensionality (~44,100 samples
per second of audio) [24, 19], and presence of structure at different time-scales with both short and
long-term dependencies. To mitigate this problem, audio generation is typically divided into two
stages: 1) predicting audio conditioned on some intermediate representation such as mel-spectrograms
[24, 28, 19, 30] and 2) predicting the intermediate representation given some conditioning information,
such as text [35, 34]. This can be interpreted as a hierarchical generative model, with observed
intermediate variables. Naturally, an alternate formulation is to learn the intermediate variables using
the variational auto-encoder (VAE) framework, with a learned conditional prior to predict the latent
variables given some conditioning. This formulation, with continuous latent variables and training an
expressive prior using normalizing flows has been quite successful for speech synthesis [17, 36].

A closely related idea is to train the same varitional-autoencoder with discrete latent variables using
VQ-VAE [38]. Arguably, discrete latent variables are a better choice since expressive priors can be
trained using powerful autoregressive models that have been developed for modeling distributions
over discrete variables [27]. Specifically, transformer language models [39] have already exhibited
the capacity to scale with data and model capacity to learn arbitrarily complex distributions such as
text[6], images[12, 44], audio [5, 41], music [1], etc. While modeling the prior is straightforward,
modeling the discrete latent codes using a quantized auto-encoder remains a challenge.
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Learning these discrete codes can be interpreted as a lossy compression task, where the audio
signal is compressed into a discrete latent space by vector-quantizing the representations of an
autoencoder using a fixed length codebook. This audio compression model needs to satisfy the
following properties: 1) Reconstruct audio with high fidelity and free of artifacts 2) Achieve high
level of compression along with temporal downscaling to learn a compact representation that discards
low-level imperceptible details while preserving high-level structure [38, 33] 3) Handle all types of
audio such as speech, music, environmental sounds, different audio encodings (such as mp3) as well
as different sampling rates using a single universal model.

While the recent neural audio compression algorithms such as SoundStream [46] and EnCodec [8]
partially satisfy these properties, they often suffer from the same issues that plague GAN-based
generation models. Specifically, such models exhibit audio artifacts such as tonal artifacts [29], pitch
and periodicity artifacts [25] and imperfectly model high-frequencies leading to audio that are clearly
distinguishable from originals. These models are often tailored to a specific type of audio signal such
as speech or music and struggle to model generic sounds. We make the following contributions:

• We introduce Improved RVQGAN a high fidelity universal audio compression model, that
can compress 44.1 KHz audio into discrete codes at 8 kbps bitrate (~90x compression) with
minimal loss in quality and fewer artifacts. Our model outperforms state-of-the-art methods
by a large margin even at lower bitrates (higher compression) , when evaluated with both
quantitative metrics and qualitative listening tests.

• We identify a critical issue in existing models which don’t utilize the full bandwidth due
to codebook collapse (where a fraction of the codes are unused) and fix it using improved
codebook learning techniques.

• We identify a side-effect of quantizer dropout - a technique designed to allow a single
model to support variable bitrates, actually hurts the full-bandwidth audio quality and
propose a solution to mitigate it.

• We make impactful design changes to existing neural audio codecs by adding periodic
inductive biases, multi-scale STFT discriminator, multi-scale mel loss and provide thorough
ablations and intuitions to motivate them.

• Our proposed method is a universal audio compression model, capable of handling speech,
music, environmental sounds, different sampling rates and audio encoding formats.

We provide code 1, models, and audio samples 2 that we encourage the reader to listen to.

2 Related Work

High fidelity neural audio synthesis: Recently, generative adversarial networks (GANs) have
emerged as a solution to generate high-quality audio with fast inference speeds, due to the feed-
forward (parallel) generator. MelGAN [19] successfully trains a GAN-based spectrogram inversion
(neural vocoding) model. It introduces a multi-scale waveform discriminator (MSD) to penalize
structure at different audio resolutions and a feature matching loss that minimizes L1 distance
between discriminator feature maps of real and synthetic audio. HifiGAN [18] refines this recipe by
introducing a multi-period waveform discriminator (MPD) for high fidelity synthesis, and adding
an auxiliary mel-reconstruction loss for fast training. UnivNet [16] introduces a multi-resolution
spectrogram discriminator (MRSD) to generate audio with sharp spectrograms. BigVGAN [21]
extends the HifiGAN recipe by introducing a periodic inductive bias using the Snake activation
function [47]. It also replaces the MSD in HifiGAN with the MRSD to improve audio quality and
reduce pitch, periodicity artifacts [25]. While these the GAN-based learning techniques are used for
vocoding, these recipes are readily applicable to neural audio compression. Our Improved RVQGAN
model closely follows the BigVGAN training recipe, with a few key changes. Our model uses a
new multi-band multi-scale STFT discriminator that alleviates aliasing artifacts, and a multi-scale
mel-reconstruction loss that better model quick transients.

Neural audio compression models: VQ-VAEs [38] have been the dominant paradigm to train neural
audio codecs. The first VQ-VAE based speech codec was proposed in [13] operating at 1.6 kbps. This
model used the original architecture from [38] with a convolutional encoder and an autoregressive

1https://github.com/descriptinc/descript-audio-codec
2https://descript.notion.site/Descript-Audio-Codec-11389fce0ce2419891d6591a68f814d5
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wavenet [27] decoder. SoundStream [46] is one of the first universal compression models capable
of handling diverse audio types, while supporting varying bitrates using a single model. They use a
fully causal convolutional encoder and decoder network, and perform residual vector quantization
(RVQ). The model is trained using the VQ-GAN [12] formulation, by adding adversarial and feature-
matching losses along with the multi-scale spectral reconstruction loss. EnCodec [8] closely follows
the SoundStream recipe, with a few modifications that lead to improved quality. EnCodec uses a multi-
scale STFT discriminator with a multi-scale spectral reconstruction loss. They use a loss balancer
which adjusts loss weights based on the varying scale of gradients coming from the discriminator.

Our proposed method also uses a convolutional encoder-decoder architecture, residual vector quan-
tization and adversarial, perceptual losses. However, our recipe has the following key differences:
1) We introduce a periodic inductive bias using Snake activations [47, 21] 2) We improve codebook
learning by projecting the encodings into a low-dimensional space [44] 3) We obtain a stable training
recipe using best practices for adversarial and perceptual loss design, with fixed loss weights and
without requiring a sophisticated loss balancer. We find that our changes lead to a near-optimal
effective bandwidth usage. This allows our model to outperform EnCodec even with 3x lower bitrate.

Language modeling of natural signals : Neural language models have demonstrated great success
in diverse tasks such as open-ended text generation [6] with in-context learning capabilities. A
key-component of these models is self-attention [39], which is capable of modeling complex and
long-range dependencies but suffers from a quadratic computational cost with the length of the
sequence. This cost is unacceptable for natural signals such as images and audio with very high
dimensionality, requiring a compact mapping into a discrete representation space. This mapping is
typically learnt using VQ-GANs [12, 44], followed by training an autoregressive Transformer on the
discrete tokens. This approach has shown success across image [45, 44, 32], audio [5, 41], video and
music [9, 1] domains. Codecs like SoundStream and EnCodec have already been used in generative
audio models, like AudioLM [5], MusicLM [1], and VALL-E [41]. Our proposed model can serve as
a drop-in replacement for the audio tokenization model used in these methods, allowing for highly
superior audio fidelity, and more efficient learning due to our maximum entropy code representation.

3 The Improved RVQGAN Model
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Proposed 44.1 8 512 86 9 91.16

EnCodec 24 24 320 75 32 16
48 24 320 150 16 32

SoundStream 24 6 320 75 8 64

Table 1: Comparison of compression approaches.

Our model is built on the framework of VQ-GANs,
following the same pattern as SoundStream [46] and
EnCodec [8]. Our model uses the fully convolutional
encoder-decoder network from SoundStream, that
performs temporal downscaling with a chosen strid-
ing factor. Following recent literature, we quantize
the encodings using Residual Vector Quantization
(RVQ), a method that recursively quantizes residuals
following an initial quantization step with a distinct
codebook. Quantizer dropout is applied during train-
ing to enable a single model that can operate at several
target bitrates. Our model is similarly trained using
a frequency domain reconstruction loss along with
adversarial and perceptual losses.

An audio signal with sampling rate fs (Hz), encoder striding factor M , and Nq layers of RVQ produce
a discrete code matrix of shape S×Nq , where S is the frame rate defined as fs/M . Table 1 compares
our proposed model against baselines to contrast the compression factors and the frame rate of latent
codes. Note that the target bitrate mentioned is an upper bound, since all models support variable
bitrates. Our model achieves a higher compression factor compared to all baseline methods while
outperforming them in audio quality, as we show later. Finally, a lower frame rate is desirable when
training a language model on the discrete codes, as it results in shorter sequences.

3.1 Periodic activation function

Audio waveforms are known to exhibit high periodicity (especially in voiced components, music,
etc.) While current non-autoregressive audio generation architectures are capable of generating high
fidelity audio, they often exhibit jarring pitch and periodicity artifacts [25]. Moreover, common
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neural network activations (such as Leaky ReLUs) are known to struggle with extrapolating periodic
signals, and exhibit poor out-of-distribution generalization for audio synthesis [21].

To add a periodic inductive bias to the generator, we adopt the Snake activation function proposed by
Liu et al. [47] and introduced to the audio domain in the BigVGAN neural vocoding model [21]. It is
defined as snake(x) = x+ 1

α sin2(αx) , where α controls the frequency of periodic component of
the signal. In our experiments, we find replacing Leaky ReLU activations with Snake function to be
an influential change that significantly improves audio fidelity (Table 2).

3.2 Improved residual vector quantization
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Figure 1: Entropy for each codebook, computed
using code usage statistics across a large test set.

While vector quantization (VQ) is a popular method
to train discrete auto-encoder, there are many practi-
cal struggles when training them. Vanilla VQ-VAEs
struggle from low codebook usage due to poor initial-
ization, leading to a significant portion of the code-
book being unused. This reduction in effective code-
book size leads to an implicit reduction in target bi-
trate, which translates to poor reconstruction quality.

To mitigate this, recent audio codec methods use k-
means clustering to initialize the codebook vectors,
and manually employ randomized restarts [9] when
certain codebooks are unused for several batches.
However, we find that the EnCodec model trained at
24kbps target bitrate, as well as our proposed model
with the same codebook learning method (Proposed

w/ EMA) still suffers from codebook under-utilization (Figure 1).

To address this issue, we use two key techniques introduced in the Improved VQGAN image
model[44] to improve codebook usage: factorized codes and L2-normalized codes. Factorization
decouples code lookup and code embedding, by performing code lookup in a low-dimensional space
(8d or 32d) whereas the code embedding resides in a high dimensional space (1024d). Intuitively,
this can be interpreted as a code lookup using only the principal components of the input vector that
maximally explain the variance in the data. The L2-normalization of the encoded and codebook
vectors converts euclidean distance to cosine similarity, which is helpful for stability and quality [44].

These two tricks along with the overall model recipe significantly improve codebook usage, and
therefore bitrate efficiency (Figure 1) and reconstruction quality (Table 2), while being simpler to
implement. Our model can be trained using the original VQ-VAE codebook and commitment losses
[38], without k-means initialization or random restarts. The equations for the modified codebook
learning procedure are written in Appendix A

3.3 Quantizer dropout rate
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Figure 2: Effect of quantizer dropout on audio
quality vs bitrate.

Quantizer dropout was introduced in SoundStream
[46] to train a single compression model with vari-
able bitrate. The number of quantizers Nq determine
the bitrate, so for each input example we randomly
sample n ∼ {1, 2, . . . , Nq} and only use the first
nq quantizers while training. However, we noticed
that applying quantizer dropout degrades the audio
reconstruction quality at full bandwidth (Figure 2).

To address this problem, we instead apply quantizer
dropout to each input example with some probabil-
ity p. Interestingly, we find that dropout probability
p = 0.5 closely matches the reconstruction quality
of baseline at lower bitrates, while closing the gap
to full-bandwidth quality of a model trained without
quantizer dropout (p = 0.0).
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Moreover, we provide additional insight into the practical behavior of quantizer dropout and it’s
interaction with RVQ. Firstly, we find that these techniques put together lead the quantized codes to
learn most-significant to least significant bits of information with each additional quantizer. When the
codes are reconstructed with 1 . . . Nq codebooks, we can see each codebook adds increasing amounts
of fine-scale detail. We believe this interaction is beneficial when training hierarchical generative
models on top of these codes [5, 41, 1], for example to partition the codes into “coarse” tokens
(denoting the most significant codes) and “fine” tokens.

3.4 Discriminator design

Like prior work, we use multi-scale (MSD) and multi-period waveform discriminators (MPD)
which lead to improved audio fidelity. However, spectrograms of generated audio can still appear
blurry, exhibiting over-smoothing artifacts in high frequencies[16]. The multi-resolution spectrogram
discriminator (MRSD) was proposed in UnivNet to fix these artifacts and BigVGAN [21] found
that it also helps to reduce pitch and periodicity artifacts. However, using magnitude spectrograms
discards phase information which could’ve been otherwise utilized by the discriminator to penalize
phase modeling errors. Moreover, we find that high-frequency modeling is still challenging for these
models especially at high sampling rates.

To address these issues, we use a complex STFT discriminator [46] at multiple time-scales [8] and
find that it works better in practice and leads to improved phase modeling. Additionally we find
that splitting the STFT into sub-bands slightly improves high frequency prediction and mitigates
aliasing artifacts, since the discriminator can learn discriminative features about a specific sub-band
and provide a stronger gradient signal to the generator. Multi-band processing was earlier proposed
in [43] to predict audio in sub-bands which are subsequently summed to produce the full-band audio.

3.5 Loss functions

Frequency domain reconstruction loss: while the mel-reconstruction loss [18] is known to improve
stability, fidelity and convergence speed, the multi-scale spectral losses[42, 11, 15] encourage model-
ing of frequencies in multiple time-scales. In our model, we combine both methods by using a L1
loss on mel-spectrograms computed with window lengths of [32, 64, 128, 256, 512, 1024, 2048] and
hop length set to window_length / 4. We especially find that using the lowest hop size of 8 improves
modeling of very quick transients that are especially common in the music domain.

EnCodec [8] uses a similar loss formulation, but with both L1 and L2 loss terms, and a fixed mel bin
size of 64. We find that fixing mel bin size leads to holes in the spectrogram especially at low filter
lengths. Therefore, we use mel bin sizes [5, 10, 20, 40, 80, 160, 320] corresponding to the above filter
lengths which were verified to be correct by manual inspection.

Adversarial loss: our model uses the multi-period discriminator [18] for waveform discrimination,
as well as the proposed multi-band multi-scale STFT discriminator for the frequency domain. We use
the HingeGAN [22] adversarial loss formulation, and apply the L1 feature matching loss [19].

Codebook learning: we use the simple codebook and commitment losses with stop-gradients from
the original VQ-VAE formulation [38], and backpropagate gradients through the codebook lookup
using the straight-through estimator [3].

Loss weighting: we use the loss weightings of 15.0 for the multi-scale mel loss, 2.0 for the feature
matching loss, 1.0 for the adversarial loss and 1.0, 0.25 for the codebook and commitment losses
respectively. These loss weightings are in line with recent works [18, 21] (which use 45.0 weighting
for the mel loss), but simply rescaled to account for the multiple scales and log10 base we used for
computing the mel loss. We don’t use a loss balancer as proposed in EnCodec [8].

4 Experiments

4.1 Data sources

We train our model on a large dataset compiled of speech, music, and environmental sounds. For
speech, we use the DAPS dataset [26], the clean speech segments from DNS Challenge 4 [10], the
Common Voice dataset [2], and the VCTK dataset [40]. For music, we use the MUSDB dataset
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[31], and the Jamendo dataset [4]. Finally, for environmental sound, we use both the balanced and
unbalanced train segments from AudioSet [14]. All audio is resampled to 44kHz.

During training, we extract short excerpts from each audio file, and normalize them to -24 dB LUFS.
The only data augmentation we apply is to randomly shift the phase of the excerpt, uniformly. For
evaluation, we use the evaluation segments from AudioSet [14], two speakers that are held out from
DAPS [26] (F10, M10) for speech, and the test split of MUSDB [31]. We extract 3000 10-second
segments (1000 from each domain), as our test set.

4.2 Balanced data sampling

We take special care in how we sample from our dataset. Though our dataset is resampled to 44kHz,
the data within it may be band-limited in some way. That is, some audio may have had an original
sampling rate much lower than 44kHz. This is especially prevalent in speech data, where the true
sampling rates of the underlying data can vary greatly (e.g. the Common Voice data is commonly
8-16kHz). When we trained models on varying sampling rates, we found that the resultant model
often would not reconstruct data above a certain frequency. When investigating, we found that this
threshold frequency corresponded to the average true sampling rate of our dataset. To fix this, we
introduce a balanced data sampling technique.

We first split our dataset into data sources that we know to be full-band - they are confirmed to contain
energy in frequencies up to the desired Nyquist frequency (22.05kHz) of the codec - and data sources
where we have no assurances of the max frequency. When sampling batches, we make sure that a
full-band item is sampled. Finally, we ensure that in each batch, there are an equal number of items
from each domain: speech, music, and environmental sound. In our ablation study, we examine how
this balanced sampling technique affects model performance.

4.3 Model and training recipe

Our model consists of a convolutional encoder, a residual vector quantizer, and a convolutional
decoder. The basic building block of our network is a convolutional layer which either upsamples
or downsamples with some stride, followed by a residual layer consisting of convolutional layers
interleaved with non-linear Snake activations. Our encoder has 4 of these layers, each of which
downsamples the input audio waveform at rates [2, 4, 8, 8]. Our decoder has 4 corresponding layers,
which upsample at rates [8, 8, 4, 2]. We set the decoder dimension to 1536. In total, our model
has 76M parameters, with 22M in the encoder, and 54M in the decoder. We also examine decoder
dimensions of 512 (31M parameters) and 1024 (49M parameters).

We use the multi-period discriminator [18], and a complex multi-scale STFT discriminator. For the
first, we use periods of [2, 3, 5, 7, 11], and for the second, we use window lengths [2048, 1024, 512],
with a hop-length that is 1/4 the window length. For band-splitting of the STFT, we use the band-
limits [0.0, 0.1, 0.25, 0.5, 0.75, 1.0]. For the reconstruction loss, we use distance between log-mel
spectrograms with window lengths [32, 64, 128, 256, 512, 1024, 2048], with corresponding number
of mels for each of [5, 10, 20, 40, 80, 160, 320]. The hop length is 1/4 of the window length. We use
feature matching and codebook losses, as described in Section 3.5.

For our ablation study, we train each model with a batch size of 12 for 250k iterations. In practice,
this takes about 30 hours to train on a single GPU. For our final model, we train with a batch size of
72 for 400k iterations. We train with excerpts of duration 0.38s. We use the AdamW optimizer [23]
with a learning rate of 1e− 4, β1 = 0.8, and β2 = 0.9, for both the generator and the discriminator.
We decay the learning rate at every step, with γ = 0.999996.

4.4 Objective and subjective metrics

To evaluate our models, we use the following objective metrics:

1. ViSQOL [7]: an intrusive perceptual quality metric that uses spectral similarity to the ground
truth to estimate a mean opinion score.

2. Mel distance: distance between log mel spectrograms of the reconstructed and ground truth
waveforms. The configuration of this loss is the same as described in 3.5.
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1536 snake ✓ ✗ 5 ✓ 8 Proj. 1.0 8 ✓ 1.09 1.82 3.96 9.12 99%

Architecture
512 snake ✓ ✗ 5 ✓ 8 Proj. 1.0 8 ✓ 1.11 1.83 3.91 8.72 99%
1024 snake ✓ ✗ 5 ✓ 8 Proj. 1.0 8 ✓ 1.07 1.82 3.96 9.07 99%
1536 relu ✓ ✗ 5 ✓ 8 Proj. 1.0 8 ✓ 1.17 1.81 3.83 6.92 99%

Discriminator
1536 snake ✗ ✗ ✗ ✓ 8 Proj. 1.0 8 ✓ 1.13 1.92 4.12 1.07 62%
1536 snake ✓ ✗ 1 ✓ 8 Proj. 1.0 8 ✓ 1.07 1.80 3.98 9.07 99%
1536 snake ✗ ✗ 5 ✓ 8 Proj. 1.0 8 ✓ 1.07 1.81 3.97 9.04 99%
1536 snake ✗ ✓ 5 ✓ 8 Proj. 1.0 8 ✓ 1.08 1.82 3.95 8.51 99%

Reconstruction loss 1536 snake ✓ ✗ 5 ✗ 8 Proj. 1.0 8 ✓ 1.10 1.87 4.01 7.68 99%

Latent dim

1536 snake ✓ ✗ 5 ✓ 2 Proj. 1.0 8 ✓ 1.44 2.08 3.65 2.22 84%
1536 snake ✓ ✗ 5 ✓ 4 Proj. 1.0 8 ✓ 1.20 1.89 3.86 7.15 97%
1536 snake ✓ ✗ 5 ✓ 32 Proj. 1.0 8 ✓ 1.10 1.84 3.95 9.05 98%
1536 snake ✓ ✗ 5 ✓ 256 Proj. 1.0 8 ✓ 1.31 1.97 3.79 5.09 59%

Quantization setup

1536 snake ✓ ✗ 5 ✓ 8 EMA 1.0 8 ✓ 1.11 1.84 3.94 8.33 97%
1536 snake ✓ ✗ 5 ✓ 8 Proj. 0.0 8 ✓ 0.98 1.70 4.09 10.14 99%
1536 snake ✓ ✗ 5 ✓ 8 Proj. 0.25 8 ✓ 0.99 1.69 4.04 10.00 99%
1536 snake ✓ ✗ 5 ✓ 8 Proj. 0.5 8 ✓ 1.01 1.75 4.03 9.74 99%
1536 snake ✓ ✗ 5 ✓ 8 Proj. 1.0 24 ✓ 0.73 1.62 4.16 13.83 99%

Data 1536 snake ✓ ✗ 5 ✓ 8 Proj. 1.0 8 ✗ 1.09 1.94 3.89 8.89 99%

Table 2: Results of the ablation study on our proposed codec. The final model is trained with the
same configuration as the baseline (top row), but with a quantization dropout of 0.5.

3. STFT distance: distance between log magnitude spectrograms of the reconstructed and
ground truth waveforms. We use window lengths [2048, 512]. This metric captures the
fidelity in higher frequencies better than the mel distance.

4. Scale-invariant source-to-distortion ratio (SI-SDR) [20]: distance between waveforms,
similar to signal-to-noise ratio, with modifications so that it is invariant to scale differences.
When considered alongside spectral metrics, SI-SDR indicates the quality of the phase
reconstruction of the audio.

5. Bitrate efficiency: We calculate bitrate efficiency as the sum of the entropy (in bits) of each
codebook when applied on a large test set divided by the number of bits across all codebooks.
For efficient bitrate utilization this should tend to 100% and lower percentages indicate that
the bitrate is being underutilized.

We also conduct a MUSHRA-inspired listening test, with a hidden reference, but no low-passed
anchor. In it each one of ten expert listeners rated 12 randomly selected 10-second samples from
our evaluation set, 4 of each domain; speech, music and environmental sounds. We compare our
proposed system at 2.67kbps, 5.33kbps and 8kbps to EnCodec at 3kbps, 6kbps and 12kbps.

4.5 Ablation study

We conduct a thorough ablation study of our model, varying components of our training recipe and
model configuration one-by-one. To compare models, we use the four objective metrics described in
Section 4.4. The results of our ablation study can be seen in Table 2.

Architecture: We find that varying the decoder dimension has some effect on performance, with
smaller models having consistently worse metrics. However, the model with decoder dimension 1024
has similar performance to the baseline, indicating that smaller models can still be competitive. The
change with the biggest impact was switching out the relu activation for the snake activation. This
change resulted in much better SI-SDR and other metrics. Similar to the results in BigVGAN [21],
we find that the periodic inductive bias of the snake activation is helpful for waveform generation.
For our final model, we use the largest decoder dimension (1536), and the snake activation.

7



Discriminator: Next, we removed or changed the discriminators one-by-one, to see their impact on
the final result. First, we find that the multi-band STFT discriminator does not result in significantly
better metrics, except for SI-SDR, where it is slightly better. However, when inspecting spectrograms
of generated waveforms, we find that the multi-band discriminator alleviates aliasing of high fre-
quencies. The upsampling layers of the decoder introduce significant aliasing artifacts [29]. The
multi-band discriminator is more easily able to detect these aliasing artifacts and give feedback to the
generator to remove them. Since aliasing artifacts are very small in terms of magnitude, their effect
on our objective metrics is minimal. Thus, we keep the multi-band discriminator.

We find that adversarial losses are critical to both the quality of the output audio, as well as the bitrate
efficiency. When training with only reconstruction loss, the bitrate efficiency drops from 99% to
62%, and the SI-SDR drops from 9.12 to 1.07. The other metrics capture spectral distance, and are
relatively unaffected. However, the audio from this model has many artifacts, including buzzing, as it
has not learned to reconstruct phase. Finally, we found that swapping the multi-period discriminator
for the single-scale waveform discriminator proposed in MelGAN [19] resulted in worse SI-SDR.
We retain the multi-period discriminator.

Impact of low-hop reconstruction loss: We find that low-hop reconstruction is critical to both
the waveform loss and the modeling of fast transients and high frequencies. When replaced with a
single-scale high-hop mel reconstruction (80 mels, with a window length of 512), we find significantly
lower SI-SDR (7.68 from 9.12). Subjectively, we find that this model does much better at capturing
certain sorts of sounds, such as cymbal crashes, beeping and alarms, and singing vocals. We retain
the multi-scale mel reconstruction loss in our final recipe.

Latent dimension of codebook: the latent dimension of the codebook has a significant impact on
bitrate efficiency, and consequently the reconstruction quality. If set too low or too high (e.g. 2,
256), quantitative metrics are significantly worse with drastically lowered bitrate efficiency. Lower
bitrate efficiency results in effectively lowered bandwidth, which harms the modeling capability of the
generator. As the generator is weakened, the discriminator tends to “win”, and thus the generator does
not learn to generate audio with high audio quality. We find 8 to be optimal for the latent dimension.

Quantization setup: we find that using exponential moving average as the codebook learning method,
as in EnCodec[8], results in worse metrics especially for SI-SDR. It also results in poorer codebook
utilization across all codebooks (Figure 1). When taken with its increased implementation complexity
(requiring K-Means initialization and random restarts), we retain our simpler projected lookup method
for learning codebooks, along with a commitment loss. Next, we note that the quantization dropout
rate has a significant effect on the quantitative metrics. However, as seen in Figure 2, a dropout of 0.0
results in poor reconstruction with fewer codebooks. As this makes usage of the codec challenging for
downstream generative modeling tasks, we instead use a dropout rate of 0.5 in our final model. This
achieves a good trade-off between audio quality at full bitrate as well as lower bitrates. Finally, we
show that we can increase the max bitrate of our model from 8kbps to 24kbps and achieve excellent
audio quality, surpassing all other model configurations. However, for our final model, we train at the
lower bitrates, in order to push the compression rate as much as possible.

Balanced data sampling: When removed, this results in worse metrics across the board. Empirically,
we find that without balanced data sampling, the model produces waveforms that have a max
frequency of around 18kHz. This corresponds to the max frequency preserved by various audio
compression algorithms like MPEG, which make up the vast majority of our datasets. With balanced
data sampling, we sample full-band audio from high-quality datasets (e.g. DAPS) just as much as
possibly band-limited audio from datasets of unknown quality (e.g. Common Voice). This alleviates
the issue, allowing our codec to reconstruct full-band audio, as well as band-limited audio.

4.6 Comparison to other methods

We now compare the performance of our final model with competitive baselines: EnCodec [8], Lyra
[46], and Opus [37], a popular open-source audio codec. For EnCodec, Lyra, and Opus, we use
publicly available open-source implementations provided by the authors. We compare using both
objective and subjective evaluations, at varying bitrates. The results are shown in Table 3. We find
that the proposed codec out-performs all competing codecs at all bitrates in terms of both objective
and subjective metrics, while modeling a much wider bandwidth of 22kHz.
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Figure 3: Listening tests at 44 KHz: MUSHRA
scores, with 95% confidence intervals vs bitrate
for EnCodec, our proposed approach, and the ref-
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Proposed

1.78 22.05 1.39 1.95 3.76 2.16
2.67 22.05 1.28 1.85 3.90 4.41
5.33 22.05 1.07 1.69 4.09 8.13

8 22.05 0.93 1.60 4.18 10.75

EnCodec

1.5 12 2.11 4.30 2.82 -0.02
3 12 1.97 4.19 2.94 2.94
6 12 1.83 4.10 3.05 5.99

12 12 1.70 4.02 3.13 8.36
24 12 1.61 3.97 3.16 9.59

Lyra 9.2 8 2.71 4.86 2.19 -14.52

Opus
8 4 3.60 5.72 2.06 5.68

14 16 1.23 2.14 4.02 8.02
24 16 0.88 1.90 4.15 11.65

Table 3: Objective evaluation of the proposed
codec at varying bitrates, along with results from
competing approaches.

In Figure 3, we show the result of our MUSHRA study, which compares EnCodec to our proposed
codec at various bitrates. We find that our codec achieves much higher MUSHRA scores than
EnCodec at all bitrates. However, even at the highest bitrate, it still falls short of the reference
MUSHRA score, indicating that there is room for improvement. We note that the metrics of our final
model are still lower than the 24kbps model trained in our ablation study, as can be seen in Table 2.
This indicates that the remaining performance gap may be closed by increasing the maximum bitrate.

In Figure 4 and Table 4, we compare our proposed model trained with the same exact configuration as
EnCodec (24 KHz sampling rate, 24 kbps bitrate, 320 stride, 32 codebooks of 10 bits each) to existing
baselines, in both quantitative and qualitative metrics. In Figure 5, we show qualitative results by
sound category.
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Figure 4: Listening tests at 24 KHz: MUSHRA
scores with 95% confidence intervals vs bitrate for
EnCodec, our proposed approach with the same
configuration, and the reference. Here all samples
under comparison are resampled to 24 KHz.
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1.5 12 1.48 2.24 4.04 0.32
3 12 1.24 2.01 4.23 4.44
6 12 1.00 1.78 4.38 8.44

12 12 0.74 1.54 4.51 12.51
24 12 0.49 1.33 4.61 16.40

EnCodec

1.5 12 1.63 2.69 3.98 0.02
3 12 1.46 2.54 4.16 2.99
6 12 1.30 2.39 4.30 6.06

12 12 1.15 2.28 4.39 8.44
24 12 1.05 2.21 4.42 9.69

Table 4: Encodec Configuration: Objective evalu-
ation of the proposed model trained with the same
configuration as EnCodec at varying bitrates, along
with results from EnCodec.
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Figure 5: MUSHRA by category: MUSHRA scores with 95% confidence intervals vs bitrate for our
proposed model, EnCodec and reference.

5 Conclusion

We have presented a high-fidelity universal neural audio compression algorithm that achieves re-
markable compression rates while maintaining audio quality across various types of audio data.
Our method combines the latest advancements in audio generation, vector quantization techniques,
and improved adversarial and reconstruction losses. Our extensive evaluation against existing au-
dio compression algorithms demonstrates the superiority of our approach, providing a promising
foundation for future high-fidelity audio modeling. With thorough ablations, open-source code, and
trained model weights, we aim to contribute a useful centerpiece to the generative audio modeling
community.

Broader impact and limitations: our model has the capability to make generative modeling of
full-band audio much easier to do. While this unlocks many useful applications, such as media editing,
text-to-speech synthesis, music synthesis, and more, it can also lead to harmful applications like
deepfakes. Care should be taken to avoid these applications. One possibility is to add watermarking
and/or train a classifier that can detect whether or not the codec is applied, in order to enable the
detection of synthetic media generated based on our codec. Also, our model is not perfect, and still
has difficulty reconstructing some challenging audio. By slicing the results by domain we find that,
even though the proposed codec outperforms competing approaches across all of the domains, it
performs best for speech and has more issues with environmental sounds. Finally, we notice that it
does not model some musical instruments perfectly, such as glockenspeil, or synthesizer sounds.
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A Appendix

Modified codebook learning algorithm In our work, we use a modified quantization operation,
given by:

zq(x) = Woutek, where k = argmin
j

||ℓ2(Winze(x))− ℓ2(ej)||2

Here, Win and Wout are projection matrices, with Win mapping the encoder’s output to an intermediate
representation, and Wout mapping this intermediate representation to the quantized representation
zq(x). Specifically,

Win ∈ RD×M and Wout ∈ RM×D

where D is the output dimension of the encoder, and M is the codebook dimension with M ≪ D.

The vector quantizer loss function is then defined to measure the reconstruction error and is given by:

zproj(x) = Win ze(x)

LVQ = ||sg[ℓ2(zproj(x))]− ℓ2(ek)||22 + β||ℓ2(zproj(x))− sg[ℓ2(ek)]||22
where sg is the stop gradient operator, preventing the back-propagation of gradients through ek, and
β is a hyperparameter controlling the balance between the two terms in the loss function.
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