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Abstract. Table Structure Recognition (TSR) is vital for various down-
stream tasks like information retrieval, table reconstruction, and docu-
ment understanding. While most state-of-the-art (SOTA) research pre-
dominantly focuses on TSR in English documents, the need for similar
capabilities in other languages is evident, considering the global diversity
of data. Moreover, creating substantial labeled data in non-English lan-
guages and training these SOTA models from scratch is costly and time-
consuming. We propose TSR as a language-agnostic cell arrangement
prediction and introduce SPRINT - Script-agnostic Structure Recogni-
tion in Tables. SPRINT uses recently introduced Optimized Table Struc-
ture Language (OTSL) sequences to predict table structures. We show
that when coupled with a pre-trained table grid estimator, SPRINT can
improve the overall tree edit distance-based similarity structure scores of
tables even for non-English documents. We experimentally evaluate
our performance across benchmark TSR datasets including PubTabNet,
FinTabNet, and PubTables-1M. Our findings reveal that SPRINT not
only matches SOTA models in performance on standard datasets but
also demonstrates lower latency. Additionally, SPRINT excels in accu-
rately identifying table structures in non-English documents, surpass-
ing current leading models by showing an absolute average increase of
11.12%. We also present an algorithm for converting valid OTSL predic-
tions into a widely used HTML-based table representation. To encourage
further research, we release our code and Multilingual Scanned and Scene
Table Structure Recognition Dataset, MUSTARD labeled with OTSL
sequences for 1428 tables in thirteen languages encompassing several
scripts at https://github.com/IITB-LEAP-OCR/SPRINT.
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1 Introduction

Tables in documents serve as powerful tools for organizing and presenting com-
plex data in a structured and visually comprehensible manner. The structure of
tables can vary from simple rows and columns to intricate designs with merged
cells and hierarchical arrangements. Additionally, the styling of tables, including
multilingual content, font choices, colors, and the presence of borders contribute
to the overall diversity of tables. To perform OCR, table reconstruction, or any
other document analysis tasks, it is necessary to understand the structure of
tables. Depending upon the application and nature of representation, table struc-
tures are generally divided into two notions namely physical structure and logical
structure. Both these structures are important to be deduced for various down-
stream applications. The physical structure of the table is denoted by the actual
demarcation of table regions like rows, columns, cells, etc. which are generally
represented using bounding boxes. The logical structure of a table represents the
underlying topology and gives us more information about the cell adjacency
relations. It also conveys more about the cells spanned or merged which benefits
table reconstruction in the required format. Logical structures of tables are gen-
erally represented using HTML, LATEX, or more recently through OTSL [21]
sequences. Logical structure prediction is considered to be a sequence generation
task. Recently, as seen in Fig 1, many Image-to-sequence-based (Im2Seq) models
have been employed to predict the logical structures of tables.

(a) Graph illustrating the comparative
TSR performance of SPRINT (our ap-
proach) along with other approaches
[20–22] for FinTabNet and MUSTARD
datasets.

(b) Sample table from MUSTARD

(c) Slow, inaccu-
rate TSR using
MTL-TabNet [20]

(d) Fast, accurate
script agnostic
TSR by SPRINT

Fig. 1. Recent performance trends of various Im2Seq models for TSR

Im2Seq TSR models are transformer-based models that take a table image
as an input and produce a sequence denoting the logical structure of the table.
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A lot of popular Im2Seq models [20,39] have adapted Global Context Attention
(GCA) [18] in their encoders to boost the TSR performance on popular bench-
mark datasets. But even though the usage of such GCA-incorporated Im2Seq
models like MTL-TabNet [20] have improved the TSR performance by propos-
ing new architectures, they suffer from two major drawbacks: First of all, they
are unable to generalize well on tables having content in different scripts. Sec-
ondly, they end up using only HTML-based tag sequences for representing table
structures. Such drawbacks are highlighted in the graph shown in Fig 1a. MTL-
TabNet [20] that achieves the best TSR performance on the FinTabNet dataset
is not only relatively slower but also is unable to generalize well on MUSTARD
achieving an overall tree edit distance-based similarity structure (TEDS-S) score
of under 75%. On the other hand, the OTSL-based table structure represen-
tation [21] has proven to be beneficial for faster decoding. It is also evident
that using the same TableFormer [22] architecture, the performance is better
and faster using OTSL representation as compared to the HTML representa-
tion. Most of these Im2Seq models rely on large HTML tag-based vocabularies
making them relatively slower. To design script-agnostic TSR, the model must
generalize well on diverse data. MUSTARD comprises of diverse tables from
different sources. As shown in Fig 1c, MTL-TabNet incorrectly estimates the
structure of MUSTARD table shown in Fig 1b by interpreting three columns
with empty cells on either extreme side of the first row. This is mainly because
SOTA models like MTL-TabNet are trained on upsampled table images that
mostly have English content and they implicitly capture some language-specific
or font-specific features from the image. Since MUSTARD consists of document
tables as well as scene tables in several scripts, sizes, and styles, it becomes chal-
lenging to perform script-specific or modality-specific TSR. Moreover, all the
above-mentioned conventional approaches require training of heavy DL models
that require lots of labeled data. Labeled data for tables in non-English lan-
guages is limited. To the best of our knowledge, no labeled datasets are available
for tables with content in various scripts with their logical structures annotated.

Thus, we propose SPRINT, for a fast and script-agnostic structure recogni-
tion in tables that addresses the above highlighted gaps. Since SPRINT views
table structures as a script-agnostic arrangement of cells, it is beneficial to blur
the language-specific or font-specific peculiarities in the table images before
they are sent to Im2Seq models. We model the global context of such blurred or
downsampled images, using GCA-based encoders as used in SOTA. This helps
SPRINT to generalize better on tables having content in different scripts. The
SPRINT decoder also leverages a minimal OTSL vocabulary rather than a
larger error-prone HTML vocabulary [21]. As seen in Fig. 1d, the table struc-
ture of the sample image (Fig. 1b) is accurately predicted with two columns and
five rows represented using the OTSL sequence. The ‘F’ in OTSL representation
stands for a filled cell and ‘L’ stands for a left-ward-looking cell indicating a
column span of 2 in the first row. Employing OTSL vocabulary helps in faster
decoding of structure sequences. Thus, downsampling table images, usage of
a GCA-based encoder, and adapting the OTSL-based representation help in
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making SPRINT both fast and script agnostic. Through this work, we make
the following contributions

1. We present the architecture and design of SPRINT, an Im2Seq model that
consists of a GCA-based encoder and a transformer-based decoder that uses
the OTSL-based representation for fast and accurate predictions.

2. We propose the usage of SPRINT along with a loosely coupled Table Grid
Estimator [29] for deducing the logical structure of tables having content in
various scripts.

3. We present an algorithm to convert a well-defined OTSL prediction into an
HTML tag-based sequence for accessibility and evaluation purposes. We sub-
sequently highlight the TEDS-S scores achieved by our method for popular
TSR datasets.

4. Finally we release our code and MUSTARD, a dataset labeled with OTSL-
based sequences to represent the logical structures of 1428 tables having con-
tent in several scripts and modalities.

The outline of the rest of the paper is as follows. Section 2 showcases related
work being done in the field of TSR. We describe our methodology in Sect. 3.
Section 4 gives a detailed overview of our experimentation. We finally present our
results in Sect. 5 and conclude in Sect. 6 respectively.

2 Related Literature

TSR is a widely studied problem [1] encompassing various innovative approaches.
TSR methods that determine the complete physical and logical structure of
tables can be broadly divided into object detection-based methods and Im2Seq-
based methods.

Object detection-based methods are predominantly used for deducing
the physical structure of tables. They detect and demarcate regions in the input
table image. These include popular object detection networks like Faster R-
CNN [26], Mask R-CNN [10], Cascade R-CNN [2,23], and YOLO [25] to detect
cells. Recently transformer-based architectures like DETR [3] have also been
employed for object detection-like tasks that can be used to determine the
physical structure of tables. The ‘cell bbox decoder’ of TableFormer [22], and
TATR [29] are some transformer-based approaches that use DETR for deter-
mining the cells (as bounding boxes) from detected tables in document images.
Various methods like TSRFormer [17], TSR using enhanced DETR [34] and
split and merge-based methods [35,40] also follow similar approaches to deter-
mine rows and columns of detected tables. Most of the object detection methods
predict the physical structure of tables and eventually rely on simple bounding
boxes-based post-processing algorithms to associate the detected cells with the
logical structure of tables. Hence, these methods can be used in a standalone
manner. However, one major drawback of object detection-based methods is
their emphasis on enhancing detection performance, which may not necessarily
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result in a more effective deduction of the logical structure of tables during post-
processing. Further, if the object detection stage performs poorly, the deduced
structure is also incorrectly estimated.

Im2Seq-based methods are TSR methods that perform sequence genera-
tion from input table images. Transformers have proven to be beneficial for such
tasks. Most of these approaches use encoder-decoder-like architectures equipped
with attention like the structure decoder of TableFormer [22], EDD [43], etc.
TableFormer is an amalgamation of two different models that employ the usage
of encoder-decoder with attention [33] for logical structure and DETR [3] for
physical structure. The output sequence for such Im2Seq models corresponds to
a representation of the logical structure of the table. These sequences can be rep-
resented in many forms including HTML, Latex, Markdown, etc. Most of these
Im2Seq approaches use the HTML representation for decoding the table struc-
ture. There are a lot of drawbacks to using the HTML-based vocabulary [21]
as it can be error-prone and unreasonably large. Recently the Optimized Table
Structure Language (OTSL) [21] has been introduced to represent tables’ log-
ical structure. OTSL is an efficient token-based representation with minimized
vocabulary and well-defined rules. Apart from that, the strict syntax and rules
to interpret the OTSL structure can also be used to convert it into an HTML
sequence. It reduces the number of tokens to be decoded and also helps in faster
inference. We exploit this usage of OTSL for predicting the sequence correspond-
ing to the logical structure. Various Im2Seq models like TableMaster [39] end up
using pre-existing transformer-based models like MASTER [18]. Im2Seq models
used for logical structure prediction are seldom standalone. They end up relying
on physical structure predictors for tables in documents to assist in the entire
reconstruction of tables.

Hybrid, combined, and miscellaneous works include various new meth-
ods like graph-based networks that perform TSR. They usually represent tables
as graphs with nodes as table cells, and their edges represent cell relationships
by posing this as a graph reconstruction problem. Examples of such approaches
include Global Table Extractor (GTE) [42], and Table Graph Reconstruction
Network (TGRNet) [37]. Even though graph-based TSR approaches can gener-
alize better, they rely on external graph-based models and require constrained
optimizations [15]. Multi-Type-TD-TSR [6] proposes a multi-stage pipeline to
perform table detection followed by TSR but processes bordered and border-
less tables differently. Some other hybrid approaches of TSR include end-to-
end attention-based models [19,20] that try to predict physical structure, log-
ical structure, and cell content using three or more decoders together. Few
approaches try to obtain more aligned bounding boxes (physical structure) by
utilizing visual information [24,27] or reformulating losses (VAST) [12] to deduce
the table structure. Such hybrid works eventually end up working with distinct
physical and logical TSR models in synchronization, eliminating the need to
explicitly map or align the independently predicted logical and physical struc-
tures during the reconstruction stage.
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TSR Datasets include a lot of popular huge TSR datasets like Pub-
TabNet [43], FinTabNet [41], SynthTabNet [22], and PubTables-1M [29] that
have tables from mostly English documents. TabLeX [5], SciTSR [4] and
TableBank [16] are a few datasets of moderate sizes that focus on document
tables. Few older and relatively smaller datasets include ICDAR 2013 [8], ICDAR
2019 [7], UNLV [28], etc. All of the datasets mentioned above have data anno-
tated with the logical structure of tables in either HTML or LATEX formats.
Recently, a collection of OTSL-based canonical TSR datasets [21] has also been
released for a subset of tables in the PubTabNet, FinTabNet, and PubTables-1M
datasets which we leverage for training SPRINT. TabRecSet [38] is a recently
released bilingual end-to-end table detection, TSR, and table content recognition
dataset with tables annotated from English and Chinese documents. However,
to the best of our knowledge, there are no multilingual TSR datasets. Taking
inspiration from multilingual datasets proposed for text detection [14] and text
recognition [9], we propose MUSTARD having structures annotated for various
multilingual tables. Apart from that, a lot of metrics have been used to evaluate
TSR models including Mean Average Precision (MAP) for physical structure,
TEDS-S score for logical structure, and TEDS score [43], GriTS [31] score for
both logical as well as physical structure.

3 Our Methodology

Our objective is to determine the structure of the input table image. Figure 2
highlights the design of our proposed methodology.

The first step involves interpreting the logical structure of the input table.
This makes use of SPRINT, the working and training details of which we explain
in Sect. 4.3. The next step involves interpreting the physical structure of the
table by demarcating the rows and columns of the input table image. The goal
is to identify the number of objects for two classes namely ‘table-row’ and ‘table-
column’. We estimate the number of rows (R) and number of columns (C ) in this
step. The technical details of the table grid estimator are mentioned in Sect. 4.4.
Since OTSL has a well-defined syntax associated with the table structure, it is
necessary to convert the predicted string into a valid OTSL matrix. For a table
with R rows and C columns, a valid OTSL matrix has R * (C + 1) entries. The
estimated number of rows and the number of columns obtained in Step 2 are used
to verify the length of the predicted string. The string is made to have a length of
R * (C + 1) by appropriate padding or trimming techniques to reshape it into a
proper OTSL matrix as shown in the output of Step 3 in Fig 2. The periodicity
of character ‘N’ is also verified by making sure that every (C + 1)th character
is ‘N’. Similarly, incorrectly placed ‘L’, ‘U’, ‘X’, and ‘N’ characters are replaced
with ‘F’ denoting a fundamental table cell. This grid-based alignment step is
beneficial for two reasons. First of all, it produces a syntactically valid OTSL
matrix that can be converted to other popular formats like HTML. Secondly,
it eliminates the need to explicitly map the cells of the table with a logical
structure through extensive post-processing. As the aligned OTSL sequence and
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Fig. 2. Our methodology for TSR using SPRINT

the estimated grid indicate the same number of rows, columns, and cells, every
cell is implicitly mapped with a certain row and column by default. Finally,
in the last step, the aligned and validated OTSL matrix is converted into an
HTML sequence using the procedure mentioned in Algorithm 1. The intuition
for the intermediate method for finding the cell spans of a single entry in the
OTSL matrix is shown in Algorithm 2. Eventually, we determine the tree-like
representation of the table’s structure which can be used for further evaluation
and reconstruction.

4 Experiments

We begin by mentioning the OTSL-based datasets and then elaborating upon
the architecture of SPRINT and usage of TATR [29] as our table grid estimator
that is used to deduce the logical structure of the input table image.
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4.1 Datasets

We have used popular benchmark TSR datasets of PubTabNet [43], FinTab-
Net [41] and PubTables-1M [29] which contain tables predominantly from
English documents. The canonical subsets of table images from these datasets
have their corresponding OTSL sequences released [21] which we use for train-
ing and validation purposes. We internally split the train set of PubTabNet for
training and validation and further have used the non-overlapping table images
in the PubTabNet validation set to report our results to compare our perfor-
mance with other approaches. Table 1 gives a brief idea of the datasets used and
the number of images in every split for our experimentation. More details and
OTSL-character-specific statistics are mentioned in the supplementary material.
To ensure consistency, we use the test sets of canonical datasets to compare with
OTSL baselines and that of original datasets to compare with HTML baselines.
The further bifurcation of the test sets in terms of the types of tables (simple
or complex) is also enlisted. Simple tables do not have any spanned or merged
cells, whereas complex tables have at least one merged or spanned cell in them.
Besides, we also report results on our internal dataset, MUSTARD. MUS-
TARD consists of 1428 tables in thirteen languages that are cropped and anno-
tated from multiple sources [13,32,38] that originally contain page-level images.
MUSTARD encompasses 1214 cropped document table images (scanned or
printed) in twelve languages, including eleven Indian languages [13], each with
approximately 100 tables, namely Assamese, Bengali, Gujarati, Hindi, Kannada,
Malayalam, Oriya, Punjabi, Tamil, Telugu, Urdu, and an additional 102 Chi-
nese cropped tables sourced from CTDAR documents [7,32]. MUSTARD also
includes 214 English and Chinese scene tables that are cropped and annotated

Fig. 3. Sample images from our internal dataset, MUSTARD
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from a subset of images present in the TabRecSet [38] dataset. A few of the table
images from MUSTARD are highlighted in Fig 3.

Table 1. Overview of the TSR Datasets used in our experimentation. * indicates
evaluating on the non-overlapping images in the PubTabNet validation set

Dataset Name Number of Images Test Set Details

Training Validation Testing Simple Complex

PubTabNet [43] Original 320000 68002 *9115 4653 4462

Canonical [21] *6942 4636 2306

FinTabNet [41] Original 88441 10505 10635 5126 5509

Canonical [21] 10397 5126 5271

PubTables-1M Canonical [21] 522874 93989 92841 44377 48464

MUSTARD - - 1428 662 766

4.2 Image Preprocessing

We resize all the table images in our datasets to a standard size. Unlike the
popular approaches [12,20,22], which upscale the image or pass it to the model as
it is, we choose to downsample the images into 128∗128 pixels. This preprocessing
is done for two main reasons. First of all, it introduces uniformity for the model
and generates features of equal dimensions for all images. Secondly, resizing
helps to convert the content of table cells in the images into blobs of pixels.
These blobs are sufficient enough to convey the presence of some data in the cell
and create distortions to ensure that the script-based peculiarities are blurred.
This helps to achieve a table image with blobs of pixels representing a script-
agnostic arrangement of cells. As seen in Fig 4, we see the resized table images
originally having content in different languages reduced to a size of 128 ∗ 128
pixels having blobs. By standardizing these images, SPRINT becomes more
robust and adaptable to comprehend different tabular structures.

4.3 Training SPRINT

We employ resized images of 128 ∗ 128 pixels for all subsequent experiments.
Our vocabulary comprises six OTSL characters, namely ‘F’, ‘E’, ‘L’, ‘X’, ‘N’,
and ‘U’, and start and stop tokens added manually to the sequences before
training. More details about the syntax of representing table structure using
OTSL [21] sequences and how we have adapted it in SPRINT are given in
the supplementary material. For every sample, the table image serves as input,
with the OTSL sequence as the target (ground truth). As shown in Fig. 5,
SPRINT comprises a GCA-based encoder and a transformer-based decoder. We
use Multi Aspect Global Attention [18] fused between RESNET31 [11] layers in
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(a) Hindi (b) Bengali (c) Telugu & English (d) Punjabi

Fig. 4. Resized table images in different languages after preprocessing stage

the encoder. The encoder generates a feature tensor that denotes 512 channels
of 16 ∗ 32 feature maps. This feature tensor undergoes positional embedding to
generate encoded feature vectors each of size 512 which are passed on to the
decoder. The decoder comprises six layers and a feed-forward neural network
with 2048 nodes in intermediate layers. As most OTSL sequences in our datasets
are less than 224 characters in length, we set the maximum permissible length
of predictions as 224 for the decoder. We use the categorical cross-entropy loss
between the ground truths and predicted OTSL sequences to train SPRINT
using the above-mentioned configuration. One is trained solely on the FinTabNet
dataset which we refer to as SPRINTFTN . The other model, SPRINTALL, is
trained on a merged dataset comprising FinTabNet, PubTabNet, and PubTables-
1M. Both models undergo training for over 80 epochs with a learning rate of
0.0001. We have performed all our training and relevant experiments on an
NVIDIA RTX A6000 single GPU.

Fig. 5. Architecture diagram explaining the structure and working of SPRINT
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4.4 Table Grid Estimator

We have used the TATR [30] V1.1 model pretrained on FinTabNet, PubTab-
Net, and PubTables-1M datasets for determining the physical structure of the
input table image. The underlying architecture for TATR is DETR [3] which is
trained for six object classes. For grid alignment, we make use of two classes of
‘table-row’ and ‘table-column’ as they are sufficient to accurately determine the
number of rows (R) and columns (C ). We use a detection threshold of 0.25 dur-
ing the inference of the TATR V1.1 model. We further carry out NMS for table
row class with an IOU threshold of 0.25 to minimize overlapping predictions and
improve the row match. Once R and C are determined, these values align with
the OTSL sequence predicted by SPRINT. The supplementary material shows
the qualitative results of the TATR model for detecting table rows and table
columns respectively. Eventually, it is the number of detections that are used to
determine the number of rows (R) and columns (C ) to align the OTSL sequence.
The actual bounding boxes are useful only for further reconstruction of tables.
However, only R and C values are sufficient to align the OTSL sequence and
deduce the logical structure. To show that, pretrained TATR is a promising grid
estimator to determine the number of rows and columns, we present the exact
match (in %) and mean L1 error in estimating the number of rows, number
of columns, and both rows and columns together for the different test sets in
Table 2. As shown in the table, for all datasets under consideration, there is a
highly accurate match for PubTabNet, FinTabNet, and PubTables-1M datasets.
There is a decent match of rows and columns for MUSTARD because TATR
is pretrained from abundant tables from only English documents. Even though
the match in the number of rows and columns for MUSTARD has scope for
improvement, the average L1 error in predicted numbers and actual numbers is
less than 0.55 indicating that the difference in the predicted and actual rows is
quite low in number. This low L1 error ensures that the TEDS-S score is not
penalized much for the HTML sequence generated which is evident in our results
in Sect. 5. The better the exact match accuracy, the better would be the aligned
OTSL and thus more accurately would be the table structure preserved.

Table 2. Performance of TATR [29] as our table grid estimator for determining the
number of rows and columns in the image. We use v1.1-PubTables-1 m for reporting
results on the PubTables-1M dataset and v1.1-all on the other datasets.

Test Dataset Rows Only Columns Only Rows and Cols

Exact Match Avg L1 Error Exact Match Avg L1 Error Exact Match Avg L1 Error

PubTabNet 88.82 0.278 90.97 0.138 81.28 0.208

FinTabNet 88.51 0.212 98.42 0.019 87.22 0.115

PubTables-1M 94.39 0.123 98.19 0.022 92.81 0.073

MUSTARD 67.67 0.576 75.00 0.451 54.62 0.513
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5 Results and Discussions

In this section, we present the TEDS-S scores achieved by SPRINT along
with the assistance of the table grid estimator. The final output is an HTML
tag sequence. PubTabNet, FinTabNet, and PubTables-1M have their ground
truths available in HTML format. To evaluate only the structure, we filter the
content and only consider the pure HTML tag sequence as the corresponding
ground truths. The OTSL-labeled sequences of the MUSTARD are converted
to HTML tag sequences using Algorithm 1.

5.1 Performance on TSR in English Documents

Table 3 highlights our performance against the pre-reported TEDS-S scores of
the OTSL baseline [21] for all three datasets. We have reported our results
on the canonical test sets of FinTabNet, PubTabNet, and PubTables-1M [21].
We have used SPRINTFTN to evaluate the FinTabNet canonical test set and
SPRINTALL on the other two test sets respectively. We consistently perform
better than the OTSL baseline for all the enlisted datasets. We compare our per-
formance with the pre-reported TEDS-S scores of different approaches that use
the HTML-based vocabulary for TSR tasks in Table 4. We use SPRINTFTN

on FinTabNet and SPRINTALL on the PubTabNet test set for evaluation.
We match the performance of the best performing MTL-TabNet [20] for both
datasets. Our approach falls short by an average of 1.5% because both VAST and
MTL-TabNet rely on upscaling images leading to larger feature maps that are
leveraged by cascaded decoders trained on the HTML-based vocabulary. Fur-
ther, MTL-TabNet uses two decoders for decoding the table structure making
the model slower than our approach. After testing for 50 iterations on a random
subset of 400 FinTabNet images, it is observed that while MTL-TabNet takes
an average of 2.35 s per prediction, SPRINT can give faster prediction in an
average time of 1.52 s per image indicating better latency. We give a detailed
overview of inference time estimation in the supplementary material. We are
faster not only due to the small-sized feature tensors produced by downsampled
images by the GCA-based encoder [18] but also due to the usage of minimized
OTSL vocabulary [21] for the decoder to produce faster predictions. Besides,
our approach also generalizes well for tables having content in other languages
(scripts) as described in the upcoming Sect. 5.2.

Table 3. Comparison of our approach against the OTSL baseline on popular TSR
datasets for tables in English documents. * indicates that OTSL [21] have reported
percentage score rounded off to one digit after decimal point

Dataset TableFormer + OTSL [21] Ours

TEDS-S Simple TEDS-S Complex TEDS-S Overall TEDS-S Simple TEDS-S Complex TEDS-S Overall

PubTabNet 96.50 93.40 95.50 98.20 96.24 97.55

FinTabNet 95.50 96.10 95.90 98.36 97.99 98.17

PubTables-1M 98.70 96.40 *97.70 98.92 96.54 97.68
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Table 4. Comparison of our approach on PubTabNet and FinTabNet datasets for
tables in English documents with other pre-reported TEDS-S scores of HTML-based
Im2Seq approaches

Dataset PubTabNet [43] FinTabNet [41]

Model TEDS-S Simple TEDS-S Complex TEDS-S Overall TEDS-S Simple TEDS-S Complex TEDS-S Overall

EDD [36,43] 91.10 88.70 89.90 88.40 92.08 90.60

GTE [42] - - 93.01 - - 91.02

TableFormer [22] 98.50 95.00 96.75 97.50 96.00 96.80

VAST [12] - - 97.23 - - 98.63

MTL-TabNet [20] 99.05 96.66 97.88 99.07 98.46 98.79

Ours 98.00 93.32 95.71 98.35 97.74 98.03

5.2 Performance on MUSTARD

Table 5 shows the comparative overview of our performance against MTL-
TabNet [20]. Since source code and checkpoints for OTSL baselines [21] and
VAST [12] have not been released, we compare the TEDS-S scores obtained by
our approach with the MTL-TabNet (SOTA) scores. For determining TEDS-S
on MUSTARD, we use the MTL-TabNet checkpoint trained on the FinTabNet
dataset and SPRINTFTN for evaluating our approach. Our approach consis-
tently performs better than MTL-TabNet for all the enlisted languages and
shows an average increase of 11.12% in the overall TEDS-S score. We believe
that MTL-TabNet does not perform as well as our approach since it has been
extensively trained on English TSR datasets for upsampled images on HTML
vocabulary. As a result, MTL-TabNet is unable to capture the script-agnostic
arrangement of cells. Fig 6 showcases our results on a few images from MUS-
TARD which show our aligned OTSL predictions projected on the HTML-based
table skeleton reflecting the ground truth structures.

Table 5. Comparing MTL-TabNet [20] with our approach on tables in MUSTARD
for various languages (scripts) and modalities

Modality Language MTL-TabNet Ours

TEDS-S Simple TEDS-S Complex TEDS-S Overall TEDS-S Simple TEDS-S Complex TEDS-S Overall

Document Tables
(Printed and Scanned)

Assamese 79.39 73.40 76.54 88.09 88.74 88.40

Bengali 71.68 60.02 61.42 77.24 78.52 78.36

Gujarati 85.12 76.72 79.63 87.79 81.34 83.58

Hindi 73.80 76.60 75.04 85.68 88.22 86.81

Kannada 68.82 66.73 67.20 71.84 79.02 77.34

Malayalam 82.57 79.34 81.07 86.41 85.13 85.81

Oriya 85.28 78.03 82.84 91.55 85.20 89.41

Punjabi 65.08 48.63 51.54 86.91 79.65 80.93

Tamil 81.96 71.88 77.83 94.91 85.87 91.21

Telugu 85.07 79.28 82.17 93.70 86.00 89.85

Urdu 70.94 69.74 70.03 81.39 75.38 76.86

Chinese 92.43 81.58 86.15 98.11 86.00 91.10

Scene Tables English 76.19 78.01 76.53 88.98 76.14 85.71

Chinese 69.40 66.65 68.94 88.62 81.96 87.27

Overall 77.70 71.90 74.07 87.23 82.66 85.19



364 D. Kudale et al.

Fig. 6. Each subfigure showcases the final aligned OTSL matrix predicted by
SPRINTFTN adjacent to the input table image. The OTSL matrix is projected on
an HTML-based table skeleton reflecting the ground truth structure. The red charac-
ters denote incorrect OTSL prediction that alters TEDS-S score

6 Conclusion

We present SPRINT as a solution for fast, robust and script-agnostic TSR. It
achieves this via the downsampling of input images, GCA-based encoder, and
OTSL-based table structure representation. The minimized OTSL vocabulary
not only helps in faster decoding but also in conversions to more popular for-
mats like HTML making the scope of this task more extensive and versatile. We
also present an algorithm to convert the OTSL sequence to an HTML-based
representation of the table structure. Finally, we release MUSTARD which has
been meticulously annotated using OTSL sequences, opening new doors for fur-
ther research in script-agnostic TSR. In the future, we want to investigate incor-
porating cells detected using the table grid estimator with the predicted logical
structure, to reconstruct complex tables in documents as accurately as possi-
ble. Along with the help of table detection models and powerful OCR-based
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frameworks, we can design end-to-end pipelines that reconstruct the structure
and text inside a wide variety of tables having content in different scripts.
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