
Transformers Provably Learn Sparse Token Selection
While Fully-Connected Nets Cannot

Zixuan Wang 1 Stanley Wei 1 Daniel Hsu 2 Jason D. Lee 1

Abstract
The transformer architecture has prevailed in vari-
ous deep learning settings due to its exceptional
capabilities to select and compose structural in-
formation. Motivated by these capabilities, San-
ford et al. (2023) proposed the sparse token se-
lection task, in which transformers excel while
fully-connected networks (FCNs) fail in the worst
case. Building upon that, we strengthen the FCN
lower bound to an average-case setting and es-
tablish an algorithmic separation of transformers
over FCNs. Specifically, a one-layer transformer
trained with gradient descent provably learns the
sparse token selection task and, surprisingly, ex-
hibits strong out-of-distribution length generaliza-
tion. We provide empirical simulations to justify
our theoretical findings.

1. Introduction
In modern deep learning, transformer networks have estab-
lished themselves as a fundamental building block, show-
casing their versatility across diverse tasks such as language
modeling (OpenAI, 2023), computer vision (Dosovitskiy
et al., 2020), and reinforcement learning (Jumper et al.,
2021). At the core of transformers is the self-attention
layer (Vaswani et al., 2017), a critical component assigning
varying attention weights to different segments of the input
sequence by discerning relevance between tokens.

The success of transformers is closely tied to their repre-
sentational capabilities in extracting structural information
encoded in token embeddings. Empirical observations re-
veal that transformers trained with GD-based algorithms
exhibit biases towards certain algorithmic solutions in some
arithmetic tasks (Edelman et al., 2022; Liu et al., 2022; Yao

1Department of Electrical and Computer Engineering, Prince-
ton University, NJ, USA 2Department of Computer Science,
Columbia University, NY, USA. Correspondence to: Zixuan Wang
<wangzx@princeton.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

et al., 2021; Nanda et al., 2023). However, few works have
presented rigorous mathematical evidence that substantiates
their superiority over alternative architectures.

In recent work, Sanford et al. (2023) introduced a simple
task known as the q-sparse averaging for an input context se-
quence, where the target output is an average of a q-subset of
the input tokens, specified in the input. When the input con-
text length is T , the q-sparse average was demonstrated to
be effectively approximated using a O(log T)-dimensional
self-attention layer, whereas any fully-connected network
seeking to approximate this task requires a first-layer width
of at least Ω(T) in the worst case. This crucial finding
implies that, in theory, the sparse-average task potentially
induces an exponential separation between transformer mod-
els from the fully-connected neural networks (FCNs) with
respect to the context length T , further reinforcing existing
empirical findings that the inductive bias of transformers
merits strength in approximating certain arithmetic tasks.

However, these results are limited to the expressive power of
transformers and do not inherently guarantee that transform-
ers can be trained with standard gradient-based methods
to achieve such approximation capability as its expressive
power would suggest. Thus, a pertinent and natural question
beyond theoretical expressiveness arises:

Q: Does the expressivity separation between transformers
and FCNs translate to learnability?

Our results provide an affirmative answer to this question.
In our work, we focus on the sparse token selection task
(STSq). In this task, every token in the input sequence fol-
lows the standard Gaussian distribution, and a token subset
of size q is drawn uniformly at random. Importantly, we ini-
tiate an exploration into the training dynamics of a one-layer
transformer with softmax attention using GD for the STSq .
We first study the transformer’s training dynamics under GD,
where the goal is to minimize the expected loss over the
input distribution. Notably, we characterize the global con-
vergence of the transformer with the stochastic positional
encoding introduced in Shen et al. (2023). Additionally,
we delve into the provable length generalization capacity
of the transformer learned with GD. We also establish new
lower bounds for the capacity of FCNs to approximate the

1

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

sparse token selection task within the data distribution. Em-
pirical simulations in practical settings of our architecture
verify our theoretical findings and moreover demonstrate
the advantages of stochastic positional encoding over a fixed
absolute positional encoding in length generalization ability.

1.1. Our contributions

STSq is efficiently learnable. We establish a gradient de-
scent convergence guarantee for a one-layer transformer
employing a stochastic positional encoding where only
O(d + q log T) width is necessary (Section 3.2). Under
mild conditions on the data distribution, initialization, and
hyperparameters, we prove that running GD on a one-layer
transformer globally converges when both layers are jointly
trained with the same learning rate.

FCN cannot express STSq. Complementing our efficient
learnability results, we show a separation between FCNs
and one-layer transformer networks: all FCNs (regardless
of depth or activation function) that can approximate the
task must have Ω(Td) neurons in the first layer, which is
exponentially larger than the O(d+ q log T) width used in
the transformer.

Length generalization on STSq . We investigate the length
generalization performance of the trained model with
stochastic positional encoding, using out-of-distribution
data on longer sequences. Based on the global convergence
result, we prove that the length generalization loss also con-
verges to zero. Our experiments demonstrate that when the
in-distribution training loss converges to zero, the OOD loss
also tends to zero for the stochastic positional encoding, but
strictly nonzero using fixed positional encoding.

1.2. Related works

Expressiveness of transformers. The transformer archi-
tecture (Vaswani et al., 2017) has been long adopted as the
fundamental building block in many recent large language
models such as GPT (Brown et al., 2020; OpenAI, 2023)
and Llama (Touvron et al., 2023a;b). Recent works have be-
gun to study the limitations and strengths of the transformer
architecture from a theoretical perspective (Yun et al., 2019;
Pérez et al., 2019; Yao et al., 2021; Bhattamishra et al.,
2020b; Zhang et al., 2022; Liu et al., 2022; Hahn, 2020;
Bhattamishra et al., 2020a). One such direction considers
its universal approximation power (Yun et al., 2019; Bhat-
tamishra et al., 2020a;b; Dehghani et al., 2018), similar to
the universal approximation results for fully-connected neu-
ral networks. More recent works have focused on analyzing
its expressive power on certain statistical tasks (Edelman
et al., 2022; Elhage et al., 2021; Likhosherstov et al., 2021;
Akyürek et al., 2022; Zhao et al., 2023; Yao et al., 2021;
Anil et al., 2022; Barak et al., 2022) as well as in-context
learning settings (Dong et al., 2022; Huang et al., 2023).

In another line of literature, transformer layers are used to
represent gradient descent steps for certain learning tasks
(Bai et al., 2023; Garg et al., 2022; Von Oswald et al., 2023;
Olsson et al., 2022; Akyürek et al., 2022; Panigrahi et al.,
2023; Sanford et al., 2023). In a recent work, Sanford et al.
(2023) introduced a sparse average task where recurrent neu-
ral networks and fully connected neural networks (FCNs)
all have memory complexity scaling polynomially in the
input sequence length, while a one-layer transformer has
a construction for only log T -width on the task. In all of
these works, however, the training process of transformers
is not considered; rather, the focus was on the representation
power of transformers. Building upon the setting of Sanford
et al. (2023), our work provides not only a generalized result
for the representational power by extending from worst-case
to average-case but also investigates the algorithmic aspect
of training transformers: we show that the same exponential
separation is attainable when using gradient descent on an
architecture with stochastic positional encoding.

Training dynamics of transformers. Several works in
the literature have studied the learnability of certain trans-
former models. Jelassi et al. (2022) showed a Vision Trans-
former (ViT) (Dosovitskiy et al., 2020) trained by GD
with positional-embedding attention matrix can learn spatial
structure. Li et al. (2023) analyzed the sample complexity
required for achieving good generalization on a similar ViT
model. However, their results both hinged on a warm start
of initialization near the target pattern, which is a practically
infeasible assumption. Tarzanagh et al. (2023) established
an equivalence between the optimization geometry of self-
attention and a hard-margin SVM problem that separates
and selects optimal tokens using linear constraints and estab-
lished global convergence under strong assumptions. Tian
et al. (2023a) revealed how the self-attention layer com-
bines input tokens in an SGD-trained transformer, and Tian
et al. (2023b) explored the training procedure of multilayer
transformers by focusing on the dynamics of MLP layers;
however, neither give a provable guarantee for convergence.

Another line of research focuses on the training dynamics of
in-context learning. Mahankali et al. (2023) first introduced
linear regression as an in-context learning task and showed
that a one-layer transformer minimizing the pre-training loss
is implementing single-step gradient descent. Zhang et al.
(2023) considered a single-layer linear self-attention layer
on this linear regression task and proved global convergence
for gradient flow. Huang et al. (2023) first proved GD global
convergence of a one-layer transformer with softmax atten-
tion on the linear regression in-context learning task where
in-context tokens are drawn from certain distribution. Chen
et al. (2024) extended the single-task linear regression task
to a multi-task setup and demonstrated the optimal global
convergence of a multi-head attention architecture by ap-
plying gradient flow to the population loss with a particular

2

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

initialization scheme. Nichani et al. (2024) theoretically
verifies that a simplified two-layer transformer can learn the
induction head and generalize it to some in-context latent
causal structures. Li et al. (2023); Tian et al. (2023a); Zhang
et al. (2023); Huang et al. (2023); Tarzanagh et al. (2023)
and our work share a similar reparameterization technique,
combining the key and query matrices K,Q into one matrix
W to simplify the dynamics of the training process.

Length generalization and positional encoding. Length
generalization is a major challenge for transformers (New-
man et al., 2020; Dubois et al., 2019; Anil et al., 2022; Ruis
et al., 2020; Hupkes et al., 2020; Kazemnejad et al., 2023;
Zhou et al., 2023). Several methods have been proposed to
mitigate this issue, including using linear bias (Press et al.,
2021), EOS detection (Newman et al., 2020), or scratchpads
and chain-of-thought (Nye et al., 2021; Wei et al., 2022;
Anil et al., 2022; Liu et al., 2022).

Recently, Kazemnejad et al. (2023) empirically investigated
length generalization of different positional encodings. They
show that many commonly used schemes such as APE
(Vaswani et al., 2017), ALiBi (Press et al., 2021), and ro-
tary (Su et al., 2021) are ill-suited for length generalization,
while T5’s relative PE (Raffel et al., 2020) works for down-
stream tasks. In addition, they also showed that transformers
without positional encoding (Tsai et al., 2019; Haviv et al.,
2022) outperform all explicit positional encoding schemes.
Meanwhile, Shen et al. (2023) and Ruoss et al. (2023) both
introduced some randomized positional encoding; Ruoss
et al. (2023) simulated the positions of longer sequences
and randomly sampled a sorted subset to fit the sequence’s
length; Shen et al. (2023) used some random positional en-
coding to represent indicators for tokens positions. Zhou
et al. (2024) additionally confirmed that randomized posi-
tional encoding enhances the length generalization capabili-
ties of transformers in specific effective configurations. All
the schemes above significantly improve length generaliza-
tion, inspiring us in the same spirit to consider a stochastic
positional encoding for our theoretical analysis.

1.3. Outline of this paper

The outline of our paper is as follows. In Section 2 we for-
malize the problem setting, including our STSq task defini-
tion, the positional encoding, and the one-layer transformer
architecture. Section 3 contains our main results, consist-
ing of our gradient descent global convergence results, the
length generalization theoretical guarantee, and the approxi-
mation lower bound for FCNs on expected loss. Section 4
provides simulations for global convergence of GD, inter-
prets the learned parameter pattern, and empirically verifies
the length generalization advantage from Section 3.

2. Settings
In this section, we present our notations and problem for-
mulations, including the one-layer transformer architecture
and positional encoding definitions of our paper.

Notations: We use [T] to denote the set {1, 2, ..., T}. Matri-
ces are represented in upper-case bold letters (X,W , etc.),
and vectors are in lower-case bold letters (x, e, etc.). For
norm, ∥ ·∥ denotes ℓ2 norm and ∥ ·∥F denotes the Frobenius
norm. For vector v, we use vk to denote the k-th entry of
vector v. For a matrix W , we use W [:, i] to denote its i-th
column vector. We use 1{·} as the indicator function. We
use Õ(·) to hide logarithmic factors.

2.1. q-sparse token selection task STSq

We simplify the qSA framework in Sanford et al. (2023)
to STSq: only one query subset y is fed into the model to
compute the sparse average instead of T query subsets.1

The objective is to train the parameterized model using
a gradient-based algorithm to approximate the STSq task
given a certain data distribution. Similar to qSA in Sanford
et al. (2023), this task is designed to showcase the ability of
self-attention units to capture and aggregate dependencies
between input tokens, especially the positional information.
STSq highlights two salient features of attention matrices
observed in practice: they are sparse, and the sparsity pattern
depends on the input (Likhosherstov et al., 2021).

Definition 2.1. For sparsity q, token dimension d, and
input dimension dT + q, consider the input (X, y) =
(x1,x2, ...,xT ; y1, y2, ..., yq) ∈ RdT+q where the input to-
kens xi ∈ Rd and the query y ∈

(
[T]
q

)
is a q-element subset

of [T]. Define the q-sparse token selection STSq(·) as

STSq(X, y) =
1

q

q∑
j=1

xyj

Data distribution: We consider samples (X, y) ∈ RdT+q

from the following distribution DT,q (T is the sequence
length, q is the subset size): The input tokens xi, i =
1, 2, ..., T are sampled from standard Gaussian distribution,
and the q-sparse subset y containing all the averaging in-
dices is uniformly sampled from all q-subsets of [T].

X = (x1,x2, ...,xT),xi ∼ N (0, Id),

y ∼ Unif

((
[T]

q

))
, i ∈ [T]

1Under the population loss we are training on, the sparse token
selection problem is equivalent to the original problem. For details,
see Appendix A.2.

3

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

2.2. Positional encodings

One of the key features of transformers is the positional
encoding (PE). In our STSq task, the positional encoding
turns out to be necessary for the transformer to maintain
the positional information in the input sequence. In this
paper, we consider two different PEs: the one-hot and the
near-orthogonal positional encoding.

Definition 2.2 (One-hot PE). The one-hot positional encod-
ing for position i ∈ [T] is:

ei = (1{i = 1},1{i = 2}, · · · ,1{i = T})

The positional encoding matrix is E = [e1, e2, · · · , eT] =
IT , with each column vector ei as the PE of the i-th token.

Remark. For clarity, we stress that ei is equal to the i-th
elementary basis vector only when using the one-hot PE.

Definition 2.3 (Near-orthogonal PE). A near-orthogonal
positional encoding is such that for all positions i ∈ [T], we
have ei ∈ {±1/

√
de}de , and moreover, when we denote the

positional encoding matrix E = [e1, e2, · · · , eT] ∈ Rde×T ,
we have, for some δ ∈ (0, 1/2), that de = Θ(q log T/δ2)
and |⟨ei, ej⟩| ≤ δ for any i ̸= j, with the i-th column vector
as the PE of the i-th token.

The existence of such a set of near-orthogonal positional
encoding is guaranteed in Lemma A.2 (Lemma 12 in San-
ford et al. (2023)) by showing the existence of Rademacher
random matrices E satisfying the (q, δ)-restricted isometry
property (RIP). Related background of the near orthogonal-
ity and restricted isometry property refers to Appendix A.

Encoding for subset y: To utilize the positional informa-
tion, the query subset y needs some encoding ey based on
the positional encoding E. For one-hot encoding, we con-
sider ey =

∑
i∈y ei as the summation of one-hot encoding

for all indices in y. The encoding scheme for y can separate
the positional encoding vector ei with index i ∈ y and those
that are not: ⟨ey, ei⟩ = 1,∀i ∈ y; ⟨ey, ei⟩ = 0,∀i ̸∈ y.

For the near-orthogonal positional encoding when y =
{yi}qi=1, we consider the following encoding based on the
RIP of E:

ey = Ey(E
⊤
y Ey)

−11q ∈ Rde

Ey =
[
ey1

, ey2
, · · · , eyq

]
∈ Rde×T

Here, Ey is the concatenation for near-orthogonal PE for
indices in y. By Lemma A.3, we know the encoding ey can
separate the column vectors with index in y and all other
columns: ⟨ey, ei⟩ = 1,∀i ∈ y; |⟨ey, ei⟩| ≤ δ

1−2δ ,∀i ̸∈ y.

For the input format, we consider the positional encodings
E to be concatenated with the input token matrix X . We
then add the query token zquery =

[
x⊤

query e⊤y
]⊤

as an ad-
ditional query column in the input matrix. The final input

matrix for a transformer will be in the following form,

[Z, zquery] :=

[
x1 x2 · · · xT−1 xT xquery
e1 e2 · · · eT−1 eT ey

]
.

(1)
which is a (d+ de) by (T + 1) input matrix.

2.3. One-layer transformer architecture

A simple one-head, one-layer self-attention transformer has
the following architecture:

f(Z) = V Z softmax(Z⊤K⊤QZ)

where Q,K ∈ Rm×d,V ∈ Rd×(d+de) are the query, key,
value matrices, respectively, and m is the width2 of the
self-attention layer parameters Q,K. The column-wise
softmax operator applied to matrix W ∈ Ra×b outputs
softmax(W) ∈ Ra×b with:

softmax(W)i,j =
exp(Wi,j)∑a
i=1 exp(Wi,j)

Reparameterization: Instead of studying dynamics based
on the parameters of key, query, and value matrices
K,Q,V , we introduce the following reparameterization on
the architecture:

1. In the attention layer, we combine Q,K into a single
trainable matrix WKQ ∈ R(d+de)×(d+de).

2. In the attention layer (with parameter WKQ), the (T +
1)-th query token zquery only attends to previous tokens
Z. The value matrix V also only attends to the Z part.

The first consolidation of the query and key matrices is
common in recent theoretical works (Tian et al., 2023a;
Huang et al., 2023; Zhang et al., 2023; Jelassi et al., 2022).
The second modifications for the W and V are inspired by
Huang et al. (2023); Zhang et al. (2023); Chen et al. (2024)
to stress the attention between the query token and the input
tokens. With those modifications to the architecture, the
overall one-layer transformer can be written as follows:

Definition 2.4 (Reparameterization). Define a reparameter-
ized 1-layer self-attention layer with trainable parameter ma-
trix V ,W where W ∈ R(d+de)×(d+de),V ∈ Rd×(d+de):

fθ(X, y) = V Z softmax(Z⊤Wzquery),

Z = [X⊤ E⊤]⊤, zquery =
[
x⊤

query e⊤y
]⊤

.
(2)

2.4. Stochastic positional encoding

Though a set of fixed near-orthogonal PE may be sufficient
for the reparameterized transformer to learn STSq with

2This is called the embedding dimension in Sanford et al.
(2023).

4

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

a specific sequence length and query set size, in practice
we would like the trained model to extrapolate beyond the
sequence lengths encountered during training. However,
experiments in Section 4 show that fixing the positional
encoding hinders length generalization. This motivates us
to use a stochastic positional encoding module proposed in
Shen et al. (2023), in which a stochastic encoding is used
for each token, newly generated for each epoch and during
testing. They showed that stochastic positional encoding
significantly improves length generalization capability on
certain arithmetic tasks.

For a one-layer transformer f with freshly sampled ran-
dom encoding E at each inference, we can combine the
stochasticity into the population loss. In expectation, we
consider the stochastic architecture E[f] when training over
the population loss. In our setting, we further condition
on the event that the positional encoding matrix E has the
(q, δ)-restricted isometry and orthogonality property (RIP)
for some constant δ, take the conditional expectation over
the encoding distribution of the transformer model output,
and let this be the stochastic architecture output. For sim-
plicity, we denote the conditional expectation of a random
variable ζ as:

E(R)
E [ζ] = EE

[
ζ
∣∣∣E satisfies (q, δ)-RIP

]
We define a one-layer transformer with stochastic positional
encoding as follows.
Definition 2.5 (Transformer with stochastic positional en-
coding). Define a reparameterized 1-layer self-attention
layer with stochastic positional encoding as the follow-
ing model with trainable parameter matrices V ,W where
W ∈ R(d+de)×(d+de),V ∈ Rd×(d+de):

f
(s)
θ (X, y) = E(R)

E

[
V Z softmax(Z⊤Wzquery)

]
,

Z = [X⊤ E⊤]⊤, zquery =
[
x⊤

query e⊤y
]⊤

.

Training algorithm: To train the neural network on the
STSq task, we minimize the population squared loss for
parameterized model fθ(X), similar to Huang et al. (2023)
and Zhang et al. (2023):

LT,q(θ) =
1

2
EX,y∼DT,q

[
∥ STSq(X, y)− fθ(X, y)∥22

]
(3)

The expectation is taken over input tokens xi and the query
subset y. For clarity, we write the expectation as EX,y[·].

For the transformer with stochastic positional encoding, the
training objective becomes:

L(s)
T,q(θ) =

1

2
EX,y

[
∥STSq(X, y)− f

(s)
θ (X, y)∥22

]
. (4)

When it is clear from context, we denote LT,q and L(s)
T,q

as L and L(s), respectively. For the learning objective in

Equations (3) and (4), we use gradient descent (GD) to train
the neural network.

θ(t+ 1) = θ(t)− η∇θL(θ(t)) (5)

3. Main results
In this section, we present our main results. First, we charac-
terize the convergence of GD on the one-layer architecture
introduced in Section 2.3, using one-hot positional encod-
ing as a warm-up example to provide proof intuition (Sec-
tion 3.1). Then, we consider the architecture with stochastic
positional encoding in Section 2.4 and present our main
theorem with exponential separation (Section 3.2). As a
corollary, the transformer with stochastic positional encod-
ing trained with GD provably exhibits length generalization
capability (Section 3.4). We conclude this section with the
expected loss lower bound on FCNs and rigorously establish
the claimed exponential separation in expressive power.

3.1. Warm-up: one-hot positional encoding

In this subsection, we study gradient descent convergence
on the STSq with one-hot positional encoding, building up
proof intuition for the stochastic positional encoding case.
We consider the joint training regime, where GD updates V
and W simultaneously with the same learning rate η. With
one-hot positional encoding, a one-layer transformer with
width O(T) is sufficient, which is a factor of d narrower
than the lower bound of Ω(Td) for FCNs.

We first prove global convergence when V and W are
jointly trained with gradient descent. The following theorem
characterizes the convergence time of GD. For simplicity, in
this subsection we assume xquery = 0d. Due to space limits,
the proof of Theorem 3.1 is deferred to Appendix D.2.

Theorem 3.1 (Joint training with one-hot positional en-
coding). For any 2 ≤ q < T/4, ϵ ∈ (0, dT

100(T−q)q),

η ≤ 1
20d2 ,xquery = 0d, if we run gradient descent on

the population loss in Equation (3) with zero initialization
W (0) = 0(d+T)×(d+T),V (0) = 0d×(d+T), then after time
t ≥ Õ(T

2d
ηϵ), we have L(θ(t)) ≤ ϵ.

We briefly sketch our proof techniques. We start from deriv-
ing the key lemma of the proof, Lemma 3.2. It shows the
evolution trajectories of V (t) and W (t) are always along
some direction for all time t ≥ 0.

Lemma 3.2 (Lemma D.5, informal). Along the gradient
descent trajectory, for all t ≥ 0, there exist some time-
dependent scalars C(t), α(t) s.t.:

W (t) = C(t)

[
0d×d 0d×T

0T×d

(
IT − 1

T 1T1
⊤
T

)] ,
V (t) = α(t)

[
Id 0d×T

]
.

5

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

The nice property along the gradient descent trajectory is
attributed to the symmetry and orthogonality of the one-
hot positional encoding. Since y follows uniform distribu-
tion over all possible q-subsets of [T] and X follows the
Gaussian distribution, we can directly calculate the gradient
in each of the entry Wij(t),Vij(t). It can be shown that
along the training trajectory on the population objective,
except for the position-position block, all other attention
blocks are always 0. Moreover, the gradient of the position-
position block of W always aligns with

(
IT − 1

T 1T1
⊤
T

)
,

while the gradient of the token block of V always aligns
with Id. Using induction beginning from zero initialization
of W (0) = 0,V (t) = 0, the lemma holds for all t ≥ 0.

With Lemma 3.2, the GD dynamics can be approximately
reduced to the following ODE on α(t) and C(t):

α̇ = ηs+

(
1−

α(Tqs2+ − 2qs+ + 1)

(T − q)s+

)
Ċ =

ηαd

T − 1
s+(1− qs+)

(
1 +

qα

T − q
(1− Ts+)

) (6)

where s+ := softmax(Z⊤W (t)zquery)i. By Lemma 3.2
it is equal to softmax(CE⊤ey) = 1

q+(T−q)e−C is the at-
tention score of correct positions i ∈ y for any y. It thus
remains to analyze this non-linear ODE.

We first characterize the dynamics for α(t). When s+ is
fixed with a stationary α∗ = (T−q)s+

Tqs2+−2qs++1
, note that α(t)

can be seen as a linear ODE. However, the evolution of C(t)
leads to a monotonic increment of s+, making the trajectory
of α(t) follow a non-monotonic pattern. Fortunately, we
can inductively prove that first, α rapidly grows to a con-
stant c1 near 1, and subsequently, α can stay above c1 and
below a threshold

(
1 + c2

(1−qs+)
qs+(Ts+−1)

)
α∗ with c2 < 1. By

the dynamics of C(t), this threshold prevents C(t) from
decreasing, and the induction hypothesis enables us to prove
that C(t) is monotonically increasing. Note that when s+
converges to 1

q as desired, the threshold naturally converges
to 1 and the V (t) converges to the ground-truth [Id 0d×T].

With α(t) bounded, we can analyze the movement of C(t)
by lower bounding its increment each iteration. Like in
Huang et al. (2023), the increment pattern exhibits a two-
stage pattern. In the first stage, C(t) rapidly increases at
a linear rate until s+ reaches Θ(1q); in the second stage,
the growth rate of C(t) gradually decreases while being
lower bounded by poly(T, d) · ϵ when L(t) ≥ ϵ. Therefore,
s+ converges to 1

q at a rate of O(1/t), leading to the final
convergence of the model.

3.2. Transformer with stochastic positional encoding

In this subsection, we study the gradient descent conver-
gence on the STSq problem with stochastic positional en-

coding. We also consider the joint training case, updating
V (t) and W (t) simultaneously with learning rate η.

Though stochastic PE was introduced as an alternative so-
lution due to the failure of fixed absolute PE in length gen-
eralization (Shen et al., 2023), it also turns out to help the
analysis of the GD training trajectory. The symmetry of
the randomized architecture makes it possible to use our
intuition from the one-hot encoding case while reducing the
transformer width to Θ(d+ q log T). We now present our
main theorem with stochastic PE.

Theorem 3.3 (Joint training with stochastic positional
encoding). Suppose q = Θ(1), δ < 1/10, de =
Θ(q log T/δ2), 2 ≤ q < T/4, ϵ ∈ (0, dT

100(T−q)q), η ≤
d2
e

40d2T . If we run GD on the population loss in Equation (4)
with zero initialization W (0) = 0(d+de)×(d+de),V (0) =

0d×(d+de), then after time t ≥ Õ(T
2−2δ
1−3δ

η + T 2d
ηϵ), we have

L(s)(θ(t)) ≤ ϵ.

The full proof appears in Appendix E.3. The proof idea
for this theorem is similar to that of Theorem 3.1. We first
use induction to prove a key lemma similar to Lemma 3.2,
though the convergence direction is different.

Lemma 3.4 (Consequence of Lemma E.7, informal). Along
the gradient descent trajectory, for all t ≥ 0, there exist
some time-dependent scalars C(t), α(t) s.t.

W (t) = C(t)

[
0d×d 0d×de

0de×d Ide

]
,

V (t) = α(t)
[
Id 0d×de

]
.

With Lemma 3.4, we can use the (q, δ)-RIP of E to esti-
mate the expectation in the dynamics, and moreover derive
an approximate ODE similar to Equation (6) that roughly
tracks the trajectory. Although we cannot calculate the exact
ODE, the upper and lower bounds enable us to formulate
an inductive argument, similar to the proof of Theorem 3.1.
Eventually, the analysis of our controlled dynamics leads to
global convergence.

Note that the model trained by GD with stochastic PE con-
verges exactly to a solution equivalent to the constructed
one-layer transformer in Sanford et al. (2023) with the same
width m ∼ Θ(d+ q log T). This implies GD learns STSq
using a transformer of near-optimal width, where the theoret-
ical lower bound Θ(d+ q) is only smaller by a logarithmic
factor.3

Moreover, the learned transformer can perfectly solve STSq
tasks given any fixed positional E satisfying (q, δ)-RIP, and

3Remarkably, this resembles the intuition from Zhou et al.
(2023): since we learn the smallest transformer in theory, it can
length-generalize. This corresponds to our length generalization
guarantee in Section 3.4.

6

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

0 20000 40000 60000 80000
Iteration

0.0

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 L
os

s

50000 75000
20
40
60

stochastic PE

0 20000 40000 60000 80000
Iteration

0.0

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
ila

rit
y

W sim
V sim

Figure 1. The above figures describe the training trajectory of the
one-layer transformer model with attention layer W attending to
the full matrix [Z,zquery]. Left (Global convergence of the trans-
former): we plot the training loss for the one-layer transformer
with stochastic PE, complementing it with the inverse loss plot.
The training loss converges to the global minimum of 0, and the
inverse loss increases linearly, indicating the O(1/t) convergence
rate. Right (Cosine similarity with the ground-truth): we plot
the evolution of the cosine similarity between W and W ⋆ and
between V and V ⋆ throughout training, where W ⋆ and V ⋆ are
the ground-truth matrices. The two cosine similarity curves gradu-
ally converge to 1, indicating the one-layer transformer eventually
converges to the desired direction.

we can replace the stochastic architecture with any valid E
as a fixed architecture. In practice, this means that once the
transformer is successfully trained, we no longer need to
sample new positional encodings for evaluation. For more
discussion, see Appendix E.6.

3.3. Expressive power separation

We now complement our positive results with a width lower
bound for FCNs on the population loss: any FCN without
the first layer width Ω(Td) cannot approximate the STSq
with respect to the expected square loss. In comparison to
the results of Sanford et al. (2023), our results lower bound
the approximation error on average over the data distribution
instead of considering a single worst-case data point4.

In this section, we consider FCN of the following form:

f(x) = WLσ(WL−1 · · ·σ(W1x))

In fact, the results can be generalized to any network of the
form f(x) = g(W1x) for some first layer weight matrix
W1 ∈ Rm×(Td+q) and arbitrary function g : Rm → RTd.
For the FCN, the input format should be flattened as a vec-
tor [xvec, y] =

(
x⊤
1 ,x

⊤
2 , ...,x

⊤
T , y1, y2, ..., yq

)⊤ ∈ RdT+q.
Here, xi ∈ Rd for i ∈ [T].

We now consider the expected loss for the STSq with input
tokens xi ∼ N (0, Id) and the query subset y sampled
uniformly from the set of q-subsets of [T]. Our result shows
any FCN that can approximate STSq requires its first hidden

4The lower bound of average-case loss with respect to some
data distribution implies the existence of a lower bound for worst-
case loss in (Sanford et al., 2023).

layer to have width at least Ω(Td).

Theorem 3.5. Let M : RdT+q → Rd be any FCN employ-
ing any activation having first layer width at most Td− 1.
Then:

EX,y

[
∥M([xvec, y])− STSq(X, y)∥22

]
≥ T − q

Tq(T − 1)

The proof (see Appendix C.1) relies on the observation that
when the first hidden layer has fewer than Td neurons, the
linear transformation W1 has a non-trivial kernel. This im-
plies there exists some 1-dimensional subspace where the
FCN outputs a constant. However, the STSq(·) function de-
pends on the total input vector xvec ∈ RTd in all directions.
This leads to a non-trivial approximation error.

Combining these results and Section 3.2, we rigorously es-
tablish the expressive power separation between transform-
ers and FCNs on this STSq task in the intrinsic complexity
of width: a simple transformer with width Θ(d+ q log T)
can efficiently learn STSq, while any FCNs must have
Ω(Td) width to even approximate this task.

3.4. Length generalization

Here, we present our length generalization result. One key
motivation for stochastic PE is that it can improve the length
generalization of the trained model, which is beyond the
range of the training distribution. This inspires us to inves-
tigate theoretical guarantees on out-of-distribution data of
longer sequence length on the STSq task.

Suppose our training objective is based on the distribution
DT1,q with sequence length T1 and subset size q. Then, the
OOD loss with sequence length T2 ≥ T1 becomes:

L(s)
T2,q

(θ) =
1

2
EX,y∼DT2,q

[
∥ STSq(X, y)− f

(s)
θ (X, y)∥22

]
(7)

We can then derive the following corollary of Theorem 3.3,
proving the length generalization error goes to 0 as the
training error tends to 0, as long as the embedding dimension
is large enough for E to satisfy RIP.

Corollary 3.6 (Informal5). Suppose q = Θ(1), de =
Θ(q log Tmax/δ

2). If we apply gradient descent with zero
initialization with T1 < Tmax to train the model under
same condition in Theorem 3.3, then when the training loss
L(s)
T1,q

(θ) ≤ ϵ, it holds that for any T2 ∈ (T1, Tmax]:

L(s)
T2,q

(θ) ≤ O

(
T 2
2 ϵ

T 2
1

)
The proof, given in Appendix E.4, is based on the exact
global minimizer GD finds after training. With stochastic

5It is a direct corollary of Corollary E.9, which can also gener-
alized to OOD data with unseen query subset size q′ ̸= q.

7

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

0 20000 40000 60000 80000 100000
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Va
lid

at
io

n
lo

ss

Ttest = 250
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ttest = 300
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ttest = 350
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ttest = 400
fixed PE
stochastic PE

Figure 2. Length generalization superiority of stochastic PE: We plot the out-of-distribution error throughout training on each of
the four length generalization tasks (Ttest = 250, 300, 350, 400) when T = 200 and q = 3. Observe that the one-layer transformer
with stochastic positional encoding has a clear advantage over the fixed positional encoding architecture in all four tasks: stochastic
architecture converges after 10k steps, while the length generalization error of the fixed architecture does not go below some constant.

positional encoding, the GD solution can naturally gen-
eralize on longer input sequences, leading to this length
generalization corollary.

4. Experiments
In this section, we describe our experimental setup on syn-
thetic data, which numerically justifies our theoretical guar-
antees for convergence. In addition, we devise several length
generalization tasks for our model, in which we are able to
highlight the benefits of our stochastic architecture.

Synthetic experimental setup. In our experiment, we use
the one-layer transformer architecture defined in Section 2.3.
Our synthetic data follows the distribution DT,q in our theo-
retical analysis: X is sampled from the standard Gaussian,
and y is uniformly sampled from all possible q-subsets of
[T]. In particular, we choose T = 200 for our sequence
length, q = 3, d = 5, and de = 170. In addition, to simulate
the population loss training, we train using online stochas-
tic gradient descent (SGD) by resampling a fresh batch of
n = 256 datapoints (X, y) at each iteration to use for our
gradient estimate. When training with a fixed positional en-
coding, we sample and fix the encoding samples at the start
of training; when we simulate the training of the stochastic
architecture, we sample a single positional encoding E at
each iteration.

Training loss convergence. Our experiments show the
convergence of the in-distribution training/population loss
(estimated using the fresh batch of data at each iteration)
for our stochastic architecture (Figure 1). The convergence
process can be verified by observing the cosine similarity
of the weight matrices to their ground truth directions in
Figure 1. We also experiment on a smaller transformer with
d = 20, de = 20 and plot the heat map of the parameters V
and W . As we can see in Figure 3, the heatmaps of W and

X E

X

E

W:

XV:

Iteration t = 0

X E

X

E

W:

XV:

Iteration t = 50000

Figure 3. Interpretable training: For the full model Equation (2),
we present a heat map of the self-attention layer W and the value
matrix V at initialization and after convergence. We initialize
W ,V randomly at t = 0. After training, observe that only the sub-
block of W that attends to the positional encodings E converges
to the identity direction, while all other entries converge to 0; in V ,
only the sub-block that attends to the input tokens X converges to
identity direction with all other entries converging to 0.

V coincide with the ground-truth

W ∗ =

[
0 0
0 αIde

]
V ∗ =

[
Id 0

]
.

This justifies our reparameterization, confirming that the
simplified transformer still captures the essential positional
information of the STSq task.

Length generalization. We propose the following out-
of-distribution length generalization tasks for our models.
For each task, we fix before training a validation set of
ntest = 128 out-of-distribution datapoints (X, y) from the
corresponding task distribution.6 Figure 2 confirms that the
fixed architecture has drastically worse length generaliza-
tion compared to the stochastic architecture: transformers

6For detailed settings, see Appendix F.

8

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

with fixed PE cannot even converge to zero OOD valida-
tion loss while the stochastic model extrapolates to data of
unseen length. Our empirical findings reveal the benefits
of using a stochastic positional encoding architecture over
a fixed positional encoding architecture, thereby justifying
our theoretical setup and the results in Corollary 3.6.

5. Conclusion
In this paper, we put forward a comprehensive theoretical
analysis of gradient descent on the sparse token selection
task STSq . We characterize the joint training dynamics of a
one-layer transformer with stochastic positional encoding
and demonstrate the width separation between transformers
and fully-connected networks on STSq task. The stochas-
ticity of these positional encodings also provably leads to
length generalization capabilities beyond what is seen in the
input data, highlighting a benefit of our architecture.

There are still many open questions. For instance, can we
move beyond population loss and show a sample complexity
guarantee? Can we extend the benefits of randomized posi-
tional encodings to other tasks? Can we analyze the length
generalization of transformers in other practical settings?

Acknowledgement
JDL acknowledges support of the NSF CCF 2002272, NSF
IIS 2107304, and NSF CAREER Award 2144994. DH
acknowledges support of the NSF grant IIS-2040971.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and

Zhou, D. What learning algorithm is in-context learn-
ing? investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

Anil, C., Wu, Y., Andreassen, A., Lewkowycz, A., Misra,
V., Ramasesh, V., Slone, A., Gur-Ari, G., Dyer, E., and
Neyshabur, B. Exploring length generalization in large
language models. Advances in Neural Information Pro-
cessing Systems, 35:38546–38556, 2022.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S.
Transformers as statisticians: Provable in-context learn-
ing with in-context algorithm selection. arXiv preprint
arXiv:2306.04637, 2023.

Barak, B., Edelman, B., Goel, S., Kakade, S., Malach, E.,
and Zhang, C. Hidden progress in deep learning: Sgd
learns parities near the computational limit. Advances
in Neural Information Processing Systems, 35:21750–
21764, 2022.

Bhattamishra, S., Ahuja, K., and Goyal, N. On the abil-
ity and limitations of transformers to recognize formal
languages. arXiv preprint arXiv:2009.11264, 2020a.

Bhattamishra, S., Patel, A., and Goyal, N. On the com-
putational power of transformers and its implications in
sequence modeling. arXiv preprint arXiv:2006.09286,
2020b.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Candes, E. and Tao, T. Decoding by linear programming,
2005.

Chen, S., Sheen, H., Wang, T., and Yang, Z. Training
dynamics of multi-head softmax attention for in-context
learning: Emergence, convergence, and optimality. arXiv
preprint arXiv:2402.19442, 2024.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Cohen, J. M., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar,
A. Gradient descent on neural networks typically occurs
at the edge of stability. arXiv preprint arXiv:2103.00065,
2021.

Damian, A., Nichani, E., and Lee, J. D. Self-stabilization:
The implicit bias of gradient descent at the edge of stabil-
ity. arXiv preprint arXiv:2209.15594, 2022.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, Ł. Universal transformers. arXiv preprint
arXiv:1807.03819, 2018.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P.,
Heek, J., Gilmer, J., Steiner, A. P., Caron, M., Geirhos,
R., Alabdulmohsin, I., et al. Scaling vision transformers
to 22 billion parameters. In International Conference on
Machine Learning, pp. 7480–7512. PMLR, 2023.

Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun,
X., Xu, J., and Sui, Z. A survey for in-context learning.
arXiv preprint arXiv:2301.00234, 2022.

9

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Dubois, Y., Dagan, G., Hupkes, D., and Bruni, E. Location
attention for extrapolation to longer sequences. arXiv
preprint arXiv:1911.03872, 2019.

Edelman, B. L., Goel, S., Kakade, S., and Zhang, C. Induc-
tive biases and variable creation in self-attention mecha-
nisms. In International Conference on Machine Learning,
pp. 5793–5831. PMLR, 2022.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
et al. A mathematical framework for transformer circuits.
Transformer Circuits Thread, 1, 2021.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

Giannou, A., Rajput, S., Sohn, J.-y., Lee, K., Lee, J. D.,
and Papailiopoulos, D. Looped transformers as pro-
grammable computers. arXiv preprint arXiv:2301.13196,
2023.

Hahn, M. Theoretical limitations of self-attention in neural
sequence models. Transactions of the Association for
Computational Linguistics, 8:156–171, 2020.

Haviv, A., Ram, O., Press, O., Izsak, P., and Levy, O.
Transformer language models without positional encod-
ings still learn positional information. arXiv preprint
arXiv:2203.16634, 2022.

Huang, Y., Cheng, Y., and Liang, Y. In-context convergence
of transformers. arXiv preprint arXiv:2310.05249, 2023.

Hupkes, D., Dankers, V., Mul, M., and Bruni, E. Compo-
sitionality decomposed: How do neural networks gen-
eralise? Journal of Artificial Intelligence Research, 67:
757–795, 2020.

Jelassi, S., Sander, M., and Li, Y. Vision transformers
provably learn spatial structure. Advances in Neural In-
formation Processing Systems, 35:37822–37836, 2022.

Jumper, J. M., Evans, R., Pritzel, A., Green, T., Figurnov,
M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
Zı́dek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl,
S. A. A., Ballard, A., Cowie, A., Romera-Paredes, B.,
Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S.,
Reiman, D. A., Clancy, E., Zielinski, M., Steinegger,

M., Pacholska, M., Berghammer, T., Bodenstein, S., Sil-
ver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K.,
Kohli, P., and Hassabis, D. Highly accurate protein struc-
ture prediction with alphafold. Nature, 596:583 – 589,
2021. URL https://api.semanticscholar.
org/CorpusID:235959867.

Kazemnejad, A., Padhi, I., Ramamurthy, K. N., Das, P.,
and Reddy, S. The impact of positional encoding on
length generalization in transformers. arXiv preprint
arXiv:2305.19466, 2023.

Kim, J. and Suzuki, T. Transformers learn nonlinear fea-
tures in context: Nonconvex mean-field dynamics on the
attention landscape. arXiv preprint arXiv:2402.01258,
2024.

Li, H., Wang, M., Liu, S., and Chen, P.-Y. A theoretical
understanding of shallow vision transformers: Learning,
generalization, and sample complexity. arXiv preprint
arXiv:2302.06015, 2023.

Li, Z., Wang, Z., and Li, J. Analyzing sharpness along gd
trajectory: Progressive sharpening and edge of stability.
arXiv preprint arXiv:2207.12678, 2022.

Likhosherstov, V., Choromanski, K., and Weller, A. On
the expressive power of self-attention matrices. arXiv
preprint arXiv:2106.03764, 2021.

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang,
C. Transformers learn shortcuts to automata. arXiv
preprint arXiv:2210.10749, 2022.

Mahankali, A., Hashimoto, T. B., and Ma, T. One step of
gradient descent is provably the optimal in-context learner
with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Nanda, N., Chan, L., Liberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability. arXiv preprint arXiv:2301.05217, 2023.

Newman, B., Hewitt, J., Liang, P., and Manning, C. D. The
eos decision and length extrapolation. arXiv preprint
arXiv:2010.07174, 2020.

Nichani, E., Damian, A., and Lee, J. D. How transform-
ers learn causal structure with gradient descent. arXiv
preprint arXiv:2402.14735, 2024.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv
preprint arXiv:2112.00114, 2021.

10

https://api.semanticscholar.org/CorpusID:235959867
https://api.semanticscholar.org/CorpusID:235959867

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

OpenAI. Gpt-4 technical report, 2023.

Panigrahi, A., Malladi, S., Xia, M., and Arora, S.
Trainable transformer in transformer. arXiv preprint
arXiv:2307.01189, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library, 2019.

Pérez, J., Marinković, J., and Barceló, P. On the turing
completeness of modern neural network architectures.
arXiv preprint arXiv:1901.03429, 2019.

Press, O., Smith, N. A., and Lewis, M. Train short, test
long: Attention with linear biases enables input length
extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Ruis, L., Andreas, J., Baroni, M., Bouchacourt, D., and
Lake, B. M. A benchmark for systematic generalization
in grounded language understanding. Advances in neural
information processing systems, 33:19861–19872, 2020.

Ruoss, A., Delétang, G., Genewein, T., Grau-Moya, J.,
Csordás, R., Bennani, M., Legg, S., and Veness, J. Ran-
domized positional encodings boost length generalization
of transformers. arXiv preprint arXiv:2305.16843, 2023.

Sanford, C., Hsu, D., and Telgarsky, M. Representational
strengths and limitations of transformers. arXiv preprint
arXiv:2306.02896, 2023.

Shen, R., Bubeck, S., Eldan, R., Lee, Y. T., Li, Y., and
Zhang, Y. Positional description matters for transformers
arithmetic. arXiv preprint arXiv:2311.14737, 2023.

Su, J., Lu, Y., Pan, S., Wen, B., and Liu, Y. Roformer:
Enhanced transformer with rotary position embedding.
arXiv e-prints, pp. arXiv–2104, 2021.

Tarzanagh, D. A., Li, Y., Thrampoulidis, C., and Oymak, S.
Transformers as support vector machines. arXiv preprint
arXiv:2308.16898, 2023.

Tian, Y., Wang, Y., Chen, B., and Du, S. Scan and snap:
Understanding training dynamics and token composition
in 1-layer transformer. arXiv preprint arXiv:2305.16380,
2023a.

Tian, Y., Wang, Y., Zhang, Z., Chen, B., and Du, S. Joma:
Demystifying multilayer transformers via joint dynamics
of mlp and attention. arXiv preprint arXiv:2310.00535,
2023b.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P., and
Salakhutdinov, R. Transformer dissection: a unified un-
derstanding of transformer’s attention via the lens of ker-
nel. arXiv preprint arXiv:1908.11775, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pp.
35151–35174. PMLR, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022.

Wortsman, M., Liu, P. J., Xiao, L., Everett, K. E., Alemi,
A. A., Adlam, B., Co-Reyes, J. D., Gur, I., Kumar, A.,
Novak, R., Pennington, J., Sohl-Dickstein, J., Xu, K.,
Lee, J., Gilmer, J., and Kornblith, S. Small-scale proxies
for large-scale transformer training instabilities. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=d8w0pmvXbZ.

Yao, S., Peng, B., Papadimitriou, C., and Narasimhan, K.
Self-attention networks can process bounded hierarchical
languages. arXiv preprint arXiv:2105.11115, 2021.

11

https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J., and
Kumar, S. Are transformers universal approximators
of sequence-to-sequence functions? arXiv preprint
arXiv:1912.10077, 2019.

Zhang, R., Frei, S., and Bartlett, P. L. Trained trans-
formers learn linear models in-context. arXiv preprint
arXiv:2306.09927, 2023.

Zhang, Y., Backurs, A., Bubeck, S., Eldan, R., Gunasekar,
S., and Wagner, T. Unveiling transformers with lego:
a synthetic reasoning task, 2022. URL https://arxiv.
org/abs/2206.04301, 2022.

Zhao, H., Panigrahi, A., Ge, R., and Arora, S. Do trans-
formers parse while predicting the masked word? arXiv
preprint arXiv:2303.08117, 2023.

Zhou, H., Bradley, A., Littwin, E., Razin, N., Saremi, O.,
Susskind, J., Bengio, S., and Nakkiran, P. What algo-
rithms can transformers learn? a study in length general-
ization. arXiv preprint arXiv:2310.16028, 2023.

Zhou, Y., Alon, U., Chen, X., Wang, X., Agarwal, R., and
Zhou, D. Transformers can achieve length generalization
but not robustly. arXiv preprint arXiv:2402.09371, 2024.

12

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

A. Backgrounds and Preliminaries
A.1. Restricted isometry and orthogonality property

We replicate the definition of restricted isometry and orthogonality from Sanford et al. (2023) in this section. For v ∈ RT ,
denote supp(v) = {i ∈ [T] : vi ̸= 0}.
Definition A.1. We say a matrix E ∈ Rde×T satisfies the (q, δ)-restricted isometry and orthogonality property if

∥Ev∥22 ∈ [(1− δ)∥v∥22, (1 + δ)∥v∥22] and |⟨Ev,Ev′⟩| ≤ δ∥v∥2∥v′∥

for all vectors v,v′ ∈ RT with |supp(v)| ≤ q, |supp(v′)| ≤ 2q, and |supp(v) ∩ supp(v′)| = 0.

Here we restate the two lemmas in Sanford et al. (2023) for the construction of the transformer approximating STSq. The
first lemma is that the existence of a Rademacher random matrix can satisfy the restricted isometry and orthogonality
properties. For simplicity, we just call it RIP.
Lemma A.2 (Lemma 12 from Sanford et al. (2023)). There is an absolute constant C > 0 such that the following holds.
Fix δ ∈ (0, 1/2) and q ∈ N. Let E denote an de × T matrix of independent Rademacher random variables scaled by 1√

de
.

If de ≥ C(q log T)/δ2, then with positive probability, E satisfies the (q, δ)-restricted isometry and orthogonality property.
Lemma A.3 (Lemma 13 from Sanford et al. (2023) and consequence of Lemma 2.1 from Candes & Tao (2005)). Fix
δ ∈ (0, 1/2) and q ∈ N. Let E = [e1, . . . , eT] ∈ Rde×T satisfy the (q, δ)-restricted isometry orthogonality property. For
every vector v ∈ {0, 1}T with supp(v) ≤ q, suppose the indices i1, i2, . . . , isupp(v) ∈ [T] in v have entry 1. Then, the
vector ev = Ev(E

⊤
v Ev)

−11supp(v) ∈ Rde satisfies the following:

∥ev∥2 ≤ √
q/(1− 2δ)

⟨ei, ev⟩ = 1 if vi = 1

|⟨ei, ev⟩| ≤ δ/(1− 2δ) if vi = 0

where we define Ev = [ei1 , . . . , eisupp(v)
] ∈ Rde×supp(v).

Remark. Compared with Sanford et al. (2023), we add the expression of ev = Ev(E
⊤
v Ev)

−11supp(v), which we use
as the encoding for the query subset y in our one-layer transformer. It is used in Lemma 2.1 of Candes & Tao (2005) as
the dual certificate for the specific dual problem of a primal ℓ1-minimization problem. We borrow the exact form of the
dual certificate here as the encoding, replacing the blackbox MLP layer ϕ(X) used in Sanford et al. (2023) (which can
be poly(T, d)-wide, far larger than the width of the transformer). We posit that this positional encoding for y can also be
expressed by a multi-layer transformer with width Θ(d+ q log T), depth Θ(log log log T + log log q

ϵ). It can be constructed
using the transformer construction on matrix inverse in Giannou et al. (2023).

A.2. The equivalence between simplified STSq and qSA in Sanford et al. (2023)

We restate our STSq task and compare it with the original qSA task used in Sanford et al. (2023).
Definition A.4. For sparsity q, token dimension d, and input dimension dT + q, consider the input (X, y) =

(x1,x2, ...,xT ; y1, y2, ..., yq) ∈ RdT+q where xi ∈ Rd and y ∈
(
[T]
q

)
is a q-element subset of [T]. Define the q-sparse

token selection STSq(·) as

STSq(X, y) =
1

q

q∑
j=1

xyj

This arithmetic task is based on the qSA task, while reduce the number of query subsets yi (which is T in Sanford et al.
(2023)) to 1. As a regression task, we believe it is a natural simplification only to consider one query in one data point.

Moreover, when considering the population ℓ2 loss Equation (3) we are using (instead of the ℓ∞ loss used in Sanford et al.
(2023)), the two tasks are equivalent. For STSq , the population loss is:

LT,q(θ) =
1

2
EX,y∼DT,q

[
∥STSq(X, y)− fθ(X, y)∥22

]
=

1

2
EX,y∼DT,q


∥∥∥∥∥∥1q

q∑
j=1

xyj
− fθ(X, y)

∥∥∥∥∥∥
2

2


13

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

For the original qSA, suppose all yi follow the uniform distribution, then we have the population loss:

LT,q(θ) =
1

2
EX,yi∼DT,q

[
T∑

i=1

∥qSA(X, yi)− fθ(X, yi)∥22

]

=
T

2
EX,y∼DT,q


∥∥∥∥∥∥1q

q∑
j=1

xyi,j − fθ(X, yi)

∥∥∥∥∥∥
2

2



They only have a T -factor difference. It also indicates that the training trajectory is also different in scale with an appropriate
learning rate. Therefore, we believe it’s more reasonable to consider the optimization problem on our simplified STSq
problem.

B. Limitation and discussion
Beyond the scope of this work, there still exist some limitations and future open problems.

First of all, our analysis is based on population loss rather than empirical risk minimization (ERM) on a finite dataset
using (stochastic) gradient descent. The population loss is equivalent to the empirical loss induced by the limit of infinite
training samples, which largely simplifies the dynamics. In our case, the stochasticity in the positional encodings also takes
advantage of this population loss. It enables us to focus on analyzing the stochastic architecture EE [f], where f is the
transformer with E as its positional encoding. This population objective is used in almost all recent works analyzing the
full-training dynamics on linear/softmax transformer architectures (Huang et al., 2023; Zhang et al., 2023; Nichani et al.,
2024; Chen et al., 2024; Tian et al., 2023a; Kim & Suzuki, 2024). It would be an interesting open problem to analyze the
SGD dynamics and sample complexity on any of the existing tasks in the literature.

Another limitation of our submitted version of the paper relates to the simplified architecture of our setting. Specifically, we
consolidate the query and key matrices Q,K into W . Though it may lead to different landscape properties on the training
trajectory, it does not inherently change the expressive power of the transformer. In particular, most of the recent works have
also adopted (1) to simplify the dynamics (Huang et al., 2023; Zhang et al., 2023; Nichani et al., 2024; Tian et al., 2023a;
Kim & Suzuki, 2024).

Finally, we would like to remark that we use stochastic positional encoding in our one-layer transformer instead of a fixed
set of near-orthogonal positional encoding; the additional stochasticity enables us to analyze the GD dynamics theoretically.
Moreover, it also helps a lot in practice with regard to out-of-distribution length generalization. Empirically, both choices
work for in-distribution convergence, but only stochastic positional encoding can also achieve out-of-distribution length
generalization. The length generalization superiority of randomized PE is also justified in several recent works with extensive
experiments (Shen et al., 2023; Ruoss et al., 2023; Zhou et al., 2024). Nevertheless, analyzing the dynamics with a set of
fixed positional encodings on the in-distribution loss can be an interesting open problem.

C. Approximation results on STSq

As Sanford et al. (2023) proved the worst-case width lower bound for FCNs to approximate the original qSA problem,
we can also prove similar results for the new formulation of STSq. In this paper, we go beyond the worst-case analysis
and prove the width lower bound in expectation under certain data distribution. Also for completeness, we present the
approximation results with a one-layer transformer, showing the capability of the transformer to represent STSq .

C.1. The average-case lower bounds for FCNs on STSq

We first present our negative results FCNs for STSq in the expected loss. For an FCN, we vectorize the input to [xvec, y] =(
x⊤
1 ,x

⊤
2 , ...,x

⊤
T , y1, y2, ..., yq

)⊤ ∈ RdT+q . Here xi ∈ Rd for i = 1, 2, ..., T . With this theorem, we rigorously establish the
exponential expressivity separation between FCNs and one-layer transformers in the complexity metric of width/embedding
dimension.

14

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Theorem C.1. Let M : RdT+q → Rd be any FCN employing any activation having first layer width at most Td− 1, then

E
xi∼N (0,Id),y∼Unif (([T]

q))
[
∥M(xvec, y)− STSq(X, y)∥22

]
≥ T − q

Tq(T − 1)

Proof. Consider the first layer weight matrix W ∈ Rk×(dT+q). Since k ≤ Td−1, rank(W) ≤ Td−1. Therefore, we have
the submatrix of the first Td rows Ws = W [:, Td] ∈ Rk×Td has its nullspace ker(Ws). Denote the vector v ∈ ker(Ws)
s.t. ∥v∥ = 1 and w.l.o.g. ∥v∥∞ = v1, which is the first entry of the vector. We then find the set of orthonormal basis
{v1, ...,vTd} in RTd with v1 := v as the first basis vector.

Now consider the decomposition of xvec in the basis {v1, ...,vTd}. Since it’s sampled from normal distribution, xvec can be
rewritten to the reparametrized vector:

xvec = ϵ1v1 + ϵ2v2 + · · ·+ ϵTdvTd, ϵi ∼ N (0, 1), i = 1, 2, ..., Td

Denote ϵ := (ϵ1, ..., ϵTd). Then we can calculate the expected MSE loss given some sparse set y:

Exi∼N (0,Id)

[
∥M(xvec, y)− STSq(X, y)∥22

]
=

∫
xvec

∥M(xvec, y)− STSq(xvec, y)∥2dp(x)

=

∫
ϵ

∥∥∥∥∥M
(

Td∑
i=1

ϵivi, y1, ..., yq

)
− STSq(xvec, y)

∥∥∥∥∥
2

dp(ϵ)

Note that STSq(xvec, y) = STSq

(∑Td
i=1 ϵivi, y1, ..., yq

)
=
∑Td

i=1 ϵi STSq (vi, y1, ..., yq). And since v1 = v is in the
kernel of the first layer,

M

(
Td∑
i=1

ϵivi, y1, ..., yq

)
= M

(
Td∑
i=2

ϵivi, y1, ..., yq

)
which is constant with respect to ϵ1. Therefore we have

∫
R

∥∥∥∥∥M
(

Td∑
i=1

ϵivi, y1, ..., yq

)
− STSq(xvec, y)

∥∥∥∥∥
2

p(ϵ1)dϵ1

=

∫
R

∥∥∥∥∥M
(

Td∑
i=2

ϵivi, y1, ..., yq

)
−

Td∑
i=1

ϵi STSq (vi, y1, ..., yq))

∥∥∥∥∥
2

p(ϵ1)dϵ1

=

∫
R

∥∥∥∥∥M
(

Td∑
i=2

ϵivi, y1, ..., yq

)
− ϵ1 STSq (v1, y1, ..., yq))

−
Td∑
i=2

ϵi STSq (vi, y1, ..., yq))

∥∥∥∥∥
2

p(ϵ1)dϵ1

≥
∫
R
∥STSq (v1, y1, ..., yq))∥2 ϵ21p(ϵ1)dϵ1 = ∥STSq (v1, y1, ..., yq))∥2

The last inequality is because after expanding the squared norm we have (1) ϵ01-terms are always non-negative and (2) the
integral for ϵ1-terms is 0.

Now we have the lower bound for the expected loss:

E
xi∼N (0,Id),y∼Unif (([T]

q))
[
∥M(xvec, y)− STSq(X, y)∥22

]
=E

y∼Unif (([T]
q))

∫
ϵ

∥∥∥∥∥M
(

Td∑
i=1

ϵivi, y1, ..., yq

)
− STSq(xvec, y)

∥∥∥∥∥
2

dp(ϵ)

15

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

≥E
y∼Unif (([T]

q))

∫
ϵ2:Td

∥STSq (v1, y1, ..., yq))∥2 dp(ϵ2:Td)

=E
y∼Unif (([T]

q))
∥STSq (v, y1, ..., yq))∥2

=E
y∼Unif (([T]

q))

∥∥∥∥∥∥
∑
i∈y

v(i)

∥∥∥∥∥∥
2

/q2

=E
y∼Unif (([T]

q))

∑
i∈y

∥v(i)∥2/q2
+ E

y∼Unif (([T]
q))

 1

q2

∑
i,j∈y,i̸=j

v(i)⊤v(j)


=

q

T

T∑
i=1

1

q2
∥v(i)∥2 + q(q − 1)

T (T − 1)

∑
i ̸=j

1

q2
v(i)⊤v(j)

≥ T − q

Tq(T − 1)
∥v∥2 + (q − 1)

Tq(T − 1)

∥∥∥∥∥
T∑

i=1

v(i)

∥∥∥∥∥
2

≥ T − q

Tq(T − 1)
.

C.2. The worst-case lower bounds for FCNs on STSq

For completeness, we present the negative results FCNs to approximate the newly formulated STSq problem. It is using
exactly the same technique in Theorem 10 of Sanford et al. (2023).

Theorem C.2. Let M : RdT+q → Rd be any FCN employing any activation having first layer width at most (T−q+1)d−1,
then there exists some input (xvec, y) ∈ RdT+q s.t.

∥M(xvec, y)− STSq(X, y)∥22 ≥ 1

2q

Proof. Let M(x) = f(Wx), where W is the first layer matrix satisfying W ∈ Rm×(dT+q),m ≤ (T − q + 1)d− 1, and
f : Rm → Rd is an arbitrary function representing the subsequent layers of the FCN. W can be partitioned as[

V1; ...;VT ; W̃
]
,

where V1, ...,VT ∈ Rm×d, W̃ ∈ Rm×q . Due to our restriction on the width of the first layer, we have

rank ([Vq; · · · ;VT]) ≤ m ≤ (T − q + 1)d− 1 < (T − q + 1)d.

This implies that [Vq; · · · ;VT] has a nontrivial null space containing a nonzero vector u = (uq, ...,uT) ∈ R(T−q+1)d. Let

ξ =
1

2maxj∈{q,...,T} ∥uj∥2
u,

and (for simplicity, we concatenate xvec and y and call it xvec in the following proof.)

xvec = (0, ...,0︸ ︷︷ ︸
q−1

, ξq, ..., ξT , y1, y2, ..., yq)

x′
vec = (0, ...,0︸ ︷︷ ︸

q−1

,−ξq, ...,−ξT , y1, y2, ..., yq).

Then
Wxvec = V10+ ...+ Vq−10+ [Vq; · · · ;VT] ξ + W̃y = Wx′

vec,

and for some j∗ ∈ {q, ..., T}, ∥ξj∗∥ = 1/2. Consider

y = (1, ..., q − 1, j)

16

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

xvec,j = (0, ...,0, ξq, ..., ξT ,y)

x′
vec,j = (0, ...,0,−ξq, ...,−ξT ,y)

for each j ∈ {q, ..., T}. We observe that

STSq(xvec,j) =
1

q
ξj and STSq(x

′
vec,j) = −1

q
ξj .

It follows that ∥∥STSq(xvec,j∗)− STSq(x
′
vec,j∗)

∥∥ =
1

q
.

Because we have shown that M(xvec,j) = f(Wxvec,j) = f(Wx′
vec,j) = M(x′

vec,j),

max
(
∥M(xvec,j)− STSq(xvec,j)∥ ,

∥∥M(x′
vec,j)− STSq(x

′
vec,j)

∥∥) ≥ 1

2q
.

So in the worst case, M can approximate STSq with a loss no better than 1/2q.

C.3. Self-attention can approximate STSq

We exhibit the expressivity result for the q-sparse token selection task for completeness. Due to the equivalence between
our STSq and the original qSA, the proof uses the same method in the proof in Sanford et al. (2023). In this method, it is
required to reform the input matrix Equation (8). In expressivity, it is equivalent to our model.

Theorem C.3 (Consequence of Theorem 2 in Sanford et al. (2023)). For any T , ϵ, any m := d+2de ≥ Ω(d+q log T), there
exists some near-orthogonal positional encoding E ∈ Rde×T and the corresponding q-sparse subset encoding ey ∈ Rde

for y ∈
(
[T]
q

)
, s.t. there exists some 1-layer self-attention unit with width m that ϵ-approximates STSq .

Proof. First, we choose the near-orthogonal positional encodings to enable the efficient representation of set y and position
i. We consider some de = C q log T

δ2 for some constant C (We can pick δ = 1/4), and generate Rademacher random vectors.
According to Lemma 12 and 13 in Sanford et al. (2023), there exist T positional encoding vectors e1, e2, ..., eT ∈ Rde

satisfying

⟨ei, ei⟩ = 1

|⟨ei, ej⟩| ≤ δ, i ̸= j

Denote ey = h(y) = Ey(E
⊤
y Ey)

−11q , then we will have (this is the explicit form of Sanford et al. (2023) Lemma 13)

⟨ei, ey⟩ = 1 for all i ∈ y

|⟨ei, ey⟩| ≤
δ

1− 2δ
for all i ̸∈ y

Then we describe the transformer weights. Now we have the input in the following form:

Xinput =

x1 x2 · · · xT−1 xT

0 0 · · · 0 ey
e1 e2 · · · eT−1 eT

 (8)

With positional encodings, we can construct sparse linear operators Q = [0d×d, Ide , 0de×de],K = [0d×d, 0de×de , Ide],V
to represent the vyi , ei, and xi with Θ(d+ qde) width:

QX = (0, 0, ...0, , αey) ∈ Rde×T

KX = (e1, e2, ..., eT) ∈ Rde×T

V X = (x1,x2, ...,xT) ∈ Rd×T

17

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

We pick α := ⌈2 log(2T)/ϵ⌉ to help the softmax layer to do the average.

Pass the input through the transformer f , and we only take the output for the last token with ey , we have

f(X)T = V Xsoftmax(X⊤K⊤QX)[:, T]

=

T∑
i=1

softmax(X⊤K⊤QX)[i, T]xi

Analyze the output of the softmax. If i ∈ y, we first consider the upper bound:

softmax(X⊤K⊤QX)[i, T] ≤ eα

qeα
=

1

q

And then the lower bound

softmax(X⊤K⊤QX)[i, T] ≥ eα

qeα +Ne
α
2
≥ 1

q
− T

q2
e−α ≥ 1

q
− ϵ

2q
.

That means

softmax(X⊤K⊤QX)[i, T] ∈
[
1

q
,
1

q
+

ϵ

2q

]
for all i ∈ yi.

If i ̸∈ yi, then the upper bound of the softmax is

softmax(X⊤K⊤QX)[i, T] ≤ eα/2

qeα
≤ ϵ

2T
.

Finally, we conclude the above bounds:

∥f(X, y)T − STSq(X, y)T ∥2

≤

∥∥∥∥∥∥
∑
i∈y

(
1

q
− softmax(X⊤K⊤QX)[i, T]

)
xi −

∑
i ̸∈y

(
softmax(X⊤K⊤QX)[i, T]

)
xi

∥∥∥∥∥∥
2

≤ q · ϵ

2q
+ (T − q) · ϵ

2T
≤ ϵ

So we construct a 1-layer transformer that can ϵ-approximate STSq .

D. Proof details in Section 3.1
In this subsection, we study the gradient descent convergence on the q-sparse token selection problem with one-hot positional
encoding. We consider updating V and W simultaneously with the same learning rate η. For gradient descent, the update
dynamics for W (t) and V (t) should be

W (t+ 1) = W (t)− η∇WL(t)
V (t+ 1) = V (t)− η∇V L(t)

D.1. GD dynamics and preliminaries

Based on the reparameterization and the objective in Equation (3), the following lemma shows the gradients of W and V .
Recall that the input matrix is in the following form

[Z, zquery] :=

[
x1 x2 · · · xT−1 xT xquery
e1 e2 · · · eT−1 eT ey

]
∈ R(d+T)×(T+1). (9)

where we separate the input tokens Z and the query token zquery:

Z :=

[
X
E

]
=

[
x1 x2 · · · xT−1 xT

e1 e2 · · · eT−1 eT

]
∈ R(d+T)×T , zquery =

[
xquery
ey

]
(10)

18

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Lemma D.1. Denote Sy := softmax(Z⊤Wzquery) ∈ RT at time t for certain q-sparse set y. Also, we define the q-hot
vector Y = (1{1 ∈ y},1{2 ∈ y}, ...,1{T ∈ y}) for the subset y ∈

(
[T]
q

)
. The gradient dynamics of W with input token

matrix X is:

∇WL = −EX,y

(
Z(diag(Sy)− SyS

⊤
y)Z⊤V ⊤(

1

q
XY − V ZSy)z

⊤
query

)
∇V L = −EX,y

((
1

q
XY − V ZSy

)
(ZSy)

⊤
)

Proof. The loss function is as follows according to Equation (3)

L(θ(t)) = 1

2
EX,y

[
∥ STSq(X, y)− fθ(X, y)∥22

]
.

Take matrix differentials and we have

dL =EX,y

[
(f(X)− STSq(X))⊤V Xd(softmax(Z⊤Wzquery)

]
+EX,y

[
(f(X)− STSq(X))⊤dV (ZSy)

]
To the softmax function, we have d softmax(v) = (diag(v)− vv⊤)dv. Therefore we have

dL = EX,y (f(X)− STSq(X))
⊤
V Zd(softmax(Z⊤Wzquery))

+ EX,y

[
(f(X)− STSq(X))⊤dV (ZSy)

]
= −EX,y

(
1

q
XY − V ZSy

)⊤

V Zd(softmax(Z⊤Wzquery))− EX,y

[(
1

q
XY − V ZSy

)⊤

dV (ZSy)

]

= −EX,y

(
1

q
XY − V ZSy

)⊤

V Z(diag(Sy)− SyS
⊤
y)Z⊤dWzquery − EX,y

[(
1

q
XY − V ZSy

)⊤

dV (ZSy)

]
We have the gradients for the two parameters:

∇WL = −EX,y

(
Z(diag(Sy)− SyS

⊤
y)Z⊤V ⊤(

1

q
XY − V ZSy)z

⊤
query

)
∇V L = −EX,y

((
1

q
XY − V ZSy

)
(ZSy)

⊤
)

Thus we complete the proof.

Along the gradient trajectory, if the value matrix can be aligned with the ground-truth
[
Id 0d×T

]
, we can have the

following nice form for the loss function.

Lemma D.2. Denote Sy := softmax(Z⊤Wzquery) ∈ RT for certain q-sparse set y. Also, we define the q-hot vector
Y = (1{1 ∈ y},1{2 ∈ y}, ...,1{T ∈ y})⊤ for the subset y ∈

(
[T]
q

)
. If V (t) = α(t)

[
Id 0d×T

]
, the loss function can be

represented as the following form:

L(θ(t)) = d

2
Ey

[∥∥∥∥1qY − α(t)Sy

∥∥∥∥2
]

Proof. We have the architecture fθ = V Z softmax(Z⊤Wzquery) and the loss function in Equation (3):

L(θ(t)) = 1

2
EX,y

[
∥ STSq(X, y)− fθ(X, y)∥22

]
.

Then we can have the following expression

L(θ(t)) = 1

2
EX,y

[∥∥∥∥1qXY − V (t)ZSy

∥∥∥∥2
]

19

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

=
1

2
EX,y

[(
1

q
XY − α(t)XSy

)⊤(
1

q
XY − α(t)XSy

)]

=
d

2
Ey

[∥∥∥∥1qY − α(t)Sy

∥∥∥∥2
]

The last identity is due because the expectation of the covariance matrix X⊤X is dIT .

In the rest of this section, we characterize the convergence result training with GD for the settings above. Specifically, we
consider the one-hot positional encoding. Here we define the encoding for all positions i ∈ [T] and the encoding for any
q-subset y.

Definition D.3 (One-hot Positional encoding). The one-hot positional encoding is an orthogonal matrix E = IT , with
each column unit one-hot vector ei as the positional encoding of the i-th token. Thus, for any set y ∈

(
[T]
q

)
, it holds that

ey =
∑

j∈y ej .

Remark. With one-hot positional encoding, the one-layer transformer can achieve O(T) width cost, which is polynomially
smaller than the memory lower bound Ω(Td) for FCNs. However, it cannot achieve exponential separation due to the
inefficiency of one-hot encodings.

D.2. Joint training of value and attention matrix

Now, we analyze the dynamics of training the value matrix V and attention matrix W simultaneously with the same
learning rate η. Instead of continuous gradient descent training, we directly train the transformer with gradient descent on
the population loss. The following theorem characterizes the convergence of GD when training both layers simultaneously.

Theorem D.4 (Joint training with one-hot positional encoding). Suppose 2 ≤ q < T/4. For any ϵ ∈ (0, dT
100(T−q)q), η ≤

1
20d2 ,xquery = 0d, if we apply gradient descent on the population loss in Equation (3) with zero initialization W (0) =

0(d+T)×(d+T),V (0) = 0d×(d+T), then after time t ≥ Õ(T
2d
ηϵ), we have

L(θ(t)) = 1

2
EX,y

[
∥STSq(X, y)− fθ(X, y)∥22

]
≤ ϵ.

We have the following lemma that will hold throughout the gradient descent training trajectory. We inductively prove that
V and W are always along the ground-truth direction, respectively. For convenience, we consider all functions of W ,V
including L,Sy as a function of t.

Lemma D.5 (Induction Hypothesis). Given the initialization of W (0) = 0 and V (t) = 0, xquery = 0, then along the
gradient descent trajectory, for all t ≥ 0, we have ∀y, y′ ∈

(
[T]
q

)
:

1. For all t ≥ 0, there exists some time-dependent scalar C(t) s.t.

W (t) = C(t)

[
0d×d 0d×T

0T×d

(
IT − 1

T 1T1
⊤
T

)] .
2. For all t ≥ 0, there exists some time-dependent scalar α(t) s.t.

V (t) = α(t)
[
Id 0d×T

]
.

Proof. First, observe that the base case when t = 0 is clearly true. Thus, given that these statements hold up to time t, it
suffices to prove these for next iteration t+ 1, and the result will follow by induction.

Note that since the position-position block (right-bottom block) of W is always in direction of IT − 1
T 1T1

⊤
T and other

entries are 0, so we know

S(t)
y (i) = s+(t) > s−(t) = S(t)

y (j),∀i ∈ y, j ̸∈ y.

20

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Once again, since we are only considering the dynamics at an arbitrary time t throughout the proof, we will abuse the
notation as s+ := s+(t), s− := s−(t), α := α(t), and Sy(i) := S

(t)
y (i) which is the i-th entry of the softmax output.

First, suppose that the properties 1 and 2 hold. Recall that

∇V L = EX,y

((
1

q
XY − V ZSy

)
(ZSy)

⊤
)

Now we consider the token-token block in V . We have that the (i, j)-entry (i ∈ [d], j ∈ [d]) of ∇V L(t) is

e⊤i ∇V L(t)ej = EX,y

[
e⊤i

(
1

q
XY − V ZSy

)
(ZSy)

⊤ej

]
(V (t) = α(t)

[
Id 0d×T

]
)

= EX,y

[
e⊤i X

(
1

q
Y − αSy

)
(XSy)

⊤ej

]
= EX,y

[(
X

(
1

q
Y − αSy

))
i

(XSy)j

]
= EX,y

[(
T∑

k=1

Xi,k

(
1{k ∈ y}

q
− αSy(k)

))(T∑
k=1

Xj,kSy(k)

)]

We will case these entries based on whether they are on or off-diagonal.

Case I. Diagonal entries (i = j)

e⊤i ∇V L(t)ej = EX,y

[(
T∑

k=1

Xi,k

(
1{k ∈ y}

q
− αSy(k)

))(T∑
k=1

Xj,kSy(k)

)]

= EX,y

[
T∑

k=1

X2
i,k

(
1{k ∈ y}

q
− αSy(k)

)
Sy(k)

]

= Ey

[
T∑

k=1

(
1{k ∈ y}

q
− αSy(k)

)
Sy(k)

]

= Ey

[
q

(
1

q
− αs+

)
s+ − (T − q)αs2−

]
= (1− αqs+)s+ − (T − q)αs2−

Case II. Off-diagonal entries (i ̸= j)

e⊤i ∇V L(t)ej = EX,y

[(
T∑

k=1

Xi,k

(
1{k ∈ y}

q
− αSy(k)

))(T∑
k=1

Xj,kSy(k)

)]
= 0

This follows from the fact that each cross term of this sum is a product of two mean zero independent Gaussians, and thus
the entire expression is 0. That means the gradient of V has its token-token block aligned with identity.

Then, we consider the position part. We have that the (i, d+ j)-entry (i ∈ [d], j ∈ [T]) of ∇V L(t) is

e⊤i ∇V L(t)ej = EX,y

[
e⊤i

(
1

q
XY − V ZSy

)
(ZSy)

⊤ej+d

]
(V (t) = α(t)

[
Id 0d×T

]
)

= EX,y

[
e⊤i X

(
1

q
Y − αSy

)
(ZSy)

⊤ej+d

]
= EX,y

[(
X

(
1

q
Y − αSy

))
i

(Sy)j

]
= EX,y

[(
T∑

k=1

Xi,k

(
1{k ∈ y}

q
− αSy(k)

))
Sy(j)

]

21

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Using induction hypothesis, since

W (t) = C(t)

[
0d×d 0d×T

0T×d

(
IT − 1

T 1T1
⊤
T

)] .
Sy(j) is independent of X , so this expectation of the token-position block is all zero:

e⊤i ∇V L(t)ej = EX,y

[(
T∑

k=1

Xi,k

(
1{k ∈ y}

q
− αSy(k)

))
Sy(j)

]

= Ey

[(
T∑

k=1

EX [Xi,k]

(
1{k ∈ y}

q
− αSy(k)

))
Sy(j)

]
= 0

Combining the two blocks, we have that ∇V L(t) =
(
(1− αqs+)s+ − (T − q)αs2−

) [
Id 0d×T

]
, which implies that for

time t+ 1, V (t) will also be in the direction of
[
Id 0d×T

]
, hence proving the fourth property.

We now proceed to prove the third property with a similar analysis. We also just need to prove that the gradient can be
expressed as:

∇WL(t) = C1(t)

[
0d×d 0d×T

0T×d

(
IT − 1

T 1T1
⊤
T

)]
for some scalar C1(t), and then it indicates the next iteration W (t+ 1) will keep in the same direction. Recall that

∇WL(t) = EX,y

[
Z
(
diag(Sy)− SyS

⊤
y

)
Z⊤V ⊤

(
1

q
XY − V ZSy

)
z⊤

query

]
Since V (t) = α(t)

[
Id 0d×T

]
by the induction hypothesis, we have that this is equal to

∇WL(t) = αEX,y

[
Z
(
diag(Sy)− SyS

⊤
y

)
X⊤X

(
1

q
Y − αSy

)
z⊤

query

]

We first consider the first d columns of the gradient, which is

∇WL(t):,≤d = αEX,y

[
Z
(
diag(Sy)− SyS

⊤
y

)
X⊤X

(
1

q
Y − αSy

)
xquery

⊤
]

= 0(d+T)×d.

Because xquery = 0d.

Next, we consider the top-right block of the gradient ∇WL(t)≤d,d:T+d. By induction hypothesis, Sy =
softmax(Z⊤W (t)zquery) = softmax(C(t)(I − 1

T 11
⊤)ey) at time t, which is independent of X . Therefore, by symmetry

the gradient of this block is

∇WL(t)≤d,d:T+d = αEX,y

[
X
(
diag(Sy)− SyS

⊤
y

)
X⊤X

(
1

q
Y − αSy

)
ey

⊤
]

=
1

2
αEX,y

[
X
(
diag(Sy)− SyS

⊤
y

)
X⊤X

(
1

q
Y − αSy

)
ey

⊤
]

− 1

2
αEX,y

[
X
(
diag(Sy)− SyS

⊤
y

)
X⊤X

(
1

q
Y − αSy

)
ey

⊤
]
= 0

Finally, we consider the position-position block. In particular, since EX⊤X = dId we have that for i, j ∈ [T],

∇WL(t)(i+d),(j+d) = αEX,y

[
e⊤i
(
diag(Sy)− SyS

⊤
y

)
X⊤X

(
1

q
Y − αSy

)
e⊤y ej

]
(Here ei are one-hot vectors in RT .)

22

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

= αdEy

[(
Sy(i)e

⊤
i − Sy(i)S

⊤
y

)(1

q
Y − αSy

)
1{j ∈ y}

]
=

αd(
T
q

) ∑
y:j∈y

(
Sy(i)e

⊤
i − Sy(i)S

⊤
y

)(1

q
Y − αSy

)
=

αd(
T
q

) ∑
y:j∈y

(
Sy(i)1{i ∈ y}/q − αSy(i)

2 − Sy(i)s+ + αSy(i)∥Sy∥2
)

We now case this between on and off diagonals again.

Case I. Diagonal entries (i = j)

e⊤i ∇WL(t)ej =
αd(
T
q

) ∑
y:j∈y

(
Sy(i)1{i ∈ y}/q − αSy(i)

2 − Sy(i)s+ + αSy(i)∥Sy∥2
)

=
αd
(
T−1
q−1

)(
T
q

) s+

(
1

q
− αs+ − s+ + α∥Sy∥2

)
=

αdq

T
s+

(
1

q
− αs+ − s+ + αqs2+ +

α(1− qs+)
2

T − q

)
=

αd

T
s+

(
1− αqs+ − qs+ + αq2s2+ +

αq(1− qs+)
2

T − q

)
=

αd

T
s+

(
(1− α)(1− qs+) +

Tα

T − q
(1− qs+)

2

)

Case II. Off-diagonal entries (i ̸= j)

e⊤i ∇WL(t)ej =
αd(
T
q

) ∑
y:j∈y

(
Sy(i)1{i ∈ y}/q − αSy(i)

2 − Sy(i)s+ + αSy(i)∥Sy∥2
)

=
αd(
T
q

) ∑
y:j∈y,i∈y

(
Sy(i)1{i ∈ y}/q − αSy(i)

2 − Sy(i)s+ + αSy(i)∥Sy∥2
)

+
αd(
T
q

) ∑
y:j∈y,i/∈y

(
Sy(i)1{i ∈ y}/q − αSy(i)

2 − Sy(i)s+ + αSy(i)∥Sy∥2
)

The first of these terms is similar in structure to the diagonal entry case:

αd(
T
q

) ∑
y:j∈y,i∈y

(
Sy(i)1{i ∈ y}/q − αSy(i)

2 − Sy(i)s+ + αSy(i)∥Sy∥2
)

=
αd
(
T−2
q−2

)(
T
q

) s+

(
1

q
− αs+ − s+ + α∥Sy∥2

)
=

αd(q − 1)q

T (T − 1)
s+

(
1

q
− αs+ − s+ + α∥Sy∥2

)
=

αd(q − 1)

T (T − 1)
s+

(
(1− α)(1− qs+) +

Tα

T − q
(1− qs+)

2

)
where the last line follows from the calculation in the diagonal entry case.

Looking at the second term, we have:

αd(
T
q

) ∑
y:j∈y,i/∈y

(
Sy(i)1{i ∈ y}/q − αSy(i)

2 − Sy(i)s+ + αSy(i)∥Sy∥2
)

23

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

=
αd
(
T−2
q−1

)(
T
q

) s−
(
−αs− − s+ + α∥Sy∥2

)
=

αdq(T − q)

T (T − 1)

1− qs+
T − q

(
−α(1− qs+)

T − q
− s+ + αqs2+ +

α(1− qs+)
2

T − q

)
=

αdq

T (T − 1)
(1− qs+)

(
−s+ + αqs2+ − qs+α(1− qs+)

T − q

)

From this, we get that e⊤i ∇WL(t)ej is the following expression multiplied by αd
T (T−1)

(q − 1)s+

(
(1− α)(1− qs+) +

Tα

T − q
(1− qs+)

2

)
+ q(1− qs+)

(
−s+ + αqs2+ − qs+α(1− qs+)

T − q

)
= (q − 1)

(
s+ − s+α− qs2+ + αqs2+ +

Tαs+
T − q

(1− qs+)
2

)
+ q

(
−s+ + qs2+ + αqs2+ − αq2s3+ − qs+α(1− qs+)

2

T − q

)
= −

(
s+ − s+α− qs2+ + αqs2+ +

Tαs+
T − q

(1− qs+)
2

)
+ q
(
−s+α+ 2αqs2+ − αq2s3+ + αs+(1− qs+)

2
)

= − s+ + s+α+ qs2+ − αqs2+ − Tαs+
T − q

(1− qs+)
2 − qs+α+ 2αq2s2+ − αq3s3+ + αqs+(1− qs+)

2

= − s+

(
(1− α)(1− qs+) +

Tα

T − q
(1− qs+)

2

)

Thus, we have that

e⊤i ∇WL(t)ej =
αd

T (T − 1)

(
(1− α)(1− qs+) +

Tα

T − q
(1− qs+)

2

)
(−s+)

for off-diagonal entries.

Combining our on and off-diagonal entry calculations, we obtain that

∇WL(t) =
(

αd

T − 1
s+

(
(1− α)(1− qs+) +

Tα

T − q
(1− qs+)

2

))(
IT − 1

T
1T1

⊤
T

)

Combine all the four blocks, we know the gradient of W is along the
[
0d×d 0d×T

0T×d

(
IT − 1

T 1T1
⊤
T

)]. This proves property 1

for iteration t+ 1 as desired.

Remark. After proving the induction lemma about the evolving direction of W (t) and V (t), the optimization problem
can be reduced to analyzing the two variable dynamics of C(t) and α(t).

We can now proceed to prove the main theorem for the joint training algorithm by analyzing the C(t) and α(t) dynamics.
One can refer to the main paper for proof ideas.

Proof of Theorem D.4. After Lemma D.5 shows that V and W are always along the ground-truth direction: V (t) =
α(t)Id,W (t) = C(t)(IT − 1

T 1T1
⊤
T), the dynamics of the parameter matrices then can be characterized by two scalar

variable α(t) and C(t). Our update rules become

α(t+ 1) = α(t) + η

(
(1− αqs+)s+ − α(1− qs+)

2

T − q

)
= α(t) + ηs+(1−

α(t)(Tqs2+ − 2qs+ + 1)

(T − q)s+
)

24

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

C(t+ 1) = C(t) + η
αd

T − 1
s+

(
(1− α)(1− qs+) +

Tα

T − q
(1− qs+)

2

)
= C(t) + η

αd

T − 1
s+(1− qs+)

(
1 +

qα

T − q
(1− Ts+)

)
Here, s+(t) := S

(t)
y (i), i ∈ y is the correct position softmax probability value at time t. We omit the t here for clarity since

at each iteration only s+(t) is related. Along the trajectory, s+ ≤ 1
q by its definition: since W is along (IT − 1

T 1T1
⊤
T), all

i ∈ y has the same softmax probability S
(t)
y (i), and thus they cannot exceed the upper bound 1/q.

Now we prove that these update rules take α → 1, C(t) → +∞ when t → +∞. Note that when s+ is fixed, α(t) has a
stationary point α∗(t) = (T−q)s+

Tqs2+−2qs++1
. That means we can write the α dynamics into:

α(t+ 1) = α(t) + ηs+

(
1− α(t)

α∗(t)

)
.

One can easily check that when s+ ∈ (1
T ,

1
q), α

∗(t) ≥ 1, and it achieves maximum at s+ = 1√
Tq

.

To characterize this limit above when t → ∞, we need to prove the following two arguments:

1. C(t) is non-decreasing for all t ≥ 0.

2. α(t) goes through 2 phases:

Phase I. α monotonically grows to 1− 0.1
√

q(T−q)ϵ
dT at some time t1.

Phase II. α stays within an interval whose upper bound is close to α∗ after time t1:

α(t) ∈

[
1− 0.1

√
q(T − q)ϵ

dT
,

(
1 +

(8d− 1)(1− qs+)

8dqs+(Ts+ − 1)

)
α∗(t)

]
(IH1)

Phase I. We inductively prove that both α(t), C(t) are non-decreasing. For t = 0, by zero initialization, C(0) = C(1) =

0, α(1) = η
T > 0 so it holds for t = 0. Suppose it holds for some t < t1 before α hit 1− 0.1

√
q(T−q)ϵ

dT . Then we know for
α(t+ 1), we have the update rule:

α(t+ 1) = α(t) + ηs+

(
1− α(t)

α∗(t)

)
≥ α(t) + η

1

T
(1− α(t)

α∗(t)
) (Induction Hyp. s+ ≥ 1

T)

≥ α(t) + η
1

T
(1− α(t)) (α∗ ≥ 1)

≥ α(t) + 0.1η

√
q(T − q)ϵ

dT 3
. (α ≤ 1− 0.1

√
q(T−q)ϵ

dT)

So α is non-decreasing. Meanwhile, for C(t+ 1):

C(t+ 1) = C(t) + η
αd

T − 1
s+(1− qs+)

(
1 +

qα

T − q
(1− Ts+)

)
≥ C(t) + η

αd

T − 1
s+(1− qs+)

(
1 +

q

T − q
(1− Ts+)

)
(α < 1, (1− Ts+) < 0)

= C(t) + η
αd

T − 1
s+(1− qs+)

T − q + q − Tqs+
T − q

= C(t) + η
αdT

(T − 1)(T − q)
s+(1− qs+)

2 ≥ C(t)

so they are both non-decreasing. Then we need to upper bound the time t1 for α(t) to reach 1 − 0.1
√

q(T−q)ϵ
dT : by the

update above we have

α(t+ 1) = α(t) + ηs+

(
1− α(t)

α∗(t)

)
≥ α(t) + η

1

T
(1− α(t)

α∗(t)
) (Induction Hyp. s+ ≥ 1

T)

25

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

≥ α(t) + η
1

T
(1− α(t)) (α∗ ≥ 1)

⇒ 1− α(t+ 1) ≤ (1− η/T)(1− α(t)) ≤ ... ≤ (1− η/T)t(1− α(0)).

Thus for α(t+ 1) ≥ 1− 0.1
√

q(T−q)ϵ
dT , it takes at most O(

T log d
ϵ

η) iterations.

Phase II. In this phase, we first consider s+(t) < 1√
Tq

. In this case, α∗(t+ 1) > α∗(t), and inductively

α∗(t)− α(t+ 1) = α∗(t)− α(t)− ηs+(t)

α∗(t)
(α∗(t)− α(t)) = (1− ηs+(t)

α∗(t)
)(α∗(t)− α(t)) > 0,

α(t+ 1) < α∗(t+ 1) always holds, and the induction hypothesis holds for t+ 1.

All arguments below is based on s+(t) ≥ 1√
Tq

. We first verify that within the induction hypothesis range, C(t+ 1) ≥ C(t).

C(t+ 1) = C(t) + η
αd

T − 1
s+(1− qs+)

(
1 +

qα

T − q
(1− Ts+)

)
≥ C(t) + η

αd

T − 1
s+(1− qs+)

(
1 +

(
1 +

(d− 1)(1− qs+)

dqs+(Ts+ − 1)

)
α∗(t)

q

T − q
(1− Ts+)

)
(α ≤

(
1 + (d−1)(1−qs+)

dqs+(Ts+−1)

)
α∗(t), (1− Ts+) < 0)

= C(t) + η
αd

T − 1
s+(1− qs+) ·

1

d

1− qs+
Tqs2+ − 2qs+ + 1

= C(t) + η
α

(T − 1)(Tqs2+ − 2qs+ + 1)
s+(1− qs+)

2 ≥ C(t)

Next, we first divide α(t)’s possible range into two parts: α(t) ≤
(
1 + (4d−1)(1−qs+(t))

4dqs+(t)(Ts+(t)−1)

)
α∗(t) and α(t) ∈[(

1 + (4d−1)(1−qs+(t))
4dqs+(t)(Ts+(t)−1)

)
α∗(t),

(
1 + (8d−1)(1−qs+(t))

8dqs+(t)(Ts+(t)−1)

)
α∗(t)

]
.

For the first part, we prove the following statement (S1):

If α(t) ≤
(
1 + (4d−1)(1−qs+(t))

4dqs+(t)(Ts+(t)−1)

)
α∗(t), the next step

α(t+ 1) ≤
(
1 +

(8d− 1)(1− qs+(t+ 1))

8dqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1).

If (S1) is true, then we know once α(t) ≤
(
1 + (4d−1)(1−qs+(t))

4dqs+(t)(Ts+(t)−1)

)
α∗(t), α(t+ 1) satisfy the induction hypothesis. After

proving (S1), the only part left is when

α(t) ∈
((

1 +
(4d− 1)(1− qs+(t))

4dqs+(t)(Ts+(t)− 1)

)
α∗(t),

(
1 +

(8d− 1)(1− qs+(t))

8dqs+(t)(Ts+(t)− 1)

)
α∗(t)

]
.

We prove statement (S1) by proving(
1 +

(8d− 1)(1− qs+(t+ 1))

8dqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1) ≥

(
1 +

(4d− 1)(1− qs+(t))

4dqs+(t)(Ts+(t)− 1)

)
α∗(t) (S2)

When the inequality (S2) above is proved, then (S1) is proved. This is because: if α(t) < α∗(t), then by update rule we have

α∗(t)− α(t+ 1) = α∗(t)− α(t)− ηs+(t)

α∗(t)
(α∗(t)− α(t)) = (1− ηs+(t)

α∗(t)
)(α∗(t)− α(t)) > 0,

α(t+ 1) < α∗(t) ≤
(
1 +

(4d− 1)(1− qs+(t))

4dqs+(t)(Ts+(t)− 1)

)
α∗(t)

26

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

≤
(
1 +

(8d− 1)(1− qs+(t+ 1))

8dqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1)

If α(t) ≥ α∗(t), then α(t + 1) ≤ α(t) ≤
(
1 + (4d−1)(1−qs+(t))

4dqs+(t)(Ts+(t)−1)

)
α∗(t), and therefore smaller than(

1 + (8d−1)(1−qs+(t+1))
8dqs+(t+1)(Ts+(t+1)−1)

)
α∗(t+ 1).

Now we prove (S2) by expanding the s+(t+ 1) using the update rule of C(t). Denote ∆C(t) := C(t+ 1)− C(t). Since
η ≤ 1

20d2 , ∆C(t) < 1
5 . Then we have

s+(t+ 1) =
1

q + (T − q)e−C(t)−∆C(t)
≤ 1

q + (T − q)e−C(t)(1−∆C(t))

=
1

q + (T − q)e−C(t) − (T − q)e−C(t)∆C(t)

≤ 1

q + (T − q)e−C(t)
+

5

4

(
1

q + (T − q)e−C(t)

)2

(T − q)e−C(t)∆C(t)

The last inequality is due to ∆C(t) < 1
5 . Then we have

s+(t+ 1) ≤ 1

q + (T − q)e−C(t)
+

5

4

(
1

q + (T − q)e−C(t)

)2

(T − q)e−C(t)∆C(t)

= s+(t) +
5

4
s2+(t)

(
1

s+
− q

)
∆C(t)

= s+(t) +
5

4
s+(1− qs+)∆C(t)

Then we consider the decrement of α∗(t+ 1) and (1−qs+(t+1))
qs+(t+1)(Ts+(t+1)−1) .

α∗(t+ 1) =
(T − q)s+(t+ 1)

Tqs+(t+ 1)2 − 2qs+(t+ 1) + 1
=

(T − q)

Tqs+(t+ 1)− 2q + 1/s+(t+ 1)

≥ (T − q)

Tqs+(t)− 2q + 1/s+(t) +
5
4Tqs+(t)(1− qs+(t))∆C(t)

≥ (T − q)

Tqs+(t)− 2q + 1/s+(t)
−

5
4 (T − q)Tqs+(t)(1− qs+(t))∆C(t)

(Tqs+(t)− 2q + 1/s+(t))2

= α∗(t)−
5(T − q)Tqs3+(t)(1− qs+(t))∆C(t)

4(Tqs2+(t)− 2qs+(t) + 1)2
= α∗(t)−

5Tqs2+(t)(1− qs+(t))∆C(t)

4(Tqs2+(t)− 2qs+(t) + 1)
α∗(t)

(1− qs+(t+ 1))

qs+(t+ 1)(Ts+(t+ 1)− 1)

=
1

qs+(t+ 1)(Ts+(t+ 1)− 1)
− 1

(Ts+(t+ 1)− 1)

≥ 1

qs+(t+ 1)(Ts+(t+ 1)− 1)
− 1

(Ts+(t)− 1)
(s+(t+ 1) ≥ s+(t))

=
1

qT
· 1

s+(t+ 1)
· 1

s+(t+ 1)− 1
T

− 1

(Ts+(t)− 1)

≥ 1

qT

(
1

s+(t)
−

5
4s+(1− qs+)∆C(t)

s2+(t)

)(
1

s+(t)− 1
T

−
5
4s+(1− qs+)∆C(t)

(s+ − 1
T)

2

)
− 1

(Ts+(t)− 1)

≥ (1− qs+(t))

qs+(t)(Ts+(t)− 1)
−

5
4s+(1− qs+)∆C(t)

qs+(t)2(Ts+ − 1)
−

5
4s+(1− qs+)T∆C(t)

qs+(t)(Ts+ − 1)2

=
(1− qs+(t))

qs+(t)(Ts+(t)− 1)
−

5
4s+(1− qs+)∆C(t)(2Ts+ − 1)

qs+(t)2(Ts+ − 1)2

27

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Then plug in the original term, we have the lower bound for(
1 +

(8d− 1)(1− qs+(t+ 1))

8dqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1)

≥
(
1 +

(4d− 1)(1− qs+(t))

4dqs+(t)(Ts+(t)− 1)

)
α∗(t) +

(1− qs+(t))

8dqs+(t)(Ts+(t)− 1)
α∗(t)

− 5s+(1− qs+)∆C(t)(2Ts+ − 1)

4qs+(t)2(Ts+ − 1)2
α∗(t)

−
(
1 +

(8d− 1)(1− qs+(t+ 1))

8dqs+(t+ 1)(Ts+(t+ 1)− 1)

)
5Tqs2+(t)(1− qs+(t))∆C(t)

4(Tqs2+(t)− 2qs+(t) + 1)
α∗(t)

Since (8d−1)(1−qs+(t+1))
8dqs+(t+1)(Ts+(t+1)−1) ≤

8d−1
8d ≤ 1 when s+ ≥ 1√

Tq
, we have(

1 +
(8d− 1)(1− qs+(t+ 1))

8dqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1)

≥
(
1 +

(4d− 1)(1− qs+(t))

4dqs+(t)(Ts+(t)− 1)

)
α∗(t) +

(1− qs+(t))

8dqs+(t)(Ts+(t)− 1)
α∗(t)

− 2 ·
5Tqs2+(t)(1− qs+(t))∆C(t)

4(Tqs2+(t)− 2qs+(t) + 1)
α∗(t)−

5
4s+(1− qs+)∆C(t)(2Ts+ − 1)

qs+(t)2(Ts+ − 1)2
α∗(t) (*)

Then we need to prove that (here s+ := s+(t)) to show (S2).

(1− qs+)

8dqs+(Ts+ − 1)
≥

5Tqs2+(1− qs+)∆C(t)

2(Tqs2+ − 2qs+ + 1)
+

5
4s+(1− qs+)∆C(t)(2Ts+ − 1)

qs2+(Ts+ − 1)2

We have that the right hand side has the following upper bound (T ≥ 4q):

5Tqs2+(1− qs+)∆C(t)

2(Tqs2+ − 2qs+ + 1)
+

5
4s+(1− qs+)∆C(t)(2Ts+ − 1)

qs2+(Ts+ − 1)2

≤
5Tqs2+(1− qs+)∆C(t)

2qs+(Ts+ − 1)
+

5
4s+(1− qs+)∆C(t)(2Ts+ − 1)

qs2+(Ts+ − 1)2
(s+ ≤ 1/q.)

≤
5Tqs2+(1− qs+)∆C(t)

2qs+(Ts+ − 1)
+

15
4 s+(1− qs+)∆C(t)

qs2+(Ts+ − 1)
(**)

Let α = (1 + γ 1−qs+
qs+(Ts+−1))α

∗, then we have the upper bound for the update

∆C(t) = η(1− γ)(1 + γ
1− qs+

qs+(Ts+ − 1)
)α∗ d

(T − 1)(Tqs2+ − 2qs+ + 1)
s+(1− qs+)

2

≤ η(1− γ2)
d(T − q)s2+(1− qs+)

2

(T − 1)(Tqs2+ − 2qs+ + 1)2

≤ η(1− γ2)
d(T − q)(1− qs+)

2

(T − 1)(Tqs+ − 2q + 1/s+)2

≤ η(1− γ2)
d(T − q)(1−

√
q√
T
)2

(T − 1)(2
√
Tq − 2q)2

≤ ηd

4qT
. (s+ ≥ 1/

√
Tq.)

Since η ≤ 1
20d2 , plug the upper bound for ∆C(t) back to the two terms in (**) respectively and we proved the inequality.

And therefore, (S2) is proved, which also leads to (S1).

Finally, we consider α(t) ∈
[(

1 + (4d−1)(1−qs+(t))
4dqs+(t)(Ts+(t)−1)

)
α∗(t),

(
1 + (8d−1)(1−qs+(t))

8dqs+(t)(Ts+(t)−1)

)
α∗(t)

]
. Now, since by update rule,

α(t+ 1) = α(t) + ηs+

(
1− α(t)

α∗(t)

)
≤
(
1 +

(8d− 1)(1− qs+(t))

8dqs+(t)(Ts+(t)− 1)

)
α∗(t)− (4d− 1)η(1− qs+(t))

4dq(Ts+(t)− 1)

28

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

We just need to prove that (
1 +

(8d− 1)(1− qs+(t+ 1))

8dqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1)

≥
(
1 +

(8d− 1)(1− qs+(t))

8dqs+(t)(Ts+(t)− 1)

)
α∗(t)− (4d− 1)η(1− qs+(t))

4dq(Ts+(t)− 1)

Note Equation (*) gives the lower bound for the left hand side:(
1 +

(8d− 1)(1− qs+(t+ 1))

8dqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1)

≥
(
1 +

(8d− 1)(1− qs+(t))

8dqs+(t)(Ts+(t)− 1)

)
α∗(t)−

5Tqs2+(t)(1− qs+(t))∆C(t)

2(Tqs2+(t)− 2qs+(t) + 1)
α∗(t)

−
5
4s+(1− qs+)∆C(t)(2Ts+ − 1)

qs+(t)2(Ts+ − 1)2
α∗(t) (#)

Yet when α(t) ≥
(
1 + (4d−1)(1−qs+(t))

4dqs+(t)(Ts+(t)−1)

)
α∗(t), we have a better upper bound for ∆C(t):

∆C(t) = η(1− γ)(1 + γ
1− qs+

qs+(Ts+ − 1)
)α∗ d

(T − 1)(Tqs2+ − 2qs+ + 1)
s+(1− qs+)

2

≤ η(1− γ2)
d(T − q)s2+(1− qs+)

2

(T − 1)(Tqs2+ − 2qs+ + 1)2

≤ η

(
1−

(
4d− 1

4d

)2
)

d(T − q)s2+(1− qs+)
2

(T − 1)(Tqs2+ − 2qs+ + 1)2

≤ η

2

(T − q)s2+(1− qs+)
2

(T − 1)(Tqs2+ − 2qs+ + 1)2

Then we need to bound both terms in Equation (#) (for simplicity denote s+ as s+(t)):

5Tqs2+(t)(1− qs+(t))∆C(t)

2(Tqs2+(t)− 2qs+(t) + 1)
α∗(t) ≤

5ηTqs5+(1− qs+)
3(T − q)2

4(T − 1)(Tqs2+ − 2qs+ + 1)4

=
5η

4
· T (T − q)2

T − 1
· (1− qs+)

Tqs2+ − 2qs+ + 1
·

qs5+(1− qs+)
2

(Tqs2+ − 2qs+ + 1)3

≤ 5η

4
· T (T − q)2

T − 1
· (1− qs+)

qs+(Ts+ − 1)
·

qs5+(1− qs+)
2

(Tqs2+ − 2qs+ + 1)3
(s+ ≤ 1

q)

=
5η

4
· T (T − q)2

T − 1
· (1− qs+)

q(Ts+ − 1)
· q(1− qs+)

2

(Tqs2+ − 2qs+ + 1)(Tq − 2q/s+ + 1/s2+)
2

≤ 5η

4
· T (T − q)2

T − 1
· (1− qs+)

q(Ts+ − 1)
· q

2(Tq − q2)2
(s+ ≥ 1√

Tq
.)

=
5η

8q
· T

T − 1
· (1− qs+)

q(Ts+ − 1)
≤ 5η

14

(1− qs+)

q(Ts+ − 1)
(q ≥ 2, T ≥ 4q)

5s+(1− qs+)∆C(t)(2Ts+ − 1)

4qs+(t)2(Ts+ − 1)2
α∗(t)

≤ 5(1− qs+)(2Ts+ − 1)

4qs+(Ts+ − 1)2
·

η(T − q)2s3+(1− qs+)
2

2(T − 1)(Tqs2+ − 2qs+ + 1)3
(Plug in ∆C(t))

=
5η(1− qs+)(2Ts+ − 1)(T − q)2s2+(1− qs+)

2

8q(Ts+ − 1)2(T − 1)(Tqs2+ − 2qs+ + 1)3

29

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

≤ 5η(1− qs+)

8q(Ts+ − 1)
· 2Ts+ − 1

Ts+ − 1
· (T − q)2

T − 1
· 1

Tq − 2q/s+ + 1/s2+
· (1− qs+)

2

(Tqs2+ − 2qs+ + 1)2

≤ 5η(1− qs+)

8q(Ts+ − 1)
· 3 · (T − q)2

T − 1

1

Tq − q2
1

4
≤ 15η(1− qs+)

32q2(Ts+ − 1)
≤ 15η(1− qs+)

64q(Ts+ − 1)
.

Therefore, by Equation (#) we have(
1 +

(8d− 1)(1− qs+(t+ 1))

8dqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1)

≥
(
1 +

(8d− 1)(1− qs+(t))

8dqs+(t)(Ts+(t)− 1)

)
α∗(t)−

5Tqs2+(t)(1− qs+(t))∆C(t)

2(Tqs2+(t)− 2qs+(t) + 1)
α∗(t)

−
5
4s+(1− qs+)∆C(t)(2Ts+ − 1)

qs+(t)2(Ts+ − 1)2
α∗(t)

≥
(
1 +

(8d− 1)(1− qs+(t))

8dqs+(t)(Ts+(t)− 1)

)
α∗(t)−

(
5

14
+

15

64

)
η(1− qs+)

q(Ts+ − 1)

≥
(
1 +

(8d− 1)(1− qs+(t))

8dqs+(t)(Ts+(t)− 1)

)
α∗(t)− 4d− 1

4d

η(1− qs+)

q(Ts+ − 1)
(d ≥ 1.)

≥ α(t+ 1).

Therefore, we finish the induction for (IH1).

With the induction hypothesis, we can analyze the upper bound of convergence time. For Phase I, we have the lower bound
for ∆C(t) (note that α < 1, γ < 0):

∆C(t) ≥ η(1− γ)(1− 0.1

√
q(T − q)ϵ

dT
)

d

(T − 1)(Tqs2+ − 2qs+ + 1)
s+(1− qs+)

2

≥ ηds+(1− qs+)
2

2(T − 1)(Tqs2+ − 2qs+ + 1)

And for Phase II, we have the lower bound since γ ≤ 8d−1
8d :

∆C(t) = η(1− γ)(1 + γ
1− qs+

qs+(Ts+ − 1)
)α∗ d

(T − 1)(Tqs2+ − 2qs+ + 1)
s+(1− qs+)

2

≥ η

8

(T − q)s2+(1− qs+)
2

(T − 1)(Tqs2+ − 2qs+ + 1)2
≥ η

8

(1− qs+)
2

q(T − 1)(Tqs2+ − 2qs+ + 1)

Then ∆C(t) ≥ η
8

(1−qs+)2

q(T−1)(Tqs2+−2qs++1)
for all t. Then we divide the training trajectory into two stages as in Huang et al.

(2023): in the first stage, s+ grows to 1/2q. In the second one, C(t) grows large enough s.t. s+ ≥ 1
q − 1

q

√
q(T−q)ϵ

dT .

For the first stage, it’s necessary that C(t) ≥ log T−q
q . While since s+ < 1

2q , we have

∆C(t) ≥
η · 1

4

8q(T − 1)(Tqs2+ − 2qs+ + 1)
≥ η

8T 2

It takes at most O(T
2 log T
η) iteration for C(t) to reach this value.

For the second stage, we need C(t) ≥ log
(

1
q

√
dT

q(T−q)ϵ

)
. Since s+ ≤ 1

q − 1
q

√
q(T−q)ϵ

dT during this period, we can lower
bound the increment:

∆C(t) ≥ η

8

(1− qs+)
2

q(T − 1)(Tqs2+ − 2qs+ + 1)
≥ ηqϵ

8d(T − 1)T
.

So it takes at most O(
T 2d log(dT

ϵ)
ϵη) iterations.

30

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Finally, we check that if s+ ≥ 1
q − 1

q

√
q(T−q)ϵ

dT , then the loss is smaller than ϵ.

L(θ(t)) = 1

2
E

[∥∥∥∥1qXY − V (t)ZSy

∥∥∥∥2
]

=
1

2
E

[(
1

q
XY − α(t)XSy

)⊤(
1

q
XY − α(t)XSy

)]

=
1

2
E

[
d

∥∥∥∥1qY − α(t)Sy

∥∥∥∥2
]

=
d

2(T − q)

(
(T − q)q

(
α(t)s+ − 1

q

)2

+ α(t)2(1− qs+)
2

)

While α(t) ∈
[
1− 0.1

√
q(T−q)ϵ

dT ,
(
1 + (8d−1)(1−qs+)

8dqs+(Ts+−1)

)
α∗(t)

]
:= [α1, α2], the loss value is upper bounded by

max
j∈{1,2}

d

2(T − q)

(
(T − q)q

(
αjs+ − 1

q

)2

+ α2
j (1− qs+)

2

)

For α1 = 1− 0.1
√

q(T−q)ϵ
dT , we have

L(θ(t)) = d

2(T − q)

(
(T − q)q

(
α(t)s+ − 1

q

)2

+ α(t)2(1− qs+)
2

)

≤ d

2(T − q)

(
T − q

q
(qα(t)s+ − 1)

2
+ (1− qs+)

2

)

≤ d

2(T − q)

T − q

q

(
qs+ − 1 + 0.1qs+

√
q(T − q)ϵ

dT

)2

+ (1− qs+)
2


≤ d

2(T − q)

(
T − q

q
·

(
(1− qs+)

2 + 0.2

√
q(T − q)ϵ

dT
(1− qs+) + 0.01 · q(T − q)ϵ

dT

)
+ (1− qs+)

2

)

≤ d

2(T − q)

(
T − q

q
·

(
(1− qs+)

2 + 0.2

√
q(T − q)ϵ

dT
·
√

q(T − q)ϵ

dT
+ 0.01 · q(T − q)ϵ

dT

))

+
d

2(T − q)
(1− qs+)

2

≤ d

2(T − q)

T

q
(1− qs+)

2 + 0.21ϵ ≤ ϵ.

For α2 =
(
1 + (8d−1)(1−qs+)

8dqs+(Ts+−1)

)
α∗(t), denote ∆α = α2 − α∗. Then ∆αs+ ≤ 2

√
q(T−q)ϵ

dT

T α∗. Also, for α∗ we have a upper

bound (using ϵ ≤ dT
100(T−q)q)):

α∗ =
T − q

Tqs+ − 2q + 1
s+

≤ 1

qs+
≤ 1

1−
√

q(T−q)ϵ
dT

≤ 1 +
6

5

√
q(T − q)ϵ

dT
≤ 28

25
.

Then the loss can be upper bounded:

L(θ(t)) = d

2(T − q)

(
(T − q)q

(
α2s+ − 1

q

)2

+ α2
2(1− qs+)

2

)

31

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

=
d

2(T − q)

(
(T − q)q

(
α∗s+ − 1

q

)2

+ α∗2(1− qs+)
2

)

+
d

2(T − q)

−(T − q)
4
√

q(T−q)ϵ
dT

T
α∗(1− qs+α

∗) +
4q2(T − q)2ϵ

dT 3
α∗2


+

d

2(T − q)

4
√

q(T−q)ϵ
dT

T
α∗2(1− qs+)

2 +
4q(T − q)ϵ

dT 3
α∗2(1− qs+)

2


=

d

2(T − q)

(
(T − q)q

(
α∗s+ − 1

q

)2

+ α∗2(1− qs+)
2

)

+
d

2(T − q)

−(T − q)
4
√

q(T−q)ϵ
dT

T (Tqs2+ − 2qs+ + 1)
α∗(1− qs+)

2 +
4q2(T − q)2ϵ

dT 3
α∗2


+

d

2(T − q)

4
√

q(T−q)ϵ
dT

T
α∗2(1− qs+)

2 +
4q(T − q)ϵ

dT 3
α∗2(1− qs+)

2


=

dT

2q(T − q)
(qs+(t)− 1)2 +

d

2(T − q)

−
4
√

q(T−q)ϵ
dT

Ts+
α∗2(1− qs+)

2 +
4q2(T − q)2ϵ

dT 3
α∗2


+

d

2(T − q)

4
√

q(T−q)ϵ
dT

T
α∗2(1− qs+)

2 +
4q(T − q)ϵ

dT 3
α∗2(1− qs+)

2


≤ ϵ

2
+

d

2(T − q)

(
4q2(T − q)2ϵ

dT 3
α∗2 +

4q(T − q)ϵ

dT 3
α∗2(1− qs+)

2

)
≤ ϵ.

when T ≥ 4q.

In conclusion, after Phase I (at most O(
T log d

ϵ

η) iterations) and Phase II (takes at most O(T
2 log T
η +

T 2d log(dT
ϵ)

ηϵ) iterations),

the population loss L(θ(t)) ≤ ϵ after time Õ(T
2d
ηϵ).

E. Proof details in Section 3.2
Though Sanford et al. (2023) demonstrated the success of the representational power of one-layer transformers on the
original qSA task, it does not guarantee gradient descent can converge to the constructed solution for W . For our simplified
task STSq, the problem remains. Experiments (see Section 4) show that if the positional encoding is fixed during training,
even though the trained model can express STSq when it has the original positional encoding, the performance can be
drastically bad after switching to another set of valid positional encoding. This motivates us to consider the population loss
with the resampling of positional encoding.

To be specific, we further consider resampling from all possible, yet valid positional encodings to get a transformer with a
stochastic positional encoding module. In the construction of C.3, as long as the positional encoding matrix E satisfy the
(q, δ)-restricted isometry property (RIP) and subset encoding ey = Ey(E

⊤
y Ey)

−11q is used, W = αId with infinite large
α can approximate STSq . Therefore, we condition on that the random Rademacher matrix has the (q, δ)-restricted isometry
and orthogonality property for some δ, and take the expectation of the model output as a transformer with a stochastic
positional encoding. After adding the randomized architecture, the model becomes:

Definition E.1 (Transformer with Stochastic Positional Encoding). Define a reparameterized 1-layer self-attention layer
with stochastic positional encoding as the following model with trainable parameter matrix V ,W where W ∈ Rde×de ,V ∈
Rd×d:

f
(s)
θ (X, y) = EE

[
V Z softmax(Z⊤Wzquery)

∣∣∣E satisfies (q, δ)-RIP
]

32

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Recall the definition of Z and zquery:

Z :=

[
X
E

]
=

[
x1 x2 · · · xT−1 xT

e1 e2 · · · eT−1 eT

]
∈ R(d+T)×T , zquery =

[
xquery
ey

]
(11)

For simplicity, we denote the conditional expectation of a random variable x as:

E(R)
E [x] = EE

[
x
∣∣∣E satisfies (q, δ)-RIP

]
The training objective becomes:

L(θ) = 1

2
EX,y

[
∥ STSq(X, y)− f

(s)
θ (X, y)∥22

]
. (12)

E.1. Notations

In this section, we introduce the notations used in the proof of Theorem E.6 for simplicity. One can refer to this section once
some undefined notations are found.

We apply the same notation Sy for simplicity: denote the attention score

S(t)
y := softmax(Z⊤W (t)zquery) ∈ RT

for certain q-sparse set y ∈
(
[T]
q

)
. We denote the i-th entry for the attention score as

S(t)
y (i) := softmax(Z⊤W (t)zquery)i ∈ R

For clarity, we ignore the timestamp and overload the notation as Sy for all time t during gradient calculation if all variables
that occur in the expression are at time t. For GD updates, we will specify the difference between S

(t)
y and S

(t+1)
y .

For W (t) = C(t)

[
0d×d 0d×de

0de×d Ide

]
, we know before softmax layer the pre-attention score C(t) is the same for any i, j ∈ y

since e⊤i ey = e⊤j ey = 1. That means Sy(i) = Sy(j). During the proof, we denote s+ = Sy(i) with i ∈ y when

W (t) = C(t)

[
0d×d 0d×de

0de×d Ide

]
for some scalar (which is always true in the proof of the two theorems).

After introducing the stochastic architecture, we have E(R)
E [Sy] in our dynamics. For simplicity, we define Sy = E(R)

E [Sy].

By Lemma E.14, we know for W (t) = C(t)

[
0d×d 0d×de

0de×d Ide

]
(which is always true in the two theorems), there exists

s+(t), s−(t) s.t.
Sy = s+Y + s−(1T − Y).

And here s+ := E(R)
E [Sy(i)], i ∈ y, s− := E(R)

E [Sy(i)], i ̸∈ y.

In the following subsections, we will separate the gradient matrices into blocks. For matrices in the same shape of
W ∈ R(d+de)×(d+de), we denote W:,≤d ∈ R(d+de)×d as the submatrix formed by the first d columns. Then, we define
W:,>d as the submatrix formed by the last de columns. Similarly, we denote W≤d,≤d,W>d,≤d,W≤d,>d,W>d,>d as the
four different block submatrices, respectively. Similar notations also apply in the case of V .

E.2. GD dynamics for stochastic PE

Before introducing the main theorem in this section, we first provide the expression of the gradient dynamics. Recall that
the input matrix is in the following form

[Z, zquery] :=

[
x1 x2 · · · xT−1 xT xquery
e1 e2 · · · eT−1 eT ey

]
∈ R(d+de)×(T+1). (13)

33

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

where we separate the input tokens Z and the query token zquery:

Z :=

[
X
E

]
=

[
x1 x2 · · · xT−1 xT

e1 e2 · · · eT−1 eT

]
∈ R(d+de)×T , zquery =

[
xquery
ey

]
(14)

With the stochastic positional encoding introduced, we have the following lemma that shows the dynamics of W ,V :

Lemma E.2. Denote Sy := softmax(Z⊤Wzquery) ∈ RT for certain q-sparse set y. Also, we define the q-hot vector
Y = (1{1 ∈ y},1{2 ∈ y}, ...,1{T ∈ y}) for the subset y ∈

(
[T]
q

)
. The gradient dynamics of W with input X is:

∇WL = −EX,y E(R)
E

(
Z(diag(Sy)− SyS

⊤
y)Z⊤V ⊤(

1

q
XY − V Z E(R)

E [Sy])z
⊤
query

)
∇V L = −EX,y

((
1

q
XY − V Z E(R)

E [Sy]

)
(Z E(R)

E [Sy])
⊤
)

Proof. The loss function is

L(θ) = 1

2
EX,y

[
∥ STSq(X, y)− f

(s)
θ (X, y)∥22

]
.

Take matrix differentials and we have

dL =EX,y

[
(f

(s)
θ (X, y)− STSq(X, y))⊤V Zd(E(R)

E

[
softmax(Z⊤Wzquery)

]]
+EX,y

[
(f

(s)
θ (X, y)− STSq(X, y))⊤dV E(R)

E (ZSy)
]

To the softmax function, we have d softmax(v) = (diag(v)− vv⊤)dv. Therefore we have

dL = EX,y

[
(f

(s)
θ (X, y)− STSq(X, y))⊤V Zd(E(R)

E

[
softmax(Z⊤Wzquery)

]]
+ EX,y

[
(f

(s)
θ (X, y)− STSq(X, y))⊤dV E(R)

E (ZSy)
]

= −EX,y

(
1

q
XY − V Z E(R)

E [Sy]

)⊤

V Z E(R)
E d(softmax(Z⊤Wzquery))

− EX,y

[(
1

q
XY − V Z E(R)

E [Sy]

)⊤

dV E(R)
E (ZSy)

]

= −EX,y(

(
1

q
XY − V Z E(R)

E [Sy]

)⊤

V Z E(R)
E

[
(diag(Sy)− SyS

⊤
y)Z⊤dWzquery

]
− EX,y

[(
1

q
XY − V Z E(R)

E [Sy]

)⊤

dV (Z E(R)
E [Sy])

]

Since dW
dt = − ∂L

∂W , we have

∇WL = −EX,y E(R)
E

(
Z(diag(Sy)− SyS

⊤
y)Z⊤V ⊤(

1

q
XY − V X E(R)

E [Sy])z
⊤
query

)

∇V L = −EX,y

((
1

q
XY − V Z E(R)

E [Sy]

)
(Z E(R)

E [Sy])
⊤
)

Along the gradient trajectory, if the value matrix V can be aligned with the ground-truth
[
Id 0d×de

]
and W = C ·[

0d×d 0d×de

0de×d Ide

]
, we can have the following nice form for the loss function.

34

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Lemma E.3. Denote Sy := softmax(Z⊤Wzquery) ∈ RT for certain q-sparse set y. Also, we define the q-hot vector
Y = (1{1 ∈ y},1{2 ∈ y}, ...,1{T ∈ y})⊤ for the subset y ∈

(
[T]
q

)
. If V (t) = α(t)

[
Id 0d×de

]
and W (t) =

C(t)

[
0d×d 0d×de

0de×d Ide

]
, the loss function can be represented as the following form:

L(θ(t)) = d

2
Ey

[∥∥∥∥1qY − α(t)E(R)
E [Sy]

∥∥∥∥2
]

Proof. We have the loss function

L(θ) = 1

2
EX

[
∥STSq(X, y)− f

(s)
θ (X, y)∥22

]
and the architecture fθ = E(R)

E [V Z softmax(Z⊤Wzquery)].

Then we have

L(θ(t)) = 1

2
EX,y

[∥∥∥∥1qXY − V (t)Z E(R)
E [Sy]

∥∥∥∥2
]

=
1

2
EX,y

[(
1

q
XY − α(t)X E(R)

E [Sy]

)⊤(
1

q
XY − α(t)X E(R)

E [Sy]

)]

=
d

2
Ey

[∥∥∥∥1qY − α(t)E(R)
E [Sy]

∥∥∥∥2
]

The last identity is due to that the expectation of the covariance matrix X⊤X is dIT , and Sy is independent of X .
The independence is because Sy = softmax(Z⊤Wzquery) = softmax(C(t)E⊤ey) according to the condition that

W (t) = C(t)

[
0d×d 0d×de

0de×d Ide

]
.

Then, we will prove that during joint training dynamics, V can always evolve along the direction of
[
Id 0d×de

]
.

Lemma E.4. If V (t) = α(t)Id, W (t) = C(t)

[
0d×d 0d×de

0de×d Ide

]
for some scalar α(t), C(t), then the gradient for V (t) is

∇V L(t) =

−Ey

∑
i∈y

E(R)
E [Sy(i)]/q

+ αEy

[∥∥∥E(R)
E [Sy]

∥∥∥2]
[Id 0d×de

]
Proof. Consider the gradient of V :

∇V L = −EX,y

((
1

q
XY − V Z E(R)

E [Sy]

)
(Z E(R)

E [Sy])
⊤
)

Since W (t) = C(t)

[
0d×d 0d×de

0de×d Ide

]
, we know Sy is independent of the randomness of X .

We first consider the token block in V , which is the first d columns.

∇V L:,≤d = −EX,y

((
1

q
XY − V Z E(R)

E [Sy]

)
(Z E(R)

E [Sy])
⊤
≤d

)
= −E

[
1

q
XY

(
X E(R)

E [Sy]
)⊤]

+ EX,y

(
V Z E(R)

E [Sy](X E(R)
E [Sy])

⊤
)

We consider the two matrices separately:

E
[
1

q
XY

(
X E(R)

E [Sy]
)⊤]

and EX,y

(
V Z E(R)

E [Sy](X E(R)
E [Sy])

⊤
)

35

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

For the first matrix, consider the (n,m)-entry of the matrix:

e⊤n E
[
1

q
XY E(R)

E [Sy]
⊤X⊤

]
em =

1

q
E
[
Xn:Y E(R)

E [Sy]
⊤X⊤

m:

]
=

1

q
E

∑
i∈y

xni

T∑
i=1

E(R)
E [Sy(i)]xmi


When m ̸= n, the expectation should be 0 since xni is sampled from standard Gaussian distribution. When m = n, then the
expectation is Ey

[∑
i∈y E

(R)
E [Sy(i)]/q

]
. Therefore, we have the whole matrix

E
[
1

q
XY E(R)

E [Sy]
⊤X⊤

]
= Ey

∑
i∈y

E(R)
E [Sy(i)]/q

Id
e⊤n E

[
V Z E(R)

E [Sy](X E(R)
E [Sy])

⊤
]
em = αE

[
e⊤nX E(R)

E [Sy]E(R)
E [Sy]

⊤X⊤em

]
= αE

[
Xn: E(R)

E [Sy]E(R)
E [Sy]

⊤X⊤
m:

]
= αδnm E

(T∑
i=1

E(R)
E [Sy(i)]xmi

)2


= αδnm Ey

[∥∥∥E(R)
E [Sy]

∥∥∥2]
Thus the matrix should be in the following form:

E
[
V X E(R)

E [Sy](X E(R)
E [Sy])

⊤
]
= αEy

[∥∥∥E(R)
E [Sy]

∥∥∥2]Id
So we get the token block of the gradient

∇V L:,≤d = −E
[
1

q
XY

(
X E(R)

E [Sy]
)⊤]

+ EX,y

(
V X E(R)

E [Sy](X E(R)
E [Sy])

⊤
)

=

−Ey

∑
i∈y

E(R)
E [Sy(i)]/q

+ αEy

[∥∥∥E(R)
E [Sy]

∥∥∥2]
Id

Then, we consider the position block of the gradient:

∇V L:,d+1:d+de = −EX,y

((
1

q
XY − V Z E(R)

E [Sy]

)
(Z E(R)

E [Sy])
⊤
d+1:d+de

)
= −EX,y

((
1

q
XY − αX E(R)

E [Sy]

)
(E E(R)

E [Sy])
⊤
)

= 0d×de

Since X ∼ N (0, Id) and Sy is independent of X . Combine the two parts, and the proof is completed.

Finally, along the gradient descent trajectory, if V = α(t)
[
Id 0d×de

]
and W (t) = C(t)

[
0d×d 0d×de

0de×d Ide

]
for all t, we

can further simplify the gradient expression.

Lemma E.5. If V = α(t)
[
Id 0d×de

]
and W (t) = C(t)

[
0d×d 0d×de

0de×d Ide

]
for all t along the training trajectory and

E is stochastic positional encoding, the position-position block matrix of the gradient of W , i.e. ∇WL>d,>d, with input
tokens X is:

∇WL>d,>d = −dα(t)Ey E(R)
E

(
E(diag(Sy)− SyS

⊤
y)

(
1

q
Y − α(t)E(R)

E [Sy]

)
e⊤y

)

36

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Proof. By Lemma E.2, we have the gradient dynamics of W with input token matrix X is:

∇WL>d,>d = −EX,y E(R)
E

(
E(diag(Sy)− SyS

⊤
y)Z⊤V ⊤

(
1

q
XY − V Z E(R)

E [Sy]

)
e⊤y

)
= −α(t)EX,y E(R)

E

(
E(diag(Sy)− SyS

⊤
y)X⊤X

(
1

q
Y − α(t)E(R)

E [Sy]

)
e⊤y

)
(Using V =

[
Id 0d×de

]
)

= −α(t)Ey E(R)
E

(
E(diag(Sy)− SyS

⊤
y)Exij∼N (0,1)[X

⊤X]

(
1

q
Y − α(t)E(R)

E [Sy]

)
e⊤y

)
(Using W =

[
0d×d 0d×de

0de×d Ide

]
⇒ Sy is independent of X)

= −dα(t)Ey E(R)
E

(
E(diag(Sy)− SyS

⊤
y)

(
1

q
Y − α(t)E(R)

E [Sy]

)
e⊤y

)
(E
[
X⊤X

]
= dI)

In this section, we consider the gradient descent dynamics. The update rules are in the following form

W (t+ 1) = W (t)− η∇WL(t)
V (t+ 1) = V (t)− η∇V L(t)

E.3. Joint Training

Now, we analyze the dynamics of training the value matrix V and attention matrix W simultaneously with the same learning
rate η with the stochastic positional encoding. The following theorem characterizes the convergence of GD when training
both layers simultaneously with stochastic positional encoding.

Theorem E.6 (Joint training with stochastic positional encoding). Suppose 2 ≤ q < T/4, q, δ = Θ(1), de =

Θ(q log T/δ2), δ < 1/10. For any ϵ ∈ (0, dT
100(T−q)q), η ≤ d2

e

40d2T , if we apply gradient descent on the population

loss in Equation (4) with zero initialization W (0) = 0de×de ,V (0) = 0d×d, then after time t ≥ Õ(T
2−2δ
1−3δ

η + T 2d
ηϵ), we have

L(θ(t)) = 1

2
EX,y

[
∥ STSq(X, y)− f

(s)
θ (X, y)∥22

]
≤ ϵ.

The proof idea is similar to the joint training scenario with one-hot PE. We can still simplify the dynamics of W and V
using symmetry, proving convergence along the global optimal direction. Then the two variable dynamics are considered
inductively so that W and V can converge to the global minimum.

We have the following lemma that characterizes the evolution speed along the converging direction of W and V : they

always pointing to the ground-truth direction that W (t) = C(t)

[
0d×d 0d×de

0de×d Ide

]
, V (t) = α(t)

[
Id 0d×de

]
.

Lemma E.7 (Induction Hypothesis for Stochastic PE, Joint Training). Suppose all conditions in Theorem E.6 holds, then
along the gradient descent trajectory, for all t ≥ 0, there exist some time-dependent scalars C(t), α(t) s.t. W (t) =

C(t)

[
0d×d 0d×de

0de×d Ide

]
,V (t) = α(t)

[
Id 0d×de

]
, and C(t), α(t) satisfies:

C(t+ 1) ≥ C(t) + η
1− 3δ

1− 2δ
· dα(t)

de
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+

C(t+ 1) ≤ C(t) + η
1− δ

1− 2δ
· dα(t)

de
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+

α(t+ 1) = α(t) + ηs+

(
1− qαs+ +

α(1− qs+)
2

(T − q)s+

)
37

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Proof. We prove W (t) = C(t)

[
0d×d 0d×de

0de×d Ide

]
,V (t) = α(t)

[
Id 0d×de

]
. by induction. First, check the initialization

W (t) = 0 = 0 ·
[
0d×d 0d×de

0de×d Ide

]
,V (0) = 0 = 0 ·

[
Id 0d×de

]
. Here the scalar C(0) = α(0) = 0. For GD dynamics,

by Lemma E.4 and Lemma E.5 we have C(1) = C(0), α(1) = α(0) + η/T . Therefore, the induction hypothesis holds for
t = 0.

Then we prove this argument inductively: if Lemma E.7 holds for iteration t, it is enough to prove that for iteration t+ 1,
this argument still holds. Then by induction, we can conclude that it holds for all time t ≥ 0.

Note that since the position-position block (right-bottom block) of W is always in direction of
[
0d×d 0d×de

0de×d Ide

]
and other

entries are 0, Sy = softmax(Z⊤Wzquery) = softmax(C(t)E⊤ ey) when y is given. Therefore, the softmax vector is
always independent of X for iterations ≤ t.

Now we suppose these two properties hold for iteration t. We first consider the token-token, token-position and position
token submatrices of W (t). We prove that those gradient blocks should always be 0.

For the first d rows, we have (here within zquery, xquery can be any fixed token vector):

∇WL(t)≤d,: = αEX,y E(R)
E

[
X
(
diag(Sy)− SyS

⊤
y

)
X⊤X

(
1

q
Y − αSy

)
zquery

⊤
]

=
1

2
αEX,y E(R)

E

[
X
(
diag(Sy)− SyS

⊤
y

)
X⊤X

(
1

q
Y − αSy

)
zquery

⊤
]

+
1

2
αEX,y E(R)

E

[
−X

(
diag(Sy)− SyS

⊤
y

)
(−X⊤)(−X)

(
1

q
Y − αSy

)
zquery

⊤
]

(By symmetry and independence between X and Sy)

= 0d×(d+de).

Then we consider the position-token block ∇WL(t)>d,≤d:

∇WL(t)>d,≤d = αEX,y E(R)
E

[
E
(
diag(Sy)− SyS

⊤
y

)
X⊤X

(
1

q
Y − αSy

)
xquery

⊤
]

= dαEX,y E(R)
E

[
E
(
diag(Sy)− SyS

⊤
y

)(1

q
Y − αSy

)
xquery

⊤
]

(Independence between X and Sy)

= dαEX,y E(R)
E

[
E
(
diag(Sy)− SyS

⊤
y

)(1

q
Y − αSy

)
xquery

⊤
]

+ dαEX,y E(R)
E

[
−E

(
diag(Sy)− SyS

⊤
y

)(1

q
Y − αSy

)
xquery

⊤
]
= 0de×d.

(For E and −E, Sy are the same.)

Finally, we consider the update for the position-position submatrix W (t)>d,>d in its (k, j)-entry Wkj(t), k, j ∈ [de].
With the update rule by Lemma E.5,

∆W (t)>d,>d = ηdα(t)Ey E(R)
E

(
E(diag(Sy)− SyS

⊤
y)

(
1

q
Y − α(t)E(R)

E [Sy]

)
e⊤y

)

Since W (t)>d,>d = C(t)Ide
, we only need to prove that the gradient term is along the direction of Ide

. Recall the notation
Sy = E(R)

E [Sy]. To prove this statement, we first expand the gradient term:

∆W (t)>d,>d = ηdα(t)Ey E(R)
E

(
E(diag(Sy)− SyS

⊤
y)

(
1

q
Y − α(t)E(R)

E [Sy]

)
e⊤y

)
= ηdα(t)Ey E(R)

E

(
T∑

i=1

ei

[
(diag(Sy)− SyS

⊤
y)

(
1

q
Y − α(t)Sy

)]
i

e⊤y

)

38

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

= ηdα(t)Ey E(R)
E

∑
i∈y

ei

[
(diag(Sy)− SyS

⊤
y)

(
1

q
Y − α(t)Sy

)]
i

e⊤y


+ ηdα(t)Ey E(R)

E

∑
i ̸∈y

ei

[
(diag(Sy)− SyS

⊤
y)

(
1

q
Y − α(t)Sy

)]
i

e⊤y


= ηdα(t)Ey E(R)

E

∑
i∈y

ei

Sy(i)

(
1

q
− α(t)Sy(i)

)
+ Sy(i)

α(t)S⊤
y Sy −

∑
i∈y

Sy(i)/q

e⊤y


(Term 1’)

+ ηdα(t)Ey E(R)
E

∑
i ̸∈y

ei

−α(t)Sy(i)Sy(i) + α(t)Sy(i)(S
⊤
y Sy)−

1

q
Sy(i)

∑
j∈y

Sy(j)

e⊤y


(Term 2’)

By Lemma E.14, we know for W (t) = C(t)Ide
, there exists s+(t), s−(t) s.t.

Sy = s+Y + s−(1T − Y).

By Lemma E.12, any off-diagonal entry of both terms in the gradient should be 0 according to symmetry. Now we only
need to consider the diagonal entries. By Lemma E.13, all the diagonal entries of each term in the gradient have the same
value. Therefore, the gradient of the submatrix is aligned with Ide

. Combine the four blocks, the whole gradient of W is

aligned with
[
0d×d 0d×de

0de×d Ide

]
.

For V (t), by Lemma E.4 we know its update is always in the
[
Id 0d×de

]
direction. Therefore,

V (t+ 1) = V (t) +

Ey

∑
i∈y

E(R)
E [Sy(i)]/q

− αEy

[∥∥∥E(R)
E [Sy]

∥∥∥2]
[Id 0d×de

]
aligns with

[
Id 0d×de

]
. By induction, we complete the proof for the direction property.

After proving the direction property, we calculate C(t)’s dynamics by considering two terms separately. Now we only
consider the position-position blocks’ dynamics. Since the symmetry among all the diagonal entries, the trace of each term
is considered and each diagonal entry will be 1/de of the conditional expectation of the trace.

Term 1: Terms with i ∈ y.

ηdα(t) tr

Ey E(R)
E

∑
i∈y

ei

Sy(i)

(
1

q
− α(t)Sy(i)

)
+ Sy(i)

α(t)S⊤
y Sy −

∑
i∈y

Sy(i)/q

e⊤y


= ηdα(t)Ey E(R)
E

∑
i∈y

Sy(i)

(
1

q
− α(t)Sy(i)

)
+ Sy(i)

α(t)S⊤
y Sy −

∑
i∈y

Sy(i)/q

 tr
(
eie

⊤
y

)
(Linearity of trace and expectation)

= ηdα(t)Ey E(R)
E

∑
i∈y

Sy(i)

(
1

q
− α(t)Sy(i)

)
+ Sy(i)

α(t)S⊤
y Sy −

∑
i∈y

Sy(i)/q

e⊤i ey


= ηdα(t)Ey E(R)
E

∑
i∈y

Sy(i)

(
1

q
− α(t)Sy(i)

)
+ Sy(i)

α(t)S⊤
y Sy −

∑
i∈y

Sy(i)/q

 (e⊤i ey = 1 for i ∈ y)

= ηdqα(t)Ey E(R)
E

Sy(i)

(
1

q
− α(t)Sy(i)

)
+ Sy(i)

α(t)S⊤
y Sy −

∑
i∈y

Sy(i)/q

 (Symmetry among i ∈ y)

39

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Expand S⊤
y Sy and we have:

S⊤
y Sy =

∑
i∈y

Sy(i)s+ +
∑
i ̸∈y

Sy(i)s−

Plug it back into Term 1:

ηdqα(t)Ey E(R)
E

Sy(i)

(
1

q
− α(t)Sy(i)

)
+ Sy(i)

α(t)S⊤
y Sy −

∑
i∈y

Sy(i)/q


= ηdqα(t)Ey E(R)

E

Sy(i)

(
1

q
− α(t)s+

)
+ Sy(i)

∑
i∈y

Sy(i)

(
α(t)s+ − 1

q

)
+ α(t)

∑
i ̸∈y

Sy(i)s−


= ηdq Ey E(R)

E

Sy(i)(1− qSy(i))

(
1

q
− α(t)s+

)
+ α(t)Sy(i)

∑
i̸∈y

Sy(i)s−


(Sy(i) = s+ are equal for i ∈ y)

= ηdq Ey E(R)
E

Sy(i)(1− qSy(i))

(
1

q
− α(t)s+

)
+ α(t)Sy(i)

∑
i̸∈y

Sy(i)
(1− qs+)

T − q


(qs+ + (T − q)s+ = 1)

= ηdq Ey E(R)
E

([
s+(1− qs+)

(
1

q
− α(t)s+

)
+ α(t)s+(1− qs+)

(1− qs+)

T − q

])
(qs+ +

∑
j ̸∈y Sy(j) = 1)

= ηdq Ey E(R)
E

(
s+(1− qs+)

(
1

q
− α(t)

Ts+ − 1

T − q

))
Therefore,

Term 1 =
ηd

de
Ey E(R)

E

(
s+(1− qs+)

(
1− qα(t)

Ts+ − 1

T − q

))
Ide

Term 2: Terms with i ̸∈ y. We use a similar technique from above.

ηdα(t)Ey E(R)
E

∑
i ̸∈y

ei

−α(t)Sy(i)Sy(i) + α(t)Sy(i)(S
⊤
y Sy)−

1

q
Sy(i)

∑
j∈y

Sy(j)

e⊤y


= ηdα(t)Ey E(R)
E

∑
i ̸∈y

−

Sy(i)

α(t)s− − α(t)
∑
i∈y

Sy(i)s+ − α(t)
∑
i ̸∈y

Sy(i)s− +
1

q

∑
j∈y

Sy(j)

e⊤i ey


= ηdα(t)Ey E(R)
E

∑
i̸∈y

(
−
[
Sy(i)

(
α(t)

(1− qs+)

T − q
− α(t)qs+s+ − α(t)(1− qs+)

(1− qs+)

T − q
+ s+

)]
e⊤i ey

)

= ηdα(t)Ey E(R)
E

∑
i̸∈y

(
−
[
Sy(i)s+

(
1− qα(t)(Ts+ − 1)

T − q

)]
e⊤i ey

)

≥ − ηα(t)d · δ

1− 2δ
Ey E(R)

E

∑
i ̸∈y

[
Sy(i)s+

(
1− qα(t)(Ts+ − 1)

T − q

)]

= − ηdα(t)
δ

1− 2δ
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+

The last line is due to
∑

i̸∈y Sy(i) = 1−
∑

i∈y Sy(i) = 1− qs+. Thus we have

Term 2 ⪰ − ηdα(t)δ

(1− 2δ)de
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+Ide

40

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Similarly, we can also have the upper bound for Term 2.

Term 2 ⪯ ηdα(t)δ

(1− 2δ)de
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+Ide

Combine two terms, we have the lower bound for C(t)’s dynamics:

C(t+ 1) ≥ C(t) + η
1− 3δ

1− 2δ
· dα(t)

de
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+

C(t+ 1) ≤ C(t) + η
1− δ

1− 2δ
· dα(t)

de
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+

By induction, we complete the proof.

Remark. Similar to the one-hot case, after proving the induction lemma about the evolving direction of W (t) and V (t),
the optimization problem can be reduced to analyzing the two variable dynamics of C(t) and α(t):

C(t+ 1) ≈ C(t) +
ηdα(t)

de
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+

α(t+ 1) = α(t) + ηs+

(
1− qαs+ +

α(1− qs+)
2

(T − q)s+

)
Then the rest of the proof is to analyze the dynamics of C(t) and α(t) and prove that C(t) → +∞ and α(t) → 1 eventually,
and calculate the convergence time by estimating the trajectory of the two variable dynamical systems. One can refer to the
main paper for proof ideas.

Proof of Theorem E.6. After Lemma E.7 shows that V and W are always along the ground-truth direction: V (t) =

α(t)
[
Id 0d×de

]
,W (t) = C(t)

[
0d×d 0d×de

0de×d Ide

]
, the dynamics of the parameter matrices then can be characterized by

two scalar variable α(t) and C(t). Our update rules becomes

C(t+ 1) ≥ C(t) + η
1− 3δ

1− 2δ
· dα(t)

de
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+

C(t+ 1) ≤ C(t) + η
1− δ

1− 2δ
· dα(t)

de
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+

α(t+ 1) = α(t) + ηs+

(
1− qαs+ +

α(1− qs+)
2

(T − q)s+

)

Along the trajectory, s+ ≤ 1
q by its definition: since W is along

[
0d×d 0d×de

0de×d Ide

]
, all i ∈ y has the same softmax

probability S
(t)
y (i), and thus they cannot exceed the upper bound 1/q.

Note that when s+ is fixed, α(t) has a stationary point α∗(t) = (T−q)s+
Tqs+2−2qs++1

. With some calculation, we can rewrite the
α dynamics into:

α(t+ 1) = α(t) + ηs+

(
1− α(t)

α∗(t)

)
.

Observe that when s+ ∈ (1
T ,

1
q), α

∗(t) ≥ 1, and it achieves maximum at s+ = 1√
Tq

.

To characterize this limit above when t → ∞, we need to prove the following two arguments:

1. C(t) is non-decreasing for all t ≥ 0.

41

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

2. α(t) goes through 2 phases:

Phase I. α monotonically grows to 1− 0.1
√

q(T−q)ϵ
dT at some time t1.

Phase II. α stays within an interval whose upper bound is close to α∗ after time t1:

α(t) ∈

[
1− 0.1

√
q(T − q)ϵ

dT
,

(
1 +

(8Td− de)(1− qs+)

8Tdqs+(Ts+ − 1)

)
α∗(t)

]
(IH2)

Phase I. In this phase, we inductively prove that both α(t), C(t) are non-decreasing. For t = 0, by zero initialization,
C(0) = C(1) = 0, α(1) = η

T > 0.

Suppose it holds for some t < t1 before α reaches 1− 0.1
√

q(T−q)ϵ
dT . Then for α(t+ 1), we have the update rule:

α(t+ 1) = α(t) + ηs+

(
1− α(t)

α∗(t)

)
≥ α(t) + η

1

T
(1− α(t)

α∗(t)
) (Induction Hyp. s+ ≥ 1

T)

≥ α(t) + η
1

T
(1− α(t)) (α∗ ≥ 1)

≥ α(t) + 0.1η

√
q(T − q)ϵ

dT 3
. (α ≤ 1− 0.1

√
q(T−q)ϵ

dT)

So α is non-decreasing. Meanwhile, for C(t+ 1):

C(t+ 1) ≥ C(t) + η
1− 3δ

1− 2δ
· dα(t)

de
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+

≥ C(t) +
7η

8
· αd
de

Ey E(R)
E (1− qs+)

(
1− q(Ts+ − 1)

T − q

)
s+ (α < 1, (1− Ts+) < 0)

= C(t) +
7η

8
· αd
de

Ey E(R)
E (1− qs+)

T − q + q − Tqs+
T − q

s+

= C(t) +
7η

8
· αdT

de(T − q)
Ey E(R)

E (1− qs+)(1− qs+)s+ ≥ C(t)

so they are both non-decreasing. Then we need to upper bound the time t1 for α(t) to reach 1 − 0.1
√

q(T−q)ϵ
dT : by the

update above we have

α(t+ 1) = α(t) + ηs+

(
1− α(t)

α∗(t)

)
≥ α(t) + η

1

T
(1− α(t)

α∗(t)
) (Induction Hyp. s+ ≥ 1

T)

≥ α(t) + η
1

T
(1− α(t)) (α∗ ≥ 1)

⇒ 1− α(t+ 1) ≤ (1− η/T)(1− α(t)) ≤ ... ≤ (1− η/T)t(1− α(0)).

Thus for α(t+ 1) ≥ 1− 0.1
√

q(T−q)ϵ
dT , it takes at most O(

T log d
ϵ

η) iterations.

Phase II. In this phase, we first consider the easiest case: s+(t) < 1√
Tq

. Under this condition, α∗(t + 1) > α∗(t), and
using induction hypothesis

α∗(t)− α(t+ 1) = α∗(t)− α(t)− ηs+(t)

α∗(t)
(α∗(t)− α(t)) = (1− ηs+(t)

α∗(t)
)(α∗(t)− α(t)) > 0,

α(t+ 1) < α∗(t+ 1) always holds, and the induction hypothesis holds for t+ 1.

42

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Then we only need to consider the case with s+(t) ≥ 1√
Tq

. First, we check that within the induction hypothesis range,
C(t+ 1) ≥ C(t). We know the following term in the gradient update of C(t) should be greater than 0:(

1− q(Ts+ − 1)

T − q

)
≥ 1−

(
1 +

(8Td− de)(1− qs+)

8Tdqs+(Ts+ − 1)

)
α∗(t)

q

T − q
(Ts+ − 1)

(α ≤
(
1 + (d−1)(1−qs+)

dqs+(Ts+−1)

)
α∗(t), (1− Ts+) < 0)

≥ de
8Td

1− qs+

Tqs+
2 − 2qs+ + 1

≥ 0. (s+ ≤ 1
q .)

Therefore by the update rule:

C(t+ 1) ≥ C(t) + η
1− 3δ

1− 2δ
· dα(t)

de
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+

≥ C(t) + η
7dα(t)

8de
Ey E(R)

E (1− qs+)s+ · de(1− qs+)

8Td(Tqs+
2 − 2qs+ + 1)

≥ C(t)

Next, we first divide α(t)’s possible range into two parts: α(t) ≤
(
1 + (4Td−de)(1−qs+(t))

4dTqs+(t)(Ts+(t)−1)

)
α∗(t) and α(t) ∈[(

1 + (4dT−de)(1−qs+(t))
4dTqs+(t)(Ts+(t)−1)

)
α∗(t),

(
1 + (8dT−de)(1−qs+(t))

8dTqs+(t)(Ts+(t)−1)

)
α∗(t)

]
. For the first part, we prove the following statement

(S3):

If α(t) ≤
(
1 + (4dT−de)(1−qs+(t))

4dTqs+(t)(Ts+(t)−1)

)
α∗(t), the next step

α(t+ 1) ≤
(
1 +

(8dT − de)(1− qs+(t+ 1))

8dTqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1).

If (S3) is true, then we know once α(t) ≤
(
1 + (4dT−de)(1−qs+(t))

4dTqs+(t)(Ts+(t)−1)

)
α∗(t), α(t+1) satisfy the induction hypothesis. After

proving (S3), the only part left is when

α(t) ∈
((

1 +
(4dT − de)(1− qs+(t))

4dTqs+(t)(Ts+(t)− 1)

)
α∗(t),

(
1 +

(8dT − de)(1− qs+(t))

8dTqs+(t)(Ts+(t)− 1)

)
α∗(t)

]
.

We prove statement (S3) by proving(
1 +

(8dT − de)(1− qs+(t+ 1))

8dTqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1) ≥

(
1 +

(4dT − de)(1− qs+(t))

4dTqs+(t)(Ts+(t)− 1)

)
α∗(t) (S4)

When the inequality (S4) above is proved, then (S3) is proved. This is because: if α(t) < α∗(t), then by update rule we have

α∗(t)− α(t+ 1) = α∗(t)− α(t)− ηs+(t)

α∗(t)
(α∗(t)− α(t)) = (1− ηs+(t)

α∗(t)
)(α∗(t)− α(t)) > 0,

α(t+ 1) < α∗(t) ≤
(
1 +

(4dT − de)(1− qs+(t))

4dqTs+(t)(Ts+(t)− 1)

)
α∗(t)

≤
(
1 +

(8dT − de)(1− qs+(t+ 1))

8dqTs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1)

If α(t) ≥ α∗(t), then α(t + 1) ≤ α(t) ≤
(
1 + (4dT−de)(1−qs+(t))

4dqTs+(t)(Ts+(t)−1)

)
α∗(t), and therefore smaller than(

1 + (8dT−de)(1−qs+(t+1))
8dqTs+(t+1)(Ts+(t+1)−1)

)
α∗(t+ 1).

Now we prove (S4) by expanding the s+(t+ 1) using the update rule of C(t). Denote ∆C(t) := C(t+ 1)− C(t). Since
η ≤ d2

e

40d2T , ∆C(t) < 1
5 . Then we have

s+(t+ 1) = Ey E(R)
E

1

q +
∑

i ̸∈y e
−(C(t)+∆C(t))(1−e⊤

i ey)

43

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

≤ Ey E(R)
E

1

q +
∑

i ̸∈y e
−C(t)(1−e⊤

i ey)e∆C(t)(e⊤
i ey−1)

≤ Ey E(R)
E

1

q +
∑

i ̸∈y e
−C(t)(1−e⊤

i ey)(1−∆C(t)(1− e⊤i ey))

≤ Ey E(R)
E

(
1

q +
∑

i ̸∈y e
−C(t)(1−e⊤

i ey)

+
5

4

(
1

q +
∑

i̸∈y e
−C(t)(1−e⊤

i ey)

)2∑
i̸∈y

eC(t)(e⊤
i ey−1)(1− e⊤i ey)∆C(t)


(
∑

i ̸∈y e
C(t)(e⊤

i ey−1)(1− e⊤i ey)∆C(t) < 1
5 , due to η ≤ d2

e

40d2T)

≤ s+ +
5

4

1− δ

1− 2δ
Ey E(R)

E s2+

(
1

s+
− q

)
∆C(t) (

∑
i̸∈y e

C(t)(e⊤
i ey−1) = 1

s+
− q)

= s+ +
45

32
Ey E(R)

E s+(1− qs+)∆C(t) (δ < 0.1)

≤ s+ +
45

32
s+(1− qs+)∆C(t) (E[s+2] ≥ E[s+]2)

Then we lower bound the decrement of α∗(t+1) and (1−qs+(t+1))
qs+(t+1)(Ts+(t+1)−1) , respectively. Denote ∆s = s+(t+1)− s+(t).

α∗(t+ 1) =
(T − q)s+(t+ 1)

Tqs+(t+ 1)2 − 2qs+(t+ 1) + 1

=
(T − q)

Tqs+(t+ 1)− 2q + 1/s+(t+ 1)

≥ (T − q)

Tqs+(t+ 1)− 2q + 1/s+(t+ 1)

≥ (T − q)

Tqs+(t)− 2q + 1/s+(t) + Tq∆s

≥ (T − q)

Tqs+(t)− 2q + 1/s+(t)
− (T − q)Tq∆s

(Tqs+(t)− 2q + 1/s+(t))2

= α∗(t)− (T − q)Tq∆s

(Tqs+(t)− 2q + 1/s+(t))2

= α∗(t)− Tqs+∆s

(Tqs+
2(t)− 2qs+(t) + 1)

α∗(t)

(1− qs+(t+ 1))

qs+(t+ 1)(Ts+(t+ 1)− 1)
=

1

qs+(t+ 1)(Ts+(t+ 1)− 1)
− 1

(Ts+(t+ 1)− 1)

≥ 1

qs+(t+ 1)(Ts+(t+ 1)− 1)
− 1

(Ts+(t)− 1)
(s+(t+ 1) ≥ s+(t))

=
1

qT
· 1

s+(t+ 1)
· 1

s+(t+ 1)− 1
T

− 1

(Ts+(t)− 1)

≥ 1

qT

(
1

s+(t)
− ∆s

s+
2(t)

)
·(

1

s+(t)− 1
T

− ∆s

(s+(t)− 1
T)

2

)
− 1

(Ts+(t)− 1)

≥ (1− qs+(t))

qs+(t)(Ts+(t)− 1)
− ∆s

qs+(t)2(Ts+ − 1)
− ∆s

qs+(t)(Ts+ − 1)2

=
(1− qs+(t))

qs+(t)(Ts+(t)− 1)
− ∆s(2Ts+ − 1)

qs+(t)2(Ts+ − 1)2

44

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Then plug in the original term, we have the lower bound for(
1 +

(8dT − de)(1− qs+(t+ 1))

8dTqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1)

≥
(
1 +

(4dT − de)(1− qs+(t))

4dqs+(t)(Ts+(t)− 1)

)
α∗(t) +

de(1− qs+(t))

8dTqs+(t)(Ts+(t)− 1)
α∗(t)

−
(
1 +

(8dT − de)(1− qs+(t+ 1))

8dTqs+(t+ 1)(Ts+(t+ 1)− 1)

)
Tqs+∆s

(Tqs+
2(t)− 2qs+(t) + 1)

α∗(t)

− ∆s(2Ts+ − 1)

qs+(t)2(Ts+ − 1)2
α∗(t)

Since (8dT−de)(1−qs+(t+1))
8dTqs+(t+1)(Ts+(t+1)−1) ≤

8dT−de

8dT ≤ 1 when s+ ≥ 1√
Tq

, we have(
1 +

(8dT − de)(1− qs+(t+ 1))

8dTqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1)

≥
(
1 +

(4dT − de)(1− qs+(t))

4dqs+(t)(Ts+(t)− 1)

)
α∗(t) +

de(1− qs+(t))

8dTqs+(t)(Ts+(t)− 1)
α∗(t)

− 2Tqs+∆s

(Tqs+
2(t)− 2qs+(t) + 1)

α∗(t)− ∆s(2Ts+ − 1)

qs+(t)2(Ts+ − 1)2
α∗(t) (***)

Then we need to prove that (here s+ := s+(t)) to show (S4).

de(1− qs+(t))

8dTqs+(t)(Ts+(t)− 1)
≥ 2Tqs+∆s

(Tqs+
2(t)− 2qs+(t) + 1)

+
∆s(2Ts+ − 1)

qs+(t)2(Ts+ − 1)2

⇐⇒ de(1− qs+)

8dTq(Ts+ − 1)
≥ 2Tqs+

2∆s

(Tqs+
2 − 2qs+ + 1)

+
∆s(2Ts+ − 1)

qs+(Ts+ − 1)2

We have that the right hand side has the following upper bound (T ≫ q):

2Tqs+
2∆s

(Tqs+
2 − 2qs+ + 1)

+
∆s(2Ts+ − 1)

qs+(Ts+ − 1)2

≤ 45Tqs+
3(1− qs+)∆C(t)

16(Tqs+
2 − 2qs+ + 1)

+
45(2Ts+ − 1)s+(1− qs+)∆C(t)

32qs+(Ts+ − 1)2
(∆s ≤ 45

32s+(1− qs+)∆C(t))

≤ 45Tqs+
3(1− qs+)∆C(t)

16qs+(Ts+ − 1)
+

135s+(1− qs+)∆C(t)

32qs+(Ts+ − 1)
(s+ ≤ 1/q, T ≥ 4q)

≤ 45Tqs+
2(1− qs+)∆C(t)

16q(Ts+ − 1)
+

135(1− qs+)∆C(t)

32q(Ts+ − 1)

Let α = (1 + γ 1−qs+
qs+(Ts+−1))α

∗, then we have the upper bound for the update

∆C(t) ≤ η
1− δ

1− 2δ
· dα(t)

de
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+

≤ 9

8
η(1− γ)(1 + γ

1− qs+
qs+(Ts+ − 1)

)
dα∗

de(Tqs+
2 − 2qs+ + 1)

s+(1− qs+)
2 (E[s+2] ≥ E[s+]2, δ < 0.1)

≤ η(1− γ2)
9d(T − q)s+

2(1− qs+)
2

8de(Tqs+
2 − 2qs+ + 1)2

(UP1)

≤ η(1− γ2)
9d(T − q)(1− qs+)

2

8de(Tqs+ − 2q + 1/s+)2

≤ η(1− γ2)
9d(T − q)(1−

√
q√
T
)2

8de(2
√
Tq − 2q)2

(s+ ≥ 1/
√
Tq.)

45

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

≤ 9ηd

32qde
. (UP2)

Since η ≤ de

40d2T , plug the upper bounds (UP1), (UP2) for ∆C(t) back to the two terms in (***) respectively:

2Tqs+
2∆s

(Tqs+
2 − 2qs+ + 1)

+
∆s(2Ts+ − 1)

qs+(Ts+ − 1)2

≤ 45Tqs+
2(1− qs+)∆C(t)

16q(Ts+ − 1)
+

135(1− qs+)∆C(t)

32q(Ts+ − 1)

≤ 405dT (T − q)s+
4(1− qs+)

3

128(Ts+ − 1)de(Tqs+
2 − 2qs+ + 1)2

+
135(1− qs+)∆C(t)

32q(Ts+ − 1)
· 9ηd
32q

≤ 405ηdT (1− qs+)

128q(Ts+ − 1)(T − q)qde
+

1215(1− qs+)

1024q(Ts+ − 1)
· ηd

qde

≤ 405ηd(1− qs+)

128q(Ts+ − 1)de
+

1215(1− qs+)

1024q(Ts+ − 1)
· ηd

qde
(q ≥ 2, T ≥ 4q)

≤ de(1− qs+)

8dTq(Ts+ − 1)
.

Therefore, we proved the inequality. And therefore, (S2) is proved, which also leads to (S1).

Finally, we consider α(t) ∈
((

1 + (4dT−de)(1−qs+(t))
4dTqs+(t)(Ts+(t)−1)

)
α∗(t),

(
1 + (8dT−de)(1−qs+(t))

8dTqs+(t)(Ts+(t)−1)

)
α∗(t)

]
. Now, since by update

rule,

α(t+ 1) = α(t) + ηs+

(
1− α(t)

α∗(t)

)
≤
(
1 +

(8dT − de)(1− qs+(t))

8dTqs+(t)(Ts+(t)− 1)

)
α∗(t)− η(4dT − de)(1− qs+(t))

4dTq(Ts+(t)− 1)

Therefore, it’s sufficient to prove that(
1 +

(8dT − de)(1− qs+(t+ 1))

8dTqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1)

≥
(
1 +

(8dT − de)(1− qs+(t))

8dTqs+(t)(Ts+(t)− 1)

)
α∗(t)− η(4dT − de)(1− qs+(t))

4dTq(Ts+(t)− 1)

Note Equation (***) gives the lower bound for the left hand side:(
1 +

(8dT − de)(1− qs+(t+ 1))

8dTqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1)

≥
(
1 +

(8dT − de)(1− qs+(t))

8dTqs+(t)(Ts+(t)− 1)

)
α∗(t)

− 2Tqs+∆s

(Tqs+
2(t)− 2qs+(t) + 1)

α∗(t)− ∆s(2Ts+ − 1)

qs+(t)2(Ts+ − 1)2
α∗(t) (##)

Yet when α(t) ≥
(
1 + (4dT−de)(1−qs+(t))

4dTqs+(t)(Ts+(t)−1)

)
α∗(t), we have a better upper bound for ∆C(t):

∆C(t) ≤ η
1− δ

1− 2δ
· dα(t)

de
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+

≤ 9

8
η(1− γ)(1 + γ

1− qs+
qs+(Ts+ − 1)

)
dα∗

de(Tqs+
2 − 2qs+ + 1)

s+(1− qs+)
2 (E[s+2] ≥ E[s+]2, δ < 0.1)

≤ η(1− γ2)
9d(T − q)s+

2(1− qs+)
2

8de(Tqs+
2 − 2qs+ + 1)2

≤ η

(
1−

(
4dT − de

4dT

)2
)
9d(T − q)s+

2(1− qs+)
2

8de(Tqs+
2 − 2qs+ + 1)2

46

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

≤ η

2dT/de
· 9d(T − q)s+

2(1− qs+)
2

8de(Tqs+
2 − 2qs+ + 1)2

=
9η(T − q)s+

2(1− qs+)
2

16T (Tqs+
2 − 2qs+ + 1)2

Then we need to bound both terms in Equation (##) (for simplicity denote s+ as s+(t)):

2Tqs+∆s

(Tqs+
2(t)− 2qs+(t) + 1)

α∗(t) =
2Tq(T − q)s+

2∆s

(Tqs+
2(t)− 2qs+(t) + 1)2

≤ 45Tq(T − q)s+
3(1− qs+)∆C(t)

16(Tqs+
2(t)− 2qs+(t) + 1)2

≤ 405ηq(T − q)2s+
5(1− qs+)

3

256(Tqs+
2(t)− 2qs+(t) + 1)4

(Plug in ∆C(t) bound.)

≤ 405η

256
· (T − q)2 · (1− qs+)

qs+(Ts+ − 1)
· qs+

5(1− qs+)
2

(Tqs+
2 − 2qs+ + 1)3

(s+ ≤ 1
q)

=
405η

256
· (T − q)2 · (1− qs+)

q(Ts+ − 1)
· q(1− qs+)

2

(Tqs+
2 − 2qs+ + 1)(Tq − 2q/s+ + 1/s+

2)2

≤ 405η

256
· (T − q)2 · (1− qs+)

q(Ts+ − 1)
· q(1− qs+)

2

(Tqs+
2 − 2qs+ + 1)(Tq − q2)2

(s+ ≤ 1
q)

≤ 405η

256
· (1− qs+)

q(Ts+ − 1)
· (1− qs+)

2

(Tqs+
2 − 2qs+ + 1)q

≤ 405η

256
· (1− qs+)

q(Ts+ − 1)
· 1

2q
(s+ ≥ 1√

Tq
)

≤ 405η

1024
· (1− qs+)

q(Ts+ − 1)
(s+ ≥ 1√

Tq
)

∆s(2Ts+ − 1)

qs+(t)2(Ts+ − 1)2
α∗(t)

≤ (2Ts+ − 1)

qs+(t)2(Ts+ − 1)2
α∗(t) · 45

32
s+(1− qs+)∆C(t) (Plug in ∆s)

≤ 135(T − q)(1− qs+)

32q(Ts+ − 1)(Tqs+
2 − 2qs+ + 1)

· 9η(T − q)s+
2(1− qs+)

2

16T (Tqs+
2 − 2qs+ + 1)2

(Plug in ∆C(t))

=
1215η(T − q)2s+

2(1− qs+)
3

512qT (Ts+ − 1)(Tqs+
2 − 2qs+ + 1)3

≤ 1215η

512
· (1− qs+)

q(Ts+ − 1)

(1− qs+)
2

(Tqs+
2 − 2qs+ + 1)2(Tq − 2q/s+ + 1/s+

2)

≤ 1215η

4096
· (1− qs+)

q(Ts+ − 1)
.

Therefore, by Equation (##) we have(
1 +

(8dT − de)(1− qs+(t+ 1))

8dTqs+(t+ 1)(Ts+(t+ 1)− 1)

)
α∗(t+ 1)

≥
(
1 +

(8dT − de)(1− qs+(t))

8dTqs+(t)(Ts+(t)− 1)

)
α∗(t)

− 2Tqs+∆s

(Tqs+
2(t)− 2qs+(t) + 1)

α∗(t)− ∆s(2Ts+ − 1)

qs+(t)2(Ts+ − 1)2
α∗(t)

≥
(
1 +

(8dT − de)(1− qs+(t))

8dTqs+(t)(Ts+(t)− 1)

)
α∗(t)−

(
405

1024
+

1215

4096

)
η(1− qs+)

q(Ts+ − 1)

47

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

≥
(
1 +

(8dT − de)(1− qs+(t))

8dTqs+(t)(Ts+(t)− 1)

)
α∗(t)− η(4dT − de)(1− qs+(t))

4dTq(Ts+(t)− 1)
(dT ≥ de.)

≥ α(t+ 1).

Therefore, we finish the induction proof for (IH2).

With the induction hypothesis, we can analyze the upper bound of convergence time. For Phase I, we have the lower bound
for ∆C(t) (note that 1/2 < α < 1):

∆C(t+ 1) ≥ η
1− 3δ

1− 2δ
· dα(t)

de
Ey E(R)

E (1− qs+)

(
1− qα(t)(Ts+ − 1)

T − q

)
s+

=
7η

8
· αd
de

Ey E(R)
E (1− qs+)

T − q + q − Tqs+
T − q

s+

=
7ηdT

16de(T − q)
Ey E(R)

E (1− qs+)(1− qs+)s+

And for Phase II, we have the lower bound since α ≤
(
1 + (8Td−de)(1−qs+)

8Tdqs+(Ts+−1)

)
α∗(t):

∆C(t) ≥ η(1− 8Td− de
8Td

)

(
1 +

(8Td− de)(1− qs+)

8Tdqs+(Ts+ − 1)

)
α∗(t) ·

7dEy E(R)
E (1− qs+)(1− qs+)s+

8de(Tqs+
2 − 2qs+ + 1)

≥ ηde
8dT

·
7d(T − q)s+ Ey E(R)

E (1− qs+)(1− qs+)s+

8de(Tqs+
2 − 2qs+ + 1)2

≥
7η(T − q)s+ Ey E(R)

E (1− qs+)(1− qs+)s+

64T (Tqs+
2 − 2qs+ + 1)2

Then we also divide the training trajectory into two stages as in Huang et al. (2023): in the first stage from (0, t1], all possible

s+ grow to 1/2q. In the second stage (t1, t2], C(t) grows large enough s.t. s+ ≥ 1
q − 1

q

√
q(T−q)ϵ

dT .

For the first stage, it’s necessary that C(t) ≥ 1−2δ
1−3δ log

T−q
q . This is because by Lemma E.15, we have:

1

q + (T − q)e−
1−3δ
1−2δC

≤ s+ ≤ 1

q + (T − q)e−
1−δ
1−2δC

,

To make any s+(E) reaches this threshold 1/2q, C(t1) ≥ 1−2δ
1−3δ log

T−q
q is necessary. At this time t1, all s+ ≤ 1/2q, which

means the expectation s+ ≤ 1/2q. At this iteration, we can also upper bound all the attention score:

s+ ≤ 1

q + (T − q)e−
1−δ
1−2δC(t)

≤ 1

q + (T − q)−
2δ

1−3δ q
1−δ
1−3δ

That means

(1− qs+) ≥

(
1− q · 1

q + (T − q)−
2δ

1−3δ q
1−δ
1−3δ

)

=

(
q

2δ
1−3δ

(T − q)
2δ

1−3δ + q
2δ

1−3δ

)
≥
(q

T

) 2δ
1−3δ

Since all s+ satisfy the lower bound, the expectation s+ also has this lower bound. Therefore during this stage, by Phase I
lower bound for ∆C(t) we have:

∆C(t) ≥ 7ηdT

16de(T − q)
Ey E(R)

E (1− qs+)(1− qs+)s+

≥ 7ηd

16de(T − q)
·
(q

T

) 4δ
1−3δ

(s+ ≥ 1
T , (1− qs+) ≥

(
q
T

) 2δ
1−3δ)

48

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

And for the Phase II lower bound, we have:

∆C(t) ≥
7η(T − q)s+ Ey E(R)

E (1− qs+)(1− qs+)s+

64T (Tqs+
2 − 2qs+ + 1)2

≥
7η(T − q)s+

2
(
q
T

) 4δ
1−3δ

64T (Tqs+
2 − 2qs+ + 1)2

≥
7η(T − q)

(
q
T

) 4δ
1−3δ

64T (Tq − 2q/s+ + 1/s+
2)(T/q − 1)

≥
7η
(
q
T

) 4δ
1−3δ

64T (T − q)

Since T ≫ de = Θ(q log T), ∆C(t) ≥ 7η(q
T)

4δ
1−3δ

64T (T−q) through all the first stage. Therefore, for C(t) to reach Θ(log T−q
q), it

takes at most O

(
log T−q

q /
7η(q

T)
4δ

1−3δ

64T (T−q)

)
= Õ(T

2−2δ
1−3δ) iterations.

For the second stage, we need C(t2) ≥ 1−2δ
1−3δ log

(
T−q
q

√
Td

(T−q)qϵ

)
so that s+ ≥ 1

q −
1
q

√
q(T−q)ϵ

dT . Since all s+ ≥ 1
2q during

this period, we can lower bound the increment:

∆C(t) ≥
7η(T − q)s+ Ey E(R)

E (1− qs+)(1− qs+)s+

64T (Tqs+
2 − 2qs+ + 1)2

≥
7η(T − q) · 1

2q Ey E(R)
E (1− qs+)(1− qs+) · 1

2q

64T (Tq − 1)2

≥ 7η

128T (T − q)
Ey(1− qs+)

2

≥ 7ηqϵ

128dT 2
(Before t2, s+ ≤ 1

q − 1
q

√
q(T−q)ϵ

dT)

Hence it takes at most t2 ≤ O(1−2δ
1−3δ log

(
T−q
q

√
Td

2(T−q)qϵ

)
/ 7ηqϵ
128dT 2) = Õ(dT

2

ηϵ) iterations to converge.

Finally, we check that if s+ ≥ 1
q − 1

q

√
q(T−q)ϵ

dT , then the loss is smaller than ϵ. This part of proof is the similar to
Theorem D.47. By Lemma E.3:

L(θ(t)) = 1

2
E

[
d

∥∥∥∥1qY − α(t)E(R)
E [Sy]

∥∥∥∥2
]

=
d

2(T − q)

(
(T − q)q

(
α(t)s+ − 1

q

)2

+ α(t)2(1− qs+)
2

)

While α(t) ∈
[
1− 0.1

√
q(T−q)ϵ

dT ,
(
1 + (8Td−de)(1−qs+)

8Tdqs+(Ts+−1)

)
α∗(t)

]
:= [α1, α2], the loss value is upper bounded by

max
j∈{1,2}

d

2(T − q)

(
(T − q)q

(
αjs+ − 1

q

)2

+ α2
j (1− qs+)

2

)

For α1 = 1− 0.1
√

q(T−q)ϵ
dT , we have

L(θ(t)) = d

2(T − q)

(
(T − q)q

(
α(t)s+ − 1

q

)2

+ α(t)2(1− qs+)
2

)
7By ‘similar’, one can replace all the s+ in the proof of Theorem D.4 with s+ here.

49

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

≤ d

2(T − q)

(
T − q

q
(qα(t)s+ − 1)

2
+ (1− qs+)

2

)

≤ d

2(T − q)

T − q

q

(
qs+ − 1 + 0.1qs+

√
q(T − q)ϵ

dT

)2

+ (1− qs+)
2


≤ d

2(T − q)

(
T − q

q
·

(
(1− qs+)

2 + 0.2

√
q(T − q)ϵ

dT
(1− qs+) + 0.01 · q(T − q)ϵ

dT

)
+ (1− qs+)

2

)

≤ d

2(T − q)

(
T − q

q
·

(
(1− qs+)

2 + 0.2

√
q(T − q)ϵ

dT
·
√

q(T − q)ϵ

dT
+ 0.01 · q(T − q)ϵ

dT

))

+
d

2(T − q)
(1− qs+)

2

≤ d

2(T − q)

T

q
(1− qs+)

2 + 0.21ϵ ≤ ϵ.

For α2 =
(
1 + (8Td−de)(1−qs+)

8Tdqs+(Ts+−1)

)
α∗(t), denote ∆α = α2 − α∗. Then ∆αs+ ≤ 2

√
q(T−q)ϵ

dT

T α∗. Also, for α∗ we have a

upper bound (using ϵ ≤ dT
100(T−q)q)):

α∗ =
T − q

Tqs+ − 2q + 1
s+

≤ 1

qs+
≤ 1

1−
√

q(T−q)ϵ
dT

≤ 1 +
6

5

√
q(T − q)ϵ

dT
≤ 28

25
.

Therefore, the loss can be bounded by

L(θ(t)) = d

2(T − q)

(
(T − q)q

(
α2s+ − 1

q

)2

+ α2
2(1− qs+)

2

)

=
d

2(T − q)

(
(T − q)q

(
α∗s+ − 1

q

)2

+ α∗2(1− qs+)
2

)

+
d

2(T − q)

−(T − q)
4
√

q(T−q)ϵ
dT

T
α∗(1− qs+α

∗) +
4q2(T − q)2ϵ

dT 3
α∗2


+

d

2(T − q)

4
√

q(T−q)ϵ
dT

T
α∗2(1− qs+)

2 +
4q(T − q)ϵ

dT 3
α∗2(1− qs+)

2


=

d

2(T − q)

(
(T − q)q

(
α∗s+ − 1

q

)2

+ α∗2(1− qs+)
2

)

+
d

2(T − q)

−(T − q)
4
√

q(T−q)ϵ
dT

T (Tqs+
2 − 2qs+ + 1)

α∗(1− qs+)
2 +

4q2(T − q)2ϵ

dT 3
α∗2


+

d

2(T − q)

4
√

q(T−q)ϵ
dT

T
α∗2(1− qs+)

2 +
4q(T − q)ϵ

dT 3
α∗2(1− qs+)

2


=

dT

2q(T − q)
(qs+(t)− 1)2 +

d

2(T − q)

−
4
√

q(T−q)ϵ
dT

Ts+
α∗2(1− qs+)

2 +
4q2(T − q)2ϵ

dT 3
α∗2


+

d

2(T − q)

4
√

q(T−q)ϵ
dT

T
α∗2(1− qs+)

2 +
4q(T − q)ϵ

dT 3
α∗2(1− qs+)

2


50

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

≤ ϵ

2
+

d

2(T − q)

(
4q2(T − q)2ϵ

dT 3
α∗2 +

4q(T − q)ϵ

dT 3
α∗2(1− qs+)

2

)
≤ ϵ

2
+

d

2(T − q)

(
4q2(T − q)2ϵ

dT 3

(
28

25

)2

+
4q(T − q)ϵ

dT 3
(
28

25
)2

)
≤ ϵ.

when T ≥ 4q.

In conclusion, after Phase I (at most O(
T log d

ϵ

η) iterations) and Phase II (takes at most Õ(T
2−2δ
1−3δ

η + dT 2

ηϵ) iterations), the

population loss L(θ(t)) ≤ ϵ after time Õ(T
2−2δ
1−3δ

η + T 2d
ηϵ).

After proving the convergence to the global minimizer, we can directly have the following corollary on the parameter V (t)
and W (t). By the dynamics proved in the theorem, W (t) is always along the Ide

direction, and V (t) should converge to
Id. It coincides with the construction in Sanford et al. (2023), showing the constructed one-layer transformer can be learned
with GD.

Corollary E.8. Under the condition of Theorem E.6, after time t ≥ Õ(T
2−2δ
1−3δ

η + T 2d
ηϵ), we have W (t) = C(t)Ide

,V (t) =

α(t)Id, and C(t) ≥ 1−2δ
1−3δ log

(
T−q
q

√
Td

(T−q)qϵ

)
, α(t) ∈

[
1− 0.1

√
q(T−q)ϵ

dT , 1 + 8
5

√
q(T−q)ϵ

dT

]
.

Proof. The lower bound for C(t) is proved in the Theorem E.6.

By Equation (IH2), α∗(t) = (T−q)s+
Tqs+2−2qs++1

and C(t) ≥ 1−2δ
1−3δ log

(
T−q
q

√
Td

(T−q)qϵ

)
, we have

α(t) ∈

[
1− 0.1

√
q(T − q)ϵ

dT
,

(
1 +

(8Td− de)(1− qs+)

8Tdqs+(Ts+ − 1)

)
α∗(t)

]
, s+ ≥ 1

q
− 1

q

√
q(T − q)ϵ

dT
.

and

α∗(t) =
T − q

Tqs+ − 2q + 1
s+

≤ 1

qs+
≤ 1

1−
√

q(T−q)ϵ
dT

≤ 1 +
6

5

√
q(T − q)ϵ

dT
.

Therefore for
(
1 + (8Td−de)(1−qs+)

8Tdqs+(Ts+−1)

)
α∗(t) we also have an upper bound.

(
1 +

(8Td− de)(1− qs+)

8Tdqs+(Ts+ − 1)

)
α∗(t) ≤

(
1 +

6

5

√
q(T − q)ϵ

dT

)(
1 +

q

T − q

√
q(T − q)ϵ

dT

)

≤ 1 +
8

5

√
q(T − q)ϵ

dT

The last inequality uses T ≥ 4q, ϵ ≤ dT
100q(T−q) .

E.4. Length generalization and out-of-distribution guarantee

In this subsection, we present the strength of stochastic positional encoding, which is the strong out-of-distribution guarantee,
including the length generalization performance mentioned in the main paper. Empirically, in Section 4 we observe
stochastic positional encoding has superiority over a fixed set of near-orthogonal positional encodings, especially in length
generalization tasks. Here, based on the global minimizer found by gradient descent, we can also present a theoretical
guarantee for an out-of-distribution guarantee.

Recall our data model is: The input tokens xi, i = 1, 2, ..., T are sampled from standard Gaussian distribution, and the
q-sparse subset y containing all the averaging indices is uniformly sampled from all q-subsets of the set [T].

X = (x1,x2, ...,xT),xi ∼ N (0, Id),

51

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

y ∼ Unif

((
[T]

q

))
, i ∈ [T]

Suppose our training objective is based on the population distribution with sequence length T1 and subset size q1. By
“out-of-distribution”, we include two different tasks: (1) generalize on unseen data points with q2-subsets where q2 > q. (2)
generalize on longer sequences with T2 > T1. We know the out-of-distribution loss with sequence length T2 and q2 as

L(s)
T2,q2

(θ) =
1

2
EX,y∼DT2,q2

[
∥STSq2(X, y)− f

(s)
θ (X, y)∥22

]
(15)

With the constructed transformer in C.3, as long as de = Θ(q2 log T2) where the positional encoding matrix E′ ∈ Rde×T2

with sequence length T2 can satisfy RIP, the one-layer transformer can express STSq with any input sequence length T ≤ T2

and q ≤ q2. In this paper, we present the following corollary that demonstrates the GD-trained transformer with stochastic
PE can also achieve good OOD performance in both subset size q2 ≥ q1 and T2 ≥ T1 under the condition that E can satisfy
RIP with maximal sequence length Tmax and maximal qmax.

Corollary E.9. Suppose qmax = Θ(1), de = Θ(qmax log Tmax/δ
2), δ < 1/10, η ≤ d2

e

40d2T . For any ϵ ∈ (0, dT
100(T−q)q),

and we apply gradient descent with zero initialization with q1 < qmax, T1 < Tmax to train the model. Then we have the
following out-of-distribution loss generalization guarantee with q2 ∈ (q1, qmax], T2 ∈ (T1, Tmax): if the training time

t ≥ Õ(T
2−2δ
1−3δ

η + T 2d
ηϵ), we have:

L(s)
T2,q2

(θ) ≤ O

(
T 2
2 ϵ

T 2
1

)
Proof idea. The intuition behind the corollary is that training the transformer with the stochastic architecture on arbitrary T
and q where the RIP condition holds can lead to exact the same global minima in the construction equivalent to (Sanford
et al., 2023). That means it naturally satisfies all possible T ′ and q′, as long as the RIP condition holds.

Proof. By Corollary E.8, we have W (t) = C(t)

[
0d×d 0d×de

0de×d Ide

]
,V (t) = α(t)

[
Id 0d×de

]
, and C(t) ≥

1−2δ
1−3δ log

(
T−q
q

√
Td

(T−q)qϵ

)
, α(t) ∈

[
1− 0.1

√
q(T−q)ϵ

dT , 1 + 8
5

√
q(T−q)ϵ

dT

]
.

Denote ∆α = α− 1. Similarly, we can have the following bounds for the s′+:

1− EE′ [Sy′(i)]q2 = 1− q2s+
′ ≤

(T2−q2)q1
T1−q1

√
(T1−q1)q1ϵ

T1d

q2 +
(T2−q2)q1
T1−q1

√
(T1−q1)q1ϵ

T1d

≤
(T2−q2)q1
T1−q1

√
(T1−q1)q1ϵ

T1d

q2

By Lemma E.3, we have

L(s)
T2,q2

(θ) =
d

2
Ey′

[∥∥∥∥ 1

q2
YT2

− α(t)EE′ [Sy′]

∥∥∥∥2
2

]

=
d

2

(
1

q2
(1− q2α(t)s+

′)2 + α(t)2
(1− qs+

′)2

T2 − q2

)
≤ d

2
· T2

(T2 − q2)q2
· (1− qs+

′)
2 − d

q2
∆αq2s+

′(1− qs+
′)

+
d

q2
∆α2(qs+

′)2 +
d

2
· 2∆α+ (∆α)2

T2 − q2
(1− qs+

′)2 (Plug in s+
′,∆α bounds)

≤ T2(T2 − q2)q
3
1

2q32T1(T1 − q1)
+

(T2 − q2)q
2
1ϵ

10q22T1
+

32q1(T1 − q1)ϵ

25q2T1
+

3(T2 − q2)q
3
1ϵ

2q22T1(T1 − q1)
≤ O

(
T 2
2 ϵ

T 2
1

)
.

Therefore, we complete the proof.

52

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

E.5. Supplementary lemmas on conditional expectations

Lemma E.10 (Flipping rows doesn’t change the softmax). Given a q-subset y, denote the softmax output with input E as
Sy(E) = softmax(CE⊤ey), we have for any i:

Sy(E) = Sy(E
′),E⊤

y Ey = E′⊤
y E′

y

where E′ = FiE, Fi = diag(1, ..., 1,−1, 1, ..., 1) ∈ Rde×de with the i-th entry being −1.8

Proof. Notice that
E⊤ey = E⊤Ey(E

⊤
y Ey)

−11q.

while
E′⊤e′y = E⊤F⊤

i FiEy(E
⊤
y F⊤

i FiEy)
−11q = E⊤Ey(E

⊤
y Ey)

−11q.

The second identity is due to F⊤
i Fi = Ide . So the vector inside softmax is the same, so the outputs are the same. For

E⊤
y Ey = E′⊤

y E′
y , it’s similar:

E⊤
y Ey = E⊤

y F⊤
i FiEy = E′⊤

y E′
y

Lemma E.11 (Switching rows doesn’t change conditional expectation). Given a q-subset y, denote the softmax output with
input E as Sy(E) = softmax(CE⊤ey), we have for any i:

Sy(E) = Sy(E
′),E⊤

y Ey = E′⊤
y E′

y

where E′ = RijE, Rij ∈ Rde×de where Rij is the elementary matrix to switch the i-th row and j-th row of the positional
encoding matrix E.

Proof. Similar to Lemma E.10, notice that

E⊤ey = E⊤Ey(E
⊤
y Ey)

−11q.

while
E′⊤e′y = E⊤R⊤

ijRijEy(E
⊤
y R⊤

ijRijEy)
−11q = E⊤Ey(E

⊤
y Ey)

−11q.

The second identity is due to R⊤
ijRij = Ide . So the vector inside softmax is the same, so the outputs are the same.

For E⊤
y Ey = E′⊤

y E′
y , it’s similar:

E⊤
y Ey = E⊤

y R⊤
ijRijEy = E′⊤

y E′
y

Lemma E.12 (Off-diagonal entries of the gradient have 0 expectation). Given a q-subset y, for any function f(Sy(E)) :
Rde×T → R, we have for any i ∈ [T]:

u⊤
k E(R)

E

[
f(Sy(E))eie

⊤
y

]
u⊤
j = 0, j ̸= k.

where ui is the one-hot vector (1{i = 1},1{i = 2}, ...,1{i = de}).

Proof. First, the exact expression the (k, j)-th entry in the matrix is:

u⊤
k E(R)

E

[
f(Sy(E))eie

⊤
y

]
uj = E(R)

E

f(Sy(E))eik1
⊤
q (E

⊤
y Ey)

−1


ey1,j

ey2,j

...
eyq,j




8Fi is to flip the i-th row of the positional encoding matrix E.

53

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

where ei,j denote the j-th entry of position encoding vector ei,
[
ey1,j , ey2,j , · · · , eyq,j

]⊤
as Ey[j], and yi is the i-th index

in the subset y. We expand the conditional expectation (Here Pr(R)(·) := Pr(·|E has (q, δ)-RIP)):

u⊤
k E(R)

E

[
f(Sy(E))eie

⊤
y

]
uj

= E(R)
E

[
f(Sy(E))eik1

⊤
q (E

⊤
y Ey)

−1Ey[j]
]

= E(R)
E

[
f(Sy(E))eik1

⊤
q (E

⊤
y Ey)

−1Ey[j]
∣∣∣eik =

1√
de

]
Pr(R)(eik =

1√
de

)

+E(R)
E

[
f(Sy(E))eik1

⊤
q (E

⊤
y Ey)

−1Ey[j]
∣∣∣eik = − 1√

de

]
Pr(R)(eik = − 1√

de
)

Note that by expansion of condition expectation:

E(R)
E

[
f(Sy(E))eik1

⊤
q (E

⊤
y Ey)

−1Ey[j]
∣∣∣eik =

1√
de

]
Pr(R)(eik =

1√
de

)

=
∑

ξp,p̸=i

E(R)
E

[
f(Sy(E))eik1

⊤
q (E

⊤
y Ey)

−1Ey[j]
∣∣∣eik =

1√
de

, epk = ξp, p ̸= i

]

· Pr(R)

(
epk = ξp, p ̸= i

∣∣∣eik =
1√
de

)
Pr(R)(eik =

1√
de

) (ξp is selected in ± 1√
de

)

= −
∑

ξp,p̸=i

E(R)
E

[
f(Sy(E))eik1

⊤
q (E

⊤
y Ey)

−1Ey[j]
∣∣∣eik = − 1√

de
, epk = −ξp, p ̸= i

]

· Pr(R)

(
epk = ξp, p ̸= i, eik =

1√
de

)
(Lemma E.10, f(Sy(E)),E⊤

y Ey are not changed, and Ey[j] is unrelated to epk)

= −
∑

ξp,p̸=i

E(R)
E

[
f(Sy(E))eik1

⊤
q (E

⊤
y Ey)

−1Ey[j]
∣∣∣eik = − 1√

de
, epk = −ξp, p ̸= i

]

· Pr(R)

(
epk = −ξp, p ̸= i, eik = − 1√

de

)
(Flipped row have same probability)

= − E(R)
E

[
f(Sy(E))eik1

⊤
q (E

⊤
y Ey)

−1Ey[j]
∣∣∣eik = − 1√

de

]
Pr(R)(eik = − 1√

de
)

Therefore they cancel out and the expectation is 0.

Lemma E.13 (Diagonal entries of the gradient are the same). Given a q-subset y, for any function f(Sy(E)) : Rde×T → R,
we have for any i ∈ [T], j, k ∈ [de]:

u⊤
k E(R)

E

[
f(Sy(E))eie

⊤
y

]
u⊤
k = u⊤

j E(R)
E

[
f(Sy(E))eie

⊤
y

]
u⊤
j .

where ui is the one-hot vector (1{i = 1},1{i = 2}, ...,1{i = de}).

Proof. First, the exact expression of the (k, k)-th entry in the matrix (which is diagonal) is:

u⊤
k E(R)

E

[
f(Sy(E))eie

⊤
y

]
uk = E(R)

E

[
f(Sy(E))eik1

⊤
q (E

⊤
y Ey)

−1Ey[k]
]

Consider another PE matrix E′ = RkjE, which also satisfy the (q, δ)-RIP and have same conditional probability with E.
Then we have

u⊤
k E(R)

E

[
f(Sy(E))eie

⊤
y

]
uk = E(R)

E

[
f(Sy(E))eik1

⊤
q (E

⊤
y Ey)

−1Ey[k]
]

= E(R)
E′

[
f(Sy(E

′))e′ik1
⊤
q (E

′⊤
y E′

y)
−1E′

y[k]
]

(Change of variable)

= E(R)
E′

[
f(Sy(E))e′ik1

⊤
q (E

⊤
y Ey)

−1E′
y[k]

]
(Lemma E.11)

54

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

= E(R)
E

[
f(Sy(E))eij1

⊤
q (E

⊤
y Ey)

−1Ey[j]
]

(Change back the variable)

= u⊤
j E(R)

E

[
f(Sy(E))eie

⊤
y

]
u⊤
j .

Lemma E.14 (Conditional expectation of the softmax vector). Given a q-subset y and E satisfies (q, δ)-RIP, for the softmax
probability vector Sy(E) = softmax(CE⊤ey), we have for any i, j ∈ y or i, j ̸∈ y,

E(R)
E [Sy(i)] = E(R)

E [Sy(j)]

Proof. For i, j ∈ y, we have e⊤i ey = e⊤j ey = 1, so

Sy(i) =
eC

qeC +
∑

i̸∈y e
Ce⊤

i ey
= Sy(j)

and thus their expectations are the same. For i, j ̸∈ y, considered a switched PE matrix E′ = RijE. By Lemma E.11, and
the probability for E and E′ are the same:

E(R)
E [Sy(i)] = E(R)

E

eCe⊤
i ey

qeC +
∑

k ̸∈y e
Ce⊤

k ey

= E(R)
E

eCe⊤
j ey

qeC +
∑

k ̸∈y e
Ce⊤

k ey
= E(R)

E [Sy(j)]

Lemma E.15 (Estimation for softmax vector with W = C

[
0d×d 0d×de

0de×d Ide

]
). Given a q-subset y and E satisfies (q, δ)-RIP,

for the softmax probability vector Sy(E) = softmax(CE⊤ey), we have for any i ∈ y:

1

q + (T − q)e−
1−3δ
1−2δC

≤ Sy(i) ≤
1

q + (T − q)e−
1−δ
1−2δC

,

1

q + (T − q)e−
1−3δ
1−2δC

≤ E(R)
E [Sy(i)] ≤

1

q + (T − q)e−
1−δ
1−2δC

.

Proof. By Lemma A.3, we know e⊤i ey = 1 for i ∈ y, and
∣∣e⊤i ey∣∣ ≤ δ

1−2δ . Then we know for any C, we have

eC

qeC + (T − q)e
δ

1−2δC
≤ Sy(i) ≤

eC

q + (T − q)e−
δ

1−2δC
,

⇔ 1

q + (T − q)e−
1−3δ
1−2δC

≤ Sy(i) ≤
1

q + (T − q)e−
1−δ
1−2δC

Since all individual value is bounded within
[

1

q+(T−q)e
− 1−3δ

1−2δ
C
, 1

q+(T−q)e
− 1−δ

1−2δ
C

]
, the expectation has the same bound.

Thus, we complete the proof.

E.6. From stochastic to fixed: after training

Here, we continue the discussion at the end of Section 3.2: our one-layer transformer with stochastic positional encoding can
be ‘derandomized’ after the two layers W ,V are already trained. That is, when in the training phase, we use the stochastic
positional encoding in the model and run gradient descent till convergence. But after training, we can keep all the parameters
unchanged, sample only one near-orthogonal E satisfying (q, δ)-RIP, fix it as the set of PE, and use that model as our trained
model. The following corollary of Theorem E.6 can characterize the perfect interpolation ability of the trained transformer.

55

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Corollary E.16. Under the condition of Theorem E.6, after time t ≥ Õ(T
2−2δ
1−3δ

η + T 2d
ηϵ), we keep

W (t) = C(t)

[
0d×d 0d×de

0de×d Ide

]
,V (t) = α(t)

[
Id 0d×de

]
unchanged. Then, consider any arbitrary E ∈ Rde×T satisfying (q, δ)-RIP, consider the model

fθ(X, y) = V Z softmax(Z⊤Wzquery)

we have the non-stochastic training objective Equation (3):

LT,q(θ) =
1

2
EX,y∼DT,q

[
∥ STSq(X, y)− fθ(X, y)∥22

]
≤ ϵ.

Proof. Use Corollary E.8, we have for any y and E satisfying (q, δ)-RIP be bounded by Lemma E.15:

1

q + (T − q)e−
1−3δ
1−2δC

≤ Sy(i) ≤
1

q + (T − q)e−
1−δ
1−2δC

,∀i ∈ y.

Since W = C(t)

[
0d×d 0d×de

0de×d Ide

]
, all Sy(i) are the same. Then, we denote s+ = Sy(i) and use the same argument in the

proof of Theorem E.6 when verifying L(t) ≤ ϵ to complete the proof.

This corollary implies that in practice, once we use the fresh sampled randomized PE in Shen et al. (2023) or Ruoss et al.
(2023) on our tasks, it’s only necessary to sample the E during training. At the time for evaluation, we can fix one valid PE,
preventing us from do more sampling. This avoids ‘memorizing’ all the random number within the model, and therefore
does not violate the memory lower bound condition.

F. Experiment details
In this section, we describe in detail our experimental setup, as well as present additional plots that were not highlighted in
the main text. For all of our experiments, we use PyTorch (Paszke et al., 2019), run on NVIDIA RTX A6000s.

Setup. For all of our experiments, we choose T = 200 for our context length, and q = 3, d = 5, and de = 170. The
trainable weight matrices W and V have two initialization case: zero-initialization at 0, or randomly initialize with the
standard deviation σ2 = 1

d+de
.

At each iteration, we sample a batch of n = 128 training data points (X, y), and for each OOD task, we fix a set of
ntest = 128 data points (X, y). For our length generalization tasks, we look at Ttest = {250, 300, 350, 400}, and for our
q-generalization tasks, we look at qtest = {5, 6, 7, 8}. We use the reparameterized model Equation (2):

f(X, y) = V Z softmax(Z⊤Wzquery), Z = [X⊤ E⊤]⊤.

where we use the whole input matrix and the query:

[Z, zquery] :=

[
x1 x2 · · · xT−1 xT xquery
e1 e2 · · · eT−1 eT ey

]
∈ R(d+de)×(T+1). (16)

Positional encoding sampling. We also enforce a weaker version of the RIP assumption by sampling positional encodings
so that they are pairwise near-orthogonal, as defined by some dot product threshold hyperparameter; it turns out that such
a choice of positional encodings will satisfy the restricted isometry and orthogonality property, as we would expect for a
near-orthogonal matrix. In practice, this is implemented using rejection sampling.

For the experiments where we run with a fixed architecture, the train and test positional encodings are fixed beforehand. For
the experiments where stochastic architecture is used, this is simulated at each iteration by sampling T positional encodings
for training at each iteration and to be used for the entire (X, y) batch at that iteration, and for validation, a single set of Ttest
positional encodings is sampled for each validation set at each iteration.

56

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

Training details. We run simulations on three different settings:

(1) Attending the entire input matrix [Z, zquery] as described in Equation (2) and training with SGD (with zero initializa-
tion/random initialization of W and V).

(2) Attending the entire input matrix [Z, zquery] as described in Equation (2) and training with Adam (with zero initializa-
tion/random initialization of W and V).

(3) An additional experiment run on smaller d, de for illustration and training with small random initialization and SGD
with annealing.

Fixed vs. stochastic architecture. For the fixed architecture, we sample Tmax = 400 positional encodings at the start of
training. For each iteration of training, we use the first 200 for the fixed architecture, and for each validation task, we use the
respective prefix of positional encodings (T = 250, 300, 350, 400). For the stochastic architecture, we sample positional
encodings at every step for training, as well as for validation. When sampled, we use rejection sampling to ensure the
positional encoding matrix satisfy near-orthogonality.

Our experiments demonstrate that even though both fixed and stochastic PE architectures lead to in-distribution population
loss of 0, the out-of-distribution validation performances are different, both for length generalization and generalization on
unseen qtest-subsets. The following sections describe the experiments that were run.

F.1. SGD from zero initialization

When we attend [Z, zquery] and train with GD, we run with η = 1, then annealing to η = 1/3 at iteration 50000. We run
until iteration 100000. The learning rate schedule is to prevent potential instability, for instance via the edge-of-stability
phenomenon (Cohen et al., 2021; Li et al., 2022; Damian et al., 2022) or loss spikes in transformer training (Chowdhery
et al., 2023; Dehghani et al., 2023; Wortsman et al., 2024).

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Va
lid

at
io

n
lo

ss

Ttest = 250
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.5

1.0

1.5

2.0

Ttest = 300
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Ttest = 350

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 Ttest = 400
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lid

at
io

n
lo

ss

qtest = 5

75000 80000 85000
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Zoomed In

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

qtest = 6

75000 80000 85000
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Zoomed In

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 qtest = 7

75000 80000 85000
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Zoomed In

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
qtest = 8

75000 80000 85000
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Zoomed In

fixed PE
stochastic PE

Figure 4. The length generalization performance and OOD performance on unseen qtest-subsets. Top: Length generalization. Note
that stochastic PE converges to 0 validation loss, whereas a fixed PE is unable to do so; all of the fixed PE end up with validation loss at
least 0.15. Bottom: Generalization to unseen qtest-subsets. Note that while both stochastic and fixed PE can converge to 0 validation
loss in the long run, stochastic PE converges slightly quicker, as seen by the zoomed in versions of the plots near the end of training.
Additionally, the fixed PE’s validation performance gets worse as qtest increases.

F.2. Adam from zero initialization

Here, we attend [Z, zquery] and train with default Adam settings until iteration 100000.

57

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

Va
lid

at
io

n
lo

ss

Ttest = 250
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ttest = 300

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

Ttest = 350
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ttest = 400

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Va
lid

at
io

n
lo

ss

qtest = 5

80000 85000 90000 95000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200
Zoomed In

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.1

0.2

0.3

0.4

qtest = 6

80000 85000 90000 95000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200
Zoomed In

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

qtest = 7

80000 85000 90000 95000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200
Zoomed In

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

qtest = 8

80000 85000 90000 95000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200
Zoomed In

fixed PE
stochastic PE

Figure 5. The training trajectory of Adam. The length generalization advantage for stochastic positional encoding is similar to the
description of Figure 4. While Adam may allow the validation loss for the qtest to converge to 0 in the long run, for all practical purposes
related to early stopping, stochastic PE dominates in such OOD performance.

F.3. SGD from random initialization

Similar to Appendix F.1, we attend [Z, zquery] and train with GD, we run with η = 1, then annealing to η = 1/3 for iteration
50000 to 100000. We observe similar results as in Appendix F.1.

0 20000 40000 60000 80000 100000
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Va
lid

at
io

n
lo

ss

Ttest = 250
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ttest = 300
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ttest = 350
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ttest = 400
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Va
lid

at
io

n
lo

ss

qtest = 5

70000 75000 80000 85000
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Zoomed In

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
qtest = 6

70000 75000 80000 85000
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Zoomed In

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

qtest = 7

70000 75000 80000 85000
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Zoomed In

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

qtest = 8

70000 75000 80000 85000
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Zoomed In

fixed PE
stochastic PE

Figure 6. The training trajectory of SGD with random initialization. See description of Figure 4. Note that the overall dynamics are
similar to the zero initialization case; as before, the length generalization advantage of stochastic positional encoding is evident. Moreover,
stochastic positional encoding achieves better out-of-distribution loss compared to fixed positional encoding.

58

Transformers Provably Learn Sparse Token Selection While FCNs Cannot

F.4. Adam from random initialization

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

Va
lid

at
io

n
lo

ss

Ttest = 250
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

Ttest = 300
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

Ttest = 350
fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ttest = 400

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Va
lid

at
io

n
lo

ss

qtest = 5

85000 90000 95000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200
Zoomed In

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.0

0.1

0.2

0.3

0.4

qtest = 6

85000 90000 95000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200
Zoomed In

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

qtest = 7

85000 90000 95000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200
Zoomed In

fixed PE
stochastic PE

0 20000 40000 60000 80000 100000
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

qtest = 8

85000 90000 95000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200
Zoomed In

fixed PE
stochastic PE

Figure 7. The training trajectory of Adam with random initialization is similar to the zero initialization case. See description of Figure 4.
While Adam may allow the validation loss for the qtest to converge to 0 in the long run, for all practical purposes related to early stopping,
stochastic PE dominates in such OOD performance.

F.5. Additional heat maps in the setting of Figure 3

Here, for the sake of illustrations, we train with T = 10, d = 20, and de = 20. In addition, we use small Gaussian
initialization with an entrywise standard deviation of 1/

√
de. The heat maps can be seen as follows; GD eventually

converges to the ground truth directions of W ⋆ and V ⋆.

X E

X

E

W:

XV:

X E

X

E

W:

XV:

X E

X

E

W:

XV:

X E

X

E

W:

XV:

Figure 8. More figures in interpretable training (iterations t = 0, 100, 500, 50000): For the practical model Equation (2), we present
the heat map of the self-attention layer W and the value matrix V after convergence. We initialize W ,V randomly at t = 0. We can
observe that during training, in W only the sub-block that attends to the positional encodings E gradually converges to identity Ide
direction, while all other entries gradually converge to near 0. Similar phenomenon happens in V , only the sub-block that attends to the
input tokens X gradually converges to Id direction with all other converging to near 0.

59

