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Abstract001

We present OpenMU-Bench, a large-scale002
benchmark suite for addressing the data003
scarcity issue in training multimodal large004
language models to understand music. To005
construct OpenMU-Bench, we used existing006
datasets and bootstrapped new annotations.007
OpenMU-Bench also broadens the scope of008
music understanding by including lyrics un-009
derstanding and music tool usage. Using010
OpenMU-Bench, we trained our music under-011
standing model, OpenMU, with extensive ab-012
lations, demonstrating that OpenMU outper-013
forms baseline models such as MU-LLaMA.014
Both OpenMU and OpenMU-Bench are open-015
sourced to facilitate future research in music016
understanding and to improve creative music017
production efficiency.018

1 Introduction019

Multimodal Large Language Models (MLLMs)020

have successfully extended large language mod-021

els (LLMs) by enabling them to perceive, pro-022

cess, and understand data in modalities beyond023

text (Tsimpoukelli et al., 2021; Liu et al., 2023b;024

Zhu et al., 2023; McKinzie et al., 2024; Zhang025

et al., 2023; Gong et al., 2024), such as images,026

videos, and audio. However, there has been limited027

effort (Gardner et al., 2024) focused on construct-028

ing MLLMs capable of effectively understanding029

the music modality or addressing Music Informa-030

tion Retrieval (MIR) tasks. MIR is a research field031

focusing on modeling, understanding and interpret-032

ing data relevant to music, aiming to improve the033

efficiency of music production (Serra et al., 2013).034

Conventional machine learning algorithms (Wang,035

2003; Casey et al., 2008) sparked the success in mu-036

sic searching. Subsequently, deep learning models037

expanded the success to music tagging (Won et al.,038

2020), transcription (Gardner et al., 2021; Toyama039

et al., 2023) and representation learning (Castellon040

et al., 2021; Li et al., 2024; Won et al., 2024).041
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“What do you hear in this music? 
Give a short summary.”

“This music clip features a fast 
tempo with high energy, creating 
a dynamic and lively 
atmosphere…”

Or w/ LoRA

Figure 1: Model architecture of OpenMU. In Stage (1),
we only tune the music-language projector. In Stage
(2), LoRA adapters are added to the LLM and are tuned
together with the projector.

We aim to contribute to the MIR field by training 042

an MLLM, dubbed OpenMU, for understanding 043

music clips. Building on the versatile capabilities 044

of LLMs and pretrained audio encoders, OpenMU 045

effectively comprehends and reasons about input 046

music clips, responding with relevant answers ac- 047

cordingly. We also enable OpenMU to utilize well- 048

established music tools familiar to music creative 049

practitioners to encourage synergies between them. 050

OpenMU is expected to greatly improve music 051

production efficiency. Creative practitioners can 052

instruct OpenMU to describe a music clip’s key 053

contents and features, saving minutes of time com- 054

pared to listening to the full track. 055

We faced significant challenges when training 056

and evaluating OpenMU, particularly due to the 057

scarcity of data, which is even more pronounced 058

in the music modality (Serra et al., 2013; Seeger, 059

2003; Holzapfel et al., 2018). To address this issue, 060

we construct OpenMU-Bench, a large-scale bench- 061

mark for training and evaluating MLLMs in music 062

understanding. To construct OpenMU-Bench, we 063

bootstrap new datasets using GPT-3.5, and lever- 064

age existing datasets when available. As a result, 065

OpenMU-Bench comprises approximately one mil- 066

lion training examples, covering various aspects 067

of music understanding, such as music captioning, 068
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reasoning, multi-choice question answering, lyrics069

understanding and music tool calling. To the best of070

our knowledge, no large-scale open-sourced bench-071

mark comparable to OpenMU-Bench currently ex-072

ists, and we hope it will advance future research073

and development of music understanding.074

In summary, our contributions include: (1)075

Proposing OpenMU for music understanding.076

OpenMU is an MLLM dedicated to the music077

modality, outperforming baseline models such as078

MU-LLaMA (Liu et al., 2024) in tasks like music079

captioning, reasoning, and multiple-choice ques-080

tion answering. We carefully evaluate various de-081

sign choices for OpenMU and provide extensive082

ablations on key factors. (2) Constructing a large-083

scale benchmark suite, OpenMU-Bench, consisting084

of approximately one million music understand-085

ing data examples. We bootstrap new data from086

GPT-3.5 for rich annotations and also leverage ex-087

isting datasets. (3) Open-sourcing OpenMU and088

OpenMU-Bench. We hope that they will benefit089

future research and development in music under-090

standing and enhance creative music production by091

providing rich resources and consistent evaluations.092

093

2 Related work094

Understanding music goes beyond recognizing095

objective attributes of music such as tempo (Böck096

et al., 2015; Sun et al., 2021) or instrumenta-097

tion (Gururani et al., 2019; Zhong et al., 2023). It is098

also subjective and highly context-dependent, like099

determining music genres (Kereliuk et al., 2015)100

or moods (Bogdanov et al., 2019; Koutini et al.,101

2019). Researchers succeeded in understanding102

music by classifying music clips into predefined103

tags (Li et al., 2024; Won et al., 2024). Recently,104

music captioning (Manco et al., 2021) and rea-105

soning (Gardner et al., 2024) tasks, where natural106

language descriptions are employed to describe mu-107

sic clips, have earned increasing attention. Also,108

the ability of selecting correct answers in multi-109

choice question answering is included in music110

understanding (Weck et al., 2024). However, there111

has been limited exploration into enabling MLLMs112

to utilize external digital tools (i.e., established mu-113

sic tools) for music analysis. We hypothesize that114

a music understanding model can further improve115

the workflow of creative practitioners by deeply116

integrating their familiar music tools. Last but not117

least, lyrics information processing (Watanabe and118

Goto, 2020), such as semantic lyrics understand-119

ing (Zhang et al., 2022) enhances the understand- 120

ing of a music clip. Therefore, we integrate it in 121

OpenMU-Bench. Overall, we broaden the scope 122

of music understanding by considering two extra 123

aspects beyond music captioning and reasoning: 124

Music tool using and lyrics understanding. 125

Foundation models for music understanding. 126

Multimodal LLMs (MLLMs) (Tsimpoukelli et al., 127

2021; Liu et al., 2023b; Zhu et al., 2023; McKinzie 128

et al., 2024; Gong et al., 2024) fuse non-textual 129

information into LLMs (Liang et al., 2022) to solve 130

real-world tasks requiring the ability of perceiving 131

data in different modalities. The scope of MLLMs 132

is recently expanded to include music. MU- 133

LLaMA (Liu et al., 2024) and MusiLingo (Deng 134

et al., 2024) narrowed down their scope to mu- 135

sic captioning and question answering (QA); other 136

critical aspects of music understanding, e.g., key 137

and chord recognition, are not covered. Perhaps 138

the closest to ours is Llark (Gardner et al., 2024). 139

However, neither the model itself nor the music 140

understanding datasets from Llark have been re- 141

leased. None of these models is capable of us- 142

ing music tools, an important ability to interact 143

with creators. In this paper, we propose OpenMU- 144

Bench and OpenMU to advance the field of music 145

understanding. OpenMU-Bench holistically mea- 146

sures various aspects of music understanding, while 147

OpenMU achieves state-of-art performance on the 148

benchmark. Both OpenMU-Bench and OpenMU 149

are released to facilitate the future research and 150

development in this field. 151

Music understanding datasets. The prolif- 152

eration of LLMs has spurred the development 153

of benchmarks designed to holistically measure 154

the genuine capabilities of LLMs. Benchmarks 155

have been designed for NLP tasks (BIG-bench au- 156

thors, 2023; Hendrycks et al., 2021), and vision- 157

language tasks (Liu et al., 2023c; Fu et al., 2023; 158

Ye et al., 2023). MMMU (Yue et al., 2023) in- 159

cluded the music modality into evaluation but at 160

a very narrow scope (334 entries of sheet music). 161

Researchers are striving to address the data scarcity 162

challenge of music: Doh et al. (2023) introduced 163

LP-MusicCaps, associating LLM-augmented cap- 164

tions with music clips from MusicCaps (Agostinelli 165

et al., 2023). Similarly, Liu et al. (2024) developed 166

MusicQA, containing QA and captioning tasks 167

for music clips from MusicCaps, MagnaTagATune 168

(Law et al., 2009a), and MTG-Jamendo (Bogdanov 169

et al., 2019). Concurrently, Deng et al. (2024) pro- 170

posed MusicInstruct, which targets QA and caption- 171
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ing for clips in MusicCaps. Weck et al. (2024) cre-172

ate MuChoMusic as a music understanding bench-173

mark containing 1,187 multiple-choice questions174

for evaluation. Building on existing datasets, we175

construct OpenMU-Bench by additionally boot-176

strapping new datasets using GPT-3.5. OpenMU-177

Bench contains about one million examples for178

training and evaluation across various music un-179

derstanding tasks. We also standardize evaluation180

metrics to ensure consistency1 in reporting results.181

3 Constructing OpenMU-Bench182

This section outlines the construction of OpenMU-183

Bench. OpenMU-Bench covers five types of tasks;184

we explain the dataset construction procedures for185

each type. In addition to incorporating existing186

music understanding datasets, we generate new an-187

notations for music clips from datasets that do not188

contain natural language annotations. Our goal is189

to integrate as many datasets as possible to enable190

OpenMU-Bench to comprehensively and systemat-191

ically evaluate music understanding models. Fur-192

thermore, we specify the recommended evaluation193

metrics to ensure consistent and fair benchmark-194

ing. Table 1 shows examples of different OpenMU-195

Bench task types.196

3.1 OpenMU-Bench task types197

Music captioning tasks a model with generating198

textual descriptions capturing musical contents and199

key features of a music clip. A music understand-200

ing model excels at captioning can improve the201

efficiency of music production by generating mu-202

sic descriptions instantly, eliminating the needs of203

listening to the entire music track by creators.204

Music reasoning (Gardner et al., 2024), tasks205

the model with answering questions in two aspects.206

First, it examines the interaction between different207

musical elements, e.g., how a fast tempo is likely208

to correspond with a high energy level. Second,209

it explores how the real-world can interact with210

the music clip, e.g., how a creator can increase the211

energy level by using faster tempos (see Table 1).212

Tool using. There exists various music tech-213

nology tools for tasks like tempo estimation, key214

detection, chord recognition, and instrument iden-215

1For example, we found that MU-Llama (Liu et al., 2024)
reports BertScore-Recall, while LP-MusicCaps (Doh et al.,
2023) reports BertScore-F1. We standardize the metrics when
reporting performance on OpenMU-Bench, and hope this
paves the way for consistent evaluations of music understand-
ing MLLMs.

tification2. Unlike Llark (Gardner et al., 2024), 216

which aims to address many MIR tasks using only 217

the LLM, OpenMU takes a different view. We aim 218

for OpenMU to integrate and leverage the well- 219

established, rigorously tested MIR tools to solve 220

practical, real-world problems. This approach 221

is motivated by the limitations of current LLMs, 222

which often struggle with tasks like arithmetic (Qin 223

et al., 2023). By combining the strengths of es- 224

tablished MIR tools (e.g., tempo estimator) with 225

LLM-based method, OpenMU aims to provide a 226

more robust solution to music understanding. 227

Lyrics understanding. Lyrics, which carry rich 228

semantic content, are often used to convey moods 229

and emotions (Watanabe and Goto, 2020). We 230

incorporate a lyrics understanding task as a text 231

generation problem into OpenMU-Bench. We con- 232

sider a model that excels at understanding lyrics to 233

be capable of producing interpretations similar to 234

those of humans, conditioned on the music input. 235

Multiple-choice questions. Text generation 236

models are inherently difficult to evaluate due to 237

their open-ended nature (Celikyilmaz et al., 2020). 238

This challenge extends to LLM-based music un- 239

derstanding models as well. To ensure holistic 240

evaluations, OpenMU-Bench also assesses these 241

models using multiple-choice questions developed 242

by Weck et al. (2024). 243

3.2 Individual datasets 244

As introduced in §2, a few datasets already exist 245

for music understanding. We incorporate these 246

datasets and create new annotations to ensure that 247

OpenMU-Bench has both a large scale and broad 248

coverage. We describe each of the datasets, along 249

with the applied modifications aligning them with 250

the OpenMU-Bench task types. We adhere to exist- 251

ing train/test splits of the datasets when available 252

(c.f. §A.6); Appendix §A.4 details the preprocess- 253

ing and annotating details of OpenMU-Bench; we 254

highlight only the key information here. Table 5 255

(§A.1) shows OpenMU-Bench statistics. 256

MusicCaps, created by Agostinelli et al. (2023), 257

is pivotal for the music captioning task. It con- 258

tains «5.5K 10-second music clips sourced from 259

AudioSet (Gemmeke et al., 2017), with correspond- 260

ing gold-standard text captions written by profes- 261

sional musicians. We incorporate MusicCaps into 262

OpenMU-Bench as part of the captioning task. LP- 263

MusicCaps & LPMusicMTT (Doh et al., 2023) 264

2List of MIR software tools: https://www.ismir.net/
resources/software-tools/
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Music Captioning
Question: Write a short description about the musical contents of this clip.
Answer: The music clip has a tempo similar to a walking pace and belongs to the blues genre. It features the
characteristic blues chord progression and soulful melodies often accompanied by instruments typical
of the blues genre are also evident in this clip.

Music Reasoning
Question: How would a music producer enhance the high energy of this track?
Answer: A music producer could enhance the high energy of this track by adding elements like driving
basslines, powerful drums, and energetic synthesizers. They could also increase the tempo slightly to create
a more intense feel and incorporate dynamic changes in volume and instrumentation to maintain ...

Lyrics Understanding
Question: Please help me to interpret this lyrics: {music_lyrics}
Answer: Feel like it’s about being depressed about your life. You go to work on Monday, see all of the ...

Tool Using
Question: What are the chords between 10 sec and 20 sec of this music?
Answer: Here are the chords between 10 sec and 20 sec: [GetMusicChords(10, 20)].

Multiple Choice
Question: How would you describe the vocal performance in this piece?
Options: (A) Soft yet deeply emotional (B) Lamenting (C) Male vocals (D) Operatic
Answer: (A) Soft yet deeply emotional.

Table 1: Example data entries in OpenMU-Bench.

extend MusicCaps and the MagnaTagATune (Law265

et al., 2009b) dataset by generating additional tex-266

tual descriptions. The authors prompt GPT-3.5267

to “write”, “summarize”, “paraphrase”, and “pre-268

dict attributes” new captions. We integrate3 «8K269

LPMusicCaps and 51K LPMusicMTT training cap-270

tions into OpenMU-Bench. MusicInstruct (Deng271

et al., 2024) also extends MusicCaps by creating272

question-answer pairs for the MusicCaps clips us-273

ing GPT-4. This dataset contains «60K question-274

answer pairs, which are categorized into two ver-275

sions: a short version (MI-short) focusing on276

musical content such as tempo and genre, and a277

long version (MI-long) that paraphrases the Mus-278

icCaps captions. We integrate MusicInstruct into279

OpenMU-Bench as a captioning task, and report280

performance on both versions separately.281

MusicQA, developed by Liu et al. (2024) via282

prompting MPT (MosaicML-NLP-Team, 2023), is283

employed to train their MU-LLaMA. MusicQA284

consists of MusicCaps clips for pretraining, Mag-285

naTagATune (Law et al., 2009b) clips for fine-286

tuning, and MTG-Jamendo (Bogdanov et al.,287

2019) clips for testing. We incorporate MusicQA-288

Finetune and MusicQA-Test into OpenMU-Bench,289

while MusicQA-Pretrain, which contains the test290

split of MusicCaps, is excluded to prevent potential291

train-test leakage (Deng et al., 2024). Following292

Liu et al. (2024), we separate MusicQA into cap-293

tioning and reasoning parts.294

Music4all, developed by Pegoraro Santana et al.295

(2020), consists of «100K music clips with rich296

metadata, including attributes like energy, valence,297

and genre. Based on this metadata, we prompt298

3We do not use the “attribute prediction” annotations,
following the recommendation from the LPMusic authors:
https://huggingface.co/datasets/seungheondoh/
LP-MusicCaps-MC

GPT-3.5 to generate annotations for both the cap- 299

tioning and reasoning tasks. The prompts used 300

for these annotations are provided in the Appendix 301

§A.5. GTZAN, developed by Tzanetakis and Cook 302

(2002), contains «1K 30-second music clips, each 303

labeled with genre tags and we create extra tempo 304

tags with Madmom (Böck et al., 2016). Based on 305

these tags, we generate captioning and reasoning 306

annotations with prompting. MusicNet (Thick- 307

stun et al., 2017) contains 1 million dense annota- 308

tions at precise timestamps for 330 classical music 309

recordings. The annotations are of high quality, but 310

primarily focus on instruments. As a result, we 311

integrate MusicNet into OpenMU-Bench as part of 312

the captioning task, retaining only annotations that 313

span three seconds or longer. MagnaTagATune 314

(MTT) has been included in OpenMU-Bench as 315

part of the captioning task, thanks to the annota- 316

tions by Doh et al. (2023). Given its significance 317

in the MIR community (Won et al., 2020), we also 318

create an additional 90K reasoning annotations for 319

training and testing. MTG-Jamendo (Bogdanov 320

et al., 2019) consists of «55K full music tracks, 321

each tagged with genre, instrument, and mood. We 322

randomly select 30-second music clips4 and gener- 323

ate annotations for captioning and reasoning tasks 324

by prompting GPT-3.5. 325

Tool using. To the best of our knowledge, there 326

is no existing dataset designed to train MLLMs 327

to use MIR tools. We thus generate training and 328

testing datasets for solving four MIR tasks with 329

tools: chord recognition, tempo estimation, key de- 330

tection, and downbeat extraction. We demonstrate 331

that OpenMU quickly learns to utilize these tools 332

to answer queries related to MIR information. We 333

implemented these tools by wrapping the Python 334

4We provide scripts for extracting music clips.
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package Madmom (Böck et al., 2016); §A.7 shows335

implementation details.336

For Lyrics understanding, we integrate Zhang337

et al. (2022)’s annotations, containing internet in-338

terpretations to the lyrics of Music4all music clips.339

For Multiple-choice questions, we integrate Mu-340

ChoMusic (Weck et al., 2024) for evaluation. The341

task involves answering questions about music342

knowledge and reasoning by selecting the correct343

option from four provided choices.344

3.3 Evaluation metrics345

OpenMU-Bench leverages common evaluation346

metrics for text generation tasks: captioning, rea-347

soning, and lyrics understanding. BLEU-1, BLEU348

(Papineni et al., 2002)5, Meteor (Banerjee and349

Lavie, 2005), Rouge-1, and Rouge-L (Lin, 2004)350

measure an answer’s textual overlap with the gold351

standard, while BertScore (Zhang et al., 2020)352

measures similarity in the semantic representation353

space of BERT. For all evaluations, we report the354

scores computed using the F-measure. We report355

accuracy for the task of multiple-choice questions.356

4 OpenMU357

4.1 Model architecture358

Encoding music clips. We use AudioMAE (Huang359

et al., 2022) to encode an input music clip. Specifi-360

cally, we use the “ViT-B AS-2M pretrained + fine-361

tuned” version of AudioMAE, which is a Vision362

Transformer (Dosovitskiy et al., 2021) initially pre-363

trained with a masked auto-encoding reconstruc-364

tion loss (He et al., 2022), followed by finetuning365

on tagging tasks (Gemmeke et al., 2017), both on366

AudioSet2M (Gemmeke et al., 2017). The choice367

of using AudioMAE over other music encoders,368

such as MERT (Li et al., 2024) or Jukebox-5B369

(Dhariwal et al., 2020; Castellon et al., 2021), is370

motivated by two primary reasons. First, more than371

half of the audio clips inAudioSet2M6 consist of372

music or musical instrument recordings, resulting373

in approximately 3,137 hours of music data (larger374

than the 910-hour data used to train MERT-95M-375

public (Li et al., 2024)). Audio encoders pretrained376

on AudioSet have shown competitive performance377

in music tagging tasks (Koutini et al., 2021; Ni-378

izumi et al., 2022). Second, the size of the mul-379

timodal encoder is not a performance bottleneck380

5Following the machine translation literature, our BLEU
refers to BLEU-4.

6AudioSet2M Ontology: https://research.google.
com/audioset/

(McKinzie et al., 2024). Instead, the smaller num- 381

ber of parameters in ViT-B (86M) facilitates more 382

efficient training. 383

LLM. We use the open-sourced 1B and 8B mod- 384

els from the Llama3 family (Dubey et al., 2024) 385

as our LLM. Compared to previous Llama models 386

(Touvron et al., 2023), Llama3 has been trained on 387

higher-quality datasets and at larger scales, achiev- 388

ing great performance (Achiam et al., 2023) on 389

numerous tasks. 390

Music-language projector links the represen- 391

tation space of the music encoder with the LLM. 392

Studies (McKinzie et al., 2024; Liu et al., 2023a) 393

have shown that the architecture of the projector 394

itself has little impact on downstream task perfor- 395

mance; the number of tokens from the multimodal 396

encoder is significantly important. We use a two- 397

layer MLP with GELU non-linearity (Hendrycks 398

and Gimpel, 2017) and evaluate the effect of vary- 399

ing the number of music tokens in §5.1. 400

Overall, OpenMU follows the well-tested ar- 401

chitecture of MLLMs (McKinzie et al., 2024) as 402

shown in Figure 1. In contrast to previous music 403

MLLMs such as MU-LLaMA, OpenMU is also 404

capable of interacting with external MIR tools such 405

as tempo estimator (Böck et al., 2016). 406

4.2 Training details 407

Dataset preprocessing. When processing the mu- 408

sic clips, we limit their maximum length to 30 409

seconds and zero-pad those shorter than 30 sec- 410

onds. Music clips are resampled to 16 kHz and 411

then converted to a 128-bin Mel-spectrogram with 412

a 25-ms Hanning window and 10-ms hop size. Con- 413

sequently, each music clip is converted to a Mel- 414

spectrogram of shape (3072, 128). As AudioMAE 415

encodes 10-second inputs, we segment each Mel- 416

spectrogram into three parts, encode them sepa- 417

rately, and then concatenate them. As a result, each 418

30-second music clip is encoded by 1536 tokens, 419

and each of them has a shape of (1, 768). 420

Throughout our experiments, we used between 421

8 and 16 A100 40GB GPUs, depending on the ex- 422

perimental setup (c.f. §5). In all experiments, we 423

set the maximum context length of the LLM to 424

2048 tokens. We utilized DeepSpeed ZeRO-3 (Ra- 425

jbhandari et al., 2020) and FlashAttention2 (Dao 426

et al., 2022) to enable fast and efficient training. It 427

took approximately three days to train OpenMU on 428

the captioning and reasoning subsets of OpenMU- 429

Bench (around 1 million data examples). 430

Training setup of OpenMU-Bench largely fol- 431

5
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lows the common practice of MLLM training (Yin432

et al., 2023; Liu et al., 2023b; McKinzie et al.,433

2024), consisting of:434

Stage (1) Captioning. We train OpenMU to435

generate captions, conditioned solely on the input436

music clip. The goal of Stage (1) training is to437

align the representation spaces of AudioMAE and438

LLM, with the only trainable module in this stage439

being the music-language projector. We use the440

captioning subset of OpenMU-Bench in this stage.441

A key configuration is the number of music tokens442

fed into the LLM; we discuss it in detail in §5.1.443

The remaining hyperparameters largely follow Liu444

et al. (2023b) shown in Appendix §A.2.445

Stage (2) Instruction Tuning. After aligning446

the music and text representation spaces in Stage447

(1), Stage (2) trains OpenMU to follow various448

instructions about music, such as inferring music449

genres or reasoning about the content of a music450

clip. We add LoRA adapters (Hu et al., 2022) to451

OpenMU’s LLM, and then finetune the model on452

OpenMU-Bench’s captioning and reasoning tasks.453

We focus on two critical research questions in this454

stage. First, we ablate OpenMU’s task performance455

with respect to its LoRA parameters (see §5.2). Sec-456

ond, we investigate in-depth OpenMU’s use of mu-457

sic information. Given the large-scale pretraining458

data of LLM, we hypothesize that OpenMU might459

be able to make correct predictions for knowledge-460

intensive questions even without relying on musical461

information within a music clip. We test this hy-462

pothesis and show that in order to achieve higher463

performance, OpenMU indeed relies on informa-464

tion from the music clip, demonstrating its genuine465

ability to understand music.466

5 Training OpenMU467

In this section, we analyze and discuss key factors468

when training OpenMU. Throughout our discus-469

sion, we use the 8B Llama3 model as the LLM.470

5.1 Number of music tokens471

McKinzie et al. (2024) show that the number of472

image tokens is more significant than the architec-473

ture of the vision-language projector when training474

vision-language models. To the best of our knowl-475

edge, no prior research has explored this aspect476

when training foundation models for understanding477

music. This is particularly important as music clips478

can often be lengthy, leading to a large number of479

music tokens. E.g., AudioMAE encoder outputs480

1536 tokens for representing a 30-second music 481

clip (c.f. §4.2). Using all the music tokens ensures 482

the maximum utilization of information in the mu- 483

sic modality, but it hinders training efficiency and 484

consumes a large portion of the context window 485

allowed by the LLM (2048 in our case). We show 486

the effects of the number of music tokens in §5.3. 487

5.2 LoRA parameters 488

Low-Rank Adaptation (LoRA; Hu et al. (2022)), 489

is employed in Stage (2) training to efficiently 490

adapt OpenMU’s LLM to follow instructions in 491

the music domain. For an LLM weight parameter 492

matrix W P Rdˆk, instead of directly modify- 493

ing W , LoRA introduces and trains two matrices, 494

B P Rdˆr and A P Rrˆk for adapting W to a 495

downstream task: W Ð W ` α
rBA. 496

W remains unchanged in training; LoRA rank r 497

determines the number of trainable parameters by 498

controlling the size of B and A. BA represents 499

the parameter changes needed to adapt to a down- 500

stream task, scaled by α
r . α is a hyperparameter, 501

and typically r ă α. For OpenMU, we fix α “ 128 502

following Liu et al. (2023b,a), while varying the 503

value of r. A smaller rank r imposes a stricter 504

bottleneck on B and A, requiring the learned pa- 505

rameter differences, represented by BA, to rely on 506

fewer trainable parameters to capture concise and 507

genuine information about the downstream task, 508

which are subsequently scaled by a larger α
r . In 509

contrast, a larger r introduces more trainable pa- 510

rameters, which may be prone to learning shortcuts, 511

redundant information, or noise (Geirhos et al., 512

2020) during adaptation to the downstream task, 513

subsequently scaled by a smaller α
r . §5.3 shows 514

the effectiveness of LoRA parameters. 515

5.3 Results and ablations 516

OpenMU-Bench task performance. Figure 2 517

shows the performance of OpenMU variants on 518

the reasoning task. Appendix Figure 5 shows the 519

captioning results. For each evaluation, we report 520

the macro-average performance of each OpenMU 521

variant across all subtasks in OpenMU-Bench. Ad- 522

ditionally, Appendix Figure 6 displays the evalua- 523

tion results using BertScore (Zhang et al., 2020) as 524

the metric. 525

Several observations can be made. First, the 526

number of music tokens plays a critical role in 527

task performance, echoing the conclusion drawn 528

by McKinzie et al. (2024). Mean-pooling every 529

8 tokens shows clear advantages over 32 and 128 530
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Figure 2: OpenMU variants performance on OpenMU-
Bench reasoning tasks. For each evaluation metric,
such as BLEU, we report the macro average of the
model’s performance across all OpenMU-Bench sub-
tasks. “Pool-8-128/16” represents mean pooling every
eight music tokens and using LoRA parameter 128

16 .

tokens, likely due to its preservation of music in-531

formation. However, mean-pooling 32 tokens of-532

fers only limited improvement over 128 tokens,533

and the performance decline appears to plateau.534

Please refer to Figure 4 (Appendix §A.2) for de-535

tailed learning curves. It is likely that crucial music536

information is already lost when mean-pooling 32537

tokens. Second, the effectiveness of LoRA param-538

eters show limited impacts on task performance,539

similar to the findings in Gong et al. (2024). As a re-540

sult, we will focus on the model variant with mean-541

pooling 8 tokens, and LoRA parameters 128/16 in542

the next sections.543

Music information utility. The LLM’s pretrain-544

ing data likely already contains extensive knowl-545

edge about music, enabling OpenMU to answer546

music-related questions without relying on the547

given music input. We test a key hypothesis: Does548

OpenMU genuinely utilize information from the549

music input to answer questions, or is it merely550

hallucinating? We evaluate OpenMU variants on551

MuChoMusic (Weck et al., 2024), a dataset contain-552

ing multiple-choice questions about music under-553

standing. Questions such as “Which sub-genre of554

rock music would best classify this piece?” require555

the model to select the correct option from four556

candidates. Notably, such questions could be an-557

swered based on the most common or probable sub-558

genre from the LLM’s pretraining data, allowing559

the model to perform reasonably well without actu-560

ally relying on the music input. Figure 3 presents561

the MuChoMusic results of OpenMU variants. “No562

Music” refers to replacing the input music clip with563

Figure 3: OpenMU performance on MuChoMusic.

a white noise clip, while “OpenMU” displays the 564

results when actual music clips are used. It is evi- 565

dent that music information is crucial for OpenMU 566

to achieve strong performance; OpenMU effec- 567

tively utilizes music information rather than merely 568

relying on its internal knowledge. 569

6 Overall results 570

In this section, we compare OpenMU with other 571

publically available models such as MU-LLaMA 572

(Liu et al., 2024) and Qwen-Audio (Chu et al., 573

2023) on OpenMU-Bench. For OpenMU, we use 574

the variant of mean-pooling 8 tokens with LoRA 575

parameters 128/16. 576

Music captioning and reasoning results are 577

presented in Table 2, We observe that OpenMU 578

outperforms MU-LLaMA and Qwen-Audio across 579

various captioning and reasoning tasks. Interest- 580

ingly, MU-LLaMA lags behind OpenMU on Mus- 581

icCaps, despite the fact that the MusicCaps test set 582

was used during MU-LLaMA’s pretraining stage 583

(Liu et al., 2024; Deng et al., 2024). We believe 584

this is due to the small size of MusicCaps—its ef- 585

fectiveness was likely overshadowed by the larger 586

finetuning datasets used for MU-LLaMA. 587

MU-LLaMA outperforms OpenMU and Qwen- 588

Audio on the MusicInstruct-short (MI-short) cap- 589

tioning task (Deng et al., 2024) and the MusicQA- 590

test reasoning task (Liu et al., 2024) in terms of 591

surface form matching metrics by a large margin. 592

However, we found that the gold references in these 593

two subsets are biased to contain a large portion of 594

repeated parts from the questions. For example, in 595

MusicQA-test reasoning, to the question “What is 596

the alternative genre of music in the audio?”, the 597

gold standard reference is “The alternative genre 598

of music in the audio is postrock.” 599

This observation is further supported by objec- 600

tive metrics. Compared to the edit distance of 225 601

and the Jaccard similarity score of 23.9% for MTT, 602

MusicQA-test reasoning has an edit distance of 603

90 and a Jaccard similarity score of 36.2%. Since 604

MU-LLaMA tends to repeat the question before 605

7



BLEU-1 BLEU Rouge1 RougeL BertScore Meteor
OMU MUL Qwen OMU MUL Qwen OMU MUL Qwen OMU MUL Qwen OMU MUL Qwen OMU MUL Qwen

MusicCaps 25.62 9.78 26.16 2.89 0.73 4.74 27.99 21.22 26.98 18.56 15.64 19.83 86.63 86.85 87.15 21.83 11.03 19.30

MI-short 18.92 50.01 35.70 8.75 23.90 16.00 41.03 52.69 46.97 37.75 47.73 41.85 89.90 92.83 91.82 43.81 49.10 45.14

MI-long 36.66 2.13 9.36 4.18 0.18 0.73 38.74 19.34 22.55 21.70 13.55 15.17 87.24 85.90 85.65 24.43 8.83 11.54

LPMusicMTT 23.83 18.87 11.49 2.56 0.56 0.28 29.23 21.68 16.93 21.57 16.07 13.50 89.75 88.37 86.33 24.60 13.96 12.54

Music4all* 51.03 5.11 12.06 18.69 0.36 0.58 51.31 19.51 17.55 34.80 14.31 12.80 91.04 86.64 83.96 43.58 10.07 10.27

MusicQA-Test 19.60 19.65 15.64 2.22 5.08 1.40 23.96 31.74 18.72 17.39 28.07 15.15 87.30 89.45 85.57 26.34 21.73 13.53

GTZAN* 45.38 4.56 12.22 11.78 0.32 0.50 44.01 20.41 17.04 27.62 15.17 12.42 89.34 87.03 84.16 34.71 10.65 9.63

MusicNet* 52.68 1.17 4.83 22.14 0.00 0.18 56.44 14.49 12.60 38.11 12.25 10.71 91.97 85.59 83.94 45.92 6.56 6.34

MTG-Jam.* 47.56 5.32 12.10 15.83 0.41 0.67 49.66 20.29 16.30 33.76 15.94 12.64 90.79 87.72 85.20 39.44 10.06 9.53

BLEU-1 BLEU Rouge1 RougeL BertScore Meteor
OMU MUL Qwen OMU MUL Qwen OMU MUL Qwen OMU MUL Qwen OMU MUL Qwen OMU MUL Qwen

Music4all* 49.20 18.13 21.3 23.31 5.97 6.53 53.26 34.11 31.66 41.08 25.01 23.32 92.34 89.63 88.25 49.96 22.51 31.31

MusicQA-Test 24.84 40.64 27.6 9.46 22.47 12.87 35.86 51.29 45.20 30.66 47.54 40.93 89.70 92.59 90.93 40.04 46.15 43.35

GTZAN* 50.26 16.16 22.61 22.07 5.95 7.13 52.96 35.18 33.17 38.57 26.20 24.09 92.02 89.89 88.28 46.87 21.84 31.64

MTT* 45.52 21.70 25.18 21.18 8.31 8.30 50.83 38.70 33.35 39.93 29.92 25.64 92.03 90.63 88.93 48.06 26.33 29.40

MTG-Jam.* 45.87 23.69 21.82 21.12 8.59 6.96 50.78 38.45 32.19 39.74 29.27 24.57 92.01 90.47 88.52 47.97 26.42 30.70

Table 2: OpenMU-Bench captioning (top) and reasoning (bottom) results (in %) of OpenMU (OMU), MU-LLaMA
(MUL), and Qwen-Audio (Qwen). ˚: datasets with our new annotations.

Accuracy IFR
All Knowledge Reasoning All

MusiLingo 21.1 22.0 19.2 71.6

MU-LLaMA 32.4 32.3 31.3 79.4

M2UGen 42.9 44.9 41.2 96.4
OpenMU 51.8 51.4 51.4 94.8

Random 25.0 25.0 25.0 100.0

Table 3: MuChoMusic accuracy and instruction-
following rate (IFR) of OpenMU and prior music un-
derstanding models. Numbers are in %. MuChoMusic
contains multiple-choice questions; MusiLingo, MU-
LLaMA, M2UGen performances are from Weck et al.
(2024). “Random” shows random guessing results. We
assume “Random” will always select an option, hence
its IFR is 100%.

providing an answer, the behavior might have in-606

flated the surface-level form matching scores in607

these subsets. As a result, we recommend practi-608

tioners downweight these subsets when evaluating609

music understanding models.610

BLEU-1 BLEU Rouge1 RougeL BertScore Meteor

BART-Fu. 25.79 6.48 32.18 17.99 83.03 27.97
OpenMU 25.60 5.19 31.31 17.03 83.14 27.01

Table 4: Lyrics understanding results (in %).

Multiple-choice questions. We compare611

OpenMU with MU-LLaMA, along with other avail-612

able music understanding models, on the multiple-613

choice question dataset MuChoMusic. MusiLingo614

(Deng et al., 2024) is a concurrent work to MU-615

LLaMA while M2UGen (Hussain et al., 2023) adds616

music generation ability to MU-LLaMA. Table 3617

shows that OpenMU achieves state-of-the-art mu-618

sic understanding performance on MuChoMusic.619

Lyrics understanding results of OpenMU and620

BART-fusion (Zhang et al., 2022), a model specifi-621

cally designed for lyrics understanding, are shown622

in Table 4. For simplicity, we reuse the same hy-623

perparameters from Stage (2) training, except for 624

extending the training to 20 epochs. OpenMU out- 625

performs BART-fusion in BertScore but slightly 626

lags behind on other metrics. Future models could 627

explore further hyperparameter tuning or architec- 628

tural modifications to improve performance. Tool 629

using accuracy. When calling external MIR tools, 630

OpenMU achieves 94.95% in chords identifica- 631

tion, 95.83% in tempo estimation, 100% in key 632

and downbeats estimation. We consider an exact 633

match as a hit. For example, in chords estima- 634

tion, if the gold reference is “[GetMusicChords(10, 635

20)]”, the model must accurately output the type 636

and arguments of the tool call to be considered a 637

hit. Extra calls are considered a miss. OpenMU 638

performs well on this task and learns to call MIR 639

tools effectively. It is promising to integrate more 640

MIR tools to handle a broader range of task types 641

and complexities. 642

7 Conclusion 643

We presented OpenMU-Bench, a large-scale bench- 644

mark suite containing approximately one million 645

examples for training and evaluating music under- 646

standing models. We trained OpenMU, with exten- 647

sive ablations and demonstrated that it outperforms 648

two baseline models. Both OpenMU and OpenMU- 649

Bench are open-sourced to facilitate future research 650

in music understanding and enhance the efficiency 651

of creative music production. Future work may 652

explore extending OpenMU to support multiple 653

music clips as input and enable in-context learn- 654

ing. Integrating more MIR tools, combining the 655

strengths of LLMs and established tools for deeper 656

music understanding, are also promising. 657
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Limitations658

When constructing OpenMU-Bench, we incorpo-659

rated existing music understanding datasets and660

leveraged GPT-3.5 to bootstrap new annotations.661

However, hiring professional musicians for manual662

annotations would be prohibitively expensive and663

challenging due to their scarcity. Our approach664

prioritizes large-scale dataset construction, and fu-665

ture work can incorporate expert-verified subsets666

to enhance quality.667

Following the current music understanding lit-668

erature, OpenMU-Bench considers five subtasks,669

as shown in Table 1. However, this list is not ex-670

haustive, because real-world music analysis encom-671

passes wider range of tasks, such as phonetic anal-672

ysis of music. Future work can incorporate more673

tasks, expanding the scope of OpenMU-Bench.674
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A Appendix 1054

A.1 OpenMU-Bench data statistics 1055

Detailed dataset statistics of OpenMU-Bench are 1056

shown in Table 5. 1057

A.2 Training details and hyperparameters 1058

In this section, we describe the detailed settings 1059

and hyperparameters used for training OpenMU. 1060

All experiments were conducted using 8-16 A100 1061

40GB GPUs, with BF16 enabled to ensure stable 1062

training. We use DeepSpeed ZERO-3 (Rajbhan- 1063

dari et al., 2020) and Flash Attention 2 (Dao et al., 1064

2022) to reduce the memory consumption. We uti- 1065

lized the Adam optimizer and a cosine learning rate 1066

scheduler, with a 30% warm-up ratio. 1067

Figure 4 displays the training trajectories (log- 1068

scale) of both Stage (1) and Stage (2) training, 1069

where we apply mean-pooling to every 2–128 mu- 1070

sic tokens output by AudioMAE. 1071

For Stage (1) training, we pretrained OpenMU 1072

for 15 epochs on the captioning subtask of 1073

OpenMU-Bench, which consists of approximately 1074

275K pairs of music clips and corresponding cap- 1075

tions. Stage (1) training took approximately 10 1076

hours for the checkpoint we evaluated (i.e., mean- 1077

pooling every 8 music tokens as illustrated in Fig- 1078

ure 4. The initial learning rate was set to 1e-3, with 1079

a batch size of 8 per GPU. 1080

For Stage (2) training, we extended pretraining 1081

of OpenMU for 10 epochs on the captioning and 1082

reasoning subtasks of OpenMU-Bench, which com- 1083

prise roughly one million training examples. The 1084

initial learning rate was set to 2e-5, with the same 1085

per-GPU batch size of 8. Stage (2) required ap- 1086

proximately 40 hours due to the increased size of 1087

training data. 1088
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Captioning Reasoning Lyrics Tool-Use MultipleChoice Music Clips
Train Test Train Test Train Test Train Test Train Test

MusicCaps 2640 2839 - - - - - - - - 5479
MusicInstruct 28670 30593 - - - - - - - - (5479)
LPMusicCaps 7920 - - - - - - - - - (2839)
LPMusicMTT 51531 13386 - - - - - - - - 25863

Music4all˚ 104268 5000 449711 21543 - - - - - - 109269
MusicQA-Fin. 31116 - 38895 - - - - - - - 12543
MusicQA-Test - 2240 - 2800 - - - - - - 500

GTZAN˚ 639 290 2329 1116 - - - - - - 1000
MusicNet˚ 3791 140 - - - - - - - - 330

MTT˚ - - 78839 16100 - - - - - - (25863)
MTG-Jamendo˚ 45129 5144 177771 20308 - - - - - - 50273

BART-Fusion - - - - 55262 800 - - - - 14985
Tool-Using˚ - - - - - - 1612 403 - - 0

MuChoMusic - - - - - - - - - 1187 1187
Total 275704 54632 747545 61867 55262 800 1612 403 0 1187 221429

Table 5: OpenMU-Bench tasks and dataset distributions. “MusicQA-Fin.”: MusicQA-Finetuning. ˚: datasets with
our new annotations. Numbers in brackets are not included when calculating the total number of music clips, as
they represent captions annotated for the same set of music clips.

For the lyrics understanding subtask, we trained1089

OpenMU for 20 epochs, reusing the hyperparam-1090

eters from Stage (2). Similarly, for the tool using1091

subtask, we reused the Stage (2) hyperparameters1092

but reduced the number of epochs to 5 due to the1093

smaller dataset size for this task.1094

A.3 More results1095

We show the BertScore performances of different1096

OpenMU variants with various number of pooling1097

music tokens and LoRA parameters in Figure 6.1098

We also report the performance of OpenMU-1B in1099

Table 6.1100

A.4 Metadata of datasets1101

In this paper, we contribute to creating the large-1102

scale benchmark suite OpenMU-Bench for music1103

understanding.1104

In contrast to other modalities such as images,1105

where rich natural language descriptions are widely1106

available across the internet (Schuhmann et al.,1107

2022), music clips are often accompanied by tags,1108

such as genre, year, and instruments. We consider1109

these tags to be a form of metadata for the mu-1110

sic clips. When constructing OpenMU-Bench, we1111

bootstrap captions and reasoning texts in natural1112

language about the music clips based on this meta-1113

data by prompting GPT-3.5.1114

Table 7 demonstrates the various types of meta-1115

data used in the OpenMU-Bench subtasks to create1116

music understanding examples. Due to the broad1117

coverage, music clips from different OpenMU-1118

Bench subsets are associated with diverse types1119

of metadata. Even within the same subtask, differ-1120

ent music clips may be tagged with only a limited 1121

set of metadata types. We detail how we process 1122

the metadata of each music clip as follows. 1123

Tempo. Music clips in two datasets, music4all 1124

and GTZAN, are associated with tempo, and we 1125

convert the numerical values into natural language 1126

descriptions, following the Italian musical terms7 1127

as shown in image Figure 7. 1128

For energy, valence, danceability, which are 1129

float scores ranging from 0 to 1, we convert them 1130

into natural language descriptions using empirical 1131

thresholds of 0.3 and 0.7. Taking energy as an ex- 1132

ample, we consider a energy level s, where s ě0.7 1133

as a high energy level, 0.7ą s ě0.3 as a medium 1134

energy level, and 0.3ąs as a low energy level. 1135

For genre, mood, and instrument of Mu- 1136

sic4all, MTT, MTG-Jamendo, we merge their 1137

original metadata by manual annotations and cor- 1138

rections for consistency. Concretely, we keep 1139

the top 50 tags of MTT and MTG-Jamendo, fol- 1140

lowing the recommendation of the authors (Law 1141

et al., 2009a; Bogdanov et al., 2019), and use the 1142

top 166 tags of Music4all, as recommended by 1143

music4all_contrib8. The corrections involves 1144

actions such as de-compounding (“acousticguitar” 1145

Ñ “acoustic guitar”), unifying (“Female vocalists” 1146

Ñ “female vocal”), expanding (“synth” Ñ “syn- 1147

thesizer”) the tags, and the resulting metadata tags 1148

are list as follows: 1149

As a result, a JSON formatted metadata is cre- 1150

ated for each of the music clips: 1151

7Italian musical terms: https://www.musicca.com/
musical-terms.

8https://github.com/keunwoochoi/music4all_
contrib
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Figure 4: Training trajectories of Stage (1) (top) and Stage (2) (bottom). The x-axis represents the number of hours
elapsed, and the y-axis shows the training loss on a log scale. We vary the number of mean-pooling music tokens
from 2 to 128 and experiment with different LoRA parameter combinations, α{r. “MovingAvg” represents the
moving average.

BLEU-1 BLEU Rouge1 RougeL BertScore Meteor
OMU OMU-1B MUL Qwen OMU OMU-1B MUL Qwen OMU OMU-1B MUL Qwen OMU OMU-1B MUL Qwen OMU OMU-1B MUL Qwen OMU OMU-1B MUL Qwen

MCaps 25.62 21.07 9.78 26.16 2.89 3.18 0.73 4.74 27.99 26.35 21.22 26.98 18.56 18.23 15.64 19.83 86.63 85.74 86.85 87.15 21.83 25.67 11.03 19.30

MI-S 18.92 15.35 50.01 35.70 8.75 7.25 23.90 16.00 41.03 32.01 52.69 46.97 37.75 30.19 47.73 41.85 89.90 88.13 92.83 91.82 43.81 40.98 49.10 45.14

MI-L 36.66 36.78 2.13 9.36 4.18 4.52 0.18 0.73 38.74 38.99 19.34 22.55 21.70 22.23 13.55 15.17 87.24 87.37 85.90 85.65 24.43 24.69 8.83 11.54

MTT 23.83 15.57 18.87 11.49 2.56 1.78 0.56 0.28 29.23 25.10 21.68 16.93 21.57 18.91 16.07 13.50 89.75 88.34 88.37 86.33 24.60 24.07 13.96 12.54

M4A* 51.03 51.10 5.11 12.06 18.69 18.84 0.36 0.58 51.31 51.41 19.51 17.55 34.80 34.91 14.31 12.80 91.04 90.80 86.64 83.96 43.58 43.37 10.07 10.27

MQA 19.60 21.76 19.65 15.64 2.22 4.37 5.08 1.40 23.96 26.13 31.74 18.72 17.39 19.63 28.07 15.15 87.30 87.66 89.45 85.57 26.34 28.16 21.73 13.53

GTZAN* 45.38 45.90 4.56 12.22 11.78 11.35 0.32 0.50 44.01 44.15 20.41 17.04 27.62 27.45 15.17 12.42 89.34 89.10 87.03 84.16 34.71 33.81 10.65 9.63

MNet* 52.68 51.60 1.17 4.83 22.14 20.91 0.00 0.18 56.44 55.46 14.49 12.60 38.11 37.20 12.25 10.71 91.97 91.76 85.59 83.94 45.92 44.69 6.56 6.34

MTG-J.* 47.56 48.82 5.32 12.10 15.83 16.38 0.41 0.67 49.66 50.13 20.29 16.30 33.76 34.22 15.94 12.64 90.79 90.73 87.72 85.20 39.44 39.24 10.06 9.53

BLEU-1 BLEU Rouge1 RougeL BertScore Meteor
OMU OMU-1B MUL Qwen OMU OMU-1B MUL Qwen OMU OMU-1B MUL Qwen OMU OMU-1B MUL Qwen OMU OMU-1B MUL Qwen OMU OMU-1B MUL Qwen

M4A* 49.20 49.31 18.13 21.3 23.31 23.39 5.97 6.53 53.26 53.29 34.11 31.66 41.08 41.17 25.01 23.32 92.34 91.52 89.63 88.25 49.96 49.37 22.51 31.31

MQA 24.84 29.08 40.64 27.6 9.46 11.59 22.47 12.87 35.86 38.58 51.29 45.20 30.66 33.33 47.54 40.93 89.70 88.82 92.59 90.93 40.04 40.5 46.15 43.35

GTZAN* 50.26 50.56 16.16 22.61 22.07 22.19 5.95 7.13 52.96 52.87 35.18 33.17 38.57 38.42 26.20 24.09 92.02 91.43 89.89 88.28 46.87 45.86 21.84 31.64

MTT* 45.52 46.91 21.70 25.18 21.18 21.90 8.31 8.30 50.83 51.32 38.70 33.35 39.93 40.26 29.92 25.64 92.03 91.43 90.63 88.93 48.06 47.61 26.33 29.40

MTG-J.* 45.87 47.00 23.69 21.82 21.12 21.64 8.59 6.96 50.78 51.13 38.45 32.19 39.74 39.92 29.27 24.57 92.01 91.14 90.47 88.52 47.97 47.60 26.42 30.70

Table 6: OpenMU-Bench captioning (top) and reasoning (bottom) results (in %) of OpenMU-8B (OMU), OpenMU-
1B (OMU-1B), MU-LLaMA (MUL), and Qwen-Audio (Qwen). ˚: datasets with our new annotations.

{1152
"dataset_name": "music4all",1153
"audio_filename": "4MqXFtyr1XwxrShX.mp3",1154
"tempo": "walking pace tempo",1155
"valence": "medium valence",1156
"energy": "high energy",1157
"danceability": "medium danceable",1158
"genre": [1159
"rock",1160
"pop",1161
"electronic"1162

],1163
"mood": [1164
"ambient"1165

]1166
}1167

which is then employed to prompt GPT3.5 to cre- 1168

ate examples for music understanding, as described 1169

in the next section §A.5. 1170

A.5 Prompts and dataset format 1171

Based on the metadata of each music clip (§A.4), 1172

we prompt GPT-3.5 to generate examples for 1173

the music understanding tasks. Our prompts are 1174

adapted from those used by Gardner et al. (2024), 1175

with modifications tailored to the available meta- 1176

data of different OpenMU-Bench subsets and sub- 1177

tasks. As an example, we present the prompt used 1178

for the music captioning task in Music4All: 1179
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Tempo Energy Valence Danceability Genre Mood Instrument Others
Music4all ⃝ ⃝ ⃝ ⃝ △ △ △ △
GTZAN ⃝ ˆ ˆ ˆ ⃝ ˆ ˆ ˆ

MusicNet ˆ ˆ ˆ ˆ ˆ ˆ ⃝ ˆ

MTT ˆ ˆ ˆ ˆ △ △ △ △
MTG-Jamendo ˆ ˆ ˆ ˆ △ △ △ △

Table 7: The metadata associated with each subtask dataset in OpenMU-Bench. ⃝: the metadata, e.g., tempo, is
available for the music clips. △: the metadata maybe available for some music clips, but not for all of them. ˆ: the
metadata is not available for the music clips.

BLEU

BLEU-1

RougeL

Rouge1

Meteor

5 10152025303540

Performance on Captioning Tasks

Pool-8-128/64
Pool-32-128/64
Pool-128-128/64
Pool-8-128/32
Pool-32-128/32
Pool-128-128/32
Pool-8-128/16
Pool-32-128/16
Pool-128-128/16

Figure 5: OpenMU variants performance on OpenMU-
Bench captioning task. For each evaluation metric,
such as BLEU, we report the macro average of the
model’s performance across all OpenMU-Bench sub-
tasks. “Pool-8-128/16” represents mean pooling every
eight music tokens and using LoRA parameter 128

16 .

In short, we ask GPT-3.5 to generate an informa-1180

tive caption that can describe the key features and1181

components of the music clip, based on its internal1182

music knowledge accumulated during pretraining1183

and our provided rich metadata. The generated1184

results of the example in §A.4 is:1185

{1186
"instruction": "Explain the contents of this song.",1187
"output": "This music clip features high energy1188
with a walking pace tempo. It combines elements1189
from rock, pop, and electronic genres,1190
creating a dynamic and lively soundscape.1191
The medium valence contributes to a balanced1192
emotional tone, while the medium danceability1193
suggests a rhythmic and engaging quality,1194
suitable for movement and dance. The ambient1195
mood adds a layer of atmospheric texture to the1196
overall vibrant and energetic composition.",1197

"local_audio_path": "4MqXFtyr1XwxrShX.mp3",1198
"task": "captioning",1199
"dataset": "music4all_test"1200

},1201

which is then leveraged to train or test OpenMU1202

according to the dataset split.1203

A.6 Dataset splits1204

In this section, we provide details about the1205

train/test splits of the OpenMU-Bench subtasks.1206

Figure 6: Performance of OpenMU variants on the cap-
tioning and reasoning tasks of OpenMU-Bench using
BertScore as the metric.

Specifically, for MusicCaps, MusicInstruct, LP- 1207

MusicCaps, LPMusicMTT, MusicQA, MusicNet, 1208

BART-Fusion, and MuchoMusic, we follow the 1209

train/test splits proposed in the original papers. For 1210

GTZAN, we used the widely accepted filter-fault 1211

split (Kereliuk et al., 2015), and the split from 1212

MARBLE (Yuan et al., 2023) for MTT. 1213

For Music4All, we start with the 800 music clips 1214

from BART-Fusion as the initial test set. We then 1215

expand this set by randomly sampling music clips 1216

until the total reaches 5,000. The remaining music 1217

clips and their annotations are used as training data. 1218

For MTG-Jamendo, we use annotations where the 1219

music clips from folds 90 to 99 of the original 1220

dataset (Bogdanov et al., 2019) serve as the test 1221

data, while the remaining clips and their annota- 1222

tions are treated as training data. For tool using, we 1223

randomly sample 80% examples for training and 1224

20% for testing. 1225

A.7 Tools 1226

We define simple tools for solving MIR tasks such 1227

as tempo estimator. They are implemented as sim- 1228

ple Python wrapper to the Madmom toolkit (Böck 1229

et al., 2016), which has been widely used in MIR. 1230

For example, the tempo estimator can be imple- 1231

mented as: 1232

from madmom.features.beats import RNNBeatProcessor 1233
from madmom.features.tempo import TempoEstimationProcessor 1234

1235
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Walking Pace

Figure 7: Converting numerical values (in beats per minute; BPM) of music tempo to natural language descriptions.
The conversion is done based on the Italian musical terms.

Metadata of genre, instrument, mood, and others

Genre:
instrumental, triphop, world, pop punk, hardcore, metalcore, mb, 70s,
death metal, dream pop, brazilian, easylistening, classical, metal,
rock, instrumental pop, 90s, dance, reggae, acoustic, 80s, orchestral,
lounge, indie pop, british, electronic, pop, soul, experimental,
hip-hop, indian, indie, indie rock, heavy metal, 60s, punk,
progressive rock, synthpop, jazz, hard rock, post-hardcore, funk,
alternative rock, new age, post-punk, pop rock, trance, mpb, pop folk,
classic rock, techno, soundtrack, new wave, atmospheric, land,
lo-fi, downtempo, rap, folk, opera, house

Instrument:
harpsichord, piano, strings, choral, flute, vocal, keyboard, violin,
drums, computer, bass, harp, drum machine, acoustic guitar, electric
guitar, no vocal, electric piano, synthesizer, cello, female vocal,
guitar, male vocal, sitar

Mood:
psychedelic, soft, energetic, film, weird, ambient, loud, slow,
chillout, relaxing, quiet, fast, happy, emotional

Others:
beats, solo, singer-songwriter

def EstimateTempo():1236
wav = load_audio(AUDIO_FILE)1237
beat_proc = RNNBeatProcessor()1238
tempo_proc = TempoEstimationProcessor(fps=100)1239
beat_acts = beat_proc(wav)1240
tempo_acts = tempo_proc(beat_acts)1241
tempo_est = round(tempo_acts[0][0], 1)1242
return tempo_est1243

OpenMU then calls for such a tool to estimate1244

the tempo, when being asked questions such as “Let1245

me know the tempo of this music clip.” and reply-1246

ing with “The music has tempo [EstimateTempo()1247

Ñ n] beats per minute.”.1248

Note that in our actual implementations, we use1249

pseudo tool names, e.g., F1, for the tools. We found1250

that the LLM tends to hallucinate new tools when1251

camel case names like "EstimateTempo" are used,1252

likely due to the presence of code in its pretraining1253

data (Dubey et al., 2024).1254
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Example prompt used for Music4all

You are an expert AI assistant that is knowledgeable about music
production, musical structure, music history, and music styles, and
you are hearing audio of a short clip or loop extracted from a piece
of music. What you hear is described in a JSON-format shown below,
describing the same audio clip you are listening to. This description
is provided in a JSON dictionary, where the keys and values represent
attributes of the music clip. The JSON contains a set of fields
describing various features of the music clip.

Specifically, the JSON will contain:
- "tempo": the tempo of this music clip.
- "energy": the energy level of the music clip. High energy means

fast, loud, and noisy. For example, death metal has high energy,
while a Bach prelude scores low on energy. Perceptual features
contributing to this attribute include dynamic range, perceived
loudness, timbre, onset rate, and general entropy.

- "valence": the valence level of the music clip. Valence measures
the musical positiveness conveyed by the song. High valence
value means the song is more positive (e.g. happy, cheerful,
euphoric), otherwise the song is more negative (e.g. sad,
depressed, angry).

- "danceability": danceable level of this music clip. Danceability
measures how suitable a song is for dancing based on a
combination of musical elements including tempo, rhythm
stability, beat strength, and overall regularity.

Optionally, the JSON may contain the following OPTIONAL annotations of
the song:

- "genre": a list of genres of the music clip.
- "mood": a list of possible moods of the music clip.
- "instrument": a list of possible instruments used by the music

clip.
- "others": other informative factors of the music clip.

You should only use the optional annotations when provided. Otherwise,
you MUST NOT mention them in the description.

Based on the JSON, **provide a detailed musical description of the
clip, from the perspective of a musical expert describing the clip as
they hear it being played**. Use your knowledge about music to make
sure to describe the musical style and contents, and any unique
features of the music clip.

Describe the music clip using a tone of describing facts. DO NOT USE
languages such as "I hear ...". Just provide musical captions to the
clip.

Only provide details that are based on the provided metadata or your
background knowledge of music as an intelligent AI assistant. Explain
any musical concepts that would be unfamiliar to a non-musician. Do
not specifically reference the provided metadata in the response;
instead, respond as if you are hearing the song and reporting a rich
description of what you hear. Keep in mind that the music clip is only
a short clip, loop, or part of a song, and NOT THE COMPLETE SONG.

IMPORTANT!! DO NOT use the word "metadata" anywhere in your
descriptions. DO NOT disclose that metadata about the song is provided
to you. DO NOT use the phrase "song data" anywhere. Do not reveal that
you know details of how the music clip was produced; instead, use
phrases like "it sounds like XXX instrument" or "what I hear might be
a YYY microphone". Now please provide the musical description of the
clip, strictly following above requirements.

17


	Introduction
	Related work
	Constructing OpenMU-Bench
	OpenMU-Bench task types
	Individual datasets
	Evaluation metrics

	OpenMU
	Model architecture
	Training details

	Training OpenMU
	Number of music tokens
	LoRA parameters
	Results and ablations

	Overall results
	Conclusion
	Appendix
	OpenMU-Bench data statistics
	Training details and hyperparameters
	More results
	Metadata of datasets
	Prompts and dataset format
	Dataset splits
	Tools


