
Error Bounds for Physics-Informed Neural Networks in Fokker-Planck PDEs

Chun-Wei Kong1 Luca Laurenti2 Jay McMahon1 Morteza Lahijanian1

1Dept. of Aerospace Eng. Sciences, University of Colorado Boulder
2Center for Systems and Control , Delft University of Technology

Abstract

Stochastic differential equations are commonly
used to describe the evolution of stochastic pro-
cesses. The state uncertainty of such processes is
best represented by the probability density func-
tion (PDF), whose evolution is governed by the
Fokker-Planck partial differential equation (FP-
PDE). However, it is generally infeasible to solve
the FP-PDE in closed form. In this work, we show
that physics-informed neural networks (PINNs)
can be trained to approximate the solution PDF.
Our main contribution is the analysis of PINN ap-
proximation error: we develop a theoretical frame-
work to construct tight error bounds using PINNs.
In addition, we derive a practical error bound that
can be efficiently constructed with standard train-
ing methods. We discuss that this error-bound
framework generalizes to approximate solutions of
other linear PDEs. Empirical results on nonlinear,
high-dimensional, and chaotic systems validate the
correctness of our error bounds while demonstrat-
ing the scalability of PINNs and their significant
computational speedup in obtaining accurate PDF
solutions compared to the Monte Carlo approach.

1 INTRODUCTION

Stochastic differential equations (SDEs) are widely used to
model the evolution of stochastic processes across various
fields, including sciences, engineering, and finance. In many
of these applications, particularly in safety-critical domains,
a key concern is understanding how the state uncertainty in
SDEs propagates over space and time. This state uncertainty
can be represented by probability density function (PDF),
which is governed by the Fokker-Planck partial differential
equation (FP-PDE). However, analytical solutions for gen-
eral FP-PDEs are unavailable, and numerical methods—e.g.,

finite elements or finite difference [Spencer and Bergman,
1993, Drozdov and Morillo, 1996, Masud and Bergman,
2005, Pichler et al., 2013, Qian et al., 2019, Ureña et al.,
2020]—are typically employed, but these methods scale
poorly as the dimensionality grows beyond three [Tabandeh
et al., 2022]. Recent advancements in deep-learning sug-
gest physics-informed learning frameworks, called physics-
informed neural networks (PINNs), can effectively learn
PDE solutions, showing notable success in handling high-
dimensional systems (up to 200 dimensions) and complex
geometries [Sirignano and Spiliopoulos, 2018, Lu et al.,
2021]. Despite their effectiveness, PINNs are still subject
to approximation errors, a crucial concern in safety-critical
systems. In this work, we tackle this challenge by develop-
ing a novel framework to approximate FP-PDE solutions
using PINNs and rigorously bounding the approximation
error.

Recent works on using PINNs to approximate solutions to
PDEs typically analyze approximation errors in terms of
total error, capturing cumulative approximation error across
space and time [De Ryck and Mishra, 2022b,a, Mishra and
Molinaro, 2023, De Ryck et al., 2024]. While useful in some
applications, this approach is less informative for SDEs and
their PDF propagation. Moreover, total error bounds are
often overly loose, sometimes exceeding the actual errors by
several orders of magnitude. Crucially, these bounds do not
provide insight into the worst-case approximation error at
specific time instances or within particular subsets of space,
which is essential in many stochastic systems. For exam-
ple, in autonomous driving scenarios involving pedestrian
crossings, accurate prediction and bounding the probability
of collision requires precise reasoning over specific time
instances and spatial regions. Loose over-approximations
can lead to undesirable behaviors, such as sudden braking.

In this work, we show how PINNs can be used to approxi-
mate solutions to FP-PDE (i.e., PDF of an SDE’s state) and,
more importantly, introduce a framework for tightly bound-
ing the worst-case approximation error over the subset of
interest in state space as a function of time. Our key insight
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is that the approximation error is related to the residual of
the FP-PDE and is governed by another PDE. Hence, a sec-
ond PINN can be used to learn the error, with its own error
also following a PDE. This results in a recursive formulation
of error functions, each of which can be approximated using
a PINN. We establish sufficient training conditions under
which this series converges with a finite number of terms.
Specifically, we prove that two PINNs are enough to obtain
arbitrarily tight error bounds. Additionally, we derive a more
practical bound requiring only one error PINN at the cost
of losing arbitrary tightness, and provide a method to verify
its sufficient condition. Furthermore, we propose a training
scheme with regularization and discuss extensions to other
linear PDEs. Finally, we illustrate and validate these error
bounds through experiments on several SDEs, supporting
our theoretical claims.

In short, the main contribution is five-fold:

• a method for approximating the PDF of processes mod-
eled by SDEs using PINNs,

• a novel approach to tightly bound the approximation
error over time and space through a recursive series of
error functions learned by PINNs,

• a proof that this recursive process converges with only
two PINNs needed for arbitrarily tight bounds,

• the derivation of a more practical error bound requir-
ing just one PINN, along with a method to verify its
sufficiency, and

• validation of the proposed error bounds through exper-
iments on several SDEs.

Related Work Research on using PINNs to approximate
PDE solutions often focuses on total error, which represents
the cumulative error across all time and space. For instance,
Mishra and Molinaro [2023] derive an abstract total error
bound. Nevertheless, their numerical experiments reveal
that this total error bound is loose, exceeding the actual
errors by nearly three orders of magnitude. A similar ap-
proach is extended to Navier-Stokes equations [De Ryck
et al., 2024], with comparable results. De Ryck and Mishra
[2022a] consider FP-PDEs derived from linear SDEs only.
They propose an abstract approach to bound the total error,
but no numerical experiments are presented. De Ryck and
Mishra [2022b] also derive total error bounds for PINNs
(and operators) assuming a priori error estimate. In con-
trast, our work emphasizes bounding the worst-case error at
any time of interest for general SDEs, which is particularly
valuable in practical applications of stochastic systems (e.g.,
systems subject to chance constraints [Oguri and McMahon,
2021, Paiola et al., 2024]).

To demonstrate the approximation capabilities of neural net-
works, error analysis is a key. For example, Hornik [1991]
proves that a standard multi-layer feed-forward neural net-
work can approximate a target function arbitrarily well.

Yarotsky [2017] considers the worst-case error and shows
that deep ReLU neural networks are able to approximate
universal functions in the Sobolev space. Recently, deep op-
erator nets (DeepONet) have been suggested to learn PDE
operators, with Lanthaler et al. [2022] proving that for every
ϵ > 0, there exists DeepONets such that the total error is
smaller than ϵ. While these studies show the capabilities of
neural networks, they do not address the critical question:
what are the quantified errors for a given neural network ap-
proximation? This is the central issue tackled by our work.

Error estimates have also been investigated when neural
networks are trained as surrogate models for given target
functions. For instance, Barron [1994] derives the error be-
tween the learned network and target function in terms of
training configurations. To learn a latent function with quan-
tified error, Gaussian process regression [Archambeau et al.,
2007] is often employed, where observations of an underly-
ing process are required to learn the mean and covariance.
Recently, Yang et al. [2022] estimate the worst-case error
given target functions and neural network properties. Nev-
ertheless, a fundamental difference between our work and
these studies is that we do not assume knowledge of the
true solutions (latent functions) or rely on data from the
underlying processes.

Solving PDEs is an active research area with various es-
tablished approaches. For the FP-PDE equation, numerical
methods, such as the finite elements, finite differences, or
Galerkin projection methods, have been employed [Spencer
and Bergman, 1993, Drozdov and Morillo, 1996, Masud
and Bergman, 2005, Chakravorty, 2006, Pichler et al., 2013,
Qian et al., 2019, Ureña et al., 2020]. For PDF propagation,
instead of solving the FP-PDE, some approaches perform
a time-discretization of the SDE and use Gaussian mixture
models [Terejanu et al., 2008]. Recent works [Khoo et al.,
2019, Song et al., 2025, Lin and Ren, 2024] employ nu-
merical methods for approximating transition probability
between two regions, which is also governed by the FP-PDE.
While these studies show accurate approximations from pos-
terior evaluation, they can be computationally demanding
and often lack rigorous error quantification and bounding.

2 PROBLEM FORMULATION

The aim of this work is state uncertainty propagation with
quantified error bounds for continuous time and space
stochastic processes using deep neural networks. We specif-
ically focus on (possibly nonlinear) Stochastic Differential
Equations (SDEs) described by

dx(t) = f(x(t), t)dt+ g(x(t), t)dw(t), (1)

where t ∈ T ⊆ R≥0 is time, x(t) ∈ X ⊆ Rn is the sys-
tem state at time t, and w(t) ∈ Rm is a standard Brownian
motion. For Ω = X × T , function f : Ω → Rn repre-
sents the deterministic evolution of the system, and function



g : Ω → Rn×m is a term that defines the coupling of the
noise. We assume that f(x, t) and g(x, t) satisfy the usual
regularity conditions (e.g., see Evans [2022, Ch. 7.1]), and
denote the i-th dimension of f and (j, k)-th element of g by
fi and gjk, respectively. The initial state x(0) is a random
variable distributed according to a given probability density
function (PDF) p0 : X → R≥0, i.e., x(0) ∼ p0. We assume
that p0 is bounded and smooth.

The solution to the SDE in Eq. (1) is a stochastic process
x with a corresponding PDF p : Ω → R≥0 over space
and time, i.e., x(t) ∼ p(·, t) [Øksendal, 2003]. PDF p is
governed by the Fokker-Planck partial differential equation
(FP-PDE):

∂p(x, t)

∂t
+

n∑
i=1

∂

∂xi
[fip(x, t)]−

1

2

n∑
i=1,j=1

∂2

∂xi∂xj

[
m∑

k=1

gikgjkp(x, t)

]
= 0, (2)

and must satisfy the initial condition

p(x, 0) = p0(x) ∀x ∈ X. (3)

To simplify notation, we denote by D[·] the differential
operator associated with the FP-PDE, i.e.,

D[·] := ∂

∂t
[·]+

n∑
i=1

∂

∂xi
[fi·]−

1

2

n∑
i,j=1

∂2

∂xi∂xj

[
m∑

k=1

gikgjk·

]
.

Then, Eqs. (2) and (3) can be rewritten in a compact form as

D[p(x, t)] = 0 subject to p(x, 0) = p0(x). (4)

Note that, since f and g are assumed to be regular, the
PDE in Eq. (4) is well-posed, i.e., there exists a smooth and
unique solution.

Obtaining solution p(x, t) to Eq. (4) in closed-form is gener-
ally not possible, and even numerical approaches are limited
to simple SDEs [Spencer and Bergman, 1993, Drozdov and
Morillo, 1996, Masud and Bergman, 2005, Chakravorty,
2006, Pichler et al., 2013, Qian et al., 2019, Ureña et al.,
2020]. In this work, we focus on using PINNs to approxi-
mate p, and crucially, we aim to formally bound the resulting
approximation error.

Problem 1 Given FP-PDE in Eq. (4), a bounded subset
X ′ ⊂ X , and a bounded time interval T ′ ⊂ T , train
a neural network p̂(x, t) that approximates the solution
p(x, t), and for every t ∈ T ′ construct an error bound
B : T ′ → R>0 such that

sup
x∈X′

|p(x, t)− p̂(x, t)| ≤ B(t). (5)

Note that no data is assumed on p. Instead, our approach
leverages the governing Eq. (4) for both training p̂ and quan-
tifying its error. Specifically, we first show that existing

PINN training methods for PDE solutions can be adapted to
approximate p effectively if the training loss is sufficiently
small. Then, we show that the resulting approximation error
can be written as a series of approximate error functions,
each of which satisfying a PDE similar to Eq. (4). This
implies that each error function itself can be approximated
using a PINN. Then, we derive conditions, under which
only a finite number of such PINNs is needed to obtain a
guaranteed error bound B(t).

Remark 1 While we focus on p̂ being a neural network,
our method of deriving error bound B(t) is not limited to
neural networks and generalizes to any smooth function p̂
that approximates the true solution p.

3 PDF APPROXIMATION AND ERROR
CHARACTERIZATION VIA PINNS

Here, we first describe a method for training a neural net-
work to approximate PDF p(x, t) for Problem 1, and then
derive a recursive error-learning approach to estimate the
approximation error.

Learning PDF p We approximate p(x, t) by learning
a neural network p̂(x, t; θ), where θ represents the pa-
rameters. During training, spatio-temporal data points
{(xj , 0)j}N0

j=1, {(xj , tj)j}Nr
j=1 ⊂ Ω, for some N0, Nr ∈ N,

are sampled, and the loss function is derived from the gov-
erning physics in Eq. (4) as

L = w0L0 + wrLr, (6)

where w0, wr ∈ R+ are the weights, and

L0 =
1

N0

N0∑
j=1

(
p0(xj)− p̂(xj , 0; θ)

)2
, (7a)

Lr =
1

Nr

Nr∑
j=1

(
D[p̂(xj , tj ; θ)]

)2
. (7b)

The loss function in Eq. (6) quantifies the deviation of the
true and approximate solutions in terms of the initial condi-
tion (L0) and the infinitesimal variation over space and time
(Lr). The parameters of p̂(x, t; θ) are learned by minimizing
the loss function, i.e., θ∗ = argminL.

We note that overfitting can arise if the training samples in
Eqs. (7) do not sufficiently cover the domain Ω. To address
this, we rely on common sampling practices in PINNs (e.g.,
uniformly sampled [Sirignano and Spiliopoulos, 2018])
along with an adaptive sampling method in Lu et al. [2021]
to improve sampling efficiency (see Appendix C for details).

Assumption 1 p̂ : Ω → R is assumed to be smooth.



Assumption 1 is present because p̂ is trained by the physics-
informed loss in Eq. (6), in which the second term Lr re-
quires the computation of the first and second derivatives
with respect to time and space, respectively. To satisfy As-
sumption 1, smooth activation functions (e.g., Tanh and
Softplus) can be used in the architecture of p̂(x, t; θ). While
p̂ here is real-valued, one can further ensure p̂ ≥ 0 using
non-negative activation functions (e.g., exponent or squared)
for the last layer.

The weights w0 and wr in Eq. 6 balance the initial-condition
and PDE-residual terms. Although tuning these weights can
affect the speed of convergence in practice, the training
convergence does not rely on finding optimal weights [Shin
et al., 2020, Mishra and Molinaro, 2023].

We emphasize that this method of training requires only the
initial PDF p0(x) and differential operator D, allowing loss
evaluation on unlimited space-time samples. This key dis-
tinction sets PINNs apart from data-driven learning, which
relies on (limited) data of (unavailable) true solution p.

Recursive Learning of Approximation Error Given
trained p̂, we show that its approximation error can be
characterized as a series of approximate solutions to PDEs.
Specifically, we define the error as

e1(x, t) := p(x, t)− p̂(x, t). (8)

Note that FP-PDE operator D is a linear operator; hence, by
applying it to e1, we obtain:

D[e1] = D[p− p̂] = D[p]−D[p̂].

As D[p] = 0, we can see that the error is essentially related
to the residue of D[p̂]. Then, we can define the governing
PDE of e1(x, t) as

D[e1] +D[p̂] = 0 s.t. e1(x, 0) = p0(x)− p̂(x, 0). (9)

Hence, using a similar approach as in Eqs. (6) and (7),
a PINN can be trained to approximate e1(x, t) using its
governing physics in Eq. (9). Based on this, we can define
the i-th error and its associated approximation in a recursive
manner.

Definition 1 (i-th error and approximation) Let e0 := p
and ê0 := p̂. For i ≥ 1, we define the i-th error

ei(x, t) := ei−1(x, t)− êi−1(x, t),

where each êi is a smooth and bounded function constructed
by PINN to approximate ei. Each ei is the solution to the
recursive PDE

D[ei(x, t)] +

i∑
j=1

D[êj−1(x, t)] = 0 s.t.

ei(x, 0) = ei−1(x, 0)− êi−1(x, 0).

By the construction in Definition 1, the approximation error
e1(x, t), for every choice of n ≥ 0, is given by

e1(x, t) = p(x, t)− p̂(x, t)

=

n∑
i=1

êi(x, t) + en+1(x, t). (10)

Although this recursive procedure estimates the unknown
approximation error e1, it does not directly provide a worst-
case error bound. This is because, regardless of how many
êi, i = 1, 2, . . . , n, are constructed, an unquantified error
term en+1 always remains. To address this, we present our
error bound theory in the next section.

4 ARBITRARY TIGHT ERROR BOUND

Here, we derive upper bounds for the approximation error
e1, specifically, for the right-hand side of Eq. (10). We show
that, by training just two PINNs under certain sufficient con-
ditions, the series can be bounded with arbitrary precision.
All proofs for the lemmas and theorems are provided in
Appendices A.2–A.6.

First, we express how well êi approximates the i-th error ei
by defining the relative approximation factor αi(t) as

αi(t) :=
maxx∈X′ |ei(x, t)− êi(x, t)|

maxx∈X′ |êi(x, t)|
. (11)

Recall from Definition 1 that ei−êi = ei+1. Hence, Eq. (11)
can be written in a recursive form as

max
x∈X′

|ei+1(x, t)| = αi(t) max
x∈X′

|êi(x, t)|, (12)

which relates the unknown (i+ 1)-th error to the i-th error
approximation. Now, let e∗i (t) and ê∗i (t) denote the maxi-
mum of ei(x, t), êi(x, t) over X ′, respectively, i.e.,

e∗i (t) := max
x∈X′

|ei(x, t)|, (13a)

ê∗i (t) := max
x∈X′

|êi(x, t)|. (13b)

Recall that each êi(x, t) can be represented using a PINN.
Hence, it is safe to assume that the absolute value of its
upper-bound is strictly greater than zero.

Assumption 2 Assume that, for all 1 ≤ i < n, ê∗i (t) > 0.

Then, the following lemma upper-bounds the approximation
error e1(x, t) using ê∗i (t).

Lemma 1 Consider the approximation error e1(x, t) =
p(x, t) − p̂(x, t) in Eq. (10) with n ≥ 2, and the upper-
bounds ê∗i (t) for 1 ≤ i < n in Eq. (13). Define ratio

γ i+1
i
(t) :=

ê∗i+1(t)

ê∗i (t)
. (14)



Then, under Assumption 2, it holds that, ∀x ∈ X ′,

|e1(x, t)| ≤ ê∗1(t)
(
1 +

n∑
m=2

m−1∏
i=1

γ i+1
i
(t)

+
e∗n+1

ê∗n−1

n−2∏
i=1

γ i+1
i
(t)

)
(15)

Next, we derive an upper- and lower-bound for the ratio
γ i+1

i
(t) in Eq. (15) using αi(t).

Lemma 2 If the relative approximation factors αi(t) < 1
for all 2 ≤ i < n, then

αi−1(t)

1 + αi(t)
≤ γ i

i−1 (t)
≤ αi−1(t)

1− αi(t)
. (16)

Lemma 2 establishes the relationship between ratio γ i
i−1

and relative approximation factors αi under condition αi <
1. Intuitively, this condition holds when êi approximates
ei reasonably well (see Eq. (11)). Lastly, we show that
under certain conditions on α1 and α2, an ordering over
γ 2

1
, γ 3

2
, . . . , γ i

i−1
can be achieved.

Lemma 3 If, for all t ∈ T ′,

0 < α1(t) < 1, (17a)
0 < α2(t) < 1− α1(t), (17b)

α2(t)(1 + α2(t)) < α1(t)
2, (17c)

then there exist feasible 0 ≤ αi(t) < 1 for 2 < i < n such
that

γ i
i−1

(t) < γ 2
1
(t) < 1. (18)

The intuition behind Lemma 3 is that if ê1 and ê2 are
trained to certain accuracy (satisfying Conditions 17), then
there exist feasible ê3, ê4, . . . , ên−1 such that the ratios
γ 3

2
, γ 4

3
, . . . , γn−1

n−2
are upper bounded by γ 2

1
< 1. Equipped

with Lemmas 1-3, we can state our main result, which is an
upper-bound on the approximation error of p̂. Specifically,
the following theorem shows that the approximation error
bound in Lemma 1 becomes a geometric series as n → ∞
under Conditions 17; hence, solving Problem 1.

Theorem 1 (Second-order error bound) Consider Prob-
lem 1 and two approximate error functions ê1(x, t), ê2(x, t)
constructed by Definition 1 that satisfy Conditions 17. Then,

|p(x, t)− p̂(x, t)| ≤ B2(t) = ê∗1(t)
( 1

1− γ 2
1
(t)

)
, (19)

where ê∗1(t) is defined in Eq. (13), and γ 2
1
(t) = ê∗2(t)/ê

∗
1(t).

The above theorem shows that the second-order error bound
B2(t) can be obtained by training only two PINNs that
approximate the first two errors e1, e2 according to Defini-
tion 1 and that satisfy Conditions 17. In fact, using these
two PINNs, it is possible to construct an arbitrary tight B2

as stated below.

Theorem 2 (Arbitrary tightness) Given Problem 1 and
tolerance ϵ ∈ (0,∞) on the error bound, an error bound
B2(t) in Theorem 1 can be obtained by training two approx-
imate error functions ê1(x, t) and ê2(x, t) through physics-
informed learning such that

B2(t)− max
x∈X′

|e1(x, t)| < ϵ. (20)

The proof of Theorem 2 is based on the observation that
γ 2

1
→ 0 when (i) ê1(x, t) → e1(x, t) and (ii) ê2(x, t) →

e2(x, t). Then, according to Eq. (19), B2(t) → ê∗1(t), which
itself ê∗1(t) → e∗1(t) under (i). By the theoretical conver-
gence of PINNs [Shin et al., 2020, Mishra and Molinaro,
2023], ê1 and ê2 can be made arbitrary well; thus B2 can
be arbitrary tight. This result is important because it shows
that arbitrary tightness can be achieved without the need for
training infinite number of PINNs, i.e., êi, i = 1, 2, . . .

Remark 2 The construction of B2(t) in Theorem 1 only
requires the values of ê∗1(t) and γ 2

1
(t) which are obtained

from the known functions ê1(x, t), ê2(x, t). Checking for α1

and α2 conditions can be performed a posterior.

Feasibility Analysis Now, we analyze the feasibility for
ê1 and ê2 satisfying Conditions 17 in Theorem 1. Specifi-
cally, Condition 17a on α1 indicates that ê1 must be learned
well enough so that the magnitude of its maximum approxi-
mation error is less than its own maximum magnitude (see
Eq. (11)). By fixing α1, Conditions 17b-17c on α2 require
ê2 to approximate e2 more accurately than the approxima-
tion of e1 by ê1. These conditions are feasible in principle
by the same convergence argument above. However, there
are some practical challenge as discussed below.

Practical Challenge The challenge to construct B2(t)
stems from the condition that ê2 needs to approximate e2 far
more accurately than ê1 approximates e1, making training
a PINN for ê2 extremely difficult. Additionally, since the
explicit values of α1 and α2 are unknown, there is no clear
criterion for determining when to stop training ê1 and ê2. To
address this, we provide a method for verifying the condition
on α1 and derive a bound that depends only on this condition
below.

5 FIRST-ORDER ERROR BOUND

Here, we introduce a first-order error bound using a single
PINN, overcoming the challenge of obtaining B2. We also



provide an implicit formula to determine training termina-
tion. Additionally, we discuss the feasibility of this approach,
outline our training scheme, and explore relevant extensions.
Complete proofs can be found in Appendices A.7 and A.8.

By considering Eq. (10) with n = 2 and using Lemmas 1
and 2, we can derive the first-order error bound, as stated in
the following corollary.

Corollary 1 (First-order error bound) Consider Prob-
lem 1, and let ê1 be trained such that α1(t) < 1 for all
t ∈ T ′. Then

|p(x, t)− p̂(x, t)| < B1(t) = 2ê∗1(t). (21)

Note that the first-order error bound B1(t) can be at most
twice as large as the arbitrary tight second-order bound
B2(t) in Theorem 1, but it offers significant practical advan-
tages. Firstly, the second-order bound B2(t) requires train-
ing a second PINN ê2 after training ê1. However, achieving
the required accuracy for ê2 in practice is quite challeng-
ing. In contrast, the first-order bound in Corollary 1 relies
solely on the approximation provided by a single PINN, ê1.
Secondly, the condition α1(t) < 1 can be verified during ê1
training using properties of the FP-PDE, as detailed below.

Checking α1 < 1 Condition From the definition of
α1(t) in Eq. (11), it suffices to bound the unknown term
|e1(x, t)−ê1(x, t)| for all (x, t) ∈ Ω to check for α1(t) < 1.
We do this by using three constants: the first two constants
are related to PDE stability and quadrature rules [Mishra and
Molinaro, 2023], and the third constant comes from Sobolev
embedding theorem [Hunter and Nachtergaele, 2001, Theo-
rem 12.71][Mizuguchi et al., 2017].

The first constant Cpde is related to the stability of the first
error PDE, which is defined as

∥e1 − ê1∥Z ≤ Cpde∥(D[e1] +D[p̂])− (D[ê1] +D[p̂])∥Y ,

where Z = W k,q norm , Y = Ls norm, 1 ≤ s, q < ∞, and
k ≥ 0. Note that since e1, ê1 and (D[e1]+D[p̂])− (D[ê1]+
D[p̂]) = 0 − (D[ê1] + D[p̂]) are bounded , such constant
Cpde exists.

The second constant Cquad > 0 is related to the devia-
tion between integral and its approximation with finite sam-
ples. Let I =

∫
Ω

(
D[ê1(x, t)] + D[p̂(x, t)]

)
dxdt be the

integral of interest, and Ī =
∑N

j=1 wj

(
D[ê1(xj , tj)] +

D[p̂(xj , tj)]
)

be its associated approximation, where

{(xj , tj)j}Nj=1 ∈ Ω is a set of N quadrature points, and
wj ∈ R>0 are weights according to the quadrature rules.
Then Cquad is defined such that, for some β > 0,

∣∣I − Ī
∣∣ ≤

CquadN
−β .

The third constant Cembed from Sobolev embedding theo-

rem is defined as

∥e1(x, t)− ê1(x, t)∥∞ ≤ Cembed∥e1(x, t)− ê1(x, t)∥W 1,q .

Constant Cembed exists because e1(x, t) and ê1(x, t) are
bounded (per Definition 1), and the first derivatives of
e1(x, t) and ê1(x, t) are also bounded over the considered
domain of Problem 1. With these constants, we propose an
implicit checking formula for α1(t) < 1.

Proposition 1 (Checking α1(t) < 1) Let
{(xj , tj)j}Nj=1 ∈ Ω be N space-time samples based
on quadrature rules, ê1(x, t) be the first error approxi-
mation, and L(1) be the physics-informed loss of ê1(x, t)
evaluated on the set {(xj , tj)j}Nj=1. Then for some q ≥ 2
and β > 0, α1(t) < 1 for all t ∈ T ′ if

CembedCpde

(
L(1) + C

1
q

quadN
−β
q

)
< min

t
ê∗1(t). (22)

By Proposition 1, it is clear that as the training loss de-
creases (L(1) → 0) with sufficiently large number of sam-
ples (N → ∞), the left-hand side of Eq. (22) approaches
zero. Hence, condition α1 < 1 can be satisfied as validated
in our numerical evaluations.

Note that, for the constants in Proposition 1, it is sufficient
to have upper bounds. Specifically, Mishra and Molinaro
[2023] show a method of over-estimating Cpde. Constant
Cembed depends on the domain geometry [Mizuguchi et al.,
2017]. Also note that a sufficiently large N can ensure
CquadN

−β ≪ 1.

Training Scheme for First-Order Error Bound Guided
by Proposition 1, our goal is to train ê1 to achieve suffi-
ciently small loss. By the PINN loss in Eq. (6) and the PDE
of the first error in Eqs. (8) and (9), the training loss of ê1
is:

L(1) = w0L(1)
0 + wrL(1)

r , (23a)

L(1)
0 =

1

N0

N0∑
k=1

(
p0(xk)− p̂(xk, 0)− ê1(xk, 0)

)2
, (23b)

L(1)
r =

1

Nr

Nr∑
k=1

(
D[ê1(xk, tk)] +D[p̂(xk, tk)]

)2
. (23c)

By Eq. (23b)–(23c), we see that training ê1 requires inputs
from neural network p̂ and its derivatives D[p̂]. This could
lead to difficult training for ê1 if the input D[p̂] is highly
oscillating even when p̂ is smooth by construction [Zhao
et al., 2023]. To address this issue, we implement a regu-
larization loss to prevent rapid changes in D[·] of the first
PINN p̂. Specifically, we train p̂ by adding the following
regularization loss to Eq. (6):

L∇ =
1

Nr

Nr∑
k=1

∥∇
(
D[p̂(xk, tk)]

)
∥22, (24)
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Figure 1: second-order error bound B2(t) on 1D Linear system

10 410 310 210 1

e1 Train loss

0

1

2

3

4

5

1

1D-NL
2D-Pendulum
2D-Duffing
3D-TVOU
7D-TVOU
10D-TVOU

Figure 2: α1(t), t ∈ T ′ vs train loss of ê1, for
all first-order error bound experiments.

where ∇ is the gradient operator and ∥ · ∥2 is the L2 norm.
We note that this regularization loss does not violate the
paradigm of physics-informed learning, because as the resid-
ual of D[·] → 0 for all (x, t) ∈ Ω, the gradient of the differ-
ential residual ∇(D[·]) also converges to zero. In fact, this
regularization is investigated in Yu et al. [2022] to improve
training stability of PINNs. Note that such gradient regular-
ization loss in Eq. (24) is not applied to the training of ê1 in
Eqs. (23) because D[ê1] is not used to train subsequent error
functions. A detailed description of our training scheme is
provided in Appendix C.

Remark 3 Finally, we note that, while the presented ap-
proach focuses on FP-PDE and training an approximate
PDF p̂ and bounding its error, the only essential require-
ment is that the FP-PDE operator D[·] is linear. Therefore,
this approach naturally extends to other linear PDEs sub-
ject to initial and boundary conditions (e.g., Dirichlet and
Neumann conditions). We illustrate this in a case study in
Appendix A.9, B.6, and C.8.

6 EXPERIMENT

We demonstrate our proposed error bound approach via sev-
eral numerical experiments. First, we illustrate a synthetic
second-order error bound on a simple linear system. Then,
we present our main applications of the first-order error
bound for non-trivial systems including nonlinear, chaotic,
and high dimensional SDEs. The details of these systems
are provided in Appendix B. For all the experiments, fully
connected neural networks are used for both p̂(x, t) and
ê1(x, t). Throughout all experiments, we employ a fixed
weighting scheme for training (see Appendix C). More so-
phisticated weight-tuning strategies (e.g., Basir and Senocak
[2023] and references therein) have been shown to enhance
PINN accuracy and could further improve the results re-
ported here. The code implemented in Python and Pytorch
is available on GitHub [Kong, 2025]. All the experiments

are conducted on a MacBook Pro with Apple M2 processor
and 24GB RAM.

Second-order error bound illustration We consider a
FP-PDE for a 1D linear SDE. This simple system has ana-
lytical PDF p(x, t), which allows us to synthesize ê2(x, t)
and validate second-order error bound B2(t). Specifically,
we first train two PINNs in sequence: one p̂(x, t) and
the other for ê1(x, t). Due to the practical challenge dis-
cussed in Section 4, we synthesize ê2(x, t) from the an-
alytical solution and the trained PINNs, i.e., ê2(x, t) =
p(x, t)−p̂(x, t)−ê1(x, t)+δ(x, t), where δ(x, t) is a chosen
sinusoidal perturbation such that Conditions 17 are satisfied.
With the learned ê1(x, t) and synthesized ê2(x, t), we con-
struct second- and first-order error bound B2(t) and B1(t)
from Eqs. (19) and (21), respectively. Fig. 1a validates that
both B2(t) and B1(t) upper-bound the worst-case error for
all time. Furthermore, it shows that B2(t) is tighter than
B1(t), and the relative tightness B1(t)/B2(t) is at most
1.63 < 2 as predicted by Corollary 1. Fig. 1b visualizes the
satisfaction of the sufficient conditions on α1(t) and α2(t)
in Eqs. (17) for all t ∈ T ′. These results validate the sound-
ness of our second-order error bound under the proposed
conditions, and its tightness relative to the first-order bound.

First-order error bound application We apply the ap-
proach in Section 5 to construct error bound B1(t) for sev-
eral FP-PDEs that do not have closed-form solutions. First,
we consider FP-PDEs associated with nonlinear SDEs (see
rows labeled as Nonlinear in Table 1). We note that 2D Duff-
ing Oscillator is from Anderson and Farazmand [2024] and
exhibits chaotic behaviors. Due to complexity of these sys-
tems, highly detailed Monte Carlo (M.C.) simulations with
extremely small time steps and very large numbers of sam-
ples were necessary to generate high-fidelity ‘ground-truth’
PDF distributions at specific discrete time instances (see
Appendix B). The final set of experiments consider high-
dimensional (up to 10-D) time-varying Ornstein-Uhlenbeck
(OU) processes (see rows labeled as High Dimensional in
Table 1). We note that running M.C. to obtain ‘ground-truth’



Table 1: First-order error bound results categorized into three groups: (1) Linear, where p is obtained analytically, (2)
Nonlinear, where ‘true’ p is obtained by Monte-Carlo (M.C.) since no analytical solutions exist, and (3) High Dimensional,
where ‘true’ p is obtained by semi-analytical numerical integration. Here, time p reports the computation time in seconds to
obtain the ‘true’ p via M.C., time p̂ and ê1 are the training time for PINNs in seconds, αmax

1 := maxt α1(t), α1 reports the
mean and standard deviation of α1(t) over t. Gapmin := mint((B1(t)− e∗1(t))/maxx p(x, t)) is the minimum gap (over
time) between the error bound and maximum error normalized by the true solution, and BN

1 reports the average and standard
deviation (over time) of the normalized error bound B1(t)/maxx p(x, t).

Category Experiment time p time p̂ time ê1 αmax
1 α1 Gapmin BN

1

Linear 1D Linear Analytical 5 17 0.37 0.23 ± 0.04 7e-2 0.18 ± 6e-3

Nonlinear
1D Nonlinear 37634 (M.C.) 1031 1840 0.63 0.24 ± 0.16 2e-2 0.12 ± 6e-2
2D Inverted Pendulum 45409 (M.C.). 1054 4484 0.69 0.46 ± 0.14 2e-2 0.14 ± 7e-2
2D Duffing Oscillator 39421 (M.C.) 358 3727 0.42 0.32 ± 0.11 8e-2 0.21 ± 3e-2

High
Dimensional

3D Time-varying OU Semi-Analytical 267 943 0.34 0.29 ± 0.03 2e-2 0.05 ± 1e-2
7D Time-varying OU Semi-Analytical 478 1475 0.49 0.43 ± 0.05 6e-2 0.18 ± 6e-2
10D Time-varying OU Semi-Analytical 803 5954 0.83 0.64 ± 0.16 5e-2 0.19 ± 8e-2

PDF for fully nonlinear and high-dimensional systems is
not tractable. Hence, we choose these time-varying OU be-
cause they are non-trivial (i.e., no closed-form solutions)
but allow us to efficiently estimate accurate p(x, t) via semi-
analytical method that numerically integrates the Gaussian
distributions by exploiting the time-varying linear dynam-
ics [Särkkä and Solin, 2019]. Thus, unlike our PINN-based
method or standard M.C. simulations, this semi-analytical
approach cannot handle general nonlinear dynamics.

Table 1 summarizes the results on all systems. The metrics
include computation time for p and training times for p̂(x, t)
and ê1 PINNs in seconds. Also, we show training feasibility
of ê1(x, t) by reporting α1(t) and its maximum value over
time (αmax). To show soundness of error bound B1, we
calculate the minimum gap Gapmin between B1 and the
true error, i.e., positive Gapmin indicate correctness of B1.
To assess the tightness of B1(t), we report the statistics of
its magnitude normalized by maxx p(x, t), denoted by BN

1 .
Overall, the results show: (i) soundness & feasibility: B1

correctly bounds the approximation error (Gapmin > 0) and
the learning condition is satisfied (αmax

1 < 1) though it
becomes increasingly challenging to meet as dimensionality
grows, (ii) efficiency: the time comparisons between p vs p̂
illustrate significant speedup (two orders of magnitude: 38×
to 65×) in obtaining accurate PDF with PINNs for systems
that do not have analytical solutions (nonlinear systems),
and (iii) scalability: our PINN method is able to scale to 10-
dimensional systems with fairly tight error bounds across all
cases (on average 5%-21% with respect to the true solution).

We plot α1(t) distributions (over time) vs training loss of
ê1 in Fig. 2 to show that the condition in Corollary 1 is
satisfied for all systems as training loss decreases. We vi-
sualize the error bounds for some representative cases in
Fig. 3. Specifically, Fig. 3a plots the PDF p(x, t) and its
PINN approximation p̂(x, t) of the 1D Nonlinear experi-
ment. Note that p̂(x, t) is a continuous surface over time

and space, while p(x, t) is illustrated by curves at discrete
time instances according to those used in Monte-Carlo sim-
ulation. Fig. 3b shows the ‘true’ error e1(x, t) at discrete
time instances and its PINN approximation ê1(x, t) as a con-
tinuous surface of the 1D Nonlinear experiment. Observe
that both p̂ and ê closely approximate p and e, respectively,
over all space and time, respectively. In addition, Fig. 3c
shows the PINN-learned density p̂ alongside the GMM ap-
proximation p̃GM (125 Gaussian mixtures integrated over
∆t = 0.001 time step). We include the GMM—a common
tool for uncertainty propagation in nonlinear dynamics [Ar-
chambeau et al., 2007, Terejanu et al., 2008, Vittaldev et al.,
2016, Figueiredo et al., 2024]—as a classical alternative.
Compared to the PINN p̂, observe that p̃GM gradually de-
viates from p as time increases. More importantly, the true
PDF p lies within the first-order error bound B1 (illustrated
by green regions) of approximate PDF p̂, while p̃GM does
not provide rigorous error bound. For the 2D Duffing Os-
cillator experiment, Fig. 3d plots the time evolution of the
true error, PINN error approximation, and the first-order
error bound. Observe that the magnitude of the error bound
does not necessarily grow over time, suggesting that the
error bound may remain tight even over extended horizons.
Figs. 3e and 3f visualize PINNs results and the constructed
B1 of the 2D Inverted Pendulum experiment at a given time
(t = 3). Observe that both p̂ and ê1 closely approximate the
unknown complicated distributions of p and e1, respectively.
For the 3D Time-varying OU, Figs. 3g and 3h visualize the
true error e1 and PINN error ê1 at t = 1, showing good
approximation (i.e., α1 < 1) for constructing the first-order
error bound B1. Lastly, PINN predictions û and ê1 for the
1D Heat PDE (Fig. 4) closely match the true solution u and
error e1 across space and time, respectively, demonstrating
straightforward extension to other linear PDEs (Remark 3).
See Appendix C for complete training details and additional
results of the conducted experiments.
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Figure 3: First-order error bound results. (a)-(c) 1D Nonlinear PDF p vs PINN p̂, error e1 vs error PINN ê1, and error bound
B1 compared to the classical Gaussian mixture method p̂GM , illustrated at three time points. (d) 2D Duffing Oscillator true
error |e1|, error PINN |ê1|, and error bound B1 ≥ |e1| over time. (e)-(f) 2D Inverted Pendulum PDF p, PINN p̂, true error
|e1|, error PINN |ê1|, and error bound B1 ≥ |e1| at t = 3. (g)-(h) 3D Time-varying OU error e1 and error PINN ê1 at t = 1.
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Figure 4: 1D Heat PINN solution û(x, t) and error ê1(x, t)
v.s. true solution u(x, t) and error e1(x, t).

7 CONCLUSION

We proposed a physics-informed learning method to approx-
imate the PDF evolution governed by FP-PDE and bound its
error using recursively learned PINN-based error functions.
We proved that only two error terms are needed for arbitrar-
ily tight bounds and introduced a more efficient first-order
bound requiring just one error function, reducing computa-
tion while providing clear termination criteria. Our results
validate the bounds’ correctness and demonstrate significant
computational speedups over Monte Carlo methods. We
trained the solution and error PINNs separately, but joint
training may work better, which is left for future work.
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A PROOFS

A.1 DERIVATION OF DEFINITION 1

Let e1(x, t) = p(x, t)− p̂(x, t) and initialize e0(x, t) := p(x, t) and ê0(x, t) = p̂(x, t). Then, Eq. (9) becomes Definition 1
for i = 1:

D[e1(x, t)] +D[ê0(x, t)] = 0, subject to e1(x, 0) = e0(x, 0)− ê0(x, 0).

For i = 2, we define e2(x, t) := e1(x, t)− ê1(x, t) and obtain D[e2(x, t)] = D[e1(x, t)]−D[ê1(x, t)] (because D[·] is a
linear operator). Since ê1 ̸= e1, a residual will remain such that

D[ê1] +D[ê0] := r1 ̸= 0.

Hence, we have the recursive PDE for i = 2 (omitting x and t for simplicity of presentation):

D[e2] = D[e1]−D[ê1] = (−D[ê0])− (−D[ê0] + r1) = −r1 =⇒ D[e2] + r1 := D[e2] +

2∑
j=1

D[êj−1] = 0.

The derivation recursively follows for i > 2. In addition, following PINNs training in Eq. (6), the training loss of each êi is:

L(i) = w0L(i)
0 + wrL(i)

r , w0, wr ∈ R>0, (25a)

L(i)
0 =

1

N0

N0∑
k=1

(
ei(xk, 0)− êi(xk, 0)

)2

, (25b)

L(i)
r =

1

Nr

Nr∑
k=1

(
D[êi(xk, tk)] +

i∑
j=1

D[êj−1(xk, tk)]
)2

. (25c)

A.2 PROOF OF LEMMA 1

Proof 1 From Definition 1, we have that, for all x ∈ X ′,

|p(x, t)− p̂(x, t)| =

∣∣∣∣∣
n∑

i=1

êi(x, t) + en+1(x, t)

∣∣∣∣∣ ≤
n∑

i=1

|êi(x, t)|+ |en+1(x, t)|

≤
n∑

i=1

max
x

|êi(x, t)|+max
x

|en+1(x, t)| :=
n∑

i=1

ê∗i (t) + e∗n+1(t).
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From the definition of γ i+1
i

in Eq. (14), we obtain (omitting t for simplicity of presentation)

|p(x, ·)− p̂(x, ·)| ≤ ê∗1

(
1 +

ê∗2
ê∗1

+
ê∗3
ê∗1

+ · · ·+ ê∗n
ê∗1

+
e∗n+1

ê∗1

)
= ê∗1

[
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+ (γ 2

1
γ 3

2
. . . γ n

n−1
) + (γ 2

1
γ 3

2
. . . γn−1

n−2
γ n

n−1

e∗n+1

ê∗n
)
]

= ê∗1

[
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+ (γ 2

1
γ 3

2
. . . γ n

n−1
) + (γ 2

1
γ 3

2
. . . γn−1

n−2

ê∗n
ê∗n−1

e∗n+1

ê∗n
)
]

= ê∗1

[
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+ (γ 2

1
γ 3

2
. . . γ n

n−1
) + (γ 2

1
γ 3

2
. . . γn−1

n−2

e∗n+1

ê∗n−1

)
]
.

A.3 PROOF OF LEMMA 2

Proof 2 From Definition 1, we have, for i ≥ 0,

ei(x, t) = êi(x, t) + ei+1(x, t). (26)

By taking the maximum on the absolute value of Eq. (26), we get

max
x

|ei(x, t)| ≤ max
x

|êi(x, t)|+max
x

|ei+1(x, t)|. (27)

Similarly, from Eq. (26), we obtain

êi(x, t) = ei(x, t)− ei+1(x, t) =⇒
max

x
|êi(x, t)| ≤ max

x
|ei(x, t)|+max

x
|ei+1(x, t)|. (28)

Now take 2 ≤ i < n, and suppose the corresponding αi(t) < 1. Then, we can write the two inequalities in Eqs. (27) and
(28) with the definition of ê∗i (t) in Eq. (13) and the expression in Eq. (12) as{

αi−1(t)ê
∗
i−1(t) ≤ ê∗i (t) + αi(t)ê

∗
i (t)

ê∗i (t) ≤ αi−1(t)ê
∗
i−1(t) + αi(t)ê

∗
i (t).

(29)

By rearranging Eq. (29), we obtain the lower and upper bounds of γ i
i−1

(t):

αi−1(t)

1 + αi(t)
≤ ê∗i (t)

ê∗i−1(t)
= γ i

i−1 (t)
≤ αi−1(t)

1− αi(t)
, 2 ≤ i < n, (30)

which is well defined because the denominator ê∗i−1 > 0 by Assumption 2, and the (RHS) of Eq. (30) is always ≥ the (LHS)
of Eq. (30) if 0 ≤ αi(t) < 1 for all 2 ≤ i < n.

A.4 PROOF OF LEMMA 3

Proof 3 For simplicity of presentation, we omit writing the dependent variable t. Assume the conditions in Eq. (17) are
satisfied; then it is true that 0 < α2 < 1. Since both α1, α2 < 1, by Lemma 2 and Condition (17b), we obtain

γ 2
1
≤ α1

1− α2
< 1,

proving the RHS of Eq. (18).

For the LHS of Eq. (18), let αi ≤ α2 for all 2 < i < n. Since α2 < 1, then by Lemma 2, we have

γ i
i−1

≤ αi−1

1− αi
≤ αi−1

1− α2
≤ α2

1− α2
. (31)



What remains is to show that RHS of Eq. (31) is < γ 2
1

. From Condition (17c), we have

α2(1 + α2) < α2
1 (32)

< α1(1− α2), (33)

where Eq. (33) holds by Condition (17b). From Eq. (33), we obtain
α2

1− α2
<

α1

1 + α2
. (34)

By combining Eqs. (31) and (34), we have

γ i
i−1

<
α1

1 + α2
< γ 2

1
, 2 < i < n.

A.5 PROOF OF THEOREM 1

Proof 4 Take n → ∞ for Lemma 1, and train ê1 and ê2 such that the sufficient conditions of Eq. (17) are met, therefore,
γ 3

2
, γ 4

3
, . . . , γn−1

n−2
< γ 2

1
< 1 by Lemma 3. Then we have

|p(x, t)− p̂(x, t)|

≤ ê∗1 lim
n→∞

(
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+

[
γ 2

1
γ 3

2
. . . γn−1

n−2
γ n

n−1

]
+

[
γ 2

1
γ 3

2
. . . γn−1

n−2

e∗n+1

ê∗n−1

])
= ê∗1 lim

n→∞

(
1 + γ 2

1
+ γ 2

1
γ 3

2
+ · · ·+

[
γ 2

1
γ 3

2
. . . γn−1

n−2

ê∗n
ê∗n−1

]
+
[
γ 2

1
γ 3

2
. . . γn−1

n−2

e∗n+1

ê∗n−1

])
≤ ê∗1 lim

n→∞

(
1 + γ 2

1
+ γ2

2
1
+ · · ·+ γn−2

2
1

+
[
γn−2

2
1

ê∗n
ê∗n−1

]
+

[
γn−2

2
1

e∗n+1

ê∗n−1

])
=

[
ê∗1 lim

n→∞

(
1 + γ 2

1
+ γ2

2
1
+ · · ·+ γn−2

2
1

)]
+

[
ê∗1 lim

n→∞

(
γn−2

2
1

(ê∗n + e∗n+1)

ê∗n−1

)]
. (35)

The first term in Eq. (35) forms a geometric series, and the second term in Eq. (35) is zero as n goes to infinity, because
ê∗1, ê

∗
n−1, ê

∗
n, e

∗
n+1 are bounded by construction and ê∗n−1 > 0 by Assumption 2. Hence,

|p(x, t)− p̂(x, t)| ≤ ê∗1

( 1

1− γ 2
1

(t)
)
:= B2(t). (36)

A.6 PROOF OF THEOREM 2

Proof 5 We omit the time variable t in this proof for readability. By Definition 1, the maximum approximation error
maxx |e1(x, ·)| := e∗1. Using the relations of ê1 = e1 − e2, ê

∗
1 ≤ e∗1 + e∗2, the error bound in Theorem 1 can be upper-

bounded by

B2 = ê∗1

( 1

1− ê∗2/ê
∗
1

)
≤ (e∗1 + e∗2)

( 1

1− ê∗2/ê
∗
1

)
. (37)

Hence, the gap between B2 and the maximum approximation error e∗1 is upper-bounded by

B2 − e∗1 ≤ e∗1

( 1

1− ê∗2/ê
∗
1

− 1
)
+ e∗2

( 1

1− ê∗2/ê
∗
1

)
. (38)

Now suppose ê1 approximates e1 sufficiently well such that e2(x, t) = e1(x, t)− ê1(x, t) := δ(x, t), where δ(x, t) denotes
a sufficiently small function for all (x, t) ∈ Ω. Furthermore, suppose ê2 approximates e2 sufficiently well such that
ê2(x, t) → e2(x, t) = δ(x, t) for all (x, t) ∈ Ω. Define δ∗ := maxx |δ(x, ·)|, then ê∗2 → δ∗, and δ∗ → 0 as δ(x, t) → 0 for
all (x, t) ∈ Ω. Consequently, the RHS of Eq. (38), at the limit, becomes

lim
ê∗2→δ∗,δ∗→0

[
e∗1

( 1

1− ê∗2/ê
∗
1

− 1
)
+ e∗2

( 1

1− ê∗2/ê
∗
1

)]
= lim

δ∗→0

[
e∗1

( 1

1− δ∗/ê∗1
− 1

)
+ δ∗

( 1

1− δ∗/ê∗1

)]
= δ∗ (39)

Lastly, for every ϵ ∈ (0,∞), take δ∗ to be smaller than ϵ, then the proof is completed.



A.7 PROOF OF COROLLARY 1

Proof 6 For all t ∈ T ′, let 0 < α1(t) < 1. First, e1 = ê1 + e2 by Def. 1, which implies

|e1(x, t)| ≤ max
x

|ê1(x, t)|+max
x

|e2(x, t)| (40)

for all x ∈ X ′. Then by 0 < α1 < 1 and its definition in Eq. (12), we have

α1 max
x

|ê1(x, t)| := max
x

|e1(x, t)− ê1(x, t)| = max
x

|e2(x, t)|.

Hence, Eq. (40) becomes

|e1(x, t)| ≤ max
x

|ê1(x, t)|+ α1(t)max
x

|ê1(x, t)|

= max
x

|ê1(x, t)|(1 + α1(t))

< 2ê∗1(t) := B1(t)

It is clear that B1(t) is not arbitrary tight because of the constant 2.

A.8 PROOF OF PROPOSITION 1

Proof 7 Let x ∈ Rn. By [Mishra and Molinaro, 2023, theorem 2.6], we know

εG := ∥e1 − ê1∥W 1,q ≤ CpdeL(1) + CpdeC
1
q

quadN
−β
q , (41)

where L(1) is the training loss of ê1, Cpde > 0 is the stability estimate of the first error PDE associated with the W 1,q norm
(q ≥ 2), and Cquad, β > 0 are the constants according to the quadrature sampling points. By Definition 1, e2 = e1 − ê1,
and since e1(x, t), ê1(x, t) and their first derivatives are bounded over the considered domain of Problem 1, we know there
exists a universal embedding constant Cembed [Mizuguchi et al., 2017] such that

|e2(x, t)| ≤ Cembed∥e2(x, t)∥W 1,q . (42)

Hence, we have

|e2(x, t)| ≤ Cembed

(
CpdeL(1) + CpdeC

1
q

quadN
−β
q

)
. (43)

Using the definition of α1(t) :=
maxx |e2(x,t)|

ê∗1(t)
, we obtain

α1(t) ≤
maxx |e2(x, t)|
mint ê∗1(t)

≤ 1

mint ê∗1(t)

[
Cembed

(
CpdeL(1) + CpdeC

1
q

quadN
−β
q

)]
. (44)

A.9 DERIVATION OF EXTENSION TO HEAT PDE WITH DIRICHLET BOUNDARY CONDITION

Here, we take heat equation for example. The governing partial differential equation of solution u : Ω = (Rn× [0, tf ]) → R
is

∂u(x, t)

∂t
= ∆[u(x, t)],

subject to initial and Dirichlet boundary conditions

u(x, 0) = uic(x),

u(x, t) = ubc(x, t), (x, t) ∈ ∂Ω,

where ∂Ω is the boundary, and ∆[·] :=
∑n

i
∂2

∂x2
i
[·]. Define the heat differential operator Dh[·] := ∂

∂t [·]−∆[·]. By adding the
boundary constraints into the training loss in Eq. (6), which is common in standard PINNs [Sirignano and Spiliopoulos,



2018], we can train û that approximates the solution u. Define the approximation error e1 = u− û, then a trained û(x, t)
yields

Dh[û] = r1(x, t),

û(x, 0) = uic(x)− e1,ic(x, 0),

û(x, t) = ubc(x, t)− e1,bc(x, t), (x, t) ∈ ∂Ω.

Apply the heat differential operator on the first error, we obtain

Dh[e1] + r1 = 0,

e1(x, 0) = uic(x)− e1,ic(x, 0),

e1(x, t) = e1,bc(x, t), (x, t) ∈ ∂Ω. (45)

Compared Eq. (45) to Eq. (23), the only difference is the boundary condition on ∂Ω. Thus, if an additional loss term
regarding boundary condition Lbc is added into Eq. (25) to construct ê1 (as well as other êi), and u is smooth and bounded,
then the derivation of theorem 1 can be followed.

B SYSTEM CONFIGURATIONS

Here, we report system configurations of all the conducted numerical experiments.

B.1 1D LINEAR

We consider an 1D linear system (Ornstein-Uhlenbech process) in Pavliotis [2014, Eq. 4.19]

dx = −βxdt+
√
Ddw.

From the analytical solution in Pavliotis [2014, Eq. 4.22]:

p(x, t|x0) =

√
β

2πD(1− e−2βt)
exp

(
− β(x− x0e

−βt)2

2D(1− e−2βt)

)
,

we set the initial distribution as p0(x) = p(x, t = 1|x0 = 1), and the system parameters are β = D = 0.2. The computation
domain is t ∈ [1, 3] and x ∈ [−6, 6].

B.2 1D NONLINEAR

We consider an 1D nonlinear system
dx = (ax3 + bx2 + cx+ d)dt+ edw.

The initial distribution is Gaussian
p0(x) ∼ N (µ, σ2).

The computation domain is t ∈ [0, 5] and x ∈ [−6, 6], and the system parameters are a = −0.1, b = 0.1, c = 0.5, d =
0.5, e = 0.8, µ = −2 and σ = 0.5. Since there is no analytical solution, the "true" PDF p(x, t) is obtained by extensive
Monte-Carlo simulation using Euler Scheme with small integration time step ∆t = 0.0005 and 108 samples.

B.3 2D INVERTED PENDULUM

We consider 2D nonlinear system of inverted pendulum

dx1 = x2dt+B11dw,

dx2 = −g

l
sin(x1)dt+B22dw,



where x1 is the angle, and x2 is the angular rate. The initial distribution is multivariate Gaussian

p0(x) ∼ N (µ,Σ).

The computation domain is t ∈ [0, 5] and x1, x2 ∈ [−3π, 3π], and the system parameters are g = 9.8, l = 9.8, B11 =
B22 = 0.5, µ = [0.5π, 0]T and diag([0.5, 0.5]. Similarly, the "true" PDF p(x, t) is obtained by Monte-Carlo simulation
using Euler Scheme with integration time step ∆t = 0.01 and 2× 107 samples.

B.4 2D DUFFING OSCILLATOR

We consider chaotic dynamics of a 2D duffing oscillator in Anderson and Farazmand [2024]

dx1 = x2dt

dx2 = (1.0x1 − 0.2x2 − 1.0x3
1)dt+

1√
20

dw.

The initial distribution is multivariate Gaussian

p0(x) ∼ N (µ,Σ).

The computation domain is t ∈ [0, 2.5] and x1, x2 ∈ [−2, 2], and the system parameters are µ = [1, 1]T ,Σ =
diag([0.05, 0.05]). Again, extensive Monte-Carlo simulations using Euler Scheme are carried out to estimate the "true" PDF
p(x, t), with integration time step ∆t = 0.005 and 2× 107 samples.

B.5 HIGH-DIMENSIONAL TIME-VARYING OU

The generic dynamics of high-dimensional time-varying Ornstein-Uhlenbech is

dx =
(
An +∆An(t)x

)
dt+Bndw,

where x,w ∈ Rn. The initial distribution is multivariate Gaussian

p(x, 0) ∼ N (µn,Σn).

Since there is no closed-form solution as discussed in Sec. XXX, we use Euler forward numerical integration with
∆t = 0.0001 time step to obtain the "true" PDF. The computation domain is t ∈ [0, 1] and x ∈ [−1, 1]n. Below, we
summarize the system parameters of 3D, 7D, and 10D experiments. For n = 3, we set

A3 = diag([0.3, 0.3, 0.3])

∆A3(t) = sin(t)

0 0 −0.1
0 0 0
0 0 0


B3 = diag([0.05, 0.05, 0.05])

µ3 = [−0.2, 0.2, 0.0]T

Σ3 = diag([0.1, 0.1, 0.1]).



For n = 7, we set

A7 =



0.3 0 0 0 0 0 0
0 0.3 0 0 0 0 0
0 0 0.15 0 0 0 0
0 0 0 0.3 0 0 0
0 0 0 0 0.3 0 0
0 0 0 0 0 −0.3 0

−0.01 0 0 0 0 0 0.3



∆A7(t) = cos(t)



0 0.1 0 0 0 0 0
0 0 0.1 0.2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −0.1 0 0 0 0 0


B7 = diag([0.05, 0.05, 0.05, 0.05, 0.05, 0.05])

µ7 = [0, 0, 0, 0, 0, 0, 0]T

Σ7 = diag([0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12]).

For n = 10, we set

A10 =



0.3 0 0 0 0 0 0 0 0 0
0 0.3 0 0 0 0.03 0 0 0 0
0 0 −0.3 0 0 0 0 0 0 0
0 0 0 0.3 0 0 0 0 0 0
0 0 0 0 0.06 0 0 0 0 0
0 0 0 0 0 0.3 0 0 0 0
0 0 0 0 0 0 0.3 0 0 0
0 0 0 0 0 0 0 0.21 0 0
0 0 0 0 0 0 0 0 0.3 0
0 0 0 0 0 0 0 −0.02 0 0.3



∆A10(t) = sin(t)



0 0.1 0 0 0 0 0 0 0 0
0 0 0.05 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 −0.1 0 0 0 0 0 0 0 0


B10 = diag([0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05])

µ10 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

Σ10 = diag([0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12]).

B.6 1D HEAT

We consider a one-dimensional heat equation as in Appendix A.9:

ut − uxx = 0,

subject to initial and Dirichlet boundary conditions

u0(x) = − sin(πx),

u(±1, t) = 0,∀t.



The computation domain is t ∈ [0, 1] and x ∈ [−1, 1]. For this particular setting, analytical solution exists

u(x, t) = − sin(πx) exp−π2t .

C TRAINING CONFIGURATIONS AND ADDITIONAL RESULTS

Here we first discuss the general training setting across all experiments. Then we discuss each experiment in details and
present additional results and visualizations. In terms of training scheme, we use Adam optimizer for all experiments. For
the systems in Section 6, we use the regularization technique discussed in Section 5 to train the PDF PINN p̂. We also
employ adaptive sampling to make training of both p̂ and the error PINN ê1 more efficient (see Lu et al. [2021] for detailed
explanation). As for the 1D Linear system in Section 6, we simply sample random space-time points at every training
iteration. For the architecture of the neural network, we use simple fully-connected feed-forward neural networks for both
the solution PINN p̂ and the error PINN ê1. Information of the number of hidden layers, neurons, and activation functions
for each experiment is provided below.

C.1 1D LINEAR EXPERIMENT

The neural networks of p̂ and ê1 are summarized in Table 2 and 3. For each training iteration, N0 = Nr = 500 space-time
points are uniformly sampled as in Eq. 25, with weights w0 = 1 and wr = |T | = 2. The training losses of p̂ and ê1 are
illustrated in Fig. 5. The training results of p̂ vs p and ê1 vs et are shown in Fig. 6, and the constructed (and synthesized)
error bounds at some time instances are visualized in Fig. 7.

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 32 Softplus
Hidden Layer 1 → Hidden Layer 2 Fully Connected 32 Softplus
Hidden Layer 2 → Output Layer Fully Connected 1 Softplus

Table 2: Neural Network Architecture and Hyperparameters of p̂

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 32 Softplus
Hidden Layer 1 → Hidden Layer 2 Fully Connected 32 Softplus
Hidden Layer 2 → Output Layer Fully Connected 1 N/A

Table 3: Neural network architecture and hyper-parameters of ê1
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Figure 5: Training losses of p̂ and ê1
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Figure 6: Trained PINNs p̂(x, t) and ê1(x, t) v.s. true PDF p(x, t) and error e1(x, t) for all x and t.
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C.2 1D NONLINEAR EXPERIMENT

The neural networks of p̂ and ê1 are summarized in Table 4 and 5. The training starts from N0 = Nr = 1000 uniformly
distributed samples for both p̂ and ê1. We regularize the training of p̂ by setting the weights w0 = 1 and wr = w∇ = |T | = 5.
For ê1, the weights are w0 = 1, wr = |T |, and w∇ = 0. The training losses of p̂ and ê1 are illustrated in Fig. 8. Note that
the periodic spikes are not due to unstable training. Instead they are due to the adaptive sampling scheme that periodically
adds space-time points at which the residual values are large. The training results of p̂ vs p and ê1 vs et are shown in Fig. 9;
the constructed error bounds at some time instances can be seen in Fig. 3a.

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 50 Softplus
Hidden Layer 1 → Hidden Layer 2 Fully Connected 50 Softplus
Hidden Layer 2 → Hidden Layer 3 Fully Connected 50 Softplus
Hidden Layer 3 → Output Layer Fully Connected 1 Softplus

Table 4: Neural Network Architecture and Hyperparameters of p̂

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 50 GeLU
Hidden Layer 1 → Hidden Layer 2 Fully Connected 50 GeLU
Hidden Layer 2 → Hidden Layer 3 Fully Connected 50 GeLU
Hidden Layer 3 → Hidden Layer 4 Fully Connected 50 GeLU
Hidden Layer 4 → Hidden Layer 5 Fully Connected 50 GeLU
Hidden Layer 5 → Hidden Layer 6 Fully Connected 50 GeLU
Hidden Layer 6 → Output Layer Fully Connected 1 N/A

Table 5: Neural network architecture and hyper-parameters of ê1
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Figure 8: Training losses of p̂ and ê1
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Figure 9: Trained PINNs p̂(x, t) and ê1(x, t) v.s. true PDF p(x, t) and error e1(x, t) for all x and t.



C.3 2D INVERTED PENDULUM EXPERIMENT

The neural networks of p̂ and ê1 are summarized in Table 6 and 7. As in Appendix C.2, the training starts from N0 =
Nr = 1000 uniformly distributed samples for both p̂ and ê1. We regularize the training of p̂ by setting the weights w0 = 1
and wr = w∇ = |T | = 5. For ê1, the weights are w0 = 1, wr = |T |, and w∇ = 0. The training losses of p̂ and ê1 are
illustrated in Fig. 10. Again, the periodic spikes in training loss are due to the adaptive sampling scheme that periodically
adds space-time points, which becomes more effective as the system dimension grows. The training results of p̂ vs p and ê1
vs et are shown in Fig. 11. The constructed tight error bounds at some time instances are visualized in Fig. 12.

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 50 Softplus
Hidden Layer 1 → Hidden Layer 2 Fully Connected 50 Softplus
Hidden Layer 2 → Hidden Layer 3 Fully Connected 50 Softplus
Hidden Layer 3 → Output Layer Fully Connected 1 Softplus

Table 6: Neural Network Architecture and Hyperparameters of p̂

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 50 Softplus
Hidden Layer 1 → Hidden Layer 2 Fully Connected 50 Softplus
Hidden Layer 2 → Hidden Layer 3 Fully Connected 50 Softplus
Hidden Layer 3 → Hidden Layer 4 Fully Connected 50 Softplus
Hidden Layer 4 → Hidden Layer 5 Fully Connected 50 Softplus
Hidden Layer 5 → Hidden Layer 6 Fully Connected 50 Softplus
Hidden Layer 6 → Output Layer Fully Connected 1 N/A

Table 7: Neural network architecture and hyper-parameters of ê1
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Figure 10: Training losses of p̂ and ê1
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Figure 11: Trained PINNs p̂(θ, ω, t) and ê1(θ, ω, t) v.s. true PDF p(θ, ω, t) and error e1(θ, ω, t) for all θ, ω at some t.
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C.4 2D DUFFING OSCILLATOR EXPERIMENT

The neural networks of p̂ and ê1 are summarized in Table 8 and 9. The training starts from N0 = Nr = 1000 samples for
both p̂ and ê1. Half of these samples are drawn uniformly, and the other half follow the normal distribution specified by the
initial condition. We regularize the training of p̂ by setting the weights w0 = 1 and wr = w∇ = |T | = 5. For ê1, the weights
are w0 = 1, wr = |T |, and w∇ = 0. The training losses of p̂ and ê1 are illustrated in Fig. 13. Again, the periodic spikes
in training loss are due to the adaptive sampling scheme that periodically adds space-time points, which becomes more
effective as the system dimension grows. The training results of p̂ vs p and ê1 vs et are shown in Fig. 14. The constructed
tight error bounds at some time instances are visualized in Fig. 15.

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 60 GeLU
Hidden Layer 1 → Hidden Layer 2 Fully Connected 60 GeLU
Hidden Layer 2 → Hidden Layer 3 Fully Connected 60 GeLU
Hidden Layer 3 → Hidden Layer 4 Fully Connected 60 GeLU
Hidden Layer 4 → Hidden Layer 5 Fully Connected 60 GeLU
Hidden Layer 5 → Output Layer Fully Connected 1 Softplus

Table 8: Neural Network Architecture and Hyperparameters of p̂

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 100 GeLu
Hidden Layer 1 → Hidden Layer 2 Fully Connected 100 GeLu
Hidden Layer 2 → Hidden Layer 3 Fully Connected 100 GeLu
Hidden Layer 3 → Hidden Layer 4 Fully Connected 100 GeLu
Hidden Layer 4 → Hidden Layer 5 Fully Connected 100 GeLu
Hidden Layer 5 → Output Layer Fully Connected 1 N/A

Table 9: Neural network architecture and hyper-parameters of ê1
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Figure 13: Training losses of p̂ and ê1



-2

0

2

x 2
t=0.0 t=0.5 t=1.0 t=2.0 t=2.5

-2 0 2
x1

-2

0

2

x 2

-2 0 2
x1

-2 0 2
x1

-2 0 2
x1

-2 0 2
x1

0.0

0.5

1.0

1.5

2.0

2.5

3.0
p(x, t)

p(x, t)

(a) p̂ vs p

-2

0

2

x 2

t=0.0 t=0.5 t=1.0 t=2.0 t=2.5

-2 0 2
x1

-2

0

2

x 2

1 = 0.16

-2 0 2
x1

1 = 0.22

-2 0 2
x1

1 = 0.41

-2 0 2
x1

1 = 0.42

-2 0 2
x1

1 = 0.41

-0.3

-0.2

-0.1

0.0

0.1

0.2
e1(x, t)

e1(x, t)
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Figure 15: |e1|, |ê1|, and B1at some t.



C.5 3D TIME-VARYING OU EXPERIMENT

The neural networks of p̂ and ê1 are summarized in Table 10 and 11. For training p̂, we begins with N0 = Nr = 2000
samples. Half of these samples are drawn uniformly, and the other half follow the normal distribution specified by the
initial condition. During training, we gradually add samples using adaptive sampling. For training ê1, we begins with
N0 = Nr = 300 samples (with same distributions as training p̂), and gradually add samples using adaptive sampling. The
weights of training both p̂ and ê1 are w0 = 1, wr = |T | = 1, and w∇ = 0 without regularization. The training losses of p̂
and ê1 are illustrated in Fig. 16. The training results of p̂ vs p and ê1 vs et are shown in Fig. 17 and 18.

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 32 GeLU
Hidden Layer 1 → Hidden Layer 2 Fully Connected 32 GeLU
Hidden Layer 2 → Hidden Layer 3 Fully Connected 32 GeLU
Hidden Layer 3 → Hidden Layer 4 Fully Connected 32 GeLU
Hidden Layer 4 → Hidden Layer 5 Fully Connected 32 GeLU
Hidden Layer 5 → Output Layer Fully Connected 1 Softplus

Table 10: Neural Network Architecture and Hyperparameters of p̂

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 32 GeLu
Hidden Layer 1 → Hidden Layer 2 Fully Connected 32 GeLu
Hidden Layer 2 → Hidden Layer 3 Fully Connected 32 GeLu
Hidden Layer 3 → Hidden Layer 4 Fully Connected 32 GeLu
Hidden Layer 4 → Hidden Layer 5 Fully Connected 32 GeLu
Hidden Layer 5 → Output Layer Fully Connected 1 N/A

Table 11: Neural network architecture and hyper-parameters of ê1
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Figure 16: Training losses of p̂ and ê1
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C.6 7D TIME-VARYING OU EXPERIMENT

The neural networks of p̂ and ê1 are summarized in Table 12 and 13. For training p̂, we begins with N0 = Nr = 2000
samples. Half of these samples are drawn uniformly, and the other half follow the normal distribution specified by the
initial condition. During training, we gradually add samples using adaptive sampling. For training ê1, we begins with
N0 = Nr = 300 samples (with same distributions as training p̂), and gradually add samples using adaptive sampling. The
weights of training both p̂ and ê1 are w0 = 1, wr = |T | = 1, and w∇ = 0 without regularization. The training losses of p̂
and ê1 are illustrated in Fig. 19.

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 32 GeLU
Hidden Layer 1 → Hidden Layer 2 Fully Connected 32 GeLU
Hidden Layer 2 → Hidden Layer 3 Fully Connected 32 GeLU
Hidden Layer 3 → Hidden Layer 4 Fully Connected 32 GeLU
Hidden Layer 4 → Hidden Layer 5 Fully Connected 32 GeLU
Hidden Layer 5 → Output Layer Fully Connected 1 Softplus

Table 12: Neural Network Architecture and Hyperparameters of p̂

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 32 GeLu
Hidden Layer 1 → Hidden Layer 2 Fully Connected 32 GeLu
Hidden Layer 2 → Hidden Layer 3 Fully Connected 32 GeLu
Hidden Layer 3 → Hidden Layer 4 Fully Connected 32 GeLu
Hidden Layer 4 → Hidden Layer 5 Fully Connected 32 GeLu
Hidden Layer 5 → Output Layer Fully Connected 1 N/A

Table 13: Neural network architecture and hyper-parameters of ê1
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Figure 19: Training losses of p̂ and ê1



C.7 10D TIME-VARYING OU EXPERIMENT

The neural networks of p̂ and ê1 are summarized in Table 14 and 15. For training p̂, we begins with N0 = Nr = 600 samples.
Half of these samples are drawn uniformly, and the other half follow the normal distribution specified by the initial condition.
During training, we gradually add samples using adaptive sampling. For training ê1, we begins with N0 = Nr = 600
samples (with same distributions as training p̂), and gradually add samples using adaptive sampling. The weights of training
both p̂ and ê1 are w0 = 1, wr = |T | = 1, and w∇ = 0 without regularization. The training losses of p̂ and ê1 are illustrated
in Fig. 20.

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 50 GeLU
Hidden Layer 1 → Hidden Layer 2 Fully Connected 50 GeLU
Hidden Layer 2 → Hidden Layer 3 Fully Connected 50 GeLU
Hidden Layer 3 → Hidden Layer 4 Fully Connected 50 GeLU
Hidden Layer 4 → Hidden Layer 5 Fully Connected 50 GeLU
Hidden Layer 5 → Hidden Layer 6 Fully Connected 50 GeLU
Hidden Layer 6 → Output Layer Fully Connected 1 Softplus

Table 14: Neural Network Architecture and Hyperparameters of p̂

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 50 GeLu
Hidden Layer 1 → Hidden Layer 2 Fully Connected 50 GeLu
Hidden Layer 2 → Hidden Layer 3 Fully Connected 50 GeLu
Hidden Layer 3 → Hidden Layer 4 Fully Connected 50 GeLu
Hidden Layer 4 → Hidden Layer 5 Fully Connected 50 GeLu
Hidden Layer 5 → Hidden Layer 6 Fully Connected 50 GeLu
Hidden Layer 6 → Output Layer Fully Connected 1 N/A

Table 15: Neural network architecture and hyper-parameters of ê1
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Figure 20: Training losses of p̂ and ê1

C.8 1D HEAT PDE EXPERIMENT

The neural networks of p̂ and ê1 are summarized in Table 16 and 17. For each training iteration, N0 = Nr = 500 space-time
points are uniformly sampled as in Eq. 25, with weights w0 = wbc = 1 and wr = |T | = 1, where wbc is the weight of the



Dirichlet boundary condition loss described in Appendix A.9. The training losses of p̂ and ê1 are illustrated in Fig. 21. The
training results of p̂ vs p and ê1 vs et are shown in Fig. 22,

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 32 Tanh
Hidden Layer 1 → Hidden Layer 2 Fully Connected 32 Tanh
Hidden Layer 2 → Hidden Layer 3 Fully Connected 32 Tanh
Hidden Layer 3 → Output Layer Fully Connected 1 N/A

Table 16: Neural Network Architecture and Hyperparameters of p̂

Layer Connection Type # Neurons (Output) Activation Function

Input Layer → Hidden Layer 1 Fully Connected 50 Tanh
Hidden Layer 1 → Hidden Layer 2 Fully Connected 50 Tanh
Hidden Layer 2 → Hidden Layer 3 Fully Connected 50 Tanh
Hidden Layer 3 → Hidden Layer 4 Fully Connected 50 Tanh
Hidden Layer 4 → Hidden Layer 5 Fully Connected 50 Tanh
Hidden Layer 5 → Output Layer Fully Connected 1 N/A

Table 17: Neural network architecture and hyper-parameters of ê1
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Figure 21: Training losses of p̂ and ê1
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Figure 22: Trained PINNs û(x, t) and ê1(x, t) v.s. true solution u(x, t) and error e1(x, t) for all x and t.

1.0
0.0
1.0

×10 1
t :  0.2, B1 :  0.027

u
u
B1

0.0

2.0
×10 2
t :  0.6, B1 :  0.014

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

2.5
0.0
2.5

×10 2
t :  1.0, B1 :  0.029
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