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ABSTRACT

The training and fine-tuning of large language models (LLMs) heavily rely on a
large corpus of high-quality data. Nevertheless, the internet’s extensive data is of-
ten of varying quality, and collecting high-quality data is exceedingly expensive.
To facilitate data engineering and trading, the quantification of data value, also
known as data valuation, is emerging as a critical topic. Traditional approaches
for data valuation typically depend on model retraining. However, with the in-
creasing model sizes and expansive data volumes of LLMs, these conventional
methods are encountering significant declines in valuation precision, efficiency,
and transferability. To alleviate these problems, we propose NESTLE, which is
an efficient and robust framework for data valuation of LLMs. To accurately es-
timate the data value distribution across different target domains, we develop a
training-free mechanism based on gradient tracing to simulate the data influences.
To further tackle the dynamical value adjustment when multiple data providers co-
exist, we draw inspiration from the Shapley value theory and devise an accelerated
strategy for estimating marginal contributions of data through gradient additivity.
Extensive experiments demonstrate that our proposed framework NESTLE is ca-
pable of accurately and robustly providing accurate estimates of data value with a
minuscule cost across a wide range of real-world scenarios.

1 INTRODUCTION

With the ongoing evolution of Large Language Models (LLMs) Touvron et al. (2023); Achiam
et al. (2023); Zeng et al. (2023); Bai et al. (2023), it has become a common paradigm to finetune
these LLMs with domain-specific data to align and enhance their downstream performances Zhou
et al. (2023); Touvron et al. (2023), which largely hinges on large-scale, high-quality training data.
However, the quality of publicly available data on the internet varies significantly, and the collection
and curation of standard-compliant data are extremely time-consuming and labor-intensive Ghorbani
& Zou (2019). To this end, data valuation Schoch et al. (2022); Ghorbani et al. (2020), which aims to
estimate the worth of data from different sources, has gained considerable focus from the community
and has been broadly utilized in real-world applications like model adaptation Jiang et al. (2023a)
and data trading Agarwal et al. (2019); Jiang et al. (2023a).

Traditional data valuation approaches can be roughly grouped into marginal-contribution-based
Ghorbani & Zou (2019); Jia et al. (2019) and influence-based Park et al. (2023); Jiang et al. (2023a);
Pruthi et al. (2020). The former marginal-contribution-based ones typically assess the worth of
data by quantifying the data contributions for different marginal subsets Schoch et al. (2022). The
Leave-One-Out (LOO) Jia et al. (2019) strategy is achieved by tracking performance variations once
different data sources are removed. Among these methods, the most prevalent paradigm is driven
by the Shapley Value (SV) theory Shapley (1953); Schoch et al. (2022), which suggests arranging
all possible subsets to assess the contribution of a specific data source (i.e., the SV for provider i
can be expressed as ES⊆N\i[U(S ∪ i) − U(S)] where S represents the collection of all possible
subsets). Despite the success, these approaches can be computationally intensive, especially for
large model sizes and expansive data volumes in the era of LLMs. These methods involve an atomic
procedure of cumbersome retraining and testing for every data sources, and the SV manners even
require (2N − 1) groups of such complicated atomic experiments for N data providers.
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On the other hand, another line of research relies on estimating the data influence Jiang et al.
(2023a); Park et al. (2023) to alleviate the valuation cost for the marginal-contribution-based ones.
These methods expedite the estimation of Shapley values by tracing gradient calculationsJiang et al.
(2023a) or by assessing client contributions Tastan et al. (2024) during federated training processes.
Nevertheless, these approaches either necessitate high-cost federated training across various data
providers Koh & Liang (2017) or yield inaccurate estimates Jiang et al. (2023b), particularly in the
presence of coexisting multiple data sources. Hence, such influnce-based approaches are not readily
transferable to the data valuation of LLMs in multi-domain, multi-data source scenarios. It remains
a challenge how to systematically estimate the value of different data sources for LLMs.

Motivated by this, we propose aN Efficient and robuSt daTa vaLuation framEwork, NESTLE, for
LLMs in this work. Our primary target is to accurately and efficiently estimate the data value distri-
bution of different data providers across different target domains. To achieve this, we first draw in-
spiration from traditional influence-based methods and then develop a training-free valuation mech-
anism that simulates the data influences in different domains based on gradient tracing. Specifically,
we first maintain a customized support set for each of the target domains, which functions as the
standard for data value estimation. Our core intuition is that the data value can be reflected by the
decrease in the loss on the support set after the LLM is trained on the to-be-valuated data. We
theoretically find that such a data influence can be further represented and formalized as the inner
product of the gradient of the valuated data and that of the support set. Based on this theoretical
foundation, we design our fundamental valuation framework, which consists of two steps: support
data gradient caching and valuation data gradient querying. We further incorporate optimization
strategies of gradient projection and gradient calibration to reduce the valuation cost and bolster its
theoretical credibility. Empirically, such a framework can successfully and accurately estimate the
value distribution of a single data source across different target domains.

Despite the success, such a framework fails to dynamically adjust the value distribution when mul-
tiple data providers coexist, for example, two data providers with highly similar data need to be
penalized. To address this, we aim to harness the traditional Shapley value theory’s intuition of
marginal contribution to assess the interplay of multiple data providers by evaluating the marginal
contributions of different subsets. Nevertheless, traditional Shapley value methods adopt perfor-
mance metrics as the utility function and necessitate training for each marginal subset, resulting in
exponential time complexity as the number of data providers increases. In contrast, our approach
naturally evaluates value based on gradient sums rather than metrics. The additive nature of gradi-
ents compared to performance metrics can significantly reduce computational costs. By leveraging
the additivity of gradients as a utility function in combination with the Shapley value, we can main-
tain the original linear time complexity without incurring exponential time costs. Extensive exper-
iments demonstrate that our accelerated NESTLE framework can accurately adjust the data value
distribution when multiple data providers coexist, while the time consumption is only 1.25% of the
traditional ground-truth Shapley value. The contributions of this work are as follows.

• We delineate the task formulation, core requirements, and challenges of data value estima-
tion for LLMs in multi-domain, multi-source scenarios. Then we proposed a training-free
framework NESTLE based on gradient tracking to address these issues.

• Our framework estimates data value by tracking gradient inner product of support and valu-
ation data. We further designed an accelerated Shapley-based valuation strategy, leveraging
the additivity of gradients to handle dynamic value adjustments in multi-source scenarios.

• We conduct extensive experiments and demonstrate that our proposed framework can effi-
ciently and accurately perform data value estimation across different task scenarios.

2 RELATED WORK

Traditional Data Valuation. Measuring the value of training data is a pivotal theme in machine
learning Sim et al. (2022); Ghorbani et al. (2020); Schoch et al. (2022), which focuses on assess-
ing the worth of different data sources. It is broadly utilized in the applications of data trading
Agarwal et al. (2019) and pricing Jiang et al. (2023a). Existing data valuation methods in machine
learning can be mainly categorized into two types, marginal-contribution-based Ghorbani & Zou
(2019); Jia et al. (2019) and influence-based Park et al. (2023); Jiang et al. (2023a); Pruthi et al.
(2020). The former marginal-contribution-based approaches estimate the data worth by computing
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its marginal performance improvement when the to-be-valuated data is incorporated across different
subsets Schoch et al. (2022). This can be achieved through computational paradigms such as the
leave-one-out (LOO) Jia et al. (2019) and Shapley value Shapley (1953); Schoch et al. (2022). The
latter method relies on data influence Koh & Liang (2017); Jiang et al. (2023a); Park et al. (2023)
and aims to assess the impact of adding or removing specific data segments on model training Koh
& Liang (2017). However, these approaches can lead to exceedingly unaffordable costs of training.

Federated Client Contribution Estimation Another relevant setting is the estimation of client
contributions in federated learning Tastan et al. (2024); Jiang et al. (2023b); Li et al. (2020), which
focuses on designing principled mechanisms to assess the contributions of individual participants
from the standpoint of machine learning fairness Oneto & Chiappa (2019); Ghani et al. (2023).
These methods predominantly build on Shapley value Koh & Liang (2017) and aim to develop more
efficient estimation mechanisms Wang et al. (2020) of that.

Data Selection for Large Language Models The emergence of large language models (LLMs)
has prompted initial research into exploring the significance of data quality during model fine-tuning
Zhou et al. (2023); Li et al. (2024c); Chen et al. (2024); Xia et al. (2024). To enhance the quality
of training data, the topic of data selection is receiving increasing attention Li et al. (2024b); Du
et al. (2023); Ge et al. (2024). Some preliminary approaches are designed to filter high-quality
training data through different perspectives such as difficulty Li et al. (2024b), quality Li et al.
(2024a), diversity Ge et al. (2024), and necessity Du et al. (2023). The enhanced quality of the
selected data then facilitates model training with improved performance and reduced training cost
Xia et al. (2024). Some work additionally incorporates a validation set from downstream tasks as
criteria to select training data that meet personalized requirements Li et al. (2024d); Xia et al. (2024).
However, these data selection methods are primarily tailored to enhance the training efficiency, but
fail to finely assess the value distribution of different data sources in various target areas. Thus, it
remains a challenge how to systematically estimate the value of different data sources for LLMs.

3 METHOD

3.1 PRELIMINARIES

We primarily focus on data valuation for LLM fine-tuning across different targeted domains. Sup-
pose that there is a set of n data providers denoted as N = {1, . . . , n}. The core objective of our
data valuation framework is to estimate the value {ϕk}k∈N of to-be-valuated dataset Dk

valu for data
provider k on LLM Mθ across different targeted downstream domains T = {t1, t2, ..., tm}. The
estimated data value of Dk

valu in the domain tj is then denoted as ϕj
k. In targeted valuation settings,

every target domain tj is equipped with a validation set (support set) Dj
sup , serving as a criterion

for targeted data valuation. In summary, this framework aims to leverage validation sets Dsup from
different target domains T to assess the value distribution of different data providers N for the LLM
Mθ across those domains.

To construct a comprehensive data valuation framework in such a scenario, we first discuss the
requirements for an LLM data valuation framework. We believe that a comprehensive data valuation
framework should meet the following design principles.

• Accuracy: The designed valuation framework needs to accurately estimate the value dis-
tribution of data across different domains. When multiple data providers coexist, precise
dynamic adjustments are necessary to closely align with the ground-truth Shapley value.

• Efficiency: The valuation framework needs to measure data value effectively, preferably
without costly training, while efficiently accommodating changes in data providers.

• Adaptability: The valuation framework needs to be broadly applicable, offering strong
generality and flexibility for different domains, LLM architectures, and model sizes.

• Robustness: Based on several principles from existing works Agarwal et al. (2018); Ohri-
menko et al. (2019); Bax (2019), we discuss the following necessary robustness require-
ments: i) Strict Monotonicity. if the dataset Dk results in a more significant performance
enhancement compared to Dj , then the value score of data owner k should be strictly
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higher than that of owner j; ii) Symmetry. If the dataset Dk yields the same performance
improvement as Dj (e.g., Dj = Dk ), then the value scores of these two datasets should be
equal; iii) Uselessness. If the dataset Dk fails to contribute to any performance enhance-
ment, then Dk should be valueless; iv) Clone robustness. If an provider k participates in
the collaboration with its duplicate k

′
(i.e. Dk′ = Dk), the value allocated to k (and k

′
)

should not increase; v) Relevance. If Dj is similar to data from other sources and Dk is
unique to owner k, it is possible for ϕk to be greater than ϕj even if U(Dk) ≤ U(Dj).

3.2 DATA VALUATION VIA GRADIENT TRACING

Consider the LLM Mθ at time step i with parameter θi, We assume a parameter update process
through meta-update, using a batch of samples si ⊂ Dvalu for a single training step. For this meta-
iteration a, parameters of M are updated from θi to θi+1. Therefore, we define the to-be-estimated
value of the mini-batch sample so, in relation to the support set dt ⊂ Dt

sup as,

V (si, dt) = L(dt, θa)− L(dt, θa+1) (1)

We can write the first-order Taylor expansion of this formula as,

L(dt, θa+1) = L(dt, θa) + (θa+1 − θa)∇θaL(dt, θa) (2)

For ease of exposition, assume that we are training the model with SGD with batch size 1 and the
step size of ηa

θa+1 = θa − ηa∇θaL(si, θa) (3)

Combining the above two equations Eq.( 2) and Eq.( 3), the influence of si becomes,

V (si, dt) = ηa∇θaL(si, θa)⊤∇θaL(dt, θa) (4)

For a particular training mini-batch si, we can approximate the influence by summing up this for-
mula in all the iterations in which si was used to update the parameters. Consequently, the impact
of the data Dvalu on the support set Dt

sup from domain t can be assessed by summing their effects.

V (Dvalu, D
t
sup) =

∑
si⊂Dvalu,dt⊂Dt

sup

ηa∇θaL(si, θa)⊤∇θaL(dt, θa)

= η̄a∇θaL(Dvalu, θa)
⊤∇θaL(Dt

sup, θa)

(5)

Consequently, the value of Dvalu within the target domain t is estimated by the accumulation of the
inner products of its gradient with those of the corresponding support set Dt

sup. In our valuation
strategy, based on the idea of such gradient tracing, we develop an extended framework for value
distribution estimation and dynamic adjustment, as outlined below.

3.3 VALUATION FRAMEWORK

In this section, we introduce our valuation framework, NESTLE, in detail. We primarily consider
two key valuation scenarios. The first scenario involves a single data provider, where we propose a
valuation strategy to quickly estimate the static value distribution of data in specific domains. The
second scenario considers multiple data providers, where we need to account for interactions among
them, thus proposing a dynamic adjustment mechanism based on Shapley-based approximation.

Static Estimation of Value Distribution. For static valuation, we primarily focus on the static
estimation of value distribution for a single data provider. Relying on the gradient tracking the-
ory from Eq.(5), we can estimate the value distribution of Dvalu across multiple domains T =
{t1, t2, ..., tm} by computing gradient inner products between the valued data Dvalu and support
sets {Dt1

sup, D
t2
sup, ..., D

tm
sup} for different target domains.

While this approach is straightforward and theoretically supported, there are still areas that need re-
finement and optimization. (i)-Firstly, this approach relies on gradient caching, requiring gradients
to be stored at the sample, batch, or dataset level, with a cached tensor of shape [len, n param],
where len is the number of gradient points and n param is the number of trainable parameters.

4
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Caching such large gradients for different valuation and support datasets is unaffordable for large
LLMs, where the number of trainable parameters often reaches billions. To reduce the memory
cost of gradient caching, we take inspiration from existing work Park et al. (2023) and incorpo-
rate an additional gradient projector , which reduces the gradient dimensions from n param to
4096, thereby decreasing the memory overhead of gradient caching to about 0.01% of the original
cost. (ii)-Second, the foundational gradient tracking theory rests on the SGD assumption outlined
in Eq. (3). In practice, though, LLM training frequently uses Adam-like optimizers, necessitating a
revision of assumption in Eq. (3). We apply an additional calibration mechanism, retaining the first
and second moments of the gradients for Adam-style adjustments.

θa+1 − θa = −ηaΓ(sa, θa), where Γ(sa, θa) =
ma+1

√
va+1 + ϵ

ma+1 = (β1m
a + (1− β1)∇ℓ(sa, θa))/(1− βa

1 )

va+1 = (β2v
a + (1− β2)(∇ℓ(sa, θa))

2)/(1− βa
2 )

(6)

Through gradient projection and calibration, the lower-cost caching and more coherent theoretical
assumptions help us achieve a higher-quality estimation of data value distribution.

Dynamic Adjustment of Multi-Source Provider. In the previous section, we propose a gradient
tracing mechanism to estimate the data value distribution for a single data provider across differ-
ent domains. However, in real-world data trading scenarios, multiple data providers often coexist,
and their potential interactions might require dynamic adjustments to the value estimations. For
instance, when the data from two providers partially or completely overlaps, we need to apply a
reduction penalty to their data value. To achieve such dynamic correction, we draw inspiration from
traditional Shapley value calculations and propose a dynamic value correction strategy based on
rapid Shapley estimation. In particular, traditional Shapley value involves computing the additional
contribution of target data si to various marginal subsets S, where S is a coalition that contains a
subset from provided data source N = {D1

valu, D
2
valu, ..., D

n
valu}. For data Dk

valu from each provider
k, the corresponding marginal set S can be sampled from any subset from N that does not contain
Dk

valu, that is , S ⊆ N\{Dk
valu}. The Shapley value of Dk

valu is then formulated,

v(Dk
valu) = ES⊆N\{Dk

valu}
[U(S ∪Dk

valu)− U(S)] (7)

where U is the utility function that measures the performance of subset S and U(S) represents the
data value of the subset S (Traditional Shapley value typically utilizes performance metrics as utility
function). Such computations of Shapley value are cost-intensive, as the marginal contribution needs
to be calculated for all possible subsets, the required number of training iterations is 7 when there
are 3 clients. In our gradient tracking framework, because model parameters aren’t updated and
we merely compute gradients for different valuation data batches, we can optimize computational
complexity using the additivity property of gradients,

grad(Da&Db) = grad(Da) + grad(Db)− grad(Da ∩Db) (8)

By adopting this method, we can reuse computed gradients grad(Da) and grad(Db) from individual
clients to calculate their union’s gradient, simply subtracting the overlap grad(Da ∩ Db) . This
dramatically cuts the cost of Shapley computations from the original (2n − 1) possible subsets to
only n data providers, allowing for dynamic adjustments at virtually no extra cost.

Efficiency Analysis The SV method, which relies on performance indicators, requires calculating
the performance of all possible combinations of datasets from n data owners. This involves training a
model on each combination and subsequently evaluating its performance on a validation set. Hence,
the time complexity escalates exponentially with the addition of more data owners (i.e., O(2n)).
In comparison, our NESTLE first calculates the gradients of different providers, and the gradients
between data points are independent. When computing combinations of datasets Dk and Dj , we can
treat it as extending dataset Dk by directly summing the representations of datasets Dj and Dk to
form the representation of dataset Dkj , thus avoiding redundant gradient calculations for each data
point in datasets Dk and Dj . In summary, our method only requires calculating the gradient for each
data owner, resulting in a time complexity of O(n), which is crucial for the practical application.
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Table 1: Comparison of estimated data value across different course-grained domains for NESTLE.

Domain Target Finance Health Law
Source Finance Health Law Finance Health Law Finance Health Law

Llama2-7B 0.708 0.160 0.132 0.126 0.551 0.323 0.250 0.547 0.203
ChatGLM3-6B 0.527 0.192 0.281 0.254 0.540 0.206 0.294 0.182 0.525
Qwen1.5-7B 0.619 0.114 0.268 0.134 0.664 0.202 0.192 0.155 0.653

Table 2: Comparison of estimated data value across different fine-grained domains for NESTLE.

Domain Target Consult TCM Medicine
Source Consult TCM Medicine Consult TCM Medicine Consult TCM Medicine

Llama2-7B 0.611 0.229 0.160 0.275 0.561 0.164 0.188 0.1880 0.623
ChatGLM3-6B 0.436 0.294 0.271 0.241 0.574 0.195 0.237 0.213 0.550
Qwen1.5-7B 0.511 0.259 0.230 0.221 0.600 0.179 0.201 0.206 0.593

4 EXPERIMENTS

In this section, we provide the experimental results to verify the effectiveness and robustness of our
proposed data valuation framework NESTLE. More results can be found in Appendix.

4.1 EXPERIMENTAL SETTINGS

Evaluation Protocols. As mentioned in Section 3.3, a valuation framework needs to estimate
the multi-domain value distribution for a single data provider and dynamically adjust values for
coexisting multiple providers. Hence, our evaluation scenarios are categorized into single-source
and multi-source scenarios. (i)- Single-source evaluation primarily assesses whether the framework
accurately estimates the value distribution for a single data provider across different target domains.
(ii)- Multi-source evaluation primarily assesses whether the framework can perform unbiased and
fair dynamic adjustments for multiple coexisting data providers within a specific domain.

Datasets and LLMs. Our proposed framework is evaluated on a variety of datasets. For the
single-source setting, the evaluation is conducted at two different cross-domain granularities:
coarse-grained and fine-grained. (i)-For coarse-grained cross-domain data, we adopt the fields of
Finance, Healthcare, and Law. (ii)-For fine-grained cross-domain data, we adopt three sub-
fields under the healthcare domain: Consult Zhu (2023), Medicine, and TCM (traditional Chi-
nese medicine). For the multi-source setting, the evaluation is focused on the consult domains, with
multiple data providers possessing different to-be-valuated data in this consult field. For each of
these domains and subdomains, we randomly divide 1000 samples to form the support set Dsup,
and the to-be-valuated data Dvalu are sampled from the remaining samples. Our framework is
architecture-agnostic and compatible with any open-source LLMs, hence we mainly select some rep-
resentative ones for evaluation, including Llama2-7B, Qwen1.5-7B, and ChatGLM3-6B. We
also included explorations on larger models of the Qwen series LLMs, including Qwen1.5-14B
and Qwen1.5-32B. The complete statistics can be found in Appendix.

Evaluation Metrics. Under the single-source setting, we primarily consider the consistency be-
tween the estimated data value distribution and the true data distribution. We tested the data value
from different sources across various target domains under both coarse-grained and fine-grained do-
main distributions. Under the multi-source setting, our main focus is on the alignment between the
data value distribution of various coexisting providers and the corresponding ground truth value.
The ground truth of the data value distribution is represented by the traditional Shapley value (SV),
which is discussed in Eq. (7) and reveals the marginal performance improvement. We employ
commonly-adopted matching-based metrics like BLEU, ROUGE-1, ROUGE-2, and ROUGE-L as
utility functions U . The detailed experimental cases are provided later in Section 4.2.

6
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Table 3: Performance comparisons under multi-source evaluations for cases 1 to 4.

Multi-Source
Cooperative Setting

Ground-truth Shapley value LOO FedCE NESTLE
BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

Case 1
Provider 1 0.3127 0.3204 0.3225 0.3217 0.2888 0.2817 0.2644
Provider 2 0.3392 0.3369 0.3321 0.3338 0.2047 0.3523 0.3428
Provider 3 0.3479 0.3426 0.3453 0.3440 0.5066 0.3661 0.3927

Case 2
Provider 1 0.3043 0.2974 0.2972 0.2969 0.3131 0.3132 0.2508
Provider 2 0.3427 0.3450 0.3309 0.3356 0.3696 0.3333 0.3469
Provider 3 0.3528 0.3612 0.3718 0.3674 0.3171 0.3535 0.4000

Case 3
Provider 1 0.3136 0.2897 0.2736 0.2983 0.3818 0.3165 0.3048
Provider 2 0.3225 0.3380 0.3409 0.3389 0.1541 0.3231 0.3429
Provider 3 0.3608 0.3733 0.3854 0.3628 0.4640 0.3603 0.3523

Case 4
Provider 1 0.3597 0.3524 0.3478 0.3394 1.0 0.6718 0.3838
Provider 2 0.3201 0.3237 0.3260 0.3302 0.0 0.1641 0.3080
Provider 3 0.3201 0.3237 0.3260 0.3302 0.0 0.1641 0.3080

Implementation Details. The low-rank adaptation Hu et al. (2022) is adopted when calculating
the gradients in our framework and fine-tuning models in the baselines for calculating Shapley val-
ues. The LoRA rank r is set as 8 and the LoRA alpha α is set as 32. All the adopted open-sourced
LLMs leverage the instruct/chat version instead of the base version. All the experiments are con-
ducted with 4×A100-80G GPUs. More implementation details can be found in Appendix.

4.2 EXPERIMENTAL RESULTS

Cross-Domain Valuation of Single-Source Evaluation. To evaluate the valuation ability across
different target domains for our framework. We conduct extensive experiments under the coarse-
grained and fine-grained setup. The experimental results are shown in Table 2. It can be observed
that the estimated data value varies significantly across the three domains. In different target do-
mains, the changes in value estimation accurately reflect the structure of data sources, and the data
not belonging to the target domain is always assigned lower scores. Hence, it can be employed
for targeted data filtering by setting up a directional support dataset Dsup for a specific domain for
fine-tuning LLMs in specific downstream tasks.

Dynamic Adjustment in Multi-Source Evaluation. More importantly, in real-world evaluation
scenarios where multiple data providers coexist, the data valuation frameworks need to dynamically
adjust to different collaborative contexts. To evaluate the adaptability of our proposed framework
across various scenarios, we concentrate on the medical consult subdomain, simulating multiple
cooperative cases based on the redundancy of data owned by different providers. Each case involves
three sources (data provider) which are denoted as P1, P2 and P3. The details are as follows:

• Case 1: There is no data overlap among the different providers: P1 possesses 20% of the
data, P2 possesses 33.3%, and P3 holds the remaining 46.7%. (P1:P2:P3 = 3k : 5k : 7k)

• Case 2: There is a partial overlap between P2 and P3. P1 possesses 20% of the data, P2

possesses 40%, and P3 holds 60%. The overlapping section makes up 20% of the total
data. (P1 : P2 : P3 = 3k : 6k : 9k, with 3k overlap between P2 and P3)

• Case 3: There is a partial overlap between P1 and P2, and another partial overlap between
P2 and P3 (The two overlapping parts are independent of each other.). P1 possesses 33.3%
of the data, P2 possesses 50%, and P3 holds 50%. with a 16.67% overlap between P1 and
P2, and approximately 16.67% overlap between P2 and P3. (P1 : P2 : P3 = 6k : 9k : 9k,
with 3k overlap between P1 and P2, another 3k overlap between P2 and P3)

• Case 4: There is a complete data overlap between P2 and P3. Each of the three providers
holds 50% of the total data, and the data section held by P2 and P3 is exactly the same.
(P1 : P2 : P3 = 3k : 3k : 3k, with 3k overlap between P2 and P3)
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Table 4: Performance comparisons with different numbers of data providers N = 3, 4, 5.

Number of
Data Providers

Ground-truth Shapley value NESTLE
BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

N = 3
P1 = 3k (16.7%) 0.2957 0.3150 0.3050 0.3111 0.2664
P2 = 6k (33.3%) 0.3433 0.3346 0.3164 0.3253 0.3403
P3 = 9k (50.0%) 0.3608 0.3504 0.3786 0.3636 0.3931

N = 4

P1 = 3k (10%) 0.2217 0.2320 0.2105 0.2289 0.1911
P2 = 6k (20%) 0.2562 0.2437 0.2277 0.2374 0.2402
P3 = 9k (30%) 0.2573 0.2569 0.2807 0.2557 0.2742
P4 = 12k (40%) 0.2648 0.2674 0.2811 0.2780 0.2944

N = 5

P1 = 3k (6.7%) 0.1759 0.1770 0.1649 0.1790 0.1489
P2 = 6k (13.3%) 0.1978 0.1831 0.1667 0.1814 0.1842
P3 = 9k (20.0%) 0.2035 0.1988 0.2097 0.2072 0.2092
P4 = 12k (26.7%) 0.2083 0.2140 0.2223 0.2124 0.237
P5 = 15k (33.3%) 0.2142 0.2271 0.2364 0.2200 0.2338

For comparison, the ground-truth Shapley value (SV) with different utility functions (BLEU-4,
ROUGE-1, ROUGE-2, and ROUGE-L) for each provider in these four cases is calculated using
the Llama2-7B model. The results are normalized and shown in Table 3. It can be observed that
even though different utility functions yield slightly varying numerical Shapley values, they share
the same valuation trend, with very small numerical differences. This confirms the stability and
reliability of the Shapley value as a ground truth. The results also demonstrate that our method can
handle scenarios with varying degrees of data overlap. The estimated data value maintains the same
order as the ground truth. The valuation results also fulfill the properties of Strict Monotonicity and
Symmetry mentioned in Section 3.1.

Furthermore, We compared our framework with other valuation baselines, including the Leave-
One-Out (LOO) Jia et al. (2019) and FedCE Jiang et al. (2023b) methods. As shown in Table 3,
we found that other baselines exhibit undesired estimation in certain overlapping scenarios. For
example, in Case 4 where P2 and P3 possess the same data section. According to the characteristics
of the LOO method, the estimated data values of both P2 and P3 are 0, as they can replace each
other in the LOO setting. This result is evidently inaccurate as the values of P2 and P3 should face
penalties, but they should not be reduced to zero. On the other hand, FedCE can achieve valuation
results closer to the ground truth SV than LOO. However, FedCE shows severe estimation bias in
fully overlapping scenarios of Case 4. Further, the dependency on local and global cooperation in
federated training restricts the adaptability and transferability of FedCE. When a new data provider
joins the collaborative setting, recomputation for all clients (data providers) is needed to reach a new
balance, resulting in substantial additional computation that hinders FedCE’s flexible transferability.
Compared to these methods, our approach can accurately estimate the data value in the collaborative
multi-source setting. Additionally, due to the additive property of the gradients, Our approach allows
for cost-effective adaptation to scenarios where new data providers participate.

4.3 ANALYTICAL STUDIES

Table 5: The valuation time.

Valuation Method Total Time

Shapley Value 240min × 7
LOO 240min × 4

FedCE 60min
NESTLE (ours) 7min × 3

Exploration of the Valuation Cost. We conducted an
analysis of time consumption for various valuation meth-
ods. We test the scenario with 3 data providers on Llama2-
7B. Each provider possesses 3k non-overlapping data sam-
ples. The time costs are displayed in Table 5, the time of
240min×7 means there need 7 sets of running in total, which
can be executed concurrently. Each of the running takes ap-
proximately 240 minutes on average. It can be observed that
our proposed framework is much more efficient than the other data valuation baselines, e.g., it costs
only 1.25% of time compared to the ground-truth Shapley Value baseline.
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Impact of More Sources of Data Providers. In a multi-source setting, we further explored data
valuation experiments when more collaborative data providers are involved, including cases with
N = 3, 4, 5. The specific data provider configurations and experimental results are shown in Table 4.
Notably, in these settings, there is no data overlap among different data providers. It can be observed
that when more sources of data providers are incorporated, our framework remains robust and its
valuation results remain consistent with the ground-truth Shapley value. While our method is much
more efficient than the vanilla Shapley value.

Table 6: Estimated value with differ-
ent ratios of already-trained data.

Ratio of Already
Trained Data

Estimated
Data Value

0% 0.5897
25% 0.5751
50% 0.5605
75% 0.5517

100% 0.5374

Impact of Integrating Trained Data into Dvalu. To fur-
ther verify the robustness of our method, we explored a
variant scenario where the to-be-valuated data is adulterated
with a portion of data that has been used for the fine-tuning
of the LLM Mθ. Specifically, the proportions of the mixed
fine-tuned data are 0%, 25%, 50%, 75% and 100% respec-
tively. As shown in Table 6, with the total data volume un-
changed, the overall estimated value of the data significantly
declines as the proportion of the already-trained data grows.
Such results exactly match the expectations, since in prac-
tice, data that the LLM has already been trained on tends to
provide less benefit to the same LLM, as its pattern has been previously learned. Such influence is
captured in our method through a reduction in the gradient magnitude of the evaluated data Dvalu.

Figure 1: Value score curves on different LLMs

Analysis of the Marginal Effects. In the
main results section, we discussed the perfor-
mance of our valuation framework across dif-
ferent target domains and in scenarios with
multiple data providers. Here we further in-
vestigate the trend in total data value at the
sample-wise level with varying sample quan-
tities. As shown in Figure 1, we conduct ex-
periments on the 7B, 14B, and 32B models of
the Qwen-1.5 series across the spectrum of
0 to 200k samples. Notably, Due to the non-
comparable nature of value magnitudes across
different LLMs, we have normalized the differ-
ent value curves to a uniform scale between 0
and 1. It can be observed that, as the number of
samples increases, the data value initially grows
rapidly and then gradually stabilizes, reflecting
a diminishing marginal effect. This trend is present across LLMs of different sizes, though the satu-
ration point varies with each size. As the model size increases from 7B to 32B, the inflection point
for total value saturation corresponds to larger data volumes. This indicates that larger models re-
quire more data to achieve optimal fitting in a given scenario. Such empirical findings align with the
scaling laws of instruction tuning of LLMs.

5 CONCLUSION

In this paper, we propose a gradient-based data valuation framework, NESTLE, for different down-
stream fine-tuning tasks of LLMs. We first find that traditional data valuation methods typically
rely on cumbersome re-training and can be distorted. Thus we present our training-free valuation
algorithm based on gradient tracing to accurately and efficiently estimate the data value distribution
across different target domains. To further address the potential dynamic adjustments in multi-
source scenarios, we combine our grading tracing mechanisms with Shapley value (SV) theory with
the additivity of gradients, effectively evaluating the contribution of each data provider. Extensive
experiments demonstrate that our accelerated Shapley-based gradient estimation can accurately ad-
just the data value distribution, while requiring very little calculation cost. Future endeavors could
explore the connection between value estimation and data scaling law.
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