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Abstract

As the field of Natural Language Processing001
(NLP) increasingly adopts transformer-based002
models, the issue of bias becomes more pro-003
nounced. Such bias, manifesting through004
stereotypes and discriminatory practices, can005
disadvantage certain groups. Our study focuses006
on direct and indirect bias in the model expla-007
nations, where the model makes predictions008
relying heavily on identity tokens or associ-009
ated contexts. We present a novel analysis of010
bias in model explanation, especially the subtle011
indirect bias, underlining the limitations of tra-012
ditional fairness metrics. We first define direct013
and indirect bias in model explanations, which014
is complementary to fairness in predictions. We015
then develop an indirect bias discovery algo-016
rithm for quantitatively evaluating indirect bias017
in transformer models using their in-built self-018
attention matrix. We also propose an indirect019
bias mitigation algorithm to ensure fairness in020
transformer models by leveraging attention ex-021
planations. Our evaluation shows the signifi-022
cance of indirect bias and the effectiveness of023
our indirect bias discovery and mitigation.024

1 Introduction025

Discrimination is the unfair treatment or prejudice026

directed towards individuals, groups, or certain027

ideas or beliefs, intentionally or unintentionally.028

It frequently entails making stereotypes about oth-029

ers and acting in a manner that disadvantages one030

group while favoring another (Webster et al., 2022).031

The pervasive nature of bias extends to machine032

learning, prominently manifesting in the domain033

of Natural Language Processing (NLP) (Bansal,034

2022). As NLP becomes increasingly integral to035

everyday life, largely due to the advancements036

brought by the transformer-based models (Wolf037

et al., 2020; Dai et al., 2019), addressing fairness038

in this field is of utmost importance.039

In recent years, NLP researchers have under-040

taken efforts to identify and mitigate discrimina-041

tion against specific groups, such as gender (Thel- 042

wall, 2018), race (Kiritchenko and Mohammad, 043

2018), age (Diaz et al., 2018), religion (Bhatt et al., 044

2022), disability (Venkit and Wilson, 2021), etc. 045

They focus on the model’s tendency to exploit 046

spurious correlations (Liusie et al., 2022; Wang 047

et al., 2022) between the predicted label and ex- 048

plicit words linked to certain protected attributes, 049

such as “he”, “she”, “Alice”, “Bob”, “Russian”, 050

“Muslim”, etc. For instance, in a hate speech detec- 051

tion task, an unfair transformer-based model would 052

see the word “Muslim” (also a protected attribute) 053

in a sentence and classify it as hate speech instantly 054

by assigning high attention to the word “Muslim”, 055

rather than understanding the whole message of the 056

sentence. This is referred to as the legal concept of 057

disparate treatment (Supreme Court of the United 058

States, 1971), that is the outcomes have intended 059

direct discrimination due to choices made explic- 060

itly based on membership in a protected class. The 061

existing methods can only handle discriminatory 062

cases where there is a representative token present 063

in the text directly associated with the protected 064

group. It also requires the NLP practitioners to 065

manage a pre-determined list of candidate tokens. 066

In contrast to disparate treatment, disparate im- 067

pact (Supreme Court of the United States, 1971) is 068

the legal theory that outcomes should not be differ- 069

ent based on individuals’ protected class member- 070

ship, even if the process used to determine that out- 071

come does not explicitly base the decision on that 072

membership but rather on proxy attributes. Even 073

without the presence of any direct indicating token 074

in the text, the model still excessively relies on 075

context learned from biased training data, which 076

results in unintended subtle indirect discrimination 077

in the prediction. Such indirect association is case 078

by case. It is difficult to pre-determine a candidate 079

token list. Remarkably, no prior studies have ex- 080

plicitly delved into indirect discrimination in NLP, 081

to the best of our knowledge. 082
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(a) Biased Model (b) Unbiased Model

Figure 1: An example of token-wise model explanation.
The darker color indicates a higher importance

In this work, we want to bridge the gap be-083

tween disparate treatment and disparate impact in084

NLP models. The black-box deep learning models085

tend to over-learn the biased data during training,086

which results in shortcuts in decision-making with-087

out valid explanations. Figure 1 illustrates how a088

model trained to mitigate direct bias against “Mus-089

lim” still falsely categorizes a statement as hate090

speech because the model’s attention is biased em-091

phasized on the sensitive context like the word092

“quran”. An unbiased model would make a negative093

prediction based on “not” and “always”. To investi-094

gate bias in the model’s local explanations, we first095

define direct and indirect bias (in Section 4). They096

complement the traditional outcome-association-097

based group fairness notions, such as demographic098

parity. We then propose a novel bias discovery099

method to evaluate transformer-based models on100

disparate impact (in Section 5). It leverages a101

secondary transformer-based model dedicated to102

classifying the protected attribute from the asso-103

ciation presented in the training data. We com-104

pare the decision-making patterns of the primary,105

potentially biased model, with those of this sec-106

ondary model. By examining their similarities, we107

can quantify indirect bias through a new proposed108

metric called the area under the similarity curve109

(AUSC). Furthermore, we then proceed to mitigate110

the detected indirect bias through a similarity-based111

constraint, which can be coupled with mitigating112

direct bias through adversarial learning (in Sec-113

tion 6). In our experiment, we show the signifi-114

cance of indirect bias, the effectiveness of our indi-115

rect bias discovery and mitigation algorithms, and116

the advantage of mitigating indirect bias in model117

explanations (in Section 7). Thus, our primary con-118

tributions are threefold: (1) we establish the prob-119

lem of fairness in model explanations by formally120

defining direct and indirect bias; (2) we propose an121

indirect bias discovery (IBD) framework tailored to122

quantitatively evaluate indirect bias in transformer123

models; and (3) we develop a novel indirect bias124

mitigation (IBM) algorithm that ensures fairness125

using model explanations.126

2 Related Work 127

2.1 Bias and Mitigation 128

An increasing body of work has been conducted on 129

direct bias discovery in NLP and ways to mitigate 130

it. Researchers have focused on classification tasks 131

and how societal biases (Hutchinson et al., 2020; 132

Dinan et al., 2020; Xia et al., 2020) , can impact a 133

model’s prediction. While these studies work on 134

one type of social bias at a time others have tried to 135

make a generalized method to quantify any sort of 136

existing bias (Czarnowska et al., 2021). (Hovy and 137

Prabhumoye, 2021), argues that these direct biases 138

originate mainly from five sources. To observe bias 139

(Bansal, 2022), talks about existing metrics in nlp. 140

Many attempts have been made to mitigate 141

bias by solving sub-problems. Generally, all bias 142

mitigation approaches fall under three categories 143

(Mehrabi et al., 2021). Pre-processing, when miti- 144

gation happens before feeding the biased data into 145

the model. (Brunet et al., 2019) tries to locate the 146

bias that exists in training data and remove it so 147

that the model can train on unbiased data. However, 148

the model has to allow such modification in the 149

training data (Bellamy et al., 2018). In-processing 150

mitigation is such, where the model’s algorithm 151

is modified to tackle bias while training on biased 152

data. Adversarial learning (Zhang et al., 2018), is a 153

prime example of in-process bias mitigation. Other 154

solutions like causal mediation analysis (Vig et al., 155

2020), entropy-based attention regularization (At- 156

tanasio et al., 2022) are also offered to mitigate bias 157

in the training time. Finally, post-processing, in- 158

volves using a separate set of data, not used during 159

the model’s training, to evaluate the model after 160

its training phase is complete (d’Alessandro et al., 161

2017). In (Bolukbasi et al., 2016), the author in- 162

troduced an equalization process for every pair of 163

gender-specific words to ensure fairness. 164

2.2 Attention Interpretation 165

Attention interpretability in NLP is crucial for un- 166

derstanding the biased decision-making process of 167

transformer-based models (Mehrabi et al., 2022). 168

Self-attention mechanisms are structured as multi- 169

layered entities, with each layer encompassing 170

multiple heads. Given the complexity of this 171

high-dimensional architecture, it is a challenge 172

to interpret the decision-making process of self- 173

attention. As a remedy, researchers often project 174

the self-attention representations into a more man- 175

ageable lower-dimensional space (Mylonas et al., 176
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2022). Several operations on heads and layers,177

such as averaging (Wang et al., 2019) and summa-178

tion (Schwenke and Atzmueller, 2021), have been179

proposed to simplify this process. These opera-180

tions inherently rank tokens by their significance181

by aggregating column-wise data into unified ma-182

trices for heads (Schwenke and Atzmueller, 2021;183

Mathew et al., 2021; Chefer et al., 2021). Multipli-184

cation is also a good layer operation (Chefer et al.,185

2021) because it can amplify the signals that might186

be muted using other techniques. The careful se-187

quencing of these, among other operations, can be188

used to aggregate self-attention scores to achieve189

an interpretation.190

3 Preliminary191

Given an input sequence x with a correspond-192

ing protected attribute s and a class label y. x193

is an ordered sequence of tokens represented as194

x = {ti}Ni=1 with ti denoting the i-th token in the195

sequence and N is the length of x. The protected196

attribute s sometimes already exists in x as a sen-197

sitive token, i.e., s ∈ x, which is mostly studied198

by previous works. In this work, we do not re-199

quire the presence of s in x. The class label y is200

the prediction target. A text classification model201

f : x → y is trained on labeled text data (x, y).202

The model prediction for a sequence x is denoted203

as ŷ = f(x). Specifically, we consider a state-of-204

the-art transformer-based classification model.205

3.1 Demographic Parity206

Demographic parity is a notion of group fairness,207

where the model prediction is fair w.r.t. the values208

of protected attribute s if ŷ and s are independent209

of each other (Zhang et al., 2018), as shown in210

Equation 1.211

P (ŷ = c|s = u) = P (ŷ = c|s = v). (1)212

3.2 Self-Attention213

When f is a transformer-based model, the self-214

attention mechanism in f plays a crucial role in215

understanding token relationships within the se-216

quence x. For each self-attention layer, the initial217

input is an (N × E) matrix where N is sequence218

length and E is embedding size. This matrix un-219

dergoes linear transformations to produce matrices220

Q(query), K(key), and V (value) of the same size.221

A = softmax

(
Q.KT

√
E

)
V, (2)222

where the dot product between Q and K is com- 223

puted, and the result is scaled by dividing it by
√
E. 224

The output undergoes a softmax function, resulting 225

in (N ×N) matrix, A (Vaswani et al., 2017). This 226

matrix encapsulates the attention-based relation- 227

ships of every token ti in the sequence x to every 228

other token. 229

In the classification task, certain tokens play a 230

vital role in predicting y, and these tokens get high 231

self-attention scores (Letarte et al., 2018). Let ty 232

denote the set of these ground-truth centric tokens 233

where ty ∈ x. The attention score of tokens in 234

this set, represented as A[ty] is notably high. The 235

aggregated token-wise attentions often serve as lo- 236

cal model explanations, which in return help to 237

identify these ground-truth centric tokens ty. 238

4 Direct and Indirect Bias 239

Consider a text classification model f : x → y that 240

is trained on labeled text data (x, y). There also 241

exists a protected attribute associated with x, which 242

may or not be present in the text in the form of an 243

identity token. Regardless of the bias in training 244

data, it is essential to make sure the prediction ŷ 245

made by the trained model f is unbiased w.r.t. s 246

not only in the predicted outcomes but also in the 247

local explanations to justify the prediction. In this 248

section, we formally define direct and indirect bias 249

in the model explanations and therefore formulate 250

related new fairness notions. 251

Direct Bias. In text data, the protected attribute 252

is sometimes (but not always) already present in 253

the text sequence, i.e., s ∈ x. If a model explicitly 254

makes predictions based on the sensitive token s, 255

we define such bias in the model explanations as 256

direct bias. For a model f with direct bias, the 257

sensitive token s is among the key tokens for the 258

model decision, i.e., s ∈ ty, where ty denotes the 259

set of important tokens which f makes the predic- 260

tion ŷ based on. The key token set ty serves as the 261

deciding factor in the model’s local explanation. 262

Theorem 1 A model f satisfies no direct bias if 263

the sensitive token s is not explicitly used for model 264

decisions, i.e., s /∈ ty. 265

Indirect Bias. Other than the sensitive token s, 266

when the model makes a prediction, it can also 267

over-exploit context ts in the text which is highly 268

correlated to s. We define such bias in the model 269

as indirect bias. For a model with indirect bias, a 270

subset of the sensitive context tokens ts is among 271
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Figure 2: Indirect Bias Discovery (IBD) Architecture

the key decision-making tokens ty, i.e., ts∩ty ̸= ∅.272

Theorem 2 A model f satisfies no indirect bias if273

the sensitive context tokens are not used for model274

decisions, i.e., ts ∩ ty = ∅.275

5 Indirect Bias Discovery (IBD)276

Direct and indirect bias evaluate a model’s fair-277

ness in terms of its decision-making process, a.k.a.278

model explanations. An unbiased transformer279

model pays high attention to the set of these ground-280

truth centric tokens ty, whereas a model with in-281

direct bias pays high attention to a set of tokens282

ts that is associated with s. In practice, either ty283

or ts is not annotated in the text. A model f can284

provide local explanations in the form of ty. The285

key challenge to examine indirect bias is to iden-286

tify ts. To separate ts from ty and to discover287

indirect bias in model f we propose an Indirect288

Bias Discovery (IBD) architecture. Figure 2 shows289

a general overview of our proposed architecture.290

It is divided into three components - model layer,291

attention-score aggregation layer, and similarity292

detection layer.293

Model Layer is used to fine-tune our target294

model f on sequence x. The goal of this fine-tuned295

f is to successfully predict ŷ where ŷ = f(x). We296

also get the attention-score matrix Af [{ti}Ni=1] for297

x in model layer which we can use to identify ty298

later. This layer also has another helper model g299

fine-tuned to predict the protected attribute s of x300

such that ŝ = g(x). Model g also gives us the301

attention-score matrix Ag[{ti}Ni=1] for x which we302

can use to identify ts later. Then, Af and Ag are303

fed into the next layer as inputs to get the interpre-304

tation of the decision-making process of model f305

and g respectively.306

Attention-Score Aggregation Layer takes high-307

dimensional matrices, Af and Ag and maps them308

into one-dimensional vectors, αf and αg. These309

vectors encapsulate the importance scores for the310

token set {ti}Ni=1 originating from Af and Ag, re- 311

spectively. To achieve this we devised a simple 312

self-attention score aggregator using summation. 313

Our attention-score aggregator follows the oper- 314

ations as in Equation 3 below. It calculates the 315

importance score αi for each token ti. The process 316

is repeated for both f and g. 317

αi =
L∑
l=1

 H∑
h=1

 N∑
j=1

alhij

 , (3) 318

where alhij is the element in the attention matrix 319

A corresponding to the l-th layer, h-th head, i-th 320

from-token and j-th to-token, L is the number of 321

layers, H is the number of heads, and N is the 322

sequence length. 323

Similarity Detection Layer finds the ty and ts 324

to detect indirect bias in model f . To achieve this, 325

the layer takes αf and αg as inputs. A subset tkf 326

is selected from x, which comprises the top k% 327

importance scores in αf . tkf is a hypothesis of ty 328

based on f . Consequently, a subset tkg is selected 329

from x, which comprises the top k% importance 330

scores in αg. tkg is a hypothesis of ts based on 331

g. The similarity between the subsets tkf and tkg is 332

calculated as below. 333

ϕ = J(tkf , t
k
g) =

|tkf ∩ tkg |
|tkf ∪ tkg |

, (4) 334

where ϕ stands for the Jaccard similarity measure 335

between the two subsets (Sunilkumar and Shaji, 336

2019). To make the similarity metric more robust, 337

we take multiple percentage values of k and plot a 338

similarity curve of ϕ against varying k. The area 339

under the similarity curve (AUSC) captures the 340

model behavior under multiple hypotheses. AUSC 341

is a more robust measurement of the model’s in- 342

direct bias. The similarity curve also allows us to 343

choose an optimum value of k to select the most 344

important tokens in model explanations. 345
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The AUSC functions as a quantitative metric for346

assessing indirect bias present within a given text347

data denoted as x. This metric primarily targets348

the identification of indirect bias at the sentence349

level. Nevertheless, the application scope of AUSC350

extends beyond individual sentences, allowing for351

the calculation of bias across the entire dataset.352

This process involves taking the AUSC values from353

each sentence and then calculating their average,354

which gives an overall measure of indirect bias in355

f w.r.t. the entire dataset.356

6 Indirect Bias Mitigation (IBM)357

In this section, we propose a novel Indirect Bias358

Mitigation (IBM) algorithm to guarantee fairness359

in model explanations. The goal of our mitigator360

is to minimize the influence of protected attribute361

s for a given model f : x → y that is trained on362

labeled text data (x, y). The underlying hypothesis363

posits that during the training phase, f picks up364

signals from the context tokens ts associated with365

the protected attributes s, consequently leading to366

biased predictions ŷ. To mitigate such indirect367

bias in model explanations, we design a similarity-368

based regularization term R to constrain the model369

to only rely on the key prediction centric tokens ty370

but not the sensitive context tokens ts.371

To obtain this similarity regularization term R,372

first, we need a pre-trained helper model g : x → s373

(same as the one from IBD). During the training of374

our f model, we take the attention matrix Af from375

model f and the attention matrix Ag from g model376

corresponding to the same samples to calculate the377

cosine similarity between these two matrices using378

Equation 5.379

R = (cos(Af , Ag))
2 . (5)380

A greater term R indicates the model f relies on381

the sensitive context tokens ts similarly to g. The382

preference for cosine similarity over Jaccard simi-383

larity is attributed to its differentiable nature, which384

is conducive to gradient-based optimization.385

To achieve no indirect bias in model explanation,386

the model f is trained with the total loss function L387

in Equation 6, where we add the similarity regular-388

ization term R to the cross-entropy CE(f(x), y).389

L = CE(f(x), y) + λR, (6)390

where λ is a hyper-parameter that controls the trade-391

off for fair explanations.392

Our similarity regularization only aims to re- 393

move indirect bias in model explanations. It cannot 394

guarantee the prediction outcome fairness, because 395

the layers after self-attention in the transformers 396

may still exploit the bias in the training data. In 397

practice, it is better to complement direct bias miti- 398

gation for traditional outcome fairness with indirect 399

bias mitigation in model explanation. In our evalu- 400

ation, we show that our indirect bias mitigation is 401

compatible with the most popular in-process miti- 402

gation for demographic parity - adversarial debias- 403

ing (AD) (Zhang et al., 2018), thus simultaneously 404

achieving both demographic parity in predictions 405

and no indirect bias in model explanations. 406

7 Experiment 407

In this section, we evaluate our proposed Indirect 408

Bias Discovery (IBD) and Indirect Bias Mitigation 409

(IBM) algorithms on sentiment analysis and toxi- 410

city detection datasets. Through case studies, we 411

also demonstrate the significance of indirect bias in 412

model explanations and the advantage of mitigating 413

indirect bias. 414

7.1 Metrics 415

We use Accuracy to evaluate the classification util- 416

ity performance, as our datasets are relatively bal- 417

anced. There is a trade-off between utility and 418

fairness. When the same level of fairness is met, 419

the higher utility indicates a better trade-off in the 420

mitigation model. 421

For classification fairness, we evaluate both on 422

the predicted outcome and the model’s local expla- 423

nations. We use Risk Difference (RD) to evaluate 424

the demographic parity in model predictions, where 425

RD = P (ŷ = c|s = u) − P (ŷ = c|s = v). A 426

low-risk difference indicates fairness in terms of 427

demographic parity in the model predictions. 428

We use aggregated attention for model explana- 429

tions and evaluate the indirect bias in model expla- 430

nations using our proposed metric - Area Under 431

Similarity Curve (AUSC), which is based on the 432

Jaccard similarity defined in Section 5. A higher 433

value of AUSC indicates high indirect bias in the 434

model’s local explanations, where the model over- 435

exploits sensitive context tokens in its decision- 436

making process. In addition, we further examine 437

the model explanations with the similarity curve 438

(also defined in Section 5). A curve below the 439

diagonal line indicates no indirect bias in model 440

explanations. 441
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7.2 Datasets442

The Amazon Books Review Dataset1, contains443

feedback from 3 million users on 212,404 unique444

books. Using a gender inferencing model, a subset445

of 16,927 users (9,105 male users and 7,822 female446

users) was identified with high confidence based447

on common male and female names. This results448

in a subset of 33,600 reviews (16,965 positive re-449

views and 16,635 negative reviews), where those450

rated with 4 or 5 stars were classified as positive451

and 1-star reviews as negative. The dataset has a452

risk difference of ∼20%, where female users make453

more positive reviews. The protected attribute in454

this dataset is the review author’s (inferred) gen-455

der. Most reviews do not include a gender self-456

identification token in them.457

The Jigsaw Unintended Bias in Toxicity458

Dataset (cjadams et al., 2019) is an archive of459

approximately 2 million public comments, was re-460

leased at the end of 2017 following the shutdown461

of the Civil Comments platform. It was labeled462

for both the toxicity of the comments and the pres-463

ence of several protected attributes. A targeted464

subset of this dataset, labeled specifically for toxic-465

ity towards male and female identities, comprised466

21,000 records. Within this subset, 13,000 records467

were associated with male identities and 8,000 with468

male identities. The comments were classified469

based on toxicity levels, with 10,490 identified as470

toxic and 10,510 as non-toxic. The dataset has a471

risk difference of ∼20%, where the ratio of toxic472

comments towards females is higher.473

Both the datasets are split into 82.8% training,474

7.2% validation, and 10% testing.475

7.3 Models476

There is no previous work on indirect bias miti-477

gation on model explanations. We compare our478

indirect bias mitigation method with some mitiga-479

tion methods that focus on achieving demographic480

parity in predictions.481

The Vanilla Model (Devlin et al., 2018) is a Bert482

Model with no fairness mechanism built in. We483

fine-tune the uncased BERT-base model from Hug-484

gingFace. It is highly likely to inherit the bias in485

the training data. It should have a higher accuracy486

along with a high-risk difference.487

Resampling (Kamiran and Calders, 2011) is pre-488

processing mitigation, which resamples the biased489

dataset to get an unbiased dataset with a close to490

1Amazon Books Reviews Dataset

0 risk difference. The sampled unbiased dataset 491

is then used for model training (for a vanilla Bert 492

model) instead of the original training data. How- 493

ever, such a pre-processing method cannot achieve 494

fairness in model predictions when it is evaluated 495

in the original test data. 496

Adversarial Debiasing (AD) (Zhang et al., 497

2018) is an in-processing mitigation, which uses 498

adversarial learning to remove the correlation be- 499

tween the predicted outcome and the protected at- 500

tribute, i.e., achieving demographic parity in pre- 501

dictions. The adversary network is a standard feed- 502

forward network containing two hidden layers with 503

512 and 128 units with ReLU activation function. 504

The output layer of the adversary has a sigmoid 505

activation. The hyperparameter to control the ad- 506

versary strength is 20. We evaluate whether mitiga- 507

tion for demographic parity also leads to fairness 508

in model explanations. 509

Our proposed method is to add similarity regular- 510

ization for indirect bias mitigation on top of adver- 511

sarial debiasing (AD + IBM). The helper model g 512

is a vanilla Bert model trained on the same training 513

data. The hyperparameter λ in Equation 6 to con- 514

trol the regularization strength is 200. Ours aims 515

to achieve both demographic parity and no indirect 516

bias. It trades off utility to satisfy both metrics. 517

7.4 Performance Comparison 518

Table 1 shows the main result of our evaluation. 519

The four models (Vanilla, Resampling, AD, and 520

Ours) are evaluated on the two datasets. 521

Demographic Parity. For both datasets, as ex- 522

pected, neither the vanilla model nor resampling 523

can achieve low-risk difference in the prediction on 524

testing data. Both AD and Ours achieve low-risk 525

differences through adversarial learning. 526

Indirect Bias Discovery and Mitigation. The 527

result on AUSC shows that our proposed Indirect 528

Bias Discovery (IBD) algorithm is effective in 529

quantifying the indirect bias in model explanations. 530

For both datasets, the vanilla model, resampling 531

and AD all have high AUSC scores (above 0.7), 532

which means their explanations have indirect bias 533

w.r.t. the protected attribute. There is a slight cor- 534

relation between RD and AUSC for these models 535

with unconstrained model attention. For our Indi- 536

rect Bias Mitigation (IBM) algorithm, the similar- 537

ity regularization makes sure the model learns dif- 538

ferent patterns from the gender inference (helper) 539

model. Our model explanation has a close to 0.5 540
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Model Amazon Review Dataset Jigsaw Dataset
Accuracy RD AUSC Accuracy RD AUSC

Vanilla Model 0.936 0.194 0.775 0.843 0.192 0.740
Resampling 0.929 0.184 0.768 0.848 0.163 0.747

AD 0.762 0.074 0.727 0.792 0.030 0.712
AD + IBM (Ours) 0.724 0.082 0.554 0.761 0.033 0.590

Table 1: Model Performance on Different Datasets

(a) Amazon Review Dataset (b) Jigsaw Dataset

Figure 3: Similarity Curve Comparison

AUSC, indicating low indirect bias, i.e., the model541

only focuses on ground-truth-centric tokens.542

We can further compare the model explanation543

using the similarity curve. Figure 3a and 3b shows544

the similarity curve for each model on the Amazon545

review dataset and Jigsaw dataset, respectively. For546

both datasets, the Vanilla Model curve (red) and the547

resampling curve (blue) are close to each other. The548

AD curve (yellow) is slightly under the other two.549

However, all three of them have a clear arch, which550

indicates high similarity and high indirect bias. The551

curve for our proposed IBM model (green) is close552

to a diagonal line, which is expected for the goal of553

no indirect bias in model explanations.554

Utility Trade-off. We know there is a utility555

trade-off for fairness in machine learning. The ac-556

curacy difference between the vanilla-biased model557

and the AD unbiased one indicates the trade-off for558

demographic parity through AD. The trade-off is559

0.174 for the Amazon review dataset and 0.051560

for the Jigsaw dataset. This means bias mitigation561

is more difficult for the Amazon review dataset562

because the sensitive token is not available to the563

model. This confirms our motivation to mitigate564

NLP bias beyond direct bias. For indirect bias, a565

small additional trade-off for no indirect bias is566

required. The trade-off is 0.038 and 0.031 for the567

Amazon review dataset and the Jigsaw dataset, re-568

spectively. The trade-off is relatively small.569

7.5 Case Analysis 570

To further showcase the significance of indirect 571

bias and the advantage in its mitigation, we also 572

conduct case analysis to directly compare different 573

model explanations on individual examples. Fig- 574

ure 4 shows the explanations provided by different 575

models on selected examples. Due to limited space, 576

full model explanations on long texts are included 577

in the Appendix. 578

Case (a) is a toxic comment towards males from 579

the Jigsaw dataset. All models except for AD cor- 580

rectly predicted the toxicity. The explanations from 581

vanilla and resampling are “men”, “jealous”, and 582

“fertility”. The explanation from our AD+IBM 583

model relies on “dominance”, “because”, and “jeal- 584

ous”, which is a gender-neutral toxicity logic. AD 585

has a similar explanation but the model failed the 586

prediction. We can also discover the indirect bias 587

from these individual explanations. The vanilla 588

model, resampling, and AD have AUSC 0.628, 589

0.646, and 0.544, respectively. Our AD+IBM only 590

has 0.503 AUSC, which indicates the lowest indi- 591

rect bias. 592

Case (b) is a toxic comment towards females 593

generated by ChatGPT 4. The toxicity context 594

is too subtle that the vanilla model, resampling, 595

and AD model cannot make the correct prediction 596

for it. They all heavily focus on “men”. They 597
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Figure 4: Model explanations on the example cases

associate “men” with non-toxicity, therefore failing598

the detection. Only our AD+IBM model correctly599

identified the toxicity. It focuses less on “men”,600

“focusing” and “family life”. The toxicity is on the601

absent female group, where female is “inefficient602

and sluggish” in “industries”. We can further verify603

our observation on model explanation with AUSC604

scores. For this case, the explanations from Vanilla605

model, Resampling, and AD have AUSC scores606

of 0.816, 0.754, and 0.609, respectively. Ours has607

0.543 AUSC, indicating low indirect bias.608

Case (c) is a negative review by a female author609

from the Amazon review dataset. All models cor-610

rectly predicted the negative sentiment. The expla-611

nations from Vanilla, resampling, and AD put more612

emphasis on topic words (e.g., “story”, “style”,613

“dementia”, etc.), which are the topics more likely614

from a female review as suggested by the helper615

model. For our AD+IBM model, the explanation616

focuses more on the sentiment-related content (e.g.,617

“not particularly enjoyable”, “thrill the professor”, 618

“confuse and bore the student”, etc.). This means 619

our mitigator avoids potential sensitive context and 620

focuses only on ground-truth-centric tokens. The 621

indirect bias discovered in the AUSC score for 622

Vanilla, resampling, and AD are 0.778, 0.787, and 623

0.724, respectively. Ours only has 0.575. 624

Case (d) is a positive review by ChatGPT 4, 625

which is instructed to write a review from a fe- 626

male perspective without revealing they are female. 627

The generated review contains subtle bias inherited 628

from historical data. ChatGPT also provides its 629

justification that the review focuses more on the 630

female characters, including the main protagonist 631

- Sophie Neveu. The helper model suggests that 632

“narrative” and “characters” are associated with fe- 633

male reviewers. In comparison to the other models, 634

the explanation from our AD+IBM model focuses 635

more on the sentiment words (e.g., “keep the reader 636

on the edge”, “great”, etc). However, the model still 637

suffers from spurious correlations outside of gen- 638

der bias, such as “historical”, “religious”, “renais- 639

sance”, “christian”, etc. This is because the model 640

is not trained to mitigate these spurious correla- 641

tions. For the AUSC scores, Vanilla, resampling, 642

and AD are 0.744, 0.715, and 0.640, respectively. 643

Ours has a low AUSC score of 0.445. 644

Overall, indirect bias is difficult for AD to miti- 645

gate, especially in subtle, complex, and long-text 646

cases. IBD can quantify the indirect bias in the 647

form of AUSC score. Our AD+IBM mitigation is 648

effective in providing neutral unbiased local expla- 649

nations for all cases. 650

8 Conclusion 651

In this work, we study indirect bias in NLP mod- 652

els, a phenomenon less explored but as significant 653

as direct bias. Our contributions include defin- 654

ing direct versus indirect bias, introducing a new 655

framework for quantitatively evaluating indirect 656

bias in transformer models using their in-built self- 657

attention matrix and proposing a mitigation algo- 658

rithm to ensure fairness in transformer models by 659

leveraging attention explanations. Our evaluation 660

shows the significance and challenging nature of 661

indirect bias in model explanations, and the effec- 662

tiveness of our proposed discovery and mitigation 663

algorithms. These efforts represent a critical step 664

towards achieving fairness and equity in NLP ap- 665

plications, addressing current research gaps, and 666

guiding future ethical AI development. 667
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9 Limitations668

There is no publicly available dataset designed to669

study indirect bias. For the experiment evalua-670

tion, it is challenging to identify the ground truth-671

sensitive context. The current evaluation of the672

data we have is not enough to showcase the full673

spectrum of indirect bias. Our methodology heav-674

ily relies on a helper model to infer sensitive at-675

tributes. The quality of the helper model hinders676

the performance of our bias discovery and mitiga-677

tion algorithm. The need for a helper model also678

slows down the runtime efficiency. In future work,679

we will develop a method only utilizing the target680

model’s explanations.681

10 Ethical Considerations682

This study aims to improve NLP technology to683

achieve equity for all under-served communities.684

We want to broaden the scope of NLP fairness. De-685

veloping fair and explainable NLP models can free686

technology from inheriting historical bias in real-687

world data. Due to the limited options on datasets,688

we conducted the experiment with a simplified bi-689

nary setting. The proposed technology is designed690

to comply with non-binary identities and multi-691

ethnicity. We hope this project raises awareness692

of the influence of unintentional bias from NLP693

models. It is a community effort to develop and ad-694

vocate open-source, transparent, fair, accountable,695

and explainable NLP models.696
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A Appendix911

A.1 More model explanations on case analysis912

Due to limited space, we only included the expla-913

nations from AD and AD+IBM for the long review914

cases in Section 7.5. Figure 5 and 6 show the full915

explanations from all evaluated models.916

Figure 5: All model explanations on Case (c)
Figure 6: All model explanations on Case (d)
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