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ABSTRACT

Inverse reinforcement learning (IRL) is an important problem that aims to learn
a reward function and policy directly from demonstrations, which can often be
easier to provide than a well-shaped reward function. However, many real-world
tasks include natural variations (i.e., a cleaning robot in a house with different
furniture configurations), making it costly to provide demonstrations of every
possible scenario. We tackle the problem of few-shot IRL with multi-task data
where the goal is for an agent to learn from a few demonstrations, not suffi-
cient to fully specify the task, by utilizing an offline multi-task demonstration
dataset. Prior work utilizes meta-learning or imitation learning which addition-
ally requires reward labels, a multi-task training environment, or cannot improve
with online interactions. We propose Multitask Discriminator Proximity-guided
IRL (MPIRL), an IRL method that learns a generalizable and well-shaped reward
function by learning a multi-task generative adversarial discriminator with an aux-
iliary proximity-to-expert reward. We demonstrate the effectiveness of our method

on multiple navigation and manipulation tasks.

1 INTRODUCTION

Reinforcement Learning (RL) has shown impres-
sive results in learning sequential decision-making
tasks from scratch by optimizing a pre-defined re-
ward function (Sutton & Barto, 2018). While this
is a general framework with powerful algorithms,
the need for a reward function for each task, which
often needs to be hand-specified and well-shaped
(Amodei et al.| 2016;|Gupta et al.,|2022; Rengarajan
et al.| |2022), requires significant human effort. In-
verse Reinforcement Learning (IRL) (Ng & Russell,
2000) offers an alternative by learning directly from
expert demonstrations, inferring the reward function
instead of requiring it to be manually defined. Con-
sider a household robot capable of performing basic
cleaning tasks such as sweeping and cleaning coun-
tertops. When learning a new task, like vacuum-
ing, the robot should be able to infer the objective
of the task from a couple of demonstrations with-
out needing a fully defined reward function or being
shown how to operate the vacuum in every room of
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the house. From its experience sweeping, the robot can infer that it should navigate around different
furniture configurations while vacuuming. Similarly, we aim to tackle IRL given expert demonstra-
tions that are too few to fully specify the task in every environment setting by utilizing the agent’s
multi-task knowledge. This problem setting greatly reduces the burden of task specification in tasks
with natural variations while using existing powerful RL algorithms.

Prior work in utilizing multi-task information to do few-shot IRL use meta-learning (Xu et al.,
2019; [Yu et al., [2019; Seyed Ghasemipour et al.l 2019)), which requires training over multi-task en-
vironments and/or access to the multi-task reward functions, or imitation learning without learning
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a reward function (Dance et al.| [2021; [Hakhamaneshi et al.| 2021}, [Finn et al.l [2017)), which limits
the agent’s ability to improve through additional trials. On the other hand, many few-shot imitation
learning works learn a more well-shaped reward function with proximity-based rewards (Dadashi
et al., 2021 |Haldar et al., 2022} |Chiang et al., 2024)) but do not address the challenge of general-
ization across task variations. Instead, we propose a novel IRL problem setting where an agent has
access to a few expert demonstrations of a task with variations, a large multi-task dataset of other
demonstrations, and access to a training environment for the current task. Most closely related to
our work, |Chen et al.[(2021) learns a generalizable multi-task video success discriminator from a
few robot demonstrations and a dataset of human demonstrations but does not learn an RL policy.

We propose Multitask Discriminator Proximity-guided IRL (MPIRL), a novel few-shot IRL method
that addresses the challenge of learning a reward function and RL policy from too few demonstra-
tions, which cannot fully specify the task in an environment with variations, by making use of a
multi-task dataset of expert trajectories. A generalizable and well-shaped reward function must in-
fer two things from the demonstrations: 1) What does expert behavior look like in different task
variations? and 2) How to shape the reward in non-expert states to guide the policy towards ex-
pert behavior?. We propose a two-part reward function consisting of 1) a generalizable multi-task
discriminator that uses the multi-task data to infer expert behavior across task variations and 2) a
proximity reward function that predicts how many steps the agent is away from the expert state dis-
tribution, helping guide the agent toward expert states. While the multi-task discriminator reward
alone could theoretically provide this guidance, we found that the proximity reward conferred sig-
nificant improvements in sample efficiency and final performance by offering a smooth and dense
reward that encourages the agent to stay near the expert trajectory distribution (see Figure [I)).

We propose the problem setting of few-shot IRL with multi-task demonstrations and identify the
challenge of under-specification in realistic tasks with natural variations. Our main contribution is a
MPIRL, a novel method that enables IRL with too few demonstrations that do not fully specify the
task by leveraging a multi-task demonstration dataset and learning a generalizable and well-shaped
reward function. Our experimental results on maze navigation, block stacking, and manipulation
tasks in FactorWorld (Xie et al.| [2024), demonstrate the effectiveness of our method, achieving an
average 33% success rate improvement over the next best-performing method.

2 RELATED WORK

2.1 FEW-SHOT IMITATION LEARNING

Imitation learning aims to replicate expert behavior by learning directly from expert demonstrations.
While closely related to IRL, in this paper, we distinguish pure imitation learning by methods that
learn a policy directly without inferring or optimizing a reward function. Early approaches for ad-
dressing few-shot imitation learning focus on Behavior Cloning (BC) (Finn et al., 2017 Duan et al.,
2017; Yu et al., [2018)), which compares predicted actions with those from demonstrations using loss
functions like mean squared error or cross-entropy loss. |Dance et al.| (2021)) learn a demonstration-
conditioned policy but requires access to multi-task training environments and corresponding re-
ward functions. |[Hakhamaneshi et al.|(2021) extract skills and an inverse skill dynamics model from
a large offline dataset to facilitate few-shot imitation learning. Other works explore offline imita-
tion learning utilizing a large offline dataset similar to our work (Luo et al.| 2023} Xu et al.| 2022
Chang et al., 2021), but these works do not explicitly address the challenge of few-shot imitation.
However, overall, imitation learning methods suffer from compounding errors over time and can-
not improve through additional online interactions without learning a reward function. In response
to this, [Reddy et al.| (2020) propose a simple, sparse reward label to allow for policy optimization
through RL. Meanwhile, (Chae et al.|(2022) addresses environment dynamic variations by imitating
multiple experts in different environment dynamics.

2.2 FEW-SHOT INVERSE REINFORCEMENT LEARNING

The most common approach to few-shot IRL is through meta-learning, which meta-trains a context-
conditioned reward function (Yu et al.| 2019; Seyed Ghasemipour et al.,2019)) or learns a good ini-
tialization for reward function training (Xu et al.l|2019), using traditional IRL algorithms (Ziebart
et al.| 2008} [Fu et al., |[2018). These methods, however, often require access to multi-task environ-
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ments or transition functions to train in, which may not be feasible if task environments differ. In
contrast, our approach only necessitates access to the environment of the target task. It aims to
leverage the variations in the multi-task demonstration dataset to learn a generalizable reward func-
tion. This results in a more sample-efficient and practical solution in real-world settings where data
collection and computational resources are constrained.

Chen et al.|(2021)) propose DVD, a multi-task video discriminator trained on a large, diverse human
video dataset capable of generalizing across task variations from a few robot demos, but does not
employ RL to learn a task policy. Xie et al.|(2018) develop a success classifier for goal-conditioned
tasks from a few examples, but they do not learn a full reward function. Our work can be viewed as
an extension of these ideas to the multi-task setting and learning a reward function suitable for online
RL. Other works have explored demonstration-efficient IRL in multi-task (Gleave & Habrykal [2018])
and multi-agent (Filos et al.|[2021) settings.

2.3 PROXIMITY-BASED REWARDS

Popular and practical IRL methods including Ho & Ermon!|(2016) and [Fu et al.|(2018)) learn a reward
function by discriminating between agent and expert behaviors, typically through binary classifica-
tion. However, the rewards learned this way may not provide sufficiently rich signals to guide agents
in non-expert states, especially in the few-shot setting. To address this limitation, recent works have
proposed different forms of reward shaping that estimate some form of proximity to the expert. This
includes a progress estimator for goal-conditioned tasks (Lee et al., 2021)), Euclidean distance be-
tween the agent’s and expert’s state-action pairs (Hakhamaneshi et al.,[2021]), and geometric distance
functions that measure the difference between the agent and the expert distribution (Dadashi et al.,
2021} Haldar et al} 2022). |Chiang et al.|(2024) learns a transition discriminator that approximates
whether one state can reach another within a single step in order to reward the agent based on the
likelihood that it is one step away from an expert trajectory. While these methods provide useful
guidance in non-expert states, they do not account for generalization across task variations with too
few demonstrations, limiting the agent’s ability to recover and return to the expert distribution when
task variability increases.

3 PROBLEM

Inverse RL addresses the problem of learning sequential decision-making tasks from demonstra-
tion. We consider these tasks to be Markov decision problems (MDPs) defined by the tuple
(S, A, T,p,R): state space S, action space .4, transition probabilities 7, initial state distribution
pi, and underlying reward function R. We assume R is not available and instead must be inferred
from a set of demonstrations D from an expert policy 7*(a|s). The goal is to learn a reward function

R : S x A — R that approximates the true R and policy 7 (a|s) that approximates 7* (als).

Few-Shot IRL with Multi-task Dataset: In our problem setting, we consider the specific case of
few-shot IRL, that is when there are too few demonstrations available to fully specify the desired be-
havior in all instances of the task. This can easily happen when there is task variation occurring from
the initial state distribution p;, for example, variations in the initial state of the agent or objects it
interacts with in the environment. Therefore, doing naive imitation learning or IRL on these demon-
strations will fail in task instances outside of those seen in D. Our goal is to do few-shot IRL given
a large offline dataset of multi-task demonstrations for T tasks Dynuititask = {D1, D2, -+ ,Dr} of
the same agent doing different tasks in the environment with similar task variations. Formally, each
task ¢ has a distinct underlying reward function R; and initial state distribution p;, which can include
different environment layouts and object positions, but shares the same (S, .4, 7) as the other tasks
and the target task. Practically, D, vititask can be gathered from an agent’s prior experience in a
multi-task or continual learning setup where rewards are available using a well-trained RL policy.

4 QOUR METHOD: MULTITASK DISCRIMINATOR PROXIMITY-GUIDED IRL

The few expert demonstrations for the target task D are insufficient to infer the desired behavior in
every task instance. For example, we would like our household robot to learn to vacuum the entire
house from a couple of demonstrations of vacuuming the living room. The robot should be able to
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infer how it should vacuum all rooms in the house based on its experience sweeping and cleaning
some rooms. Similarly, we utilize the large offline multi-task dataset D, titqsk to infer what the
target task reward function might look like beyond the narrow support of the few demonstrations.
Our main insight comes from decomposing the reward function into two components that are easier
to learn on their own: 1) What is the desired behavior in unseen task instances (i.e., what the expert
trajectory distribution is)? and 2) What should the reward function look like in non-expert states to
guide the policy towards expert behavior? Our final reward function is the sum of the two compo-
nents, a multi-task discriminator-based reward (Section and a proximity reward (Section 4.2),
that utilizes D,y 11itask and is trained with a task policy 7 to successfully learn a generalizable and
well-shaped task reward from only a few demonstrations. Figure [2]and Algorithm [I|summarize our
method.

4.1 MULTI-TASK DISCRIMINATOR

Our multi-task discriminator builds on a generative adversarial backbone to align the policy distri-
bution to the expert’s, following GAIL (Ho & Ermon, [2016), and learns a multi-task discriminator
like DVD (Chen et al.| 2021)). Specifically, we train a multi-task discriminator that takes as input a
task demonstration, the current state and action, and predicts whether the state-action tuple belongs
to the expert trajectory distribution for the demonstrated task, using binary classification loss, as
described in Equation I} We train the multi-task discriminator reward D(7, s, a) adversarially with
a policy by sampling target task demonstrations and corresponding state-action tuples as positive
training samples and policy-generated state-action tuples as negative samples.

In addition, we extend the training across all tasks in D U D, ,,i¢itask, Where demonstration trajecto-
ries and state-action tuples from the same task are treated as positives, while state-action tuples from
different tasks or from the policy are treated as negatives. Policy behaviors are always considered
negatives for any task following the GAIL objective. By incorporating D, ,i¢itask, the discrimi-
nator is able to learn a reward function for the target task that generalizes across task variations
by observing similar task variations in other tasks. However, a well-trained discriminator tends to
assign uniformly low rewards for all policy-generated samples outside of expert behavior, which
fails to provide an adequate learning signal for an imperfect policy. For simplicity, we will use the
notation D(s, a) from now on to represent the target task discriminator, where we sample a target
demonstration from D uniformly as the input demonstration.

LD = ETND,(S,G)NW[IOg(D(T7 S, a’))] + ET,(s,a)ND[log(l - D(Ta S, a)]

Task-specific Adversarial Training
+ ETwDi,(s,a)NDJ?giﬂr[log(D<Tv S, CL))] + ET,(s,a)NDi [lOg(l - D(Ta S, a)] (1)

Multi-task Training

4.2 PROXIMITY REWARD

To provide well-shaped rewards in non-expert states that guide the policy back towards the expert
state distribution, we introduce a proximity reward P(s), which penalizes states based on the tem-
poral distance to the expert state distribution. Specifically, the proximity of a state s is defined as
the number of steps it takes the policy to get from s to an expert state, defined by it being in D
or the corresponding state-action tuple from the policy being classified as expert behavior by the
target task discriminator D(s, a). We define the proximity reward P(s) to be inversely proportional
to this temporal distance, scaled by a discount factor —+, which should be set proportional to the
episode horizon of the task. The reward P(s) achieves a maximum value of 0 at expert states and
decreases to a minimum value of —1 for unreachable states. The target proximity reward and its
corresponding mean squared loss are formalized in Equation [2| Intuitively, P(s) penalizes the pol-
icy for reaching states where it is difficult to return to the expert distribution, therefore guiding the
policy in non-expert states.

Lp = Equrup[(P(s) — (— - # steps to expert state))?] ()
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Figure 2: Our method learns a generalizable and well-shaped reward function from a few target
task demonstrations by learning a reward function composed of a multi-task discriminator and a

proximity reward. We combine these rewards into R which we use to train a policy with RL.

However, the exact number of steps to an expert state is challenging to determine and can change as
the policy explores more of its environment. To get the most accurate labels for the proximity func-
tion, we propose to generate pseudo-labels proz(s) by continually re-labeling the training dataset
with the updated P(s). Specifically, we calculate the proximity at time ¢ as proz(s¢) = P(s¢+1)—7,
since state s; is one policy step further from the expert than state s;1. If s; itself is an expert state,
determined by D(st,a:) > ctpresn for some fixed threshold value, we label it with proz(s;) = 0.
Unfortunately, directly relabelling each state recursively like this results in degenerate training be-
cause the pseudo-labels become too similar to P(s), causing P(s) to predict itself. Instead, we
randomly sample a batch of trajectories from the proximity dataset, consisting of the multi-task
demonstrations and policy samples, and sample a state-action tuple (s, a;) from each trajectory.
We then predict the label on these samples and perform backwards re-labeling for earlier states in
the trajectory using proxz(si—;) = P(st) — k. This random sampling and backwards re-labeling
strategy balances the accuracy and stability of the pseudo-labels. Equation [3]details the full pseudo-
label updates at training step <.

rors(sy) = | ° if s, € D orif D(s¢, ay)
prox;(sy) = P(s;) otherwise 3)
proxi(sy) = P(s;) —ykfork=0,1,--- ,t — 1

4.3 MULTITASK DISCRIMINATOR PROXIMITY-GUIDED IRL

We combine the multi-task discriminator -
and proximity function into our reward Algorithm 1 MPIRL
function Equation [] applying a scaling Input: Task Demos D, Multi-task Demos
factor of Aproz. Duititask
- Initialize 7, Discriminator D, Proximity P, Replay
R(s,a) = D(s,a) + Aproc P(s)  (4) buffer D, Proximity dataset Doz
for each epoch do

We use R(s, a) to label the trajectories col- Gather a batch of data (s, at, s¢+1)7-¢ by rolling
lected by the policy so we can optimize the out 7 in the task environment

policy with any RL algorithm. During on- Append to D and D).,

line training, we iteratively train the policy Update 7w with RL, reward labels from Eqn. 4]
m, discriminator reward D, and proximity Update D with Eqn.E

reward P, which is detailed in Algorithm Update P with Eqn.

[[l The multi-task discriminator D is trained Relabel D, using Eqn. 3]

adversarially with the policy 7 and uses the end for

multi-task demonstrations to learn to clas- Output: Trained policies {m; } ¥,

sify expert behavior across task variations.
The proximity reward P is updated through
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Door Lock/Unlock Drawer Open Lever Pull
(a) Maze2D (b) Block Stacking (c) FactorWorld

Figure 3: Environments & Tasks: (a) Maze2D. The randomly initialized agent must reach different
goals. (b) Block Stacking. The agent must pick up one color block and stack it on top of another
color block. (c) FactorWorld. Multiple table-top manipulation tasks from Meta-World.

its re-labeling process and as 7 changes to more accurately estimate the policy’s temporal distance
to the expert. The policy is trained with RL to optimize this combined reward, which rewards it for
mimicking the expert distribution and penalizes it for straying too far. In summary, MPIRL enables
IRL with too few demonstrations by utilizing a multi-task demonstration dataset to infer an accurate
and well-shaped reward function.

5 EXPERIMENTS

We evaluate our methods on several IRL tasks in different environments (Figure 3) and compare
with multiple baseline methods described below. For further details, see Appendix Section [B| for
environment and Appendix Section [C] for baseline implementation.

5.1 ENVIRONMENTS

» Maze2D We first examine our method in Maze2d from the D4RL benchmark
2020). The goal for each task is to navigate to a certain colored ball whose positions
are fixed as shown in Figure [3a] The starting position of the agent is randomly sampled,
creating task variation. We use two demonstrations of the target task and a multi-task
dataset consisting of 200 demonstrations for each of the three other Maze tasks.

* Block Stacking On the Block Stacking task (Pertsch et all, 2021)), there are five colored
blocks whose positions are randomly initialized, creating task variation. In each task, the
agent aims to pick up a block with color X and place it on a block with color Y. We use 25
target task demonstrations and collect 200 demonstrations for three other tasks.

* FactorWorld from is a multi-task benchmark of manipulation tasks with
variations in object position, table position, distractor objects & positions, and arm position.
We evaluate on 7 different target tasks with 2 to 25 demonstrations depending on the task.
The multi-task demonstration dataset consists of 10 tasks with 200 demonstrations each.

5.2 BASELINES

To the best of our knowledge, there is no prior work that tackles our exact problem setting: few-shot
IRL with a multi-task demonstration dataset. So we compare with SOTA methods in similar problem
settings and provide them with additional assumptions where possible for a fairer comparison. All
online methods use PPO as the RL algorithm except SQIL which uses the off-policy algorithm SAC.

¢ BC behavior clones the few task demonstrations and does not utilize multi-task demonstra-
tions or environment interactions.

* GAIL (Ho & Ermon, 2016)) learns a policy and reward function adversarially. In our GAIL
experiments, we use the multi-task demonstrations as additional non-expert samples.

* DVD 2021) learns a multi-task discriminator reward function using all demon-
strations. We evaluate by training a policy using this reward for online RL.




Under review as a conference paper at ICLR 2025

Maze2D Block Stacking Door Open
100 100
100
;\3 80 ;\3 80 ;\? 80
8 AN e g
o 60 © 60 ©
< [\ 4 z °°
a a @
Do N S e g 40 IR o LEEESMEEEE FE
9] o [9)
o o o
> 20 J 20757V, N\ =7\~ 3 20
@ \./‘/\*\/\/\/\/\/ @ <
0 0 e 0 -
0.00 1.25 2.50 3.75 5.00 0.0 1.5 3.0 4.5 6.0 0.0 1.5 3.0 4.5 6.0
Environment steps (1M) Environment steps (1M) Environment steps (1M)
Door Unlock Plate Slide Back Button Press Wall
100 100 100
oﬁ 80 § § 80
9] ] o
T 60 o T 60
o o -4
A A @
] oy SN K 4 A0 e e
1 4 13 v
1) o |9)
3 20 = > 20
) a %)
A NV TR~ 7
0 il ol o ) ~
0.0 15 3.0 4.5 6.0 0.0 1.5 3.0 4.5 6.0 0.00 1.75 3.50 5.25 7.00
Environment steps (1M) Environment steps (1M) Environment steps (1M)
= BC GAIL = DVD SQIL == MPIRL (Ours)

Figure 4: MPIRL (blue) achieves better performance compared to other imitation learning and IRL
methods. We plot the average and standard deviation (in shaded regions) over 4 seeds per method
and roll out 10 episodes per evaluation. For BC and SQIL, the dashed lines represent the perfor-
mance at convergence. See Appendix Figure for additional tasks.

* SQIL (Reddy et al.l [2020) is an imitation learning algorithm using RL by labeling with
sparse rewards. Similar to our GAIL implementation, we use the multi-task demonstrations
and label it with with O reward. Note: SQIL converges more quickly and takes longer to
run than other methods due to using SAC so we only train until convergence.

6 RESULTS

We answer the following questions in our experiments: (1) How effective is MPIRL compared to
other methods that learn from demonstrations? (2) How does MPIRL’s performance vary with the
number of target demonstrations and quality of the multi-task dataset? (3) Ablations on MPIRL.

6.1 COMPARISON

To evaluate the effectiveness of our method, we compare against multiple imitation learning and IRL
methods in nine tasks over three different simulated environments: Maze2D, Block Stacking, and
seven tasks in FactorWorld. We demonstrate in Figure [](additional tasks in Appendix Figure
that across all tasks, MPIRLconsistently outperforms other methods and achieves an average success
rate of 33% over the next best performing method. Moreover, compared to other methods that use
online RL, our method is able to more consistently improve in success rate over additional trials,
demonstrating our learned reward is better suited for RL.

In Maze2D, SQIL performs comparably with MPIRL, likely due to the large multi-task demonstra-
tion dataset providing sufficient coverage of the maze environment to learn a good policy from a few
demonstrations. However, GAIL, which uses the multi-task demonstrations similarly but learns an
adversarial reward function/discriminator, is the worst-performing method, illustrating the potential
instability of learning a reward function, especially through adversarial training. While our method
also utilized the GAIL objective in training the discriminator part of the reward function, the addi-
tion of the multi-task discriminator and the proximity reward make the reward function much more
stable for RL as we will discuss further in Section

Block Stacking is a challenging task for imitation learning, requiring 25 demonstrations for our
method to reach a 50% success rate, still double that of the next best baseline. This task is likely
more challenging because it is less forgiving: dropping a block at the wrong time quickly takes the
policy out of distribution and is almost always unrecoverable. We hypothesize that our proximity
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Figure 5: We study our method by varying (a) the number of target task demonstrations N we
provide, (b) the number of tasks 7" in the multi-task dataset, and (c) the types of tasks in the multi-
task dataset where SAME PICK and SAME PLACE share more similarities with the target task.

reward partially addresses this by penalizing those states more than other less harmful non-expert
behaviors, since the expert distribution is often completely unreachable after dropping the block.

In FactorWorld, each task differs semantically (i.e., opening a door vs. pressing a button) and the
environment setup differs depending on which objects must be present on the tabletop. SQIL and
DVD both perform poorly. Since each task’s environment is different, using the multi-task data
directly for policy training may not be as useful. DVD has a fixed reward function that could be
exploited; the addition of an online adversarial objective (see Section improves it significantly
but still underperforms our full method. Meanwhile, BC is a surprisingly strong baseline even in the
too-few-demonstrations regime, attaining up to 35% success with just 2 demonstrations in Maze2D
with a uniformly randomized start position. This additionally highlights the challenge of IRL from
a few demonstrations: it becomes more difficult to infer a good reward function for RL rather than
learn a reasonable BC policy that does not generalize over all task variations. This is why utilizing
the multi-task demonstration dataset to generalize across task variations and adding the proximity
reward for reward shaping is crucial to MPIRL’s ability to infer a good reward function.

6.2 ANALYSIS

To understand how our method operates under different data conditions, we look at how our method
performs by varying the number of target task demonstrations we have access to, the number of
tasks in the multi-task demonstration dataset, and how similar those tasks are to the target task.
As we see in Figure [5a] predictably MPIRL’s performance on the FactorWorld Button Press Wall
task increases as we provide more task demonstrations, with the performance jumping 20% as we
increase from 5 to 10 demonstrations and saturating at around 25 demonstrations, which shows how
MPIRL scales well with a modest number of additional demonstrations. In Figure [Sb| we vary the
number of tasks 7" in the multi-task demonstration dataset, increasing the size and diversity of the
dataset. We see that the performance increases with 7" up until 7' = 10. Increasing to 7' = 18 did
not change the performance significantly. MPIRL scales with the number of tasks in the multi-task
dataset only to a point where additional tasks do not provide any more information helpful to the
target task. Finally, we vary how similar the tasks in the multitask demonstrations dataset are in
Block Stacking, as detailed below.

* SAME-PICK: All tasks require picking up the same colored block as the target task.
* SAME-PLACE: All tasks require placing on the same colored block as the target task.

* DIFFERENT ALL: No task shares the same colored block to be picked up or placed on as
the target task.

* MIXED: The default dataset with some shared pick and place blocks.

In Figure we see that there is no significant difference in performance. Since we use these task
demonstrations to learn a multi-task discriminator and not the target task reward or policy directly,
our method does not require that these demonstrations share goals or behaviors with the target task,
only that they exhibit similar types of task variation.
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Figure 6: (a) We ablate the two reward terms in MPIRL to see that both components are necessary.
In (b) and (c), we visualize the two components of the reward function during training in Maze2D.
Lighter colors represent higher values. The task goal and demonstrations are also illustrated.

6.3 ABLATIONS

We ablate the two parts of our reward function R(s,a) = D(s,a) + AprozP(s) by training a pol-
icy with DISCRIMINATOR ONLY reward or PROXIMITY ONLY reward. We see in Figure [6a] that
while each part of the reward function provides benefits on its own, both are necessary for the best
performance for MPIRL. Therefore, the two parts of the reward function must provide some com-
plementary information for the reward function like we hypothesized. The multi-task discriminator
helps learn a generalizable reward that can recognize expert task behavior in different task variations
while the proximity reward provides a well-shaped reward in non-expert states that guides the policy
towards expert behavior.

To study the difference between these reward functions qualitatively, we visualize the two parts of
the reward, multi-task discriminator reward (Figure [6b) and proximity reward (Figure [6c), in the
maze environment. The discriminator reward is dense over the entire maze since it is trained on
the multi-task demonstrations to generalize across different task variations, which in this task is the
initial position of the agent. Meanwhile the proximity reward is low in the bottom half of the maze,
likely due to the policy not finding a way to the goal from that half of the maze yet. However, it
provides a well-shaped reward in the top half that steers the policy away from corners where it can
get stuck and the bottom of the maze. Although neither reward is perfect, due to the few target task
demonstrations and this being a snapshot taken during training, this demonstrates that both parts of
the reward contribute differently to MPIRL.

7 LIMITATIONS

While MPIRL is capable of learning new tasks from scratch using only a few demonstrations, there
are still challenges in applying our method to real-world scenarios. MPIRL requires a structured
multi-task demonstration dataset in order to infer task variations. To relax this assumption and make
use of unstructured data, one solution is to replace the requirement for task labels by using latent
intention modeling, as proposed by [Hausman et al.|(2017) or making use of pre-trained large lan-
guage or vision models like |Sontakke et al.|(2023)). Additionally, we assume all our demonstrations
come from the same domain and agent. Recent advancements in cross-domain imitation learning
(Franzmeyer et all 2022} [Liu et al.} [2023)) offer promising avenues to address this challenge.

8 CONCLUSION

We introduce a new problem setting: few-shot IRL with multi-task data, which aims to learn from
too few demonstrations in a task with variations by utilizing diverse multi-task demonstration data.
We propose MPIRL, a novel method that tackles this problem by learning a two-part reward func-
tion: 1) a multi-task discriminator that uses the multi-task demonstrations to generalize over task
variations and 2) a proximity reward that guides the policy in non-expert states. Finally, we demon-
strate the effectiveness of our generalizable and well-shaped reward function in multiple navigation
and manipulation environments, improving on the next best baseline by 33%.
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REPRODUCIBILITY STATEMENT

To ensure our work is reproducible, we include our full codebase with example commands submit-
ted as supplementary material with the data that we use available to download here. This codebase
includes implementation of our method and all baselines, along with the demonstration datasets we
used. In addition, we explain our method in detail in Section ] and include additional implementa-
tion details about the environments and baselines in Appendix Section[B]and Appendix Section [C|
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APPENDIX

A ADDITIONAL RESULTS

Figure [/| contain comparison results for additional FactorWorld tasks that did not fit into the main
paper. Our method out-performs the baseline methods in every task and displays similar trends as
those discussed in Section

Figure [§]contains additional analysis experiments in different tasks for varying the number of target
task demos and varying the number of tasks in the multi-task demo dataset. As discussed in further
detail in Section [6.2] we see performance increasing with a moderate number of additional target
demos. We also see generally that performance increases with more tasks in the multi-task demon-
stration dataset but seem to saturate at around 5-10 tasks for FactorWorld as additional tasks do not
provide new information relevant to the target task.

B ENVIRONMENT DETAILS

B.1 MAZE2D

We base our implementation on the Maze environment from the D4RL benchmark [Fu et al.[ (2020).
As show in Figure there are four balls placed in fixed locations, resulting in four tasks. The
starting positions of the agent are randomly sampled. The state space is the agent’s position, velocity,
and positions of four balls, and then outputs an x- and y-velocity to navigate in the maze. Episodes
have a horizon of 1500 timesteps. For the target task we use two demonstrations, and for the multi-
task dataset we use 200 demonstrations for each of the remaining three tasks, all gathered by a
planner-based policy provided in Pertsch et al.| (2021)).

B.2 BLOCK STACKING

We use the implementation from [Pertsch et al.| (2021)), there are five blocks on the ground with five
different colors. The five block starting positions are randomly generated. In each task, the agent
aims to pick up a block with color X and place it on a block with color Y (X and Y are two different
colors selected from five colors). Different tasks have different pick-place colors. The state space
contains the gripper’s position, opening angle, velocity, and the position of the gripper fingers. It
also includes the position and orientation of the block in quaternions. The action space consists of an
(x, z)-displacement and a continuous action representing the degree of the robot gripper’s opening.
We collect 200 demonstrations for each task using a planner from Pertsch et al.[(2021) and use 25
demonstrations for the target task. The target task is to stack the purple block on top of the blue
block. The three tasks in the multi-task demonstration dataset are: purple on top of green, black on
top of blue, and green on top of white. Episodes have a horizon of 500 timesteps.
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Figure 7: Remaining FactorWorld tasks that did not fit into the main paper. See Figure {4|for other
tasks and experiment description.
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Figure 9: Ablations over more tasks in supplement to Figure @

B.3 FACTORWORLD

We utilize the implementation provided by Xie et al.| (2024), which extends the Meta-World bench-
mark (Yu et al 2020) by introducing various factors of variations. In our experiments, we incor-
porate variations in object position, table position, and arm position, and include distractor objects
with diverse initial positions and shapes. The agent observes in state space, the 3D position of its
end effector, how open its gripper is, the 3D positions of the one or two objects on the tabletop,
the goal position, and its previous state. The action space is the end effector position delta along
with the normalized torque input to the gripper. We evaluate performance on seven tasks from the
benchmark, using between 2 and 25 demonstrations for each task (Table[T). Since these tasks vary
by difficulty, what is considered too few demonstrations varies. Additionally, we leverage an offline
dataset consisting of 10 tasks randomly selected from the following set of 18 tasks, none of which are
target tasks: reach, push, pick-place, dial-turn, drawer-close, button-press, peg-insert-side, window-
open, sweep-into, basketball, door-close, faucet-open, hammer, handle-press-side, pick-out-of-hole,
plate-slide, plate-slide-side, handle-pull. Each of these tasks has 200 demonstrations, collected by

Meta-World’s open-source hard-coded policies. The maximum number of timesteps per episode is
capped at 500.

Table 1: FactorWorld Number of Target Demos

Task Drawer Door  Door Plate Door Lever Button
Open  Lock Unlock Slide Back Open  Pull  Press Wall
# Demos 5 10 5 5 2 25 10

C IMPLEMENTATION DETAILS

We wuse the robot learning code base from |https://github.com/youngwoon/
robot—-learning for basic RL and imitation learning baselines and use default hyperpa-
rameters unless otherwise specified. We detail our own implementations below.
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C.1 SQIL

We implement SQIL using the resources from Reddy et al.|(2020) and use SAC (Haarnoja et al.,
2018)) as the off-policy RL algorithm. To incorporate the other task data, we add it to the training
data with labeled rewards of 0. For each batch of training data, we sample 50% from target task
demonstrations, 40% from the policy replay buffer, and 10% from the multi-task demonstrations.
This addition can provide better coverage of the environmnet especially early on in training.

In environments where we used PPO (on-policy RL algorithm) for other IRL algorithms, we run
SQIL until convergence, which often happened more quickly than the other methods because SAC
tends to be more sample efficient than PPO. This is because SQIL requires an off-policy RL al-
gorithm. While our method could also use SAC, in practice, we found the generative adversarial
training for the multi-task discriminator to be more stable with PPO.

C.2 DVD

We implement DVD and adapt the video-discriminator from the original paper to a state-action based
reward function. Specifically, we input a demonstration trajectory including actions, and state-action
tuple, and predict whether or not that state-action tuple exhibits expert behavior for the demonstrated
task. Similar to our multi-task discriminator, we train DVD on D U D, yititask USing trajectory and
state-action tuples from the same task as positive samples and trajectory and state-action tuples from
different tasks as negative examples. We train DVD for 200 gradient steps using batch size of 128
and learning rate of le-3 then use it as a reward function to train a policy with online RL.

C.3 MPIRL

We implement our method in two stages. First, we pretrain the actor in PPO policy, 7, on D using
a behavior cloning loss function [5] to mimic the behavior demonstrated in the dataset, providing a
good initialization for subsequent policy training. Additionally, we pretrain the proximity reward
P. Initially, we label the data from D as positive examples, and store data from D, titask in the
proximity dataset Dp,.,,, labeling them as negative examples. The pretraining is conducted over
several epochs, with each epoch consisting of 50 iterations. At the end of each epoch, we perform
a relabeling process: we randomly sample a batch of trajectories from the D, and select state-
action tuples (s¢, a;) from each trajectory. These pairs are then relabeled based on the predictions
from P(s;), which outputs continuous values in the range of [-1, 0]. For each trajectory, we apply
backward relabeling from step ¢, assigning labels to earlier states as prox(s;—x) = P(st) — k.

In the second stage, we fine-tune the policy adversarially in an online manner. Initially, we collect
2000 steps of policy data from the environment, storing this data in two separate buffers: policy
data with predicted rewards R(s, a) is stored in the policy replay buffer D, and policy data with
predicted proximity rewards P(s) to the Dp,,;. Once the data is stored, we begin training the dis-
criminator D(s, a) using Equation I} the proximity reward P(s) using Equation and the policy 7.
This is followed by a relabeling process, similar to the one in the pretraining stage, with the excep-
tion if D(s¢, at) > Cinresn, those pairs are treated as expert states (positive examples) and excluded
them from future relabeling. The second stage is repeated iteratively until the policy converges to
the desired performance.

Lpc =E(say~nlla—(s)]? ©)

C.4 HYPERPARAMETERS

For all environments we use a learning rate of 3e-4 for SAC and le-3 for the reward function. We
use PPO with a clip ratio of 0.2 and batch size of 128. The proximity function is a feedforward
network with 2 hidden layers of dimension 256 and tanh activation. The multi-task discriminator
has the same architecture with an added Istm (2 layers, hidden dimension 128) to encode the demon-
stration trajectory, which is concatenated with the state-action tuple. The RL policy and critic are
feedforward networks with 2 hidden layers of dimension 256 and relu activation.
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Table 2: MPIRL hyperparameters.

Hyperparameter Maze2D  Block Stacking FactorWorld
Proximity Reward Scale Ao 6 6

D threshold c¢ipresh 0.9 09

Number of pretraining epochs 5 100

Proximity discount 0.001 0.001
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