
Oblique-MERF: Revisiting and Improving MERF for Oblique Photography

Xiaoyi Zeng1 Kaiwen Song1 Leyuan Yang1 Bailin Deng2 Juyong Zhang1, 3*

1University of Science and Technology of China 2Cardiff University
3Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

zxy1908542805, SA21001046, ly 1207@mail.ustc.edu.cn, DengB3@cardiff.ac.uk, juyong@ustc.edu.cn

Abstract

Neural radiance fields (NeRF) have established a new
paradigm for 3D scene reconstruction, with subsequent
work achieving high-quality real-time rendering. However,
reconstructing large-scale scenes from oblique aerial pho-
tography presents unique challenges, such as varying spa-
tial scale distributions and a constrained range of tilt an-
gles, often resulting in high memory consumption and re-
duced rendering quality at extrapolated viewpoints. To ad-
dress these issues, we propose a novel approach named
Oblique-MERF to accommodate the distinctive characteris-
tics of oblique photography datasets and support real-time
rendering on various common devices. Firstly, an innova-
tive adaptive occupancy plane is proposed to constrain the
sampling space. Additionally, we propose a smoothness
regularization loss for view-dependent color to enhance
the MLP’s ability to generalize to untrained viewpoints.
Experimental results demonstrate that Oblique-MERF re-
duces VRAM usage by approximately 40% while main-
taining competitive rendering quality compared to baseline
methods, and achieves higher frame rates with more real-
istic rendering even at untrained extrapolated viewpoints.
Project page: https://ustc3dv.github.io/Oblique-MERF/

1. Introduction
Reconstructing a 3D scene for high-fidelity rendering from
freely chosen viewpoints has been a longstanding challenge
in computer vision. NeRF [30] accomplishes this via a
novel implicit representation parameterized by multi-layer
perceptrons (MLP). In the realm of large-scale scene re-
construction for oblique aerial photography datasets, vari-
ous works have sought to improve upon NeRF by employ-
ing strategies such as spatial partitioning [29, 35, 43], ad-
vanced sampling methods [47, 50], and efficient data struc-
tures [32, 38, 42, 57]. Furthermore, recent works bake mod-
els into meshes with optimized textures [6, 45, 56] or fea-
ture grids [15, 36], to enable interactive rendering frame
rates on commercial devices.

*Corresponding author.

Memory Query Loss
efficient speed aware

Occupancy Grid [32] × ✓ ×
Proposal MLP [2] ✓ × ✓
Occupancy Plane (Ours) ✓ ✓ ✓

Table 1. Difference among sampling representations.

However, these advancements have not been specifically
tailored to address the unique challenges posed by oblique
aerial photography data. When applied to such extensive
scenes, these methods often result in significant memory
consumption and fail to deliver high-fidelity rendering from
all viewing angles. Specifically, oblique aerial photogra-
phy datasets typically cover vast areas, spanning hundreds
of thousands of square meters horizontally, yet extend only
a few hundred meters vertically. The commonly used cubic
grid systems struggle with memory complexity and adapt-
ability. Additionally, these datasets may introduce visual
artifacts such as floaters due to inadequate constraints on
the sampling space. Moreover, because these scenes are
typically captured from a limited range of pitch angles rela-
tive to the ground, they can exhibit abnormal highlights and
shadows when viewed from angles not covered in the train-
ing data. In this work, we enhance the performance of cur-
rent NeRF-based real-time rendering methods on oblique
aerial photography datasets, focusing on two key aspects:
the representation of the sampling space and the issue of
extrapolated view synthesis.

Current popular methods, such as 3D grids or implicit
proposal sampling networks [2, 32], may encounter chal-
lenges when applied to such vast scenes. Grid-based rep-
resentations, constrained by O(n3) memory complexity,
struggle to efficiently represent sampling space at high res-
olution; moreover, they often rely on heuristic optimization
methods that are not inherently tied to rendering quality.
These limitations can hinder precise occupancy optimiza-
tion and lead to redundant sample points that slow down
the rendering pipeline and affect the rendering quality. On
the other hand, network-based representations are compu-
tationally expensive, as they require evaluating numerous



Figure 1. Oblique-MERF enables real-time synthesis of novel views for oblique photography on diverse commodity devices, including tests
on an NVIDIA GTX 1650 (∼ 41FPS) and an iPhone 14 Pro Max (∼ 45FPS) (left). We introduce a novel compact sampling representation
that markedly reduces sampling points and emphasizes significant regions, enhancing rendering quality and increasing frame rates. We
present the rendering output and the visualization of the number of samples (right).

candidate points to determine the final sample points. To
overcome these drawbacks, we propose a novel sampling
strategy that models the occupancy space as a zone bounded
by two height field surfaces conforming to the ground. Fur-
thermore, we integrate this adaptive representation with vol-
ume rendering and optimize it in a differentiable manner
to ensure awareness of the photometric loss. As shown in
Tab. 1, our explicit representation of the sampling space not
only reduces memory complexity to O(n2) but also facili-
tates rapid querying, paving the way for real-time rendering
on various commodity devices.

In addition, we tackle the extrapolated view issue that
arises from the limited range of view directions in the train-
ing set. In novel extrapolated views, rendering results often
display aberrant colors due to the absence of supervision.
These anomalies typically stem from the non-smooth be-
havior of specular color with respect to varying viewpoints.
To address it, we introduce a novel smoothing term to regu-
larize view-dependent color. Specifically, our approach tar-
gets the variation of the specular component relative to the
viewing directions, which leads to a more natural handling
of view-dependent color during rendering from most views.

In summary, our primary contributions are:
• We introduce a novel sampling strategy that integrates

the proposed 2D occupancy plane with volume rendering,
minimizing memory usage while ensuring high fidelity.

• Utilizing the smooth nature of specular reflections, we
present a regularization that enhances the rendering qual-
ity of extrapolated viewpoints, yielding smoother and
more realistic visuals.

• Extensive experiments demonstrate that our method de-
creases VRAM usage by 40%, and boosts the frame
rate by 35% and 300% for low-altitude and high-altitude
viewpoints, respectively, while achieving better rendering

quality compared to the baseline.

2. Related Work
3D Reconstruction for Oblique Photography. Tradi-
tional 3D modeling techniques include using Structure-
from-Motion [1, 10, 39, 52] to estimate camera poses
and obtain sparse point clouds, followed by surface re-
construction through dense multi-view stereo [11, 12, 17].
These methods struggle to reconstruct view-dependent col-
ors. With the advent of NeRF [30], neural rendering
for novel view synthesis has been increasingly applied to
large-scale scene reconstruction. Some approaches [13,
29, 40, 43, 46] adopt a divide-and-conquer strategy, seg-
menting the scene into chunks to perform parallel recon-
struction, and then merging them to represent the en-
tire scene. BungeNeRF [53] employs residual networks
to learn multi-scale features, fitting scenes with dramatic
changes in altitude. To accommodate oblique photogra-
phy, GridNeRF [55] combines a multi-resolution ground
feature plane representation with vanilla NeRF incorporat-
ing position-encoded inputs, while our method uses a occu-
pancy plane to model the height field for effective sampling.

Real-Time Rendering. Some methods accelerate render-
ing by reducing the volume of network queries [20, 33,
41], decomposing large MLP to facilitate parallel process-
ing [35], or introducing explicit structures that store fea-
tures, such as voxel grids or octrees, to replace partial or en-
tire network [5, 21, 32, 38, 42, 57]. Other approaches seek
to circumvent extensive network queries by baking mod-
els into explicit structures [15]. On the contrary, certain
works [3, 6, 14, 26, 37, 45, 48, 56] utilize optimized surfaces
with textures to represent scenes, integrating into modern
computer graphics rendering pipelines. While achieving



interactive frame rates on commercial devices, they fall
short in rendering quality and memory efficiency. Some
work [36, 59] employs a memory-efficient triplane com-
bined with a sparse grid to represent the features of spa-
tial points, striking a balance between rendering quality
and memory consumption. Recently, 3D Gaussian Splat-
ting(3DGS) [18] utilizes 3D ellipsoids as representation
primitives. High-quality and fast reconstruction and render-
ing are achieved by splatting ellipsoids onto 2D images us-
ing point-based rendering [60]. Subsequent works [24, 27]
have extended this representation to large-scale scenes, yet
still face challenges such as significant memory consump-
tion and optimization difficulties.

Sampling in Rendering. Various methods enhance ren-
dering efficiency by refining the sampling strategy.
NeRF [30] and Mip-NeRF 360 [2] employ a coarse-to-fine
strategy to concentrate on significant regions. DDNeRF [7]
adopts the Gaussian function instead of a piecewise-
constant probability function, achieving accurate density
representation. DONeRF [33] and ENeRF [23] use depth
information to reduce the number of sampling points.
NeuSample [9] maps rays to sampling points through a sin-
gle inference. In contrast to the network-based sampling,
Instant-NGP [32] skips empty space by explicit multi-
resolution occupancy grids. While Adaptive Shells [50] and
HybridNeRF [47] refine the sampling interval size across
different spatial locations by optimizing the spatially-
varying parameter, compressing the sampling area.

Regularizations of Neural Fields. In addition to these
advancements, subsequent works on NeRF have introduced
various regularization terms to enhance its performance.
Plenoxels [38] proposes a total variation loss to minimize
differences in features among adjacent voxels, and RegN-
eRF [34] aims to encourage the continuity of volumetric
density changes. Additionally, sparse regularization [36,
57] is employed in many real-time rendering schemes to
eliminate irrelevant features. In the realm of neural fields,
numerous studies have incorporated regularization terms to
encourage the smoothness of networks, such as penalties on
the norms of Jacobians and Hessians [8, 31] or encourage-
ment of smaller Lipschitz constants for weights [25].

3. Background

NeRF [30] employs an MLP to represent a scene as a con-
tinuous volumetric function F : (p,d) 7→ (σ, c), which
maps positional encoding of a 3D point p ∈ R3, and a
normalized direction d ∈ S2, to volumetric density τ(p)
and color c(p,d). To render the corresponding color of
a pixel, a ray r = o + td is first emitted from the ori-
gin o along the view direction d, where dozens of points
{pi = o + tid | i = 1, . . . , n, ti < ti+1} are sampled to

estimate their volumetric density and features. These esti-
mates are integrated to synthesize the final color [28]:

Ĉ(r) =
∑n

i=1
ωici, ωi = Tiαi, (1)

where αi = (1 − e−σiδi) is the opacity of the sample pi,
with δi = ti+1 − ti being the distance between adjacent
samples; Ti =

∏i−1
j=1(1 − αj) is the accumulated transmit-

tance from p1 to pi−1.
MERF [36] employs a low-resolution voxel grid

V ∈ RL×L×L×8 and a high-resolution triplane {Pi ∈
RR×R×8 | i = x, y, z} to represent the scene. For each
sample point p, the feature is obtained by adding the results
of trilinear interpolation on the sparse grid and bilinear in-
terpolation on the three planes, respectively:

t(p) = V(p) +Px(p) +Py(p) +Pz(p). (2)

Similar to SNeRG [15], the feature t(p) is split into
[τ̃ , c̃d, f̃ ]. Exponential exp(·) and sigmoid activation func-
tion σ(·) are applied to obtain volumetric density τ ∈ R,
diffuse color cd ∈ R3, and specular features f ∈ R4:

τ = exp(τ̃), cd = σ(c̃d), f = σ(f̃). (3)

After alpha composition as in Eq. (1), the diffuse color and
specular features are concatenated with the direction and
fed into the Deferred MLP G to obtain the final color:

Ĉ(r) =
∑n

i=1
ωic

d
i + G(F,d),

F =
[∑n

i=1
ωic

d
i ,
∑n

i=1
ωifi

]
.

(4)

After training, a full-resolution rendering of all images is
performed to determine the occupied space, and the volu-
metric density, diffuse colors, and specular features within
this space are stored for rendering on the web.

4. Method
In this paper, we present a high-fidelity, real-time render-
ing approach tailored for oblique photography. Sec. 4.1 de-
tails the occupancy plane and its optimization for efficient
sampling. Sec. 4.2 introduces a smooth regularization to
address the view extrapolation issue. Sec. 4.3 describe the
entire optimization process. Sec. 4.4 covers the rapid bak-
ing and real-time rendering based on the proposed model.
The pipeline of our method is shown in Fig. 2.

4.1. Occupancy Plane

When reconstructing scenes from aerially captured data,
we align the world coordinate system’s xy-plane with the
ground, with the z-axis perpendicular to the ground and
pointing upward. Under this configuration, we identify two
key observations:
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Figure 2. Overview of our Oblique-MERF pipeline. During training, we introduce a 2D plane to represent the occupied space as a
sandwiched region between two height field surfaces. For sampling points on rays, occupancy masks retrieved from the occupancy plane,
are used as multipliers in the volume rendering process( Sec. 4.1). Additionally, we incorporate a smoothness regularization for view-
dependent color to minimize variations in specular color with viewing direction( Sec. 4.2). Post-training, spatial occupancy information is
directly extracted from the occupancy plane, and corresponding features are stored for real-time rendering( Sec. 4.4).

1. For any point on the xy-plane, scene elements exist
within a single continuous interval along the z-axis,
without isolated mid-air objects;

2. As the z-value increases, the occupancy within the scene
gradually becomes sparser, signifying a decrease in ele-
ments or structures at higher elevations.

Based on these observations, widely used 3D grids are
unable to simultaneously achieve high precision, efficient
querying, and low memory usage due to their cubic spatial
complexity and regular structure, while network-based rep-
resentations are unsuitable for real-time rendering owing to
the heavy computational load.

Occupied 
Region

As an optimal solu-
tion, we represent the
occupied space as a
region sandwiched be-
tween two height field
surfaces that bound the
lower and upper limits
of z-coordinates (see inset figure). To parameterize it, we
sample the xy-plane with a high-resolution M×M grid,
and store the heights zmin(x, y) and zmax(x, y) of the two
surfaces at each sample grid point (x, y), resulting in a rep-
resentation Po ∈ RM×M×2. We refer to this as the occu-
pancy plane in the following. The heights zmin(x, y) and
zmax(x, y) define a continuous occupied internal I(x,y) =
[zmin(x, y), zmax(x, y)] for the z-coordinates correspond-
ing to each grid point (x, y). We set the occupancy proba-
bility outside this interval to be zero, so that we can exclude

the points outside it when computing the color for a ray. To
maximize memory efficiency, we would like to compress
the interval as much as possible. Thus, we introduce a loss
term to penalize the span of the interval:

Locc =
∑

(x,y)∈S
(zmax(x, y)− zmin(x, y))

2, (5)

where S is the set of grid points for the occupancy plane.
However, simply compressing the occupancy intervals

using Locc can affect the reconstruction quality if significant
elements in the scene are left outside the sandwiched re-
gion. To avoid this issue, we integrate the occupancy plane
into the volume rendering process, to ensure the final occu-
pancy intervals are sufficient to represent the scene. Specifi-
cally, for the vertical line over each sample grid point (x, y),
we derive a differentiable occupancy function for the points
along the line based on their z-coordinates and the occu-
pancy interval [zmin(x, y), zmax(x, y)] (below we ignore the
arguments (x, y) for zmin and zmax for brevity):

M(x,y)(z;Po)

=


1 if z ∈ [zmin + ϵ, zmax − ϵ],

0 if z ∈ (−∞, zmin) ∪ (zmax,∞),

(z − zmin)
q/ϵq if z ∈ [zmin, zmin + ϵ],

(zmax − z)q/ϵq if z ∈ [zmax − ϵ, zmax].
(6)

Here we use a threshold ϵ to introduce two buffer zones
[zmin, zmin + ϵ] and [zmax − ϵ, zmax] around the bounds,
to ensure smooth transitions from zero occupancy outside



these limits to full occupancy within using power functions.
In this paper, We set the exponent parameter q = 2. During
volume rendering, for a sample point pi = (xi, yi, zi) on a
ray r, we project it onto the XY plane and find the nearest
sample grid point (xi, yi) to obtain occupancy probability:

M(xi,yi)(zi;Po) = M(xi,yi)
(zi;Po). (7)

The value is then combined with the weight from volume
rendering, to determine the contribution of the feature at pi

to the final color:

Ĉ(r) =
∑n

i=1
M(xi,yi)(zi;Po)ωici. (8)

This is used to define a photometric loss Lrgb in Eq. (12) that
penalizes the deviation between the predicted color and the
ground truth. The occupancy value in Eq. (7) correlates the
predicted color with the occupancy interval, such that the
photometric loss suppresses further compression of the oc-
cupancy interval when its endpoints with high weights, en-
suring optimal rendering quality and memory efficiency. In
addition, the occupancy plane reduces computational over-
head by filtering out numerous sampling points (see Fig. 1).

4.2. Smoothness Regularization for View-
Dependent Color

(a) Surround-Style                                 (b) Grid-Style

Figure 3. Two camera trajectories for oblique photography.
Another challenge in large-scale scene reconstruction

with oblique photography is the extrapolation issue for
view-dependent colors. As shown in Fig. 3, when a drone
flies through the scene, the conventional approach involves
capturing images with limited pitch angles, either by orbital
capture at a consistent angle relative to the ground plane
or by employing a multi-camera system to photograph the
scene in a grid pattern. The limited range of pitch angles in
these photography methods often results in unnatural spec-
ular colors when viewed from a horizontal or upward per-
spective that is outside the range of view angles in the cap-
tured images (see Fig. 4(a)(b)).

In our context, the Deferred MLP G that generates the
color (see Eq. (4)) is supervised from a sparse set of in-
put viewpoints. When rendering under extrapolated view-
points, the specular component reveals significant uncer-
tainty, leading to extreme highlights in the images. Our
key observation is that adjacent viewpoints in real-world
scenes often exhibit similar specular reflection colors, align-
ing with the local consistency seen in BRDF on smooth sur-
faces. We incorporate this prior into our model to encourage

(a) Training Views (b) no (c) with
Figure 4. In (a), the training views are captured at limited tilt an-
gles. (b) and (c) illustrate the rendering results from a novel ex-
trapolation viewpoint without and with Lsmooth, respectively.

smoothness in view-dependent colors in unseen viewpoints.
A typical approach is to impose constraints on the network
parameters to achieve this continuity [8, 16, 25, 31]. For ex-
ample, LipschitzMLP [25] achieves smoothness of the out-
put by constraining the Lipschitz constant of the network.
However, it enforces smoothness with respect to all inputs
of the MLP (i.e., the viewing direction, the diffuse color,
and the specular feature), whereas we only require smooth-
ness with respect to the viewing direction; this could lead
to over-constraints for the MLP parameters and may hinder
the optimization process. Thus we propose a smoothness
regularization for view-dependent color. Specifically, for a
known viewing direction d ∈ D in the training set, we apply
a small Gaussian perturbation to define a sampling space for
the viewing direction.

Sd = {d+ δ | d ∈ D, δ ∼ N (0,Σ)}, (9)

where Σ is a hyperparameter that determines the sampling
range. Then, we introduce a loss to penalize large changes
between the deferred MLP’s outputs for d and s ∈ Sd

Lsmooth =
∑
d∈D

∑
s∈Sd

S(d, s)∥G(F, s)− G(F,d)∥22, (10)

where S(·, ·) denotes cosine similarity. In our experiments,
this regularization term significantly enhances the robust-
ness of the Deferred MLP across interpolated and extrapo-
lated viewpoints (see Fig. 4(c)). It effectively mitigates the
instability of view-dependent colors under new viewpoints
while ensuring rendering quality and 3D consistency.

4.3. Optimization

Our model is trained using a loss function written as a
weighted sum:

L = λ1Lrgb + λ2LS3IM + λ3Ldistortion + λ4Linterval

+ λ5Lsparsity + λ6Lentropy + λ7Locc + λ8Lsmooth.
(11)

Here Locc and Lsmooth are defined in Eq. (5) and Eq. (10),
respectively. Lrgb is a photometric loss that penalizes the
disparity between the rendered images and the ground truth



images, using the Charbonnier loss [4] as a robust norm:

Lrgb =
∑

r∈R

√
∥C(r)− Ĉ(r)∥22 + ϵc, (12)

where R is the set of training rays, and ϵc = 10−6 is a
parameter to ensure smoothness. LS3IM is the S3IM loss
from [54] to enforce structural similarity between the ren-
dered and input images. The interval loss Linterval and the
distortion loss Ldistortion are both adopted from [2] to ratio-
nalize the sample point distribution. Lsparsity is a sparsity
loss defined using randomly sampled points in the occupied
space to encourage lower opacity:

Lsparsity =
1

|P|
∑

pi∈P
αi. (13)

Additionally, following [19], we randomly sample a number
of rays R from high altitudes to the ground, calculate the
opacity {αi} of sample points {pi} along each ray r, and
combine them with the previously defined occupancy values
to derive an entropy loss:

Lentropy = − 1

|R|
∑

r∈R

∑
pi∈r

p(pi) log(p(pi)), (14)

where p(pi) = Miαi/(
∑

pi∈r Miαi). This encourages the
occupancy probability of spatial points to approach either 0
or 1, which ensures consistency between training and real-
time rendering.

During training, we initialize the weight for Locc to a
small value and gradually increase it. In this way, the train-
ing first focuses on the reconstruction of the scene, and then
gradually compresses the occupied space while maintaining
the reconstruction quality. Further details can be found in
the supplementary materials.

4.4. Real-Time Rendering

After training, we store the features in the occupied area
for subsequent rendering. Existing approaches [15, 36]
construct a 3D voxel grid by evaluating volume density
or weight, requiring dozens of hours for large-scale, high-
resolution scenes. In contrast, we efficiently determine
occupancy information based on the high-resolution occu-
pancy plane obtained during training, which is completed
in just a few minutes. Subsequently, we store voxel grids
as sparse blocks and the deferred MLP as floating-point ar-
rays. For the 2D triplane, we clip along the the z direction,
according to the upper and lower bounds of the occupancy
plane. To skip empty space efficiently, we employ 2D max
pooling to obtain multiple low-resolution occupancy planes.
All these features are encoded in PNG format.

After the baking process, we follow MERF [36] for real-
time rendering but diverge in ray marching. Unlike the 3D
binary grid used to determine the current point’s occupancy

status, the occupancy plane directly stores the start and end
positions of the point’s sampling interval in the z direction.
As the ray traverses the blank area, it can efficiently reach
the next grid point or the starting sampling position of the
current grid point through bounding box intersection detec-
tion. Experimental results indicate that this sampling strat-
egy is notably faster than previous approaches, especially
when overlooking the entire scene.

5. Experiments
5.1. Real-Time Rendering on Oblique Photography

Datasets. We employ two distinct datasets for evalua-
tion: 1) Matrix City [22], a synthetic dataset, captured in
a grid-style format typical of classic oblique photography;
2) Campus-Oblique, a real-world dataset we captured us-
ing a surround-style approach. It encompasses three distinct
scenes on a university campus. Scene-1 and Scene-2 cover
an area of about 120,000 square meters and comprise over
1,000 images each. Scene-3 is even more extensive, cov-
ering approximately 600,000 square meters and containing
over 7,000 images. For each scene, we use 99% of the im-
ages for training and the remaining ones for testing.

Experiment Settings. We conduct comprehensive com-
parisons with several offline and real-time methods to eval-
uate the performance of our method. For offline models,
we compare with 1) Instant-NGP [32]; 2) NeRFacto [44],
an implementation of MipNeRF 360 [2] based on the Nerf-
studio framework [44] that additionally integrates multi-
level hash encoding; 3) Mega-NeRF [46] with 2 × 2 par-
titions; 4) Grid-NeRF [55]. For real-time models, we com-
pare with mesh-based rasterization methods like MobileN-
eRF [6] and BakedSDF [56], and the splat-based rasteri-
zation method 3DGS [18]. Our Oblique-MERF and the
baseline MERF [36] are built upon the Nerfstudio frame-
work [44], augmented with the tiny-cuda-nn extension. To
ensure fairness, both MERF and Oblique-MERF models
follow the same training hyperparameters and architectural
designs. We set the triplane resolution R to 2048, the sparse
grid resolution L to 512 and the occupancy plane resolu-
tion M to 512. Our real-time viewer is implemented as a
JavaScript web application, utilizing GLSL for rendering.

Metrics. We evaluate the rendering quality using es-
tablished metrics: peak signal-to-noise ratio (PSNR),
SSIM [49], and LPIPS [58]. Additionally, we use GPU
memory usage (VRAM), frames per second (FPS), and on-
disk storage (DISK) as metrics for the efficiency of real-
time rendering methods. The evaluation is carried out at
1920×1080 resolution on an NVIDIA GTX 1650.

Results. Tab. 2 present the quantitative comparison re-
sults, demonstrating that our approach achieves competi-
tive or superior rendering quality. As shown in Fig. 5,



Block-A

Block-D

Ground Truth Ours MERF Mega-NeRF Instant-NGP

Figure 5. Qualitative comparison between Oblique-MERF and
other methods on the Matrix City [22] dataset.

Scene-1

Scene-2

Ground Truth Ours 3DGS
Scene-3

Figure 6. Visual comparison between Oblique-MERF and
3DGS [18] on the Campus-oblique datasets.

Campus-Oblique Matrix City [22]
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

InstantNGP [32] 23.08 0.600 0.505 23.10 0.612 0.707
Nerfacto [2] 22.20 0.618 0.335 23.40 0.674 0.444
Mega-NeRF [46] 23.46 0.591 0.466 24.70 0.650 0.600
Grid-NeRF [55] - - - 25.06 0.704 0.512

MobileNeRF [6] 20.84 0.443 0.499 19.02 0.517 0.608
BakedSDF [56] 21.24 0.493 0.573 22.09 0.582 0.652
3DGS [18] 23.08 0.673 0.321 - - -
MERF [36] 22.84 0.617 0.344 24.50 0.677 0.456

Ours 23.69 0.662 0.298 25.30 0.706 0.406

Table 2. Quantitative results on the Campus-Oblique and Matrix
City [22] datasets. The best results are bolded, while the second-
best results are underlined.

other methods exhibit excessive smoothness in details such
as building surfaces and pedestrian crosswalk markings.
Leveraging feature grids and regularization of sampling

VRAM↓ DISK↓ FPS↑

(MB) (MB) high-altitude low-altitude

MobileNeRF [6] 1142.0 400.3 60 44
BakedSDF [56] 582.0 537.3 54 60
3DGS [18] 1356.9 1356.9 14 37
MERF [36] 177.5 92.8 9 37

Ours 111.9 78.3 37 45

Table 3. The performance for our model and other real-time meth-
ods on Scene-1 of Campus-Oblique dataset.

space, our method effectively concentrates sampling points
on the scene surfaces, thereby better recovering local ge-
ometry and appearance information. While 3DGS [18] pro-
vides excellent perceptual quality with high SSIM, its re-
construction efficiency, limited by the number of primitives,
rapidly decreases when extended to larger-scale scenes (see
the cluttered geometry in Scene-3 of Fig. 6). In contrast, our
method maintains stable rendering quality and does not rely
on accurate point cloud initialization.

We evaluate the real-time rendering performance of
our Oblique-MERF and other real-time rendering meth-
ods in Tab. 3. Despite the inherently lower frame rates of
volumetric rendering compared to mesh rasterization, our
method excels in disk and VRAM efficiency while deliv-
ering exceptional real-time rendering quality. In contrast
to 3DGS [18], which requires a large number of explicit
Gaussian ellipsoids to fit large-scale scenes, we achieve
competitive rendering quality with significantly lower stor-
age requirements. Compared to the baseline MERF [36],
our compact occupancy space design significantly reduces
storage requirements and consistently improves rendering
frame rates across different scales. Further comparisons can
be found in the supplementary material.

5.2. Color for Extrapolation Novel Viewpoints

Datasets. We employ a novel real-world dataset, named
Campus-extra, to validate the effectiveness of our smooth-
ness regularization term. For the training set, we follow the
same technique as Campus-Oblique to capture 1486 images
with a fixed tilt angle to the ground at approximately 60
degrees. For the test set, we simulate extrapolated view-
points by capturing 140 images with a tilt angle of around
25 degrees. To minimize the impact of unseen scenes, we
adopt the NerfBusters [51] protocol to mask test images to
exclude unseen regions during training.

Experiment Settings. Our method is compared with a
range of MERF variants that improve the continuity of the
Deferred MLP in various ways. In “MERF+LipMLP”, we
replace the Deferred MLP with a Lipschitz MLP and corre-
sponding regularization [25]. In “MERF+Gradient”, we pe-
nalize the ℓ2-norm of the specular color’s gradient with re-
spect to the viewing direction, namely ∥∂G(F,d)

∂d ∥2. In “w/o



Spatial Res. 5123 10243 20483
Time↓PSNR↑ VRAM↓ DISK↓ OR↓ PSNR↑ VRAM↓ DISK↓ OR↓ PSNR↑ VRAM↓ DISK↓ OR↓

MERF [36] 21.83 94.8 65.4 2.54% 23.35 441.0 319.4 1.97% 24.18 2478.0 1679.1 1.34% ∼ 6h
Ours(vanilla baking) 22.84 67.6 50.3 1.57% 24.54 334.4 272.6 1.15% 25.24 1633.4 1338.2 0.73% ∼ 6h

Ours 61.3 47.0 1.49% 322.5 264.9 1.27% 1605.0 1273.1 0.89% ∼ 8min

Table 4. Ablations on baking across varied spatial resolutions. VRAM and DISK capacity is denoted in megabytes (MB).

Training views Test views
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

MERF [36] 25.93 0.770 0.189 22.14 0.710 0.213
+LipMLP [25] 25.86 0.768 0.188 22.42 0.729 0.201
+Gradient 25.97 0.772 0.187 22.66 0.732 0.199

w/o direction 25.94 0.771 0.187 22.32 0.746 0.203
w/o high freq. 25.98 0.774 0.184 21.23 0.724 0.203

Ours 26.00 0.776 0.183 22.66 0.744 0.196

Table 5. Effectiveness of the smoothness regularization.

PSNR↑ SSIM↑ LPIPS↓ VRAM(MB)↓

W/o Warmup Train 21.89 0.632 0.297 106.0
Ours 24.33 0.716 0.222 111.9

Table 6. Ablations on training strategy.

direction”, we remove view dependence entirely. In “w/o
high freq.”, we remove the high-frequency components for
the positional encoding of d.

Results. Tab. 5 showcases quantitative comparison under
both interpolated and extrapolated viewpoints. We find that
merely ensuring the network’s Lipschitz continuity slightly
enhances the test view performance but can negatively im-
pact the training views. This is potentially because it en-
forces smoothness on all network inputs, including dif-
fuse and specular features, which is redundant and hinders
the optimization. Applying regularization to the specular
color’s gradient is effective, but it may result in undesirable
floaters in some views. Eliminating directional or high-
frequency encoded inputs would diminish the model’s ca-
pacity to capture color variations with changing viewpoints.
Compared to these approaches, our method consistently ex-
cels on both the training and test sets, achieving an approx-
imate improvement of 0.5 dB PSNR over the baseline. Vi-
sual comparison will be presented in the supplementary ma-
terials.

5.3. Ablation Study

Spatial Resolution. Tab. 4 compares our method with the
baseline method in rendering quality, memory usage, occu-
pancy ratio (OR), and time consumed in the baking pipeline
on Scene-1 of the Campus-Oblique dataset. To more clearly
illustrate the compactness of the occupied space optimized
by our sampling strategy, we exclusively employ sparse fea-

ture grids at resolutions from 512 to 2048, omitting the
use of triplane. After training, we extract a 3D occupancy
grid, contrasting it with the one obtained from MERF’s
baking process. Our approach consistently yields a lower
OR (approximately 60% of MERF’s), enhancing memory
efficiency and rendering quality. It can also be observed
that the vanilla baking strategy requires several hours for
post-processing, with the time increasing proportionally to
the number and resolution of training images, whereas our
method produces consistent texture sets within minutes.

Training Strategy. To validate the effectiveness of warm-
up training in Sec. 4.3, we perform an ablation by compress-
ing the occupancy plane from the beginning using a fixed
weighting factor of λ7 = 0.0001 for Locc. Despite a slight
memory advantage, the absence of warm-up leads to a se-
vere drop in rendering quality, as shown in Tab. 6. This is
because applying regularization to the sampling space be-
fore the model has learned the approximate geometry can
result in excessive, irrecoverable compression.

6. Conclusion and Future Work
In this paper, we introduce Oblique-MERF, a compact and
robust model optimized for real-time NeRFs in large-scale
scenes like oblique photography. Our core contributions in-
clude an adaptive explicit occupancy plane aware of pho-
tometric loss and a smoothness regularization designed to
enhance robustness under extrapolated viewpoints. Com-
pared to existing real-time rendering techniques, Oblique-
MERF delivers superior rendering quality, lower memory
usage, and higher frame rates. However, scalability remains
a challenge. We plan to adopt a divide-and-conquer strat-
egy to extend our representation to larger scales. Moreover,
integrating our method with physically-based rendering to
accurately simulate changes in specular color represents a
future research direction.
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Rengarajan, Seonghyeon Nam, Xiaoyu Xiang, Tuotuo Li, Bo
Zhu, Rakesh Ranjan, and Jing Liao. Learning neural duplex
radiance fields for real-time view synthesis. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 8307–8316, 2023. 2

[49] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 13(4):
600–612, 2004. 6

[50] Zian Wang, Tianchang Shen, Merlin Nimier-David, Nicholas
Sharp, Jun Gao, Alexander Keller, Sanja Fidler, Thomas
Muller, and Zan Gojcic. Adaptive shells for efficient neu-
ral radiance field rendering. ACM Transactions on Graphics
(TOG), 42:1 – 15, 2023. 1, 3

[51] Frederik Warburg, Ethan Weber, Matthew Tancik, Alek-
sander Holynski, and Angjoo Kanazawa. Nerfbusters: Re-
moving ghostly artifacts from casually captured nerfs. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 18120–18130, 2023. 7

[52] Changchang Wu. Towards linear-time incremental structure



from motion. In 2013 International Conference on 3D Vision
- 3DV 2013, pages 127–134, 2013. 2

[53] Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao,
Anyi Rao, Christian Theobalt, Bo Dai, and Dahua Lin.
Bungeenerf: Progressive neural radiance field for extreme
multi-scale scene rendering. In The European Conference
on Computer Vision (ECCV), 2022. 2

[54] Zeke Xie, Xindi Yang, Yujie Yang, Qi Sun, Yixiang Jiang,
Haoran Wang, Yunfeng Cai, and Mingming Sun. S3im:
Stochastic structural similarity and its unreasonable effec-
tiveness for neural fields. In ICCV, 2023. 6

[55] Linning Xu, Yuanbo Xiangli, Sida Peng, Xingang Pan,
Nanxuan Zhao, Christian Theobalt, Bo Dai, and Dahua Lin.
Grid-guided neural radiance fields for large urban scenes. In
CVPR, pages 8296–8306. IEEE, 2023. 2, 6, 7

[56] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,
Pratul P. Srinivasan, Richard Szeliski, Jonathan T. Barron,
and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-
time view synthesis. In ACM SIGGRAPH 2023 Conference
Proceedings, SIGGRAPH 2023, Los Angeles, CA, USA, Au-
gust 6-10, 2023, pages 46:1–46:9. ACM, 2023. 1, 2, 6, 7

[57] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. PlenOctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 1, 2, 3

[58] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 6

[59] Yuqi Zhang, Guanying Chen, and Shuguang Cui. Effi-
cient large-scale scene representation with a hybrid of high-
resolution grid and plane features. Pattern Recognition, 158:
111001, 2025. 3

[60] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa vol-
ume splatting. In Proceedings Visualization, 2001. VIS ’01.,
pages 29–538, 2001. 3


