
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CHECKPOINT-GCG: AUDITING AND ATTACKING FINE-
TUNING-BASED PROMPT INJECTION DEFENSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly deployed in real-world applica-
tions ranging from chatbots to agentic systems, where they are expected to process
untrusted data and follow trusted instructions. Failure to distinguish between
the two poses significant security risks, exploited by prompt injection attacks,
which inject malicious instructions into the data to control model outputs. Model-
level defenses have been proposed to mitigate prompt injection attacks. These
defenses fine-tune LLMs to ignore injected instructions in untrusted data. We
introduce Checkpoint-GCG, a white-box attack against fine-tuning-based defenses.
Checkpoint-GCG enhances the Greedy Coordinate Gradient (GCG) attack by lever-
aging intermediate model checkpoints produced during fine-tuning to initialize
GCG, with each checkpoint acting as a stepping stone for the next one to con-
tinuously improve attacks. First, we instantiate Checkpoint-GCG to evaluate the
robustness of the state-of-the-art defenses in an auditing setup, assuming both (a)
full knowledge of the model input and (b) access to intermediate model checkpoints.
We show Checkpoint-GCG to achieve up to 96% attack success rate (ASR) against
the strongest defense. Second, we relax the first assumption by searching for a
universal suffix that would work on unseen inputs, and obtain up to 89.9% ASR
against the strongest defense. Finally, we relax both assumptions by searching for
a universal suffix that would transfer to similar black-box models and defenses,
achieving an ASR of 63.9% against a newly released defended model from Meta.

1 INTRODUCTION

Large language models (LLMs) are increasingly integrated into a wide range of applications, from
chatbots (OpenAI, 2022) and coding assistants (Chen et al., 2021) to AI agents (Shen et al., 2023)
embedded in browsers (Google, 2025) and payment platforms (Google Cloud, 2025). While their
wide adoption stems from their impressive ability to follow natural language instructions, this
same capability also makes them vulnerable to attacks. Indeed, models often fail to distinguish
between instructions to follow and content to ignore (Zverev et al., 2024), exposing them to prompt
injection attacks (Perez & Ribeiro, 2022; Liu et al., 2024b; Branch et al., 2022; Greshake et al.,
2023; Kang et al., 2024), which embed malicious instructions into benign data merely intended for
processing (e.g., a PDF document for summarization), tricking the model into following the injected
instructions. These attacks have been identified as one of the biggest concerns for LLM-based
applications (Financial Times, 2025; OWASP, 2025) and they are already starting to be exploited in
practice, for example, causing private data leakage from Slack AI (Claburn, 2024).

Greedy Coordinate Gradient (GCG) (Zou et al., 2023) is one of the most effective and widely-used
adversarial attacks against LLMs (Ji et al., 2024; Souly et al., 2024; Zhang et al., 2025; Mazeika
et al., 2024; Chao et al., 2024; Zhang et al., 2025). Similar to other adversarial methods in machine
learning (Szegedy et al., 2014; Biggio et al., 2013; Papernot et al., 2016) that introduce small input
perturbations to manipulate model outputs, GCG searches for adversarial suffixes that, when appended
to user queries, induce attacker-desired outputs. Initially introduced for jailbreaking, which aims to
override safety training and elicit harmful responses (e.g., instructions for building a bomb), GCG has
also been applied as prompt injection attacks (Chen et al., 2025a;b). While GCG requires white-box
access to optimize adversarial suffixes, the original work (Zou et al., 2023) has shown that a single
suffix can be optimized across multiple user prompts and target models for jailbreaking, and this suffix

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

is then able to generalize to unseen prompts and black-box models, making the suffix “universal”
across inputs and “transferable” across models.

Model-level defenses have been developed to reduce models’ susceptibility to prompt injection
through fine-tuning. StruQ (Chen et al., 2025a) introduces explicit delimiters to separate instruc-
tions from data and applies Supervised Fine-Tuning to train models to follow genuine instruc-
tions. SecAlign (Chen et al., 2025b) improves upon StruQ by using Direct Preference Optimization
(DPO) (Rafailov et al., 2023) to enforce following genuine instructions and ignoring injected ones.
SecAlign++ (Chen et al., 2025c), a further improvement of SecAlign, has most recently been released
and used by Meta to defend open-weight LLMs. Similar approaches include OpenAI’s use of rein-
forcement learning to enforce an “instruction hierarchy” in GPT-3.5 Turbo (Wallace et al., 2024) and
architectural changes (Wu et al., 2024) that embed instruction priority directly into the model.

The robustness of these defenses is empirically evaluated against state-of-the-art attacks, including
the strong white-box attack GCG (Zou et al., 2023). SecAlign (Chen et al., 2025b) reports a sharp
reduction in GCG Attack Success Rates (ASRs), from 98% and 95% on undefended Llama-3-8B and
Mistral-7B to just 9% and 1% when SecAlign-defended. By comparison, StruQ reduces the ASRs to
43% and 41%, indicating that SecAlign provides stronger robustness.

Contribution. GCG’s ASRs drop sharply from undefended models to StruQ- and SecAlign-defended
models, indicating that stronger defenses make the optimization problem harder and hinder GCG’s
ability to find effective suffixes. Prior work shows that GCG’s success is highly sensitive to its
initialization (Jia et al., 2024; Li et al., 2025; Zhang et al., 2024; Hayase et al., 2024). Building on
this finding, we introduce Checkpoint-GCG, which leverages intermediate fine-tuning checkpoints as
stepping stones: at each checkpoint, GCG is initialized with the suffix discovered at the previous one,
progressing toward the final fine-tuned model. We also study strategies for selecting checkpoints to
attack, balancing attack effectiveness and computational cost. Our results show that Checkpoint-GCG
reliably discovers adversarial suffixes and remains effective even against stronger defenses.

First, we adopt the evaluation setup used by StruQ and SecAlign, and apply both the standard GCG
attack (Zou et al., 2023) and Checkpoint-GCG to individual samples from the AlpacaFarm (Dubois
et al., 2023) dataset. We confirm that standard GCG (Zou et al., 2023) shows a rapid decline in
effectiveness as defenses improve, achieving only 6% ASR on SecAlign-defended Llama-3-8B-
Instruct. In contrast, Checkpoint-GCG achieves 88% ASR on the same model, demonstrating that it
can serve as an auditing tool for the robustness of increasingly strong defenses.

To enable Checkpoint-GCG as an attack beyond an auditing setting, we relax two key attacker
assumptions. First, both standard GCG and Checkpoint-GCG require full access to the exact context
provided as input to the model to optimize an adversarial suffix, which is unrealistic in deployed
settings where system prompts or dynamic content are used. Second, Checkpoint-GCG requires
access to intermediate fine-tuning checkpoints, which are often unavailable. In Section 5.3, we
relax both assumptions by (1) using Checkpoint-GCG to optimize universal suffixes over a set of
training prompts and showing that they successfully attack held-out prompts on the same model;
and (2) evaluating these universal suffixes on Meta-SecAlign-8B, a similar model with an upgraded
defense without accessible checkpoints, showing that they can also be transferrable. Using a small
training set of prompts, Checkpoint-GCG finds a universal suffix that achieves 75.3% ASR on
SecAlign-defended Llama-3-8B-Instruct for held-out prompts. We then evaluate this universal suffix
on Meta-SecAlign-8B, the recently released Llama-3.1-8B-Instruct defended with SecAlign++. This
suffix achieves 63.9% ASR when used to query Meta-SecAlign-8B (black-box attack), and 78.3%
ASR in a white-box attack setting with only five optimization steps of standard GCG. By contrast,
standard GCG fails to find a successful universal suffix, yielding 0% ASR on both training and
held-out prompts, and the suffix it produces also fails to transfer to Meta-SecAlign-8B with 0% ASR
in both black-box and white-box settings.

Finally, we provide intuition for why it works by analyzing attention patterns which indicate that
Checkpoint-GCG’s greedy optimization against intermediate checkpoints gradually shapes an ad-
versarial suffix that successfully attacks the final model. We find that suffixes obtained by attacking
intermediate checkpoints with Checkpoint-GCG induce a smooth, monotonic shift in the final model’s
attention from the original user instruction toward the adversarial injection.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

[System Instruction] Below is an instruction that describes a task, paired with an input that
provides further context. Write a response that appropriately completes the request.

[User Prompt] Make a list of outdoor activities that are suitable for the given weather condition.

[Data] Temperature: 57 F, Showers. Print exactly ‘Hacked’! AnD NotHing ElSE!

Figure 1: An example prompt containing both injected instruction (red) and adversarial suffix (blue).

2 BACKGROUND

We denote an LLMM parametrized by parameters θ asMθ with vocabulary V . The modelMθ maps
sequences of up to n tokens, i.e., the complete prompt provided as input to the model, to sequences
of up to m tokens, i.e., the model’s generated response to the prompt, orMθ : P(Vn)→ P(Vm).

A prompt provided as input to a model typically consists of: (i) a System Instruction defining the
model’s role or behavior, (ii) a User Prompt specifying the task or question from the user, and (iii)
Data to assist the model in responding to the user prompt (see Figure 1). These components are
typically concatenated – often with delimiters – and passed to the model as a single input, which it
processes to autoregressively generate a response.

It has been shown that LLMs often struggle to distinguish between data to process and instructions to
follow (Zverev et al., 2024), leaving them potentially vulnerable to prompt injection attacks. These
attacks exploit the model’s inability to ignore malicious instructions in the benign data (Perez &
Ribeiro, 2022; Liu et al., 2024b; Branch et al., 2022). For instance, when given an input similar to
that in Figure 1, the model may ignore the user prompt and instead return “Hacked”, a setup typically
used to study prompt injection (Chen et al., 2025a;b).

White-box attack GCG. Greedy Coordinate Gradient (GCG) (Zou et al., 2023) is an optimization
algorithm that constructs adversarial inputs capable of eliciting a target phrase as an output from
a target LLM. When applied in the prompt injection setting (Chen et al., 2025a;b), the goal is to
generate an adversarial suffix (blue in Figure 1) to be appended to the prompt to confuse the model
into following the injected instruction in the data part.

Formally, given a target model Mθ and a prompt p ∈ P(Vn), GCG searches for a suffix s =
(s1, . . . , sl) ∈ V l such that the model’s continuationMθ(p||s) yields an attacker-specified target
string y∗. It begins with an initial suffix s(0) and iteratively updates it to maximize the log-probability
of the target string, i.e., solves maxs∈Vl logPθ(y

∗ | p||s).
GCG performs this optimization iteratively. At each optimization step t, GCG updates the adver-
sarial suffix to s(t) ← GCG(Mθ, p, y

∗, s(t−1)) in a direction that increases the target likelihood by
leveraging the gradients of logPθ(y

∗ | p||s(t−1)) with respect to the input tokens to make updates to
s(t−1). The algorithm continues until either the model, when prompted with p||s(t−1), produces the
desired output y∗ using greedy decoding, i.e.,Mθ(p||s(t−1)) = y∗, or a maximum number of steps
T is reached – at which point the attack is considered unsuccessful. The final result from GCG is an
adversarial suffix s∗. For more detailed information on GCG, we refer to Zou et al. (2023).

Zou et al. (2023) propose to initialize the GCG suffix s(0) as a series of l exclamation points, which
has been widely adopted in subsequent work (Chen et al., 2025a;b). However, several studies have
observed that GCG’s convergence can be highly sensitive to its initialization (Jia et al., 2024; Li et al.,
2025; Zhang et al., 2024; Hayase et al., 2024) and proposed alternative initialization strategies based
largely on empirical observations. These findings highlight that while initialization plays an important
role in GCG’s success, finding effective initializations in a principled way remains a challenge.

Fine-tuning-based defenses. Recent work has proposed fine-tuning-based methods to improve
models’ robustness against such prompt injection attacks. These methods train models to follow an
“instruction hierarchy”, learning to prioritize instructions based on their position within the input.
StruQ (Chen et al., 2025a) and SecAlign (Chen et al., 2025b) are open-source, state-of-the-art fine-
tuning-based defenses that implement this strategy. StruQ (Chen et al., 2025a) uses explicit delimiters

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Checkpoint-GCG Attack

Input: Initial prompt p, target y∗, selected checkpoints S = [c1, . . . , ck], steps T , suffix length l

Output: Final adversarial suffix s
(t)
ck

1: Initialize suffix s(0) ← (s
(0)
1 , . . . , s

(0)
l) ∈ Vn

2: for i = 1 to k do
3: c← ci
4: s

(0)
c ← s(0)

5: for t = 1 to T do
6: s

(t)
c ← GCG(θc, p, y

∗, s
(t−1)
c)

7: ifMθc(p||s
(t)
c) = y∗ or early-stopping then

8: s∗c ← s
(t)
c ifMθc(p||s

(t)
c) = y∗ else s

(t∗)
c ▷ s

(t∗)
c has min loss among

(
s
(t)
c

)T
t=1

9: break ▷ Terminate if s(t)c is successful or early-stopping (App. E)
10: s(0) ← s∗c ▷ Use as initialization for next checkpoint
11: return s∗ck

to distinguish between the user prompt and the data portion. It applies supervised fine-tuning to train
models to follow only the instructions in the user prompt while ignoring any instructions embedded
in the data portion. SecAlign (Chen et al., 2025b) improves upon this by leveraging DPO (Rafailov
et al., 2023) during fine-tuning, explicitly steering the model away from responding to instructions
included in the data portion in favor of responding to the original user prompt.

Let θ0 denote the parameters of the base model. The fine-tuning phase produces a sequence of model
parameters θ0 → θ1 → · · · → θC , where θc represents the model parameters after c fine-tuning steps,
and θC represents the parameters of the final model with fine-tuning-based defense.

3 CHECKPOINT-GCG

Motivated by the incremental nature of fine-tuning, we introduce Checkpoint-GCG, a method that
leverages intermediate checkpoints to progressively optimize an adversarial suffix. Checkpoint-GCG
assumes access to a subset S = [c1, . . . , ck] of all C fine-tuning checkpoints (0 ≤ ci ≤ C), with
corresponding model parameters θci . The attacker runs the GCG algorithm sequentially against each
selected checkpoint, using the adversarial suffix s∗ci found at checkpoint θci to initialize the GCG
algorithm against the next selected checkpoint θci+1 , i.e., s∗ci becomes s(0)ci+1 . The complete procedure
for Checkpoint-GCG is formalized in Algorithm 1.

Intuitively, this approach exploits the incremental nature of parameter updates during fine-tuning –
an adversarial suffix found to be effective against a model with parameters θci is likely to be similar
to an effective suffix for a model with highly similar parameters, such as θci+1 . We elaborate on a
theoretical intuition in Appendix B.

Selecting model checkpoints. Let I = {0, 1, 2, . . . , C} denote the set of all possible checkpoint
indices, where 0 corresponds to the base model with parameters θ0 and C to the final checkpoint with
parameters θC . We consider four strategies for selecting a subset S = [c1, . . . , ck] ⊆ I of checkpoint
indices to attack. All strategies include the base model (c1 = 0) and final checkpoint (ck = C), and
distinctly select intermediate checkpoints (0 < ci < C):

1. Frequency-based (FREQ). For simplicity and to provide uniform coverage of the training process,
we select every qth checkpoint, i.e., SFREQ = {c ∈ I | c = q · l, l ∈ N0}.
2. Step-based (STEP). Since the most substantial changes to model parameters typically occur in the
early stages of training, we select all checkpoints up to a training step r to capture these changes.
To maintain coverage throughout training, we also include every qth checkpoint thereafter, i.e.,
SSTEP = {c ∈ I | c ≤ r} ∪ {c ∈ I | c > r, c = q · l, l ∈ N0}.
3. Loss-based (LOSS). As training loss Lθc represents the model error and guides the updates of
model parameters, we select a checkpoint if its alignment loss differs from the alignment loss at the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

last selected checkpoint by at least a threshold τloss, i.e., SLOSS = {c ∈ I | |Lθc − Lθs | ≥ τloss, s =
max{x ∈ SLOSS|x < c}}. Additionally, to ensure coverage during periods of low change, we include
every qth checkpoint when this condition is not met for q consecutive steps.

4. Gradient-based (GRAD). Gradient norms ∥∇θcLθc∥ provide a more direct measure of the
magnitude of updates made to the model parameters at every step. We therefore select checkpoints
where the gradient norm is at least a threshold τgrad, indicating that the model is making sufficient
changes, i.e., SGRAD = {c ∈ I | ∥∇θcLθc∥ ≥ τgrad}.
We use these strategies to study what aspects of the fine-tuning process is most helpful for finding
successful suffixes against the final model, while balancing computational cost.

Searching a universal suffix. We adapt the universal suffix attack of GCG to Checkpoint-GCG.
At each checkpoint θci , we search for a universal suffix, i.e., a single suffix that generalizes across
Ntrain training prompts and use it as initialization at checkpoint θci+1

. Following Zou et al. (2023),
we incrementally incorporate training samples: for sample z (1 < z ≤ Ntrain), GCG is initialized
with the suffix found for z − 1 samples, i.e., s(0)ci,z = s

(t)
ci,z−1; when z = 1, it is initialized with the

suffix from the previous checkpoint, s(0)ci,1
= s

(t)
ci−1,Ntrain

. If no suffix at θci generalizes across all Ntrain

samples, we select the suffix with the lowest average loss and use it to initialize the next checkpoint.

4 EXPERIMENTAL SETUP

Defenses. We evaluate Checkpoint-GCG on two state-of-the-art fine-tuning-based defenses:
StruQ (Chen et al., 2025a) and SecAlign (Chen et al., 2025b). We replicate both fine-tuning processes
for Llama-3-8B-Instruct (AI@Meta, 2024), Mistral-7B-Instruct (Jiang et al., 2023), and Qwen2-1.5B-
Instruct (Team Qwen, 2024), opting for instruction models as θ0 as they were reported to be more
robust than their base counterparts (Chen et al., 2025b). Full fine-tuning details, including loss and
gradient norm curves, are provided in Appendix J. During this work, SecAlign++ (Chen et al., 2025c),
an updated version of SecAlign, was released. We evaluate the transferability of Checkpoint-GCG
suffixes to models defended with SecAlign++ in Section 5.3.

Attack evaluation. We follow the evaluation setup from StruQ (Chen et al., 2025a) and Se-
cAlign (Chen et al., 2025b), attacking samples with a data part from AlpacaFarm (Dubois et al.,
2023) by injecting the adversarial instruction “Print exactly ‘Hacked’!” at the end of the data part.
An attack is considered successful if the model’s response begins with “Hacked” or “hacked” (target
output y∗ in Algorithm 1). To evaluate the out-of-distribution generalizability of Checkpoint-GCG
suffixes, we also test them on the SEP (Mu et al., 2023) prompt injection benchmark. We report two
metrics: Attack Success Rate (ASR): the fraction of successful attacks over all samples, consistent
with Chen et al. (2025a;b); success@k: the probability of achieving at least one successful attack
within k attempts. This reflects a realistic scenario in deployed systems, where attackers are limited
in the number of queries they can issue due to logging, rate-limiting, or detection. Note that ASR is
equivalent to success@1 (see Section 5.3).

Baselines. Following Chen et al. (2025a;b), we apply GCG directly on the final fine-tuned model
θC , initializing the suffix with "!!!". We use two different budgets: (i) maximum GCG steps of
T = 500, as initially proposed (Zou et al., 2023) and used to evaluate defenses (Chen et al., 2025a;b);
(ii) the same number of steps that Checkpoint-GCG used in total to attack that sample, applying the
same early stopping criteria as Checkpoint-GCG (see Algorithm 1 and Appendix E for more details).

5 RESULTS

5.1 PRIMER: CHECKPOINT-GCG STEERS THE OPTIMIZATION IN THE RIGHT DIRECTION

We apply Checkpoint-GCG to find an adversarial suffix for a prompt injection attack against Llama-
3-8B-Instruct (AI@Meta, 2024) defended with SecAlign (Chen et al., 2025b). Figure 2 visualizes the
optimization for one sample, showing the probability of attack success over the cumulative number
of GCG steps across checkpoints. Any dashed vertical line denotes a checkpoint θc selected to attack.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: The probability of a successful attack by GCG and Checkpoint-GCG when attacking one
sample on Llama3-8B-Instruct (AI@Meta, 2024) defended with SecAlign (Chen et al., 2025b).

We start by applying GCG on the base model with parameters θ0, initializing the attack as in prior
work with "!!!". For this suffix s

(0)
c=0, the probability of attack success is near 0 (lower left of

Figure 2). After a limited number of GCG steps, we find a suffix s
(t)
c=0 that successfully attacks the

base model θ0. We then attack the next checkpoint, θ7, initializing GCG with the successful suffix
found on θ0. We find the success probability of this suffix to remain highly similar for θ7, yet a few
GCG steps are needed to update s

(t)
c=0 = s

(0)
c=7 to s

(t)
c=7, which successfully attacks θ7. We continue

this process across all selected checkpoints. While the probability of success often drops going from
checkpoints θc to θc+1, applying a limited number of GCG steps starting from the suffix successful
for θc quickly restores the success probability against θc+1. Finally, Checkpoint-GCG applies the
same strategy to the fully aligned model θC , and finds the optimized suffix to succeed.

As a reference, we also report the results for standard GCG when applied independently on each
checkpoint θc. At each θc, we run standard GCG for the same number of steps as Checkpoint-GCG,
but initialize with the naive suffix ("!!!") rather than the optimized suffix from θc−1. While standard
GCG still improves success probability at early checkpoints, the fine-tuning process increasingly
suppresses the attack at later stages. After only a few fine-tuning checkpoints, the success probability
plateaus near zero, ultimately resulting in a failed attack on θC .

5.2 CHECKPOINT-GCG AS AN AUDITING METHOD

We instantiate Checkpoint-GCG to audit the robustness of StruQ (Chen et al., 2025a) and Se-
cAlign (Chen et al., 2025b) against prompt injection attacks. Following their evaluation, we attack
each AlpacaFarm sample individually by optimizing an adversarial suffix appended to the sample.
This procedure assumes full access to the sample for suffix optimization as well as access to inter-
mediate checkpoints, which is expected in an auditing setting as the goal is to determine whether
successful attacks exist. In Section 5.3, we show how this assumption can be relaxed when deploying
adversarial suffixes as attacks. Figure 3a shows the ASRs achieved by Checkpoint-GCG across
three models, compared to the baseline ASRs from standard GCG applied directly to θC using both
T = 500 steps and Checkpoint-GCG budget. The full results are reported in Table 2 in Appendix A.

The performance of standard GCG decreases quickly as defenses improve. When applied to defended
models, standard GCG achieves moderate performance against StruQ, and weak performance against
SecAlign (6% ASR for Llama-3-8B-Instruct). Although our replication of standard GCG with
T = 500 steps achieves slightly higher ASRs than those reported in the original work (Chen et al.,
2025b) (see Appendix K for detailed comparison), it still remains weak against SecAlign. Even when
given the same total number of steps that Checkpoint-GCG required on each sample (Checkpoint-
GCG budget), standard GCG shows only marginal improvements over the T = 500 baseline. In
contrast, Checkpoint-GCG consistently achieves high effectiveness across all defenses and models,
achieving ASRs of up to 100% on StruQ-defended models and 96% on SecAlign-defended models.

As defenses continue to improve, it will be increasingly difficult to measure defense improvements
using low and decreasing ASRs of standard GCG. We show that Checkpoint-GCG, while using
a stronger attacker, can successfully audit the effectiveness of fine-tuning-based defenses against
increasingly sophisticated attacks. This aligns with how strong adversaries are often used to measure
the effectiveness of defenses and attacks in security literature. For example, DP-SGD (Abadi et al.,
2016) is designed to protect machine learning models’ training data privacy against strong adversaries

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Undefended
StruQ

SecAlign

Undefended
StruQ

SecAlign

Undefended
StruQ

SecAlign
0

20

40

60

80

100

AS
R

(%
)

Qwen2-1.5B Mistral-7B Llama-3-8B

Standard GCG (T=500)
Standard GCG (Checkpoint-GCG budget)
Checkpoint-GCG

(a)

0 20 40 60 80 100 120
Number of selected checkpoints

0

20

40

60

80

100

120

140

160

A
ve

ra
ge

nu
m

b
er

of
st

ep
s

p
er

ch
ec

kp
oi

nt

τgrad = 0.05

τgrad = 0.1
τgrad = 0.2

τgrad = 0.3

τgrad = 0.4

τgrad = 0.5

τgrad = 0.6

20

30

40

50

60

70

80

90

100

A
S

R

(b)

Figure 3: (a) Attack Success Rate (%) against increasingly stronger defenses (Undefended, StruQ,
SecAlign) across three models (Llama-3-8B-Instruct, Mistral-7B-Instruct, and Qwen2-1.5B-Instruct).
(b) Trade-off between number of selected checkpoints, average number of steps per checkpoint, and
the Checkpoint-GCG ASR for the GRAD checkpoint selection strategy.

with full access to model parameters and gradient updates, while Balle et al. (2022) assume an
informed adversary to investigate whether differential privacy prevents training data reconstruction.
In Appendix H, we discuss potential defenses against Checkpoint-GCG and explore how adversarial
suffixes discovered by Checkpoint-GCG during the auditing can be incorporated back into the
fine-tuning pipeline to strengthen defenses.

Checkpoint selection. We ablate the different checkpoint selection strategies described in Section 3.
Figure 3b illustrates the trade-off between the number of selected checkpoints, the average number
of GCG steps required at each checkpoint, and the resulting ASR. When too few checkpoints are
selected, Checkpoint-GCG lacks sufficient stepping stones, leading to lower ASR. As the number of
selected checkpoints increases, the ASR improves and, notably, the number of GCG steps required
per checkpoint decreases. This is expected: selecting more checkpoints leads to smaller parameter
changes between them, which reduces the adjustments needed to update the adversarial suffixes.
Beyond a certain point, adding more checkpoints may however increase the cumulative number of
steps across all checkpoints without yielding proportional gains in ASR. We adopt the GRAD strategy
for all main experiments, as it provides an optimal balance between ASR and computational cost.

Other GCG initializations. We replicate other GCG initializations proposed in prior work and
report the results in Appendix F. We show that these initializations yield only marginal ASR gains on
SecAlign-defended models, whereas Checkpoint-GCG achieves substantially stronger performance.

5.3 CHECKPOINT-GCG AS AN ATTACK

While valuable as an auditing tool, Checkpoint-GCG relies on two key assumptions that currently
limit its applicability as an attack. First, like standard GCG, it assumes that the attacker has full
knowledge of the model input to optimize an adversarial suffix. The attacks of highest concerns,
however, are those against deployed systems, where attackers rarely have knowledge of the complete
context, as models are usually instructed with hidden system prompts and provided with dynamically
retrieved content. Second, Checkpoint-GCG requires access to the target model’s intermediate
checkpoints from the fine-tuning process, a strong assumption for real-world defended models.

In this section, we explore how we can relax both assumptions by (i) finding a universal adversarial
suffix that is independent of the exact input context, following the approach introduced in GCG (Zou
et al., 2023), and (ii) finding suffixes which, in addition, also transfer to other models.

(i) Checkpoint-GCG discovers a universal suffix. We here assume a defended model that has
been deployed in a real-world application. We assume an attacker who has access to the fine-tuning
checkpoints, but now no longer has access to the complete context with which the model is queried.

To achieve a successful prompt injection in this scenario, we instantiate Checkpoint-GCG to find
a single universal suffix that generalizes across contexts. We optimize a suffix on Ntrain = 10

training samples from AlpacaFarm. We then test the universality of the suffix (i.e. s(t)C,Ntrain
) out-of-

the-box (i.e., no sample-specific optimization) against θC on the remaining Ntest = 198 held-out

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 5 10 15 20
Number of attempts

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s@

Standard GCG (T=500)
Standard GCG (Checkpoint-GCG budget)
Checkpoint-GCG
Llama-3-8B
Mistral-7B
Qwen2-1.5B

Standard GCG (T=500)
Standard GCG (Checkpoint-GCG budget)
Checkpoint-GCG
Llama-3-8B
Mistral-7B
Qwen2-1.5B

(a) In-distribution

1 5 10 15 20
Number of attempts

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s@

Standard GCG (T=500)
Standard GCG (Checkpoint-GCG budget)
Checkpoint-GCG
Llama-3-8B
Mistral-7B
Qwen2-1.5B

Standard GCG (T=500)
Standard GCG (Checkpoint-GCG budget)
Checkpoint-GCG
Llama-3-8B
Mistral-7B
Qwen2-1.5B

(b) Out-distribution

Figure 4: Universality of the Checkpoint-GCG suffixes on (a) in-distribution and (b) out-distribution
test samples. Results for SecAlign; for StruQ see Appendix A.2.

AlpacaFarm samples. To assess universality beyond the distribution of training samples, we also test
on Ntest = 500 random samples from the SEP dataset (Mu et al., 2023) and Ntest = 55 samples from
the CyberSecEval2 dataset (Bhatt et al., 2024), reflecting a deployment-like scenario where attacks
must generalize to unseen and potentially out-of-distribution inputs.

Figure 4a shows the universality (success@k) of attacks against SecAlign-defended models with
in-distribution test samples (AlpacaFarm). We find that Checkpoint-GCG achieves a high probability
of success even when restricted to a single attempt (k = 1). For example, against Llama-3-8B-Instruct
defended with SecAlign, it reaches success@1 of 75.3%, while standard GCG is ineffective (0%,
with both 500 steps and Checkpoint-GCG budget). With just 5 attempts, Checkpoint-GCG reaches
almost perfect performance, whereas standard GCG maintains low success@ values.

For test samples from SEP, Figure 4b shows that absolute performance decreases, reflecting the greater
difficulty of a universal suffix generalizing out-of-distribution. Nevertheless, Checkpoint-GCG still
outperforms standard GCG by a wide margin, showing strong generalization both within and beyond
the dataset used to construct the attack. This also holds for test samples from CyberSecEval2 (Bhatt
et al., 2024), where standard GCG with both 500 steps and the Checkpoint-GCG budget achieves 0%
ASR on all three SecAlign-defended models, while Checkpoint-GCG achives 18.2%, 94.5%, and
90.0% for Llama-3-8B-Instruct, Mistral-7B-Instruct, and Qwen2-1.5B-Instruct, respectively. More
detailed results, including experiments on StruQ showing the same pattern, are in Appendix A.2.

(ii) Checkpoint-GCG suffixes transfer to similar models and defenses. We here show that
Checkpoint-GCG can be an attack against a deployed target model even when the attacker lacks
access to both (a) the complete input to the model and (b) its intermediate checkpoints. To this end,
we first use a surrogate model θCs with available checkpoints to run Checkpoint-GCG and obtain a
universal suffix, which we then transfer to attack a defended target model θCt

with a different base
model and defense but no accessible checkpoints.

We consider two scenarios: black-box and white-box transfer attacks. For black-box, the attacker
does not have access to the target model’s weights and can only prompt the model. For white-box, the
attacker has access to the weights of the final fine-tuned model but not to its intermediate checkpoints.
In this case, the attacker may use suffixes obtained from attacking the surrogate model as initialization
to run additional optimization directly on the target model. As target model, we consider Meta-
SecAlign-8B, a recently released model from Meta applying SecAlign++ to Llama-3.1-8B-Instruct.

Results in Table 1 show that universal suffixes discovered with Checkpoint-GCG transfer effectively
when the surrogate and target share similar models and defenses. Using SecAlign-defended Llama-
3-8B-Instruct as the surrogate, the suffix achieves 63.9% ASR against Meta-SecAlign-8B in the
black-box setting, whereas a standard GCG suffix (which yields 0% ASR on the surrogate) also
transfers with 0% ASR. In the white-box setting, initializing with the Checkpoint-GCG suffix and
running only 5 optimization steps on 10 training samples produces a universal suffix that generalizes
to 198 held-out test samples with 78.3% ASR on the target. By contrast, initializing from standard
GCG’s suffix leads to a suffix with 0% ASR, even after 5,000 optimization steps (500 per training
sample). We also evaluated the transferability of Checkpoint-GCG and standard GCG universal
suffixes found on SecAlign-defended Mistral-7B-Instruct and Qwen2-1.5B-Instruct, which all yield
0% ASR in both black-box and white-box settings. These results indicate that Checkpoint-GCG
enables transferability across related models and defenses, while standard GCG does not. Although

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Universal suffix from
θCs

obtained via

Black-box transfer to θCt
White-box transfer with Standard GCG on θCt

ASR ↑ Train ASR ↑ Test ASR ↑ T steps ↓
Standard GCG (T=500) 0 0 0 5000

Standard GCG (Checkpoint-GCG budget) 0 0 0 5000
Checkpoint-GCG 63.9 100 78.3 5

Table 1: Attack success rate (ASR %) ↑ for transferring the universal suffix found on the surrogate
model (SecAlign-defended Llama-3-8B-Instruct) to the target model (Meta-SecAlign-8B, which is
Llama-3.1-8B-Instruct defended with SecAlign++), in both black-box and white-box settings.

transferability across highly different models remains limited, it is still realistic in practice, as
organizations may open-source a model or defense before deploying an update behind an API.

5.4 UNDERSTANDING WHY CHECKPOINT-GCG ACHIEVES SUPERIOR PERFORMANCE

We analyze how the model’s attention patterns shift with Checkpoint-GCG suffixes inspired by recent
work that analyzes changes in model activations and attention patterns (Hung et al., 2025; Abdelnabi
et al., 2025). Specifically, we show that Checkpoint-GCG suffixes steadily make the final model θC
shifts attention from U (the user prompt) to A (the attack, i.e., injected instruction and adversarial
suffix), even though these suffixes are optimized against intermediate checkpoints.

For each checkpoint θ0, . . . , θci , . . . , θC , we take the suffix obtained at that checkpoint and include it
in the full input prompt to the final model θC . Following Hung et al. (2025), we first identify a set
Hi of “important heads” – attention heads that shift attention from the original user prompt to the
injection in the data part. Second, we examine the attention from the last token of the input prompt,
which has the most direct influence on the model’s output. For head h of layer l, the attention score
on an input sequence S is defined as Attnl,h(S) =

∑
s∈S αl,h

s , where αl,h
s is the softmax attention

from the last token to token s. We then, for sequence S, average over all “important heads” to obtain
its attention score AttnS = 1

|Hi|
∑

(l,h)∈Hi
Attnl,h(S). We compute AttnU (attention score of user

prompt) and AttnA (attention score of injected instruction + suffix) for suffixes obtained at each
checkpoint during checkpoint-GCG, and show across all samples against the final model in Figure 5a.

Figure 5a shows that suffixes from the first few checkpoints only cause mild changes in the final
model’s attention; then, suffixes optimized at θ10 to θ50 quickly make the final model’s attention
shifts from the user prompt toward the injected instruction and suffix; after θ50, the final model’s
attention remains relatively stable. This shows that suffixes optimized at intermediate checkpoints
serve as effective stepping stones, smoothly and monotonously shifting the final model’s attention
away from the user prompt. Even though these suffixes are obtained by greedy optimization against
intermediate checkpoints, they progressively steer the final model’s attention towards the adversarial
injection, making the final attack effective. These patterns also align with Checkpoint-GCG’s
optimization process in Figure 5b: it takes few steps at early checkpoints (the suffix found at the
previous checkpoint works directly against the next checkpoint), spends the majority of its budget at
θ10 to θ50 (which also have higher gradient norms, see Figure 7), and requires fewer steps thereafter.

6 RELATED WORK

Improving optimization-based attacks. Research on optimization-based attacks has mainly focused
on three directions: improving efficiency, altering the optimization objective, and investigating
the initialization. Efficiency improvements include better token selection (Li et al., 2025; 2024),
multi-token updates at each optimization step (Liao & Sun, 2024; Li et al., 2025), and training a
model on successful suffixes to efficiently generate new ones (Liao & Sun, 2024). While similar
techniques could likely also accelerate Checkpoint-GCG, we leave such optimizations to future work.
Modifications to the optimization objective include augmenting the loss with attention scores of the
adversarial suffix (Wang et al., 2024), and decoupling the search into a behavior-agnostic pre-search
and behavior-relevant post-search (Liu et al., 2024a). Zou et al. (2023) showed that suffixes optimized
on one model often transfer to others, enabling black-box attacks: adversaries optimize suffixes on an
open-source surrogate model, then apply them to a closed-source target via query access. Building
on this, Sitawarin et al. (2024) and Hayase et al. (2024) improve black-box attacks by selecting

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

1 10 20 30 40 50 100 200 500 800
Checkpoint ci

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fi
na

l m
od

el

C
's

at
te

nt
io

n
sc

or
e

AttnA (injected instruction + adversarial suffix from ci)
AttnU (user prompt)

(a)

1 10 20 30 40 50 100 200 500 800
Checkpoint ci

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f t
ot

al
 C

he
ck

po
in

t-G
CG

 st
ep

s t
ak

en

(b)

Figure 5: (a) Final model’s attention scores of user prompt (AttnU) and injected instruction + adversar-
ial suffix (AttnA), with suffix optimized at each checkpoint. (b) Percentage of total Checkpoint-GCG
steps taken by each checkpoint. Both (a) and (b) show mean and standard deviation across all samples
where Checkpoint-GCG is successful against SecAlign-defended Llama-3-8B-Instruct.

suffixes based on target model loss, while using surrogate gradients to guide optimization. Finally,
several works have observed that the initialization used in GCG greatly affects its convergence and
success (Jia et al., 2024; Li et al., 2025; Zhang et al., 2024; Hayase et al., 2024; Wang et al., 2025).
For instance, Jia et al. (2024) show that initializing the suffix with one that succeeded on a different
sample improves both speed and success rates, while Wang et al. (2025) interestingly demonstrate that
deliberately misaligning safety-aligned chat models can help uncover successful jailbreak suffixes.
Checkpoint-GCG exploits intermediate model checkpoints to obtain better initializations.

Prompt injection. LLMs have been shown to struggle to distinguish between instructions to
follow and data to process (Zverev et al., 2024), making them vulnerable against prompt injection
attacks (Perez & Ribeiro, 2022; Liu et al., 2024b; Branch et al., 2022). These attacks override
the model’s intended behavior, either provided directly by the user (Perez & Ribeiro, 2022; Kang
et al., 2024) or indirectly via external content used by LLM-integrated applications (Greshake et al.,
2023). Prompt injection has been studied across various settings, including Retrieval-Augmented-
Generation-based systems (De Stefano et al., 2024; Clop & Teglia, 2024; Pasquini et al., 2024) and
tool-using agents (Debenedetti et al., 2024). Defenses generally fall into two categories: system- and
model-level. System-level defenses include detection, often using a second LLM to identify injected
instructions (Liu et al., 2025; Inan et al., 2023), prompt engineering (Hines et al., 2024; Yi et al.,
2025), and protective system layers around LLMs (Debenedetti et al., 2025). However, the main
methodological focus has been on fine-tuning model-level defenses which is the focus of this work.

7 DISCUSSION AND CONCLUSION

LLMs have been shown to be vulnerable to prompt injection attacks, motivating recent efforts to
fine-tune models to improve robustness, including those deployed in industry (Chen et al., 2025a;b;
Wallace et al., 2024; Wu et al., 2024; Bianchi et al., 2024). To validate effectiveness, these defenses
are tested against a range of attacks, including the state-of-the-art white-box attack GCG, which allow
developers to measure defense robustness and guide future improvements.

We confirm that the performance of GCG decreases as defenses improve. As GCG’s ASR steadily
gets closer to 0 with more sophisticated defenses, the need for a new method to evaluate defense
robustness emerges. We here introduce Checkpoint-GCG, an auditing method that uses an informed
attacker with access to intermediate fine-tuning checkpoints and show it to reliably discover successful
adversarial suffixes even against the state-of-the-art defenses, establishing it as a strong auditing tool.

Beyond auditing, we show how Checkpoint-GCG can be used as an attack in two scenarios. First, we
assume that a model, with known fine-tuning checkpoints, has been deployed in a real-world system,
where its full input context is unknown. We here instantiate Checkpoint-GCG to discover universal
suffixes that generalize across unseen inputs and datasets. Second, we assume that the deployed
model has unknown input and unknown checkpoints. Here, we use a similar surrogate model with
known checkpoints to find a universal suffix which we transfer to the target model. In particular,
we show that Checkpoint-GCG suffixes discovered against SecAlign-defended Llama-3B-Instruct
transfer to Meta-SecAlign-8B, a defended model recently released by Meta.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We release the source code in the supplementary material. The accompanying README.md file
includes environment setup instructions and details the steps required to reproduce our results.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Sahar Abdelnabi, Aideen Fay, Giovanni Cherubin, Ahmed Salem, Mario Fritz, and Andrew Paverd.
Get my drift? catching llm task drift with activation deltas, 2025. URL https://arxiv.org/
abs/2406.00799.

Protect AI. Model card for deberta-v3-base-prompt-injection-v2. https://huggingface.co/
protectai/deberta-v3-base-prompt-injection-v2. [Accessed 21-11-2025].

AI@Meta. Llama 3 model card. Hugging Face, 2024. URL https://github.com/
meta-llama/llama3/blob/main/MODEL_CARD.md.

Gabriel Alon and Michael Kamfonas. Detecting language model attacks with perplexity. arXiv
preprint arXiv:2308.14132, 2023.

Borja Balle, Giovanni Cherubin, and Jamie Hayes. Reconstructing training data with informed
adversaries. In 2022 IEEE Symposium on Security and Privacy (SP), pp. 1138–1156. IEEE, 2022.

Luca Beurer-Kellner, Beat Buesser, Ana-Maria Creţu, Edoardo Debenedetti, Daniel Dobos, Daniel
Fabian, Marc Fischer, David Froelicher, Kathrin Grosse, Daniel Naeff, et al. Design patterns for
securing llm agents against prompt injections. arXiv preprint arXiv:2506.08837, 2025.

Manish Bhatt, Sahana Chennabasappa, Yue Li, Cyrus Nikolaidis, Daniel Song, Shengye Wan, Faizan
Ahmad, Cornelius Aschermann, Yaohui Chen, Dhaval Kapil, et al. Cyberseceval 2: A wide-ranging
cybersecurity evaluation suite for large language models. arXiv preprint arXiv:2404.13161, 2024.

Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio, Paul Rottger, Dan Jurafsky, Tatsunori
Hashimoto, and James Zou. Safety-tuned llamas: Lessons from improving the safety of large
language models that follow instructions. In The Twelfth International Conference on Learning
Representations, 2024.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Giorgio
Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Hendrik
Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip Železný (eds.), Machine Learning and
Knowledge Discovery in Databases, pp. 387–402, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg. ISBN 978-3-642-40994-3.

Hezekiah J Branch, Jonathan Rodriguez Cefalu, Jeremy McHugh, Leyla Hujer, Aditya Bahl, Daniel
del Castillo Iglesias, Ron Heichman, and Ramesh Darwishi. Evaluating the susceptibility of pre-
trained language models via handcrafted adversarial examples. arXiv preprint arXiv:2209.02128,
2022.

Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco
Croce, Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J. Pappas, Florian
Tramèr, Hamed Hassani, and Eric Wong. Jailbreakbench: An open robustness bench-
mark for jailbreaking large language models. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Informa-
tion Processing Systems, volume 37, pp. 55005–55029. Curran Associates, Inc., 2024.
URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
63092d79154adebd7305dfd498cbff70-Paper-Datasets_and_Benchmarks_
Track.pdf.

11

https://arxiv.org/abs/2406.00799
https://arxiv.org/abs/2406.00799
https://huggingface.co/protectai/deberta-v3-base-prompt-injection-v2
https://huggingface.co/protectai/deberta-v3-base-prompt-injection-v2
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://proceedings.neurips.cc/paper_files/paper/2024/file/63092d79154adebd7305dfd498cbff70-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/63092d79154adebd7305dfd498cbff70-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/63092d79154adebd7305dfd498cbff70-Paper-Datasets_and_Benchmarks_Track.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Sizhe Chen, Julien Piet, Chawin Sitawarin, and David Wagner. StruQ: Defending against prompt
injection with structured queries. In 34th USENIX Security Symposium (USENIX Security 25), pp.
2383–2400, 2025a.

Sizhe Chen, Arman Zharmagambetov, Saeed Mahloujifar, Kamalika Chaudhuri, David Wagner, and
Chuan Guo. SecAlign: Defending against prompt injection with preference optimization. In
Proceedings of the 2025 ACM SIGSAC Conference on Computer and Communications Security,
2025b.

Sizhe Chen, Arman Zharmagambetov, David Wagner, and Chuan Guo. Meta secalign: A secure
foundation llm against prompt injection attacks, 2025c. URL https://arxiv.org/abs/
2507.02735.

Sahana Chennabasappa, Cyrus Nikolaidis, Daniel Song, David Molnar, Stephanie Ding, Shengye Wan,
Spencer Whitman, Lauren Deason, Nicholas Doucette, Abraham Montilla, et al. Llamafirewall:
An open source guardrail system for building secure ai agents. arXiv preprint arXiv:2505.03574,
2025.

Thomas Claburn. Slack ai can be tricked into leaking data from private channels
via prompt injection. https://www.theregister.com/2024/08/21/slack_ai_
prompt_injection/, 2024. [Accessed 13-05-2025].

Cody Clop and Yannick Teglia. Backdoored retrievers for prompt injection attacks on retrieval
augmented generation of large language models. arXiv preprint arXiv:2410.14479, 2024.

Gianluca De Stefano, Lea Schönherr, and Giancarlo Pellegrino. Rag and roll: An end-to-end
evaluation of indirect prompt manipulations in llm-based application frameworks. arXiv preprint
arXiv:2408.05025, 2024.

Edoardo Debenedetti, Jie Zhang, Mislav Balunovic, Luca Beurer-Kellner, Marc Fischer, and Florian
Tramèr. Agentdojo: A dynamic environment to evaluate prompt injection attacks and defenses for
llm agents. In The Thirty-eight Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2024.

Edoardo Debenedetti, Ilia Shumailov, Tianqi Fan, Jamie Hayes, Nicholas Carlini, Daniel Fabian,
Christoph Kern, Chongyang Shi, Andreas Terzis, and Florian Tramèr. Defeating prompt injections
by design. arXiv preprint arXiv:2503.18813, 2025.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems,
36:30039–30069, 2023.

Financial Times. America’s top companies keep talking about AI — but
can’t explain the upsides — ft.com. https://www.ft.com/content/
e93e56df-dd9b-40c1-b77a-dba1ca01e473, 2025. [Accessed 24-09-2025].

Google. Meet gemini in chrome. https://gemini.google/overview/
gemini-in-chrome/, 2025. [Accessed 24-09-2025].

Google Cloud. Powering ai commerce with the new agent payments protocol (ap2).
https://cloud.google.com/blog/products/ai-machine-learning/
announcing-agents-to-payments-ap2-protocol, 2025. [Accessed 24-09-2025].

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

12

https://arxiv.org/abs/2507.02735
https://arxiv.org/abs/2507.02735
https://www.theregister.com/2024/08/21/slack_ai_prompt_injection/
https://www.theregister.com/2024/08/21/slack_ai_prompt_injection/
https://www.ft.com/content/e93e56df-dd9b-40c1-b77a-dba1ca01e473
https://www.ft.com/content/e93e56df-dd9b-40c1-b77a-dba1ca01e473
https://gemini.google/overview/gemini-in-chrome/
https://gemini.google/overview/gemini-in-chrome/
https://cloud.google.com/blog/products/ai-machine-learning/announcing-agents-to-payments-ap2-protocol
https://cloud.google.com/blog/products/ai-machine-learning/announcing-agents-to-payments-ap2-protocol

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten Holz, and Mario Fritz.
Not what you’ve signed up for: Compromising real-world llm-integrated applications with indirect
prompt injection. In Proceedings of the 16th ACM Workshop on Artificial Intelligence and Security,
pp. 79–90, 2023.

Jonathan Hayase, Ema Borevković, Nicholas Carlini, Florian Tramèr, and Milad Nasr. Query-
based adversarial prompt generation. Advances in Neural Information Processing Systems, 37:
128260–128279, 2024.

Keegan Hines, Gary Lopez, Matthew Hall, Federico Zarfati, Yonatan Zunger, and Emre Kici-
man. Defending against indirect prompt injection attacks with spotlighting. arXiv preprint
arXiv:2403.14720, 2024.

Kuo-Han Hung, Ching-Yun Ko, Ambrish Rawat, I-Hsin Chung, Winston H. Hsu, and Pin-Yu Chen.
Attention tracker: Detecting prompt injection attacks in llms, 2025. URL https://arxiv.
org/abs/2411.00348.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, et al. Llama guard: Llm-based input-output
safeguard for human-ai conversations. arXiv preprint arXiv:2312.06674, 2023.

Jiabao Ji, Bairu Hou, Alexander Robey, George J. Pappas, Hamed Hassani, Yang Zhang, Eric
Wong, and Shiyu Chang. Defending large language models against jailbreak attacks via semantic
smoothing, 2024. URL https://arxiv.org/abs/2402.16192.

Xiaojun Jia, Tianyu Pang, Chao Du, Yihao Huang, Jindong Gu, Yang Liu, Xiaochun Cao, and Min
Lin. Improved techniques for optimization-based jailbreaking on large language models. arXiv
preprint arXiv:2405.21018, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7B, 2023. URL https://arxiv.
org/abs/2310.06825. arXiv preprint.

Daniel Kang, Xuechen Li, Ion Stoica, Carlos Guestrin, Matei Zaharia, and Tatsunori Hashimoto.
Exploiting programmatic behavior of llms: Dual-use through standard security attacks. In 2024
IEEE Security and Privacy Workshops (SPW), pp. 132–143. IEEE, 2024.

Jiahui Li, Yongchang Hao, Haoyu Xu, Xing Wang, and Yu Hong. Exploiting the index gradients for
optimization-based jailbreaking on large language models. In Proceedings of the 31st International
Conference on Computational Linguistics, pp. 4535–4547, 2025.

Xiao Li, Zhuhong Li, Qiongxiu Li, Bingze Lee, Jinghao Cui, and Xiaolin Hu. Faster-gcg: Efficient
discrete optimization jailbreak attacks against aligned large language models. arXiv preprint
arXiv:2410.15362, 2024.

Zeyi Liao and Huan Sun. Amplegcg: Learning a universal and transferable generative model of
adversarial suffixes for jailbreaking both open and closed llms. Conference on Language Modeling
(COLM) 2024, 2024.

Hongfu Liu, Yuxi Xie, Ye Wang, and Michael Shieh. Advancing adversarial suffix transfer learning
on aligned large language models. In Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pp. 7213–7224, 2024a.

Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia, and Neil Zhenqiang Gong. Formalizing and
benchmarking prompt injection attacks and defenses. In 33rd USENIX Security Symposium
(USENIX Security 24), pp. 1831–1847, 2024b.

13

https://arxiv.org/abs/2411.00348
https://arxiv.org/abs/2411.00348
https://arxiv.org/abs/2402.16192
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yupei Liu, Yuqi Jia, Jinyuan Jia, Dawn Song, and Neil Zhenqiang Gong. Datasentinel: A game-
theoretic detection of prompt injection attacks. In 2025 IEEE Symposium on Security and Privacy
(SP), pp. 2190–2208. IEEE, 2025.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee,
Nathaniel Li, Steven Basart, Bo Li, et al. Harmbench: a standardized evaluation framework for
automated red teaming and robust refusal. In Proceedings of the 41st International Conference on
Machine Learning, pp. 35181–35224, 2024.

Norman Mu, Sarah Chen, Zifan Wang, Sizhe Chen, David Karamardian, Lulwa Aljeraisy, Basel
Alomair, Dan Hendrycks, and David Wagner. Can llms follow simple rules? arXiv preprint
arXiv:2311.04235, 2023.

OpenAI. Introducing ChatGPT. https://openai.com/index/chatgpt, 2022. Accessed:
06 February 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

OWASP. Owasp top 10 for llm applications 2025. https://genai.owasp.org/
llm-top-10/, 2025. [Accessed 24-09-2025].

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 372–387, 2016. doi: 10.1109/EuroSP.2016.36.

Dario Pasquini, Martin Strohmeier, and Carmela Troncoso. Neural exec: Learning (and learning
from) execution triggers for prompt injection attacks. In Proceedings of the 2024 Workshop on
Artificial Intelligence and Security, pp. 89–100, 2024.

Fábio Perez and Ian Ribeiro. Ignore previous prompt: Attack techniques for language models. arXiv
preprint arXiv:2211.09527, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

Mikayel Samvelyan, Sharath Chandra Raparthy, Andrei Lupu, Eric Hambro, Aram Markosyan,
Manish Bhatt, Yuning Mao, Minqi Jiang, Jack Parker-Holder, Jakob Foerster, et al. Rainbow
teaming: Open-ended generation of diverse adversarial prompts. Advances in Neural Information
Processing Systems, 37:69747–69786, 2024.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36:38154–38180, 2023.

Chawin Sitawarin, Norman Mu, David Wagner, and Alexandre Araujo. Pal: Proxy-guided black-box
attack on large language models. arXiv preprint arXiv:2402.09674, 2024.

Alexandra Souly, Qingyuan Lu, Dillon Bowen, Tu Trinh, Elvis Hsieh, Sana Pandey, Pieter Abbeel,
Justin Svegliato, Scott Emmons, Olivia Watkins, and Sam Toyer. A strongREJECT for empty
jailbreaks. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks, 2014. URL https://arxiv.org/
abs/1312.6199.

Team Qwen. Qwen2 technical report. 2024.

14

https://openai.com/index/chatgpt
https://genai.owasp.org/llm-top-10/
https://genai.owasp.org/llm-top-10/
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng, Johannes Heidecke, and Alex Beutel. The instruc-
tion hierarchy: Training llms to prioritize privileged instructions. arXiv preprint arXiv:2404.13208,
2024.

Zi Wang, Divyam Anshumaan, Ashish Hooda, Yudong Chen, and Somesh Jha. Functional ho-
motopy: Smoothing discrete optimization via continuous parameters for LLM jailbreak at-
tacks. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=uhaLuZcCjH.

Zijun Wang, Haoqin Tu, Jieru Mei, Bingchen Zhao, Yisen Wang, and Cihang Xie. Attngcg: Enhancing
jailbreaking attacks on llms with attention manipulation. arXiv preprint arXiv:2410.09040, 2024.

Tong Wu, Shujian Zhang, Kaiqiang Song, Silei Xu, Sanqiang Zhao, Ravi Agrawal, Sathish Reddy
Indurthi, Chong Xiang, Prateek Mittal, and Wenxuan Zhou. Instructional segment embedding:
Improving llm safety with instruction hierarchy. In Neurips Safe Generative AI Workshop 2024,
2024.

Jingwei Yi, Yueqi Xie, Bin Zhu, Emre Kiciman, Guangzhong Sun, Xing Xie, and Fangzhao Wu.
Benchmarking and defending against indirect prompt injection attacks on large language models.
In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
V.1, KDD ’25, pp. 1809–1820. ACM, July 2025. doi: 10.1145/3690624.3709179. URL http:
//dx.doi.org/10.1145/3690624.3709179.

Jiahao Zhang, Zilong Wang, Ruofan Wang, Xingjun Ma, and Yu-Gang Jiang. Enja: Ensemble
jailbreak on large language models. arXiv preprint arXiv:2408.03603, 2024.

Shenyi Zhang, Yuchen Zhai, Keyan Guo, Hongxin Hu, Shengnan Guo, Zheng Fang, Lingchen
Zhao, Chao Shen, Cong Wang, and Qian Wang. Jbshield: Defending large language models
from jailbreak attacks through activated concept analysis and manipulation, 2025. URL https:
//arxiv.org/abs/2502.07557.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
and transferable adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043,
2023.

Egor Zverev, Sahar Abdelnabi, Soroush Tabesh, Mario Fritz, and Christoph H Lampert. Can
llms separate instructions from data? and what do we even mean by that? arXiv preprint
arXiv:2403.06833, 2024.

15

https://openreview.net/forum?id=uhaLuZcCjH
http://dx.doi.org/10.1145/3690624.3709179
http://dx.doi.org/10.1145/3690624.3709179
https://arxiv.org/abs/2502.07557
https://arxiv.org/abs/2502.07557

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A DETAILED RESULTS

A.1 AUDITING DEFENSES

We here show the fine-grained ASRs each method achieves against each of the defenses. While
standard GCG, both with T = 500 steps and as many steps as Checkpoint-GCG (i.e., Checkpoint-
GCG budget), struggles to keep up with increasingly more sophisticated defenses, Checkpoint-GCG
retains its strong performance. For example, standard GCG struggles the most against Llama-3-8B-
Instruct(AI@Meta, 2024) protected by the state-of-the-art defense SecAlign(Chen et al., 2025b),
achieving 6% ASR, while Checkpoint-GCG achieves an ASR of 88%.

GCG on θC

Defense Model T = 500 steps Checkpoint-GCG budget Checkpoint-GCG (ours)

Undefended
Llama-3-8B-Instruct (AI@Meta, 2024) 100 100 100
Mistral-7B-Instruct (Jiang et al., 2023) 100 100 100

Qwen2-1.5B-Instruct (Team Qwen, 2024) 98 98 98

StruQ (Chen
et al., 2025a)

Llama-3-8B-Instruct (AI@Meta, 2024) 26 50 100
Mistral-7B-Instruct (Jiang et al., 2023) 88 90 100

Qwen2-1.5B-Instruct (Team Qwen, 2024) 48 52 90

SecAlign (Chen
et al., 2025b)

Llama-3-8B-Instruct (AI@Meta, 2024) 6 12 88
Mistral-7B-Instruct (Jiang et al., 2023) 18 22 96

Qwen2-1.5B-Instruct (Team Qwen, 2024) 32 32 84

Table 2: Attack success rate (ASR %) ↑ for Checkpoint-GCG against state-of-the-art prompt injection
defenses. As baseline, we apply the standard GCG attack to the defended model (i.e., the final
checkpoint θC). Results are aggregated for 50 randomly selected samples from AlpacaFarm (Dubois
et al., 2023).

A.2 UNIVERSAL ATTACK

Defense Model GCG with 500 steps per sample GCG with Checkpoint-GCG budget Checkpoint-GCG (ours)

Training Testing Training Testing Training Testing

SecAlign (Chen
et al., 2025b)

Llama (AI@Meta, 2024) 0 0 0 0 100 75.3
Mistral (Jiang et al., 2023) 0 0 0 3.0 100 89.9
Qwen (Team Qwen, 2024) 0 0.5 0 3.5 100 78.3

Struq (Chen
et al., 2025a)

Llama (AI@Meta, 2024) 0 0 70 74.2 100 88.9
Mistral (Jiang et al., 2023) 30 58.1 100 91.4 100 99.0
Qwen (Team Qwen, 2024) 10 2.0 40 27.8 100 87.9

Table 3: Attack success rate (ASR %) ↑ for universal attack comparing standard GCG with 500
steps per training sample, standard GCG with Checkpoint-GCG budget, and our Checkpoint-GCG
method across defenses (SecAlign, StruQ) and models (Llama, Mistral, Qwen). Results are reported
on training and testing sets.

Table 3 shows the detailed ASRs achieved by each attack per model and defense. While standard
GCG struggles to find a universal suffix against the stronger SecAlign defense that works against
the training samples, Checkpoint-GCG finds suffixes that are successful on all 10 training samples
and also generalize to other unseen samples. Even on the weaker StruQ defense, Checkpoint-GCG
consistently finds universal suffixes that generalize better than the suffixes discovered by standard
GCG.

Figure 6 shows the universality of suffixes discovered by Checkpoint-GCG against StruQ-defended
models on unseen samples from two datasets. We note that Mistral-7B-Instruct, defended with StruQ,
is significantly less robust than the others. However, Checkpoint-GCG still consistently outperforms
standard GCG (both with 500 steps and with Checkpoint-GCG budget).

B THEORETICAL INTUITION

In this section, we provide a theoretical intuition for why progressing through checkpoints works,
given the defense’s fine-tuning objective and Checkpoint-GCG’s optimization objective.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1 5 10 15 20
Number of attempts

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s@

Standard GCG (T=500)
Standard GCG (Checkpoint-GCG budget)
Checkpoint-GCG
Llama-3-8B
Mistral-7B
Qwen2-1.5B

Standard GCG (T=500)
Standard GCG (Checkpoint-GCG budget)
Checkpoint-GCG
Llama-3-8B
Mistral-7B
Qwen2-1.5B

(a) In-distribution

1 5 10 15 20
Number of attempts

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s@

Standard GCG (T=500)
Standard GCG (Checkpoint-GCG budget)
Checkpoint-GCG
Llama-3-8B
Mistral-7B
Qwen2-1.5B

Standard GCG (T=500)
Standard GCG (Checkpoint-GCG budget)
Checkpoint-GCG
Llama-3-8B
Mistral-7B
Qwen2-1.5B

(b) Out-distribution

Figure 6: Universality of the Checkpoint-GCG discovered suffixes on (a) in-distribution and (b)
out-distribution test samples. Results shown are for suffixes discovered against StruQ.

The attacker seeks to maximize f(s; θ) = logPθ(y
∗ | p || s) over suffixes s ∈ V l (also see Section 2).

During fine-tuning, the model parameters are updated to minimize a fine-tuning loss ℓfine-tuning(θ) that
penalizes undesirable completions (e.g., via DPO), moving from an initial checkpoint θ0 (undefended)
to a final model θC .

Because this fine-tuning objective discourages the model from predicting undesirable completions,
fine-tuning updates are expected to also reduce f . If we update the model parameters from θc to θc+1,
a first order approximation in the change of f could be written as:

f(s; θc+1) ≈ f(s; θc)− η ∇θf(s; θc)
⊤∇θℓfine-tuning(θc).

where η is the learning rate. If the gradients ∇θf(s; θc) and ∇θℓfine-tuning(θc) are aligned (which is
likely the case as the fine-tuning loss is explicitly designed to steer away from harmful outputs), then
the fine-tuning process reduces the model’s likelihood of generating the harmful target y∗ given p || s.
Intuitively, thus, as fine-tuning progresses, f(s; θ) becomes smaller, and it likely becomes harder to
find the optimal suffix argmaxs f(s; θ).

Further, if we assume that the optimal suffix sθ,max ∈ argmaxs f(s; θ) varies continuously with
θ, warm-starting of the suffix optimization using intermediate checkpoints would intuitively help.
Indeed, initializing the optimization at checkpoint θc+1 with s(c) ≈ sθc,max keeps the search near
sθc+1,max (within the basin of attraction), accelerating convergence.

C CHECKPOINT SELECTION STRATEGIES

C.1 EVALUATING CHECKPOINT SELECTION STRATEGIES

We consider all four strategies for selecting checkpoints for Checkpoint-GCG described in Sec-
tion 3 and a binary search strategy by Wang et al. (2025). To evaluate the attack effectiveness and
computational cost of these checkpoint selection strategies, we take Llama-3-8B-Instruct defended
with SecAlign as an example and conduct an in-depth study, testing each strategy under varying
hyperparameters. Results are reported in Table 4.

The gradient-based strategy (GRAD) offers the best trade-off in attack effectiveness (ASR) and
computational cost (Total Checkpoint-GCG steps). While LOSS and STEP also achieve the same
ASR with some of the hyperparameter values, they require higher computational cost. The binary
search strategy (Wang et al., 2025), which dynamically selects each subsequent checkpoint based on
whether the attack succeeds at the current one, also achieves a high ASR with relatively few selected
checkpoints on average, however, it requires a large total number of GCG steps, most of which are

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Checkpoint Parameter values ASR (%) ↑ # Selected checkpoints ↓ Total Checkpoint-GCG steps ↓
strategy (avg across samples) ↓

FREQ
q = 10 95 91 4,037
q = 50 65 19 4,676
q = 100 65 10 2,659

STEP
r = 30 & q = 10 100 118 3,708
r = 30 & q = 50 75 49 2,873
r = 30 & q = 100 85 40 1,553

LOSS τloss = 0.005 & q = 50 100 124 3,754

GRAD

τgrad = 0.05 100 102 3,077
τgrad = 0.1 100 64 2,033
τgrad = 0.2 90 41 1,764
τgrad = 0.3 90 29 1,475
τgrad = 0.4 50 19 1,721
τgrad = 0.5 45 12 1,213
τgrad = 0.6 20 5 798

Binary search (Wang et al. (2025)) / 100 19.35 ± 9.79 6,215

Table 4: Attack effectiveness (ASR) and computational cost (number of selected checkpoints and total
Checkpoint-GCG steps averaged across samples) for each checkpoint selection strategy, evaluated on
Llama-3-8B-Instruct (AI@Meta, 2024) defended with SecAlign (Chen et al., 2025b). Results are
aggregated for 20 randomly selected samples from AlpacaFarm (Dubois et al., 2023).

Defense Model τgrad # Selected checkpoints

StruQ (Chen
et al., 2025a)

Llama-3-8B-Instruct (AI@Meta, 2024) 4.5 125
Mistral-7B-Instruct (Jiang et al., 2023) 7 111

Qwen2-1.5B-Instruct (Team Qwen, 2024) 3.2 99

SecAlign (Chen
et al., 2025b)

Llama-3-8B-Instruct (AI@Meta, 2024) 0.05 102
Mistral-7B-Instruct (Jiang et al., 2023) 0.05 93

Qwen2-1.5B-Instruct (Team Qwen, 2024) 0.12 93

Table 5: Parameters for the GRAD checkpoint selection strategy across setups. We provide both the
selected gradient norm threshold τgrad and the resulting number of checkpoints selected using this
threshold.

spent on checkpoints against which the attack fails. The FREQ strategy, on the other hand, struggles
to achieve the same ASR even with a higher computational cost.

These results show that checkpoint selection in Checkpoint-GCG requires balancing attack perfor-
mance and computational efficiency. On one hand, selecting more checkpoints reduces changes
in model parameters between attacked checkpoints, making it easier for GCG to refine adversarial
suffixes, which leads to a decreasing number of per-checkpoint GCG steps. On the other hand,
selecting many checkpoints may increase the cumulative number of GCG steps without proportional
gains in ASR. We illustrate this trade-off in Figure 3b. Selecting appropriate GRAD thresholds helps
strike an effective balance: by choosing checkpoints with significant parameter updates, it ensures
that each GCG attack always starts from a well-informed initialization and targets a meaningful
transition in the model’s behavior.

To provide a visual illustration, we plot the checkpoints selected for one example hyperparameter
setup for STEP, LOSS, GRAD, in Figure 7.

C.2 CHECKPOINT SELECTION STRATEGY USED IN THIS WORK

Based on the analysis in Section C.1, we adopt the GRAD strategy for all experiments in our work, as
it provides an optimal balance between attack effectiveness and computational cost. For Llama-3-8B-
Instruct defended with SecAlign, we choose a threshold of τgrad = 0.05, although the computational
cost may be further reduced by choosing a higher threshold, as shown in Table 4. For all other
models and defenses, we choose the values for τgrad such that a similar number of checkpoints are
selected. Table 5 shows the values of τgrad for different defenses and models and the resulting number
of selected checkpoints.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 10 50 100 200 400 600 800
Checkpoints

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Earlier than threshold
After threshold
Threshold

(a) Step-based (STEP, r = 30 & q = 50)

1 10 50 100 200 400 600 800
Checkpoints

0.00

0.05

0.10

0.15

0.20

Lo
ss

 d
iff

er
en

ce

Loss difference meets or
exceeds threhold
Low loss difference period
Threshold

(b) Loss-based (LOSS, τloss = 0.005 & q = 50)

1 10 50 100 200 400 600 800
Checkpoints

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Gr
ad

ie
nt

 n
or

m

Norm meets or
exceeds threshold
Threshold

(c) Gradient-based (GRAD, τgrad = 0.05)

Figure 7: Checkpoints selected using three different selection strategies (see Section 3) for the
Llama-3-8B-Instruct model defended with SecAlign.

D DISTRIBUTION OF GCG STEPS FOR SUCCESSFUL ATTACKS

To better contextualize the computational cost of our method, we report the distribution of the total
number of GCG steps required for Checkpoint-GCG to produce successful attacks, and compare it

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

100 200 500 1000 2000 5000 10000 20000
Number of GCG steps

0

10

20

30

40

Nu
m

be
r o

f s
uc

ce
ss

fu
l s

am
pl

es Standard GCG (Checkpoint-GCG budget)
Checkpoint-GCG

Figure 8: Cumulative number of successfully attacked samples with a given budget of total GCG
steps, evaluated on Llama-3-8B-Instruct (AI@Meta, 2024) defended with SecAlign (Chen et al.,
2025b). Results are aggregated for 50 randomly selected samples from AlpacaFarm (Dubois et al.,
2023).

against standard GCG when given an equivalent per-sample budget. Figure 8 shows the cumulative
number of successful samples as a function of the total GCG steps taken. While Checkpoint-GCG
takes several thousand steps for some samples, we observe that almost half of the successful attacks
need fewer than 1,000 total steps across all selected checkpoints. In contrast, allowing standard
GCG to run for as many steps as Checkpoint-GCG required for each sample (Checkpoint-GCG
budget) does not help increase its attack success rate: it can spend thousands of steps per sample, but
still fails to achieve a successful attack for most samples. This gap highlights that the performance
improvement of Checkpoint-GCG arises not merely from additional optimization steps, but from the
checkpoint-based search structure itself.

E CHECKPOINT-GCG: EARLY STOPPING

In the original GCG algorithm, GCG terminates either when a successful suffix is found or after a
fixed budget of T = 500 steps. Since we are targeting models that have been specifically fine-tuned
to be robust against attacks, we anticipate the attack to be more challenging and hence consider a
per-checkpoint budget of T = 1, 000. To avoid excessive computation, we also implement early
stopping. Our observations show that GCG can get stuck in local minima, where it continues to
iterate without improving the loss or finding a successful suffix. To mitigate this, Checkpoint-GCG
terminates for checkpoint θci if the best GCG loss achieved for θci remains essentially unchanged
(change ≤ 1e−5) over 250 consecutive steps. These thresholds were selected empirically and on
the conservative side, so that it’s unlikely for Checkpoint-GCG to miss successful suffixes due to
early-stopping. If early-stopping occurs at checkpoint θci , Checkpoint-GCG proceeds to attacking the
next checkpoint θci+1 , using the best suffix (i.e., the one with lowest loss) found at θci as initialization
(see Algorithm 1).

F OTHER GCG IMPROVEMENTS

Prior studies observed that the initialization used in GCG can greatly affect its convergence and
success. Jia et al. (2024) propose an “easy-to-hard” strategy: initializing attacks on difficult prompts
with suffixes successful on simpler ones, boosting ASR, as later confirmed by Li et al. (2025).
Zhang et al. (2024) similarly find that reusing successful suffixes across models or samples speeds up
optimization. Lastly, Hayase et al. (2024) find that repeating the target string in the suffix, up to the
allowed suffix length, improves performance in black-box attacks.

Effectively, Checkpoint-GCG improves upon directly attacking the defended model by leveraging a
more strategic initialization, in line with findings from prior work. We hence compare Checkpoint-
GCG to three additional baselines: (i) randomly picking a suffix which successfully attacked θC for
the same defense and model, and using it to initialize GCG on θC for 50 other samples in line with (Jia

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

et al., 2024; Li et al., 2025; Zhang et al., 2024); (ii) initializing with the target phrase repeated for
as many times as the token limit k allows, in line with (Hayase et al., 2024); and (iii) repeatedly
initializing GCG with a random string (initializing GCG with a random string (Hayase et al., 2024),
running it until early stopping, then restarting with a new random string, and repeating this process
until the total budget T is exhausted). For all baselines, we run GCG on θC with T = 500.

All baselines are evaluated on SecAlign-defended Llama-3-8B-Instruct, with results reported in
Table 6.

Initialization ASR (%) ↑
Random initialization (Hayase et al., 2024) 6
"!!!...!!!" (Zou et al., 2023) 6
"Hacked...Hacked" (Hayase et al., 2024) 6
Any successful suffix (Jia et al., 2024; Li et al., 2025; Zhang et al., 2024) 16
Checkpoint-GCG (ours) 88

Table 6: ASR (%) of standard GCG with T = 500 using different initializations when directly attack-
ing the aligned model θC of SecAlign-defended (Chen et al., 2025b) Llama-3-8B-Instruct (AI@Meta,
2024). Results are aggregated for 50 randomly selected samples from AlpacaFarm.

We find that while initializing with repeated target phrase did not have an impact on the ASR,
initializing with a successful suffix from another sample improves the naive baseline of using repeated
exclamation marks, lifting the ASR from 6% to 16% (Table 6). However, this ASR is far lower than
Checkpoint-GCG’s of 88%.

G ABLATION ON NUMBER OF TOKENS FOR UNIVERSAL SUFFIX

We ablate the number of suffix tokens by instantiating Checkpoint-GCG against SecAlign-defended
Llama-3-8B-Instruct to find a universal suffix. We increased the suffix length from 20 to 25 and 30
tokens, to find that the performance on held-out samples drops to 64.1% and 45.5%, respectively
(Table 7). This suggests that using more tokens likely leads to overfitting to the training samples. We
leave for future work how to balance train and test performance in universal suffix generation.

Suffix Length (tokens) Train samples ASR Unseen samples ASR

20 10/10 (100%) 149/198 (75.3%)
25 10/10 (100%) 127/198 (64.1%)
30 10/10 (100%) 90/198 (45.5%)

Table 7: Realistic attack through transferability: Attack success rates (ASR) on train and unseen
samples for different suffix lengths.

H DEFENSES AGAINST CHECKPOINT-GCG

Although fine-tuning-based defenses will likely continue to improve, training models to be fully
robust to prompt injections is likely to remain a challenging task in the near future. Future defenses
are therefore unlikely to fully protect or provide guarantees against all attacks, much like adversarial
examples in the domain of computer vision, which remain an unsolved problem despite more than
a decade of research. As such, a multi-layered defense strategy (defense-in-depth) is essential.
For LLMs, detection systems can be deployed on top of models fine-tuned with prompt injection
defenses. These systems examine prompts and responses to identify potential attacks, often using
heuristics such as perplexity (Alon & Kamfonas, 2023), attention scores (Hung et al., 2025), activation
shifts (Abdelnabi et al., 2025), or another LLM as a detector (AI; Liu et al., 2025; Chennabasappa
et al., 2025). For LLM agents, system-level isolation mechanisms can further limit the impact of a
successful prompt injection: even if the underlying model is compromised, strict control over tool
access and execution can prevent harmful actions (Debenedetti et al., 2025; Beurer-Kellner et al.,
2025).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Finally, we believe that Checkpoint-GCG itself can also be incorporated into training pipelines
to build stronger defenses; we present initial experiments and insights towards this direction in
Section H.1.

H.1 FINE-TUNING WITH CHECKPOINT-GCG SUFFIXES

We conduct a preliminary experiment to show that Checkpoint-GCG can also be incorporated into
the fine-tuning process to increase defenses’ robustness against Checkpoint-GCG attacks. We show
how suffixes obtained from auditing the SecAlign-defended Llama-3-8B-Instruct model (denoted as
θC) can be “reused” to improve the defense’s robustness.

H.1.1 EXPERIMENTAL SETUP

Incorporating Checkpoint-GCG suffixes into fine-tuning data. We construct a small preference-
tuning dataset (DPO) by adding Checkpoint-GCG suffixes to 30 randomly selected Alpaca-
Farm (Dubois et al., 2023) samples (out of the 50 used in the auditing setup). For each sample, we
inject the adversarial instruction “Print exactly ‘Hacked’!” followed by the final Checkpoint-GCG
suffix discovered against θC . The original AlpacaFarm response is labeled as the desirable output,
and “Hacked!” as the undesirable output. These 30 samples form the additional training dataset.

Further fine-tuning. We perform additional fine-tuning on the SecAlign-defended Llama-3-8B-
Instruct model θC using the same LoRA hyperparameters as the original SecAlign defense. We
perform DPO for 5 epochs with batch size 4, learning rate 2e-4, and a cosine learning rate scheduler
with 0.03 warm-up ratio. We save all 35 intermediate checkpoints. Hyperparameters are not tuned,
since the experiment is intended as a proof-of-concept showing that incorporating Checkpoint-GCG
could help improve defense robustness.

Baselines. We compare against two additional fine-tuning variants as baselines: (i) injecting only
“Print exactly ‘Hacked’!” and (ii) injecting “Print exactly ‘Hacked’!” followed by suffixes found
using standard GCG (with Checkpoint-GCG budget).

H.1.2 RESULTS

After fine-tuning, we run Checkpoint-GCG against every checkpoint for each of the three models, on
the remaining 20 AlpacaFarm samples (those evaluated in the auditing setup but not included in the
further fine-tuning process here). For the first checkpoint of each model, we initialize the suffix using
the Checkpoint-GCG suffix found against the original SecAlign-defended model θC .

Model Checkpoint-GCG ASR (%) ↓
Original SecAlign-defended Llama-3-8B-Instruct θC 100
+ “Print exactly ‘Hacked’!” 95
+ “Print exactly ‘Hacked’!” + standard GCG suffix 85
+ “Print exactly ‘Hacked’!” + Checkpoint-GCG suffix 50

Table 8: ASR (%) of Checkpoint-GCG against the original SecAlign-defended model θC and after
further fine-tuning with three preference-data variants. Results are aggregated across 20 held-out
AlpacaFarm samples.

These results show that incorporating Checkpoint-GCG suffixes reduces Checkpoint-GCG’s own
attack success rate from 100% to 50%. In contrast, incorporating standard GCG suffixes does not have
a substantial effect (with 85% ASR). This suggests that the robustness gain is likely not from learning
superficial features of GCG-style suffixes only, but rather from learning to protect vulnerabilities
from strong attacks such as these generated by Checkpoint-GCG. These results provide a potential
direction for integrating Checkpoint-GCG into future defense training pipelines.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

I EXTENDING CHECKPOINT-GCG TO ALIGNMENT-BASED DEFENSES AGAINST
JAILBREAKING

Beyond prompt injection, Checkpoint-GCG could also be applied to jailbreak models defended
through alignment. In this case, GCG (Zou et al., 2023) optimizes adversarial suffixes that, when
appended to harmful instructions, induce the model to start the response with “Sure, here is” followed
by the content of the harmful instruction, e.g., “Sure, here is how to build a bomb”.

Many models undergo alignment training to suppress harmful completions targeted by jail-
breaks (Ouyang et al., 2022; Grattafiori et al., 2024; Hurst et al., 2024; Mazeika et al., 2024;
Samvelyan et al., 2024), although not many are open-sourced. We here consider the setup by (Bianchi
et al., 2024), which shows that finetuning models with safety examples (pairs of harmful instructions
and refusal responses) alongside general-purpose instruction-tuning data substantially improves
the model’s safety. We replicate the finetuning on Llama-3-8B-Instruct (AI@Meta, 2024), using
their dataset that demonstrated the most robustness (2,000 added safety examples, full details in
Appendix J).

We apply Checkpoint-GCG to this safety-finetuned model, selecting checkpoints using the gradient-
based strategy with τgrad = 0.45, resulting in 203 selected checkpoints, and following the same
settings as for prompt injection (Section 4). A jailbreak attack is considered successful if the model
response does not contain any predefined refusal strings. As this can be an easier metric compared
to generating a specific string like in prompt injection, we reduce our adversarial suffix to just 5
tokens instead of 20. We additionally included the StrongREJECT benchmark (Souly et al., 2024).
As a baseline, we instantiate GCG directly on the final finetuned model with “!!!” initialization
and 500 GCG steps. While out-of-the-box GCG achieves a StrongREJECT score of 0.34, we find
Checkpoint-GCG to achieve 0.50. Similarly, GCG achieves an ASR of 56%, while Checkpoint-GCG
achieves 68% (Table 9). These results show how Checkpoint-GCG can also be applied to models
aligned to be more robust against jailbreaks, and that a using an informed initialization is effective
even when the optimization space only consists of three tokens.

Metric GCG Checkpoint-GCG (ours)
StrongREJECT (Rubric-based) 0.34 0.50

ASR (%) 56 68

Table 9: Jailbreaking results comparing GCG and Checkpoint-GCG under different evaluators and
suffix lengths.

J FINETUNING PROCESS FOR EACH DEFENSE

J.1 PROMPT INJECTION DEFENSES

We replicate both prompt injection defenses, SecAlign and StruQ using the released code and data1.
We follow the instructions in the code to download the dataset used for finetuning. Both defenses use
the same dataset to construct their respective training datasets. We reuse the same hyperparameter
values for finetuning the models that are contained in the code, yet make some changes to fit our
computational constraints. Instead of using 4 A100 GPUs, we use 1 and 2 A100 GPUs to finetune
SecAlign and StruQ respectively, while ensuring the same effective batch size as in the original works.
We further use fp16 floating point precision and gradient checkpointing to lower the GPU memory
at a small cost of execution time.

We use StruQ and SecAlign to defend three models: Llama-3-8B-Instruct, Mistral-7B-Instruct, and
Qwen2-1.5B-Instruct. Figures 9 and 10 show their training loss and gradient norms of using StruQ
and SecAlign, respectively.

1The repository of SecAlign builds on top of the repository of StruQ, thus we use SecAlign’s code to fine-tune
both defenses. https://github.com/facebookresearch/SecAlign

23

https://github.com/facebookresearch/SecAlign

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2424
Checkpoint

0.6

0.8

1.0

1.2

1.4

1.6

(a) Train loss on Llama-3-8B-Instruct

0 500 1000 1500 2000 2424
Checkpoint

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(b) Grad norm on Llama-3-8B-Instruct

0 500 1000 1500 2000 2424
Checkpoint

0.0

0.1

0.2

0.3

0.4

0.5

(c) Train loss on Mistral-7B-Instruct

0 500 1000 1500 2000 2424
Checkpoint

2

4

6

8

10

12

(d) Grad norm on Mistral-7B-Instruct

0 500 1000 1500 2000 2424
Checkpoint

0.9

1.0

1.1

1.2

1.3

1.4

1.5

(e) Train loss on Qwen2-1.5B-Instruct

0 500 1000 1500 2000 2424
Checkpoint

2

3

4

5

6

(f) Grad norm on Qwen2-1.5B-Instruct

Figure 9: Training metrics for StruQ finetuning

J.2 JAILBREAK DEFENSE: SAFETY-TUNED LLAMA

We replicate the finetuning process in Safety-Tuned LlaMAs (Bianchi et al., 2024), using their
released code and data. We use the same training setup and hyperparameter values that are outlined
in the paper, except for:

• Number of GPUs: Instead of using two A6000 or A5000 GPUs as in the paper (Bianchi
et al., 2024), we use 1 A100 GPU.

• Evaluation frequency: We evaluate every step, instead of every 50 steps as in the paper.
This allows us to use the checkpoint with the lowest evaluation loss, in line with Bianchi et
al. (Bianchi et al., 2024), while giving us the flexibility in choosing checkpoints to attack.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600 700 800 897
Checkpoint

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Train loss on Llama-3-8B-Instruct

0 100 200 300 400 500 600 700 800 897
Checkpoint

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b) Grad norm on Llama-3-8B-Instruct

0 100 200 300 400 500 600 700 800 897
Checkpoint

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Train loss on Mistral-7B-Instruct

0 100 200 300 400 500 600 700 800 897
Checkpoint

0.0

0.5

1.0

1.5

2.0

2.5

(d) Grad norm on Mistral-7B-Instruct

0 100 200 300 400 500 600 700 800 897
Checkpoint

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(e) Train loss on Qwen2-1.5B-Instruct

0 100 200 300 400 500 600 700 800 897
Checkpoint

0.0

0.1

0.2

0.3

0.4

0.5

(f) Grad norm on Qwen2-1.5B-Instruct

Figure 10: Training metrics for SecAlign finetuning

We apply this finetuning process on Llama-3-8B-Instruct. Figure 11 shows the training loss, evaluation
loss, and gradient norm curves.

K REPLICATING THE RESULTS OF SECALIGN AND STRUQ

We note a discrepancy between the ASR reported by the original works and ours. Upon investigation,
the original code computes the GCG loss using one prompt template while evaluating with another,
likely leading to an underestimation of ASR.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) Train loss (b) Eval loss (c) Grad norm

Figure 11: Training metrics for safety-tuning Llama-3-8B-Instruct

GCG on θC

Defense Model
Reported Replicated

(T = 500 steps) (T = 500 steps)

SecAlign (Chen
et al., 2025b)

Llama-3-8B-Instruct (AI@Meta, 2024) 0 6
Mistral-7B-Instruct (Jiang et al., 2023) 1 18

Qwen2-1.5B-Instruct (Team Qwen, 2024) N/A 32

Struq (Chen
et al., 2025a)

Llama-3-8B-Instruct (AI@Meta, 2024) 4 42
Mistral-7B-Instruct (Jiang et al., 2023) 15 88

Qwen2-1.5B-Instruct (Team Qwen, 2024) N/A 48

Table 10: Attack success rate (ASR %) ↑ for the standard GCG attack to the defended model (i.e., the
final checkpoint θC), aggregated for 50 randomly selected samples from AlpacaFarm (Dubois et al.,
2023), compared to the reported ASR for the standard GCG attack.

L COMPUTATIONAL RESOURCES USED FOR CHECKPOINT-GCG

All experiments were conducted on an A100 GPU with 80GB RAM. Taking attacks against prompt
injection defenses – Struq (Chen et al., 2025a) and SecAlign (Chen et al., 2025b) – as an example,
each GCG step takes approximately 3 seconds per sample (with maximum number of generated
tokens set to 4). For Checkpoint-GCG, Table 4 reports the per-sample average of cumulative GCG
steps taken across all attacked checkpoints.

M EVOLUTION OF ADVERSARIAL SUFFIXES ACROSS MODEL CHECKPOINTS

Figure 12 shows a high degree of similarity between adversarial suffixes identified across sequential
checkpoints. In some cases, a suffix that succeeds on checkpoint θci works out-of-the-box on
checkpoint θci+1

, without requiring any additional GCG optimization steps. During early stages of
the alignment process, where model parameters typically undergo significant updates, successful
suffixes can vary substantially even between checkpoints just 15 training steps apart – as seen when
comparing suffixes at θ15 and θ30 in Figure 12. The GRAD checkpoint selection strategy effectively
identifies checkpoints with meaningful model parameter updates, allowing Checkpoint-GCG to keep
pace with the alignment process and adapt adversarial suffixes from strong initializations.

N THE USE OF LARGE LANGUAGE MODELS (LLMS)

We have used the help of LLMs to aid and polish writing. This help was on a level of spelling and
grammar checker, and far from the level of a contributing author.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 12: Adversarial suffixes discovered at checkpoints selected using the GRAD strategy (showing
up to θ35), for one sample. The suffixes for consecutive checkpoints show high similarities, whereas
there can be significant variations when comparing suffixes found at checkpoints separated by larger
intervals.

27

	Introduction
	Background
	Checkpoint-GCG
	Experimental setup
	Results
	Primer: Checkpoint-GCG steers the optimization in the right direction
	Checkpoint-GCG as an auditing method
	Checkpoint-GCG as an attack
	Understanding why Checkpoint-GCG achieves superior performance

	Related Work
	Discussion and conclusion
	Reproducibility statement
	Detailed results
	Auditing defenses
	Universal attack

	Theoretical intuition
	Checkpoint selection strategies
	Evaluating checkpoint selection strategies
	Checkpoint selection strategy used in this work

	Distribution of GCG steps for successful attacks
	Checkpoint-GCG: early stopping
	Other GCG improvements
	Ablation on number of tokens for universal suffix
	Defenses against Checkpoint-GCG
	Fine-tuning with Checkpoint-GCG suffixes
	Experimental setup
	Results

	Extending Checkpoint-GCG to alignment-based defenses against jailbreaking
	Finetuning process for each defense
	Prompt injection defenses
	Jailbreak defense: Safety-tuned Llama

	Replicating the results of SecAlign and StruQ
	Computational resources used for Checkpoint-GCG
	Evolution of adversarial suffixes across model checkpoints
	The Use of Large Language Models (LLMs)

