
Under review as a conference paper at ICLR 2021

FEEDFORWARD LEGENDRE MEMORY UNITS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, a new recurrent neural network (RNN) named the Legendre Memory
Unit (LMU) was proposed and shown to achieve state-of-the-art performance on
psMNIST and other datasets. Here we consider a modified version of the LMU,
named ff-LMU, the core of which is a linear time-invariant (LTI) system. We
first show that the ff-LMU can be trained in a purely feedforward manner and
yet executed during inference in a recurrent fashion. Specifically we demonstrate
that it trains about 80x faster than LSTM models of the same size. As a result, it
overcomes the well-known limitations of training RNNs on GPUs that make them
less scalable than feedforward networks like transformers. Second, to validate
its utility, we compare ff-LMU performance against LSTMs on five benchmarks
picked from the following categories: sentiment classification, semantic similar-
ity, natural language inference, and image classification. Our models, despite their
simplicity, achieve new state-of-the-art results for RNNs on psMNIST and QQP,
and exhibit superior performance on the remaining three datasets while using up
to 1000x fewer parameters. In general, ff-LMU models are highly parameter effi-
cient. For instance, the first model that beats it on current leaderboards for QQP
is a transformer that uses 50,000x more parameters.

1 INTRODUCTION

Recurrent neural networks (RNNs) were the go to architecture for processing time series data
(Graves, 2013; Sutskever et al., 2014; Bahdanau et al., 2014) until recently. However, recent
attention-based architectures, like the transformer and its derivatives (Vaswani et al., 2017; Devlin
et al., 2018; Brown et al., 2020), have taken over as the preferred method for large-scale processing,
especially in the domain of natural language processing (NLP). One critical reason for this shift
away from RNNs is that transformer-like networks are purely feedforward. Consequently, training
such networks is far more efficient on today’s commodity GPU hardware because large datasets can
be batch processed on large networks during training. The main drawback of such an approach is
that during inference, transformer-like networks tend to have very large parameters counts, and so
are very demanding of computational resources.

In contrast, commonly used RNNs (e.g. LSTMs, GRUs, etc.) tend to have much lower parameter
counts, but they are very slow to train. This cost comes from having to simulate each cycle through
the recurrent network over long sequences before being able to backpropagate the error during train-
ing. Equivalently, unrolling such networks leads to extremely deep networks for long time window
data (which is common in NLP applications). Consequently each epoch through a large dataset
quickly becomes prohibitively expensive in time. Additionally, there are concerns that standard
RNNs do not handle long distance dependencies well in practice (Li et al., 2018) (e.g., for an LSTM
time series memory is usually limited to well less than 1000 steps).

In this paper, we leverage a new RNN architecture called the Legendre Memory Unit (LMU)
(Voelker & Eliasmith, 2018; Voelker et al., 2019) that outperforms past RNNs in terms of tem-
poral memory capacity (several orders of magnitude improvement). However, the original LMU
architecture still suffers from the challenges of training RNNs. As a result, here we explore an LMU
variant, which we call the feedforward-LMU (or ff-LMU for short). In order to evaluate its effective-
ness, we consider NLP datasets from each of the following three categories: sentiment classification
(IMDB), semantic similarity (MRPC, QQP), and natural language inference (SNLI). Coincidentally,
these tasks are similar to the ones considered by the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018). In addition, we also look at the standard psMNIST bench-

1



Under review as a conference paper at ICLR 2021

mark that is used to test the ability of RNNs to capture complex long term dependencies. We show
that ff-LMU 1) can be trained in a purely feedforward manner 2) outperforms LSTM models on the
IMDB, QQP, MRPC, and SNLI datasets while using significantly fewer parameters (up to 1000x);
3) achieves a new state-of-the-art result for RNNs on psMSNIT of 98.49%; and 4) realizes up to
80x faster training than the LSTM. As a result, we argue that our new LMU architecture is scalable,
accurate, and efficient to train, addressing the core challengenes limiting the adoption of past RNNs.

2 THE LMU AND FF-LMU

2.1 THE LMU

The LMU is an RNN cell whose main component is a linear time-invariant (LTI) system that is
coupled to a nonlinear dynamical system. The LTI system is a memory cell that orthogonalizes the
input signal, u(t) ∈ R, across a sliding window of length θ ∈ R>0, whereas the non-linear system
relies on this memory to compute arbitrary functions across time. It should be noted that in the
LMU, relative to the LSTM, memory and computation are independent, i.e., we can increase the
memory capacity of the cell by increasing the dimension of LTI system while leaving the dimension
of the non-linear system unaltered. The state update equations that define the LMU are given below:

ut = eTxxt + eThht−1 + eTmmt−1, (1)
mt = Amt−1 +But, (2)
ht = f(Wxxt +Whht−1 +Wmmt). (3)

In equation (2), we see the LTI system defined by the A ∈ Rd×d and B ∈ Rd×1 matrices, where d
represents the order of the system. These matrices are usually frozen during training, although they
need not be (see Voelker et al. (2019) for more details). Specifically, these matrices are defined by:

[A]ij =
(2i+ 1)

θ

{
−1 i < j

(−i)i−j+1 i > j
, (4)

[B]i =
(2i+ 1)(−1)i

θ
. (5)

The input to the LTI system, u(t), is computed by projecting the input to the RNN cell, xt ∈ Rdx ,
the hidden state, ht ∈ Rdh , and the memory state, mt ∈ Rd, onto their respective encoding weights
(ex, eh, and em). The memory state, hidden state and the input to the cell are then combined using
the weight matrices (Wx,Wh, and Wm) and passed through the non-linearity, f . The encoding
vectors and the kernel matrices are learned during training.

2.2 THE FF-LMU

In this paper, we propose a modified LMU architecture by making two specific changes to equations
(1) and (3) defined above: first, we compute the input to the LTI system, ut, by implementing an
affine transformation on the input to the RNN cell, xt, followed by an element wise nonlinearity;
thereby, we do not project the input to a scalar before feeding it to the LTI system; and second, we
discard the non-linear dynamical system defined in equation (3) and replace it with a feedforward
output state ot ∈ Rdo . Making these changes, we obtain the following state update equations:

ut = g(Wuxt + bu), (6)
mt = Amt−1 +But, (7)
ot = f(Womt + bo). (8)

It should be noted that the input and output states are equivalent to having a “time-distributed” dense
layer before and after the layer implementing equation (7), respectively. We thus take ff-LMU to
refer to equations (6)-(7), and for convenience, we define ff-LMUu to refer to equations (6)-(7),
ff-LMUo to refer to equations (7)-(8), and ff-LMUm (m for minimal) to refer to equation (7).

Additionally, since the input to the LTI system in this case is a vector, u ∈ R1×du , we have that
mt ∈ Rd·du , and equation (7) can be thought of as implementing the following:

mt = reshape(A reshape(mt−1, (d, du)) +But, d · du). (9)

2



Under review as a conference paper at ICLR 2021

Table 1: Complexity per layer and minimum number of sequential operations of various architec-
tures. n is the sequence length, dx is the input dimension, and d is the order. First three rows are as
reported in Vaswani et al. (2017).

Layer Type Complexity per Layer Sequential Operations
RNN O(n · d2x) O(n)
Convolutional O(k · n · d2x) O(1)
Attention O(n2 · dx) O(1)

ff-LMUm (recurrent) O(n · d2 · dx) O(n)
ff-LMUm (convolution - frequency) O(n · lnn · d+ n · dx · d) O(1)

The motivation for this new architecture is two-fold: 1) we believe that a model consisting of just
the LTI system, which implements temporal compression, along with dense layers is sufficient to
carry out a variety of tasks; this is demonstrated by the experiments in section (3); and 2) writing
the LMU this way makes mt a function of itself at a previous instant in time and xt (through its
dependence on ut) only, and since (A,B) are pre-defined and given access to xt, this architecture
allows us to compute equation (7) in one shot using the convolution integral expressed in equation
(10). That is, the state of a LTI system can be directly computed at any moment in time, without
the need to simulate the dynamical system explicitly to know the future value of its state given the
input.

m(t) =

∫ t

0

exp(A(t− τ))Bu(τ) dτ. (10)

Consequently, this reformulation allows us to express the RNN layer (equation (7)) as a feedforward
layer. That is, instead of training an RNN where we feed the inputs sequentially, we can instead
construct a feedforward network that corresponds to the RNN model, and thus make the training
procedure completely feedforward, although with an additional memory cost. Furthermore, this
formulation shows how feedforward training still allows us to do inference in a sequential man-
ner (using equation (7) instead of (10)) for applications where the amount of available memory is
limited, or where data is streamed in an online fashion.

Moreover, in special scenarios where the ff-LMUm layer is the first layer in a model – or when all the
preceeding layers are frozen during training – it is possible to pre-compute the ouputs of this layer
and train a network on this pre-computed dataset rather than the original dataset. This is similar to
how pre-trained models with frozen weights are used to pre-compute the outputs in order to speed
up training. We show in section (3.5) that doing so in the case of psMNIST results in training times
that are 80x faster than that of the LSTM.

2.3 COMPLEXITY

Taking n, dx, and d to represent the sequence length, input dimension and order, complexity per
layer for various algorithms is presented in Table (1). We notice that the ff-LMUm, like the Attention
mechanism, depends more strongly on the length of the sequence, n, than on the dimension of the
input, dx. Thus, as is argued in Vaswani et al. (2017), ff-LMUm layer is faster than recurrent layers
for applications where n is smaller than dx, which is a common occurrence in NLP applications. For
example, standard word or sub-word level neural machine translation systems work with sequences
containing about 50 time steps and inputs that are 300 to 512 dimensional. More specifically, in our
NLP experiments we found the setting d = 1 and dx ∈ {100, 300} to work well; configurations
such as these, according to Table (1), are computationally advantageous for our model.

3 EXPERIMENTS

In this section we consider the performance of the ff-LMU and LSTM models on sentiment classifi-
cation, semantic similarity, natural language inference, and image classification. For all the ff-LMU
models, we stick to a simple architecture involving dropout, and train all the models using the Adam
optimizer (Kingma & Ba, 2014) with the default parameter settings. Thus, the order, number of units

3



Under review as a conference paper at ICLR 2021

Table 2: IMDB test accuracy. The first four rows are from Gu et al. (2020), where all the models are
reported to use 256 hidden units.

Model Accuracy
RNN 67.4 ± 7.7
LSTM 87.3 ± 0.4
LMU 87.7 ± 0.1
HiPPO-LagT 88.0 ± 0.2
LSTM (our impl.) 87.29
ff-LMUm 89.10

in the output and inputs states, and occasionally additional dense units, are the only hyperparameters
that we tune.

With LSTM models, wherever possible, to avoid the risk of misrepresentation, we use results found
in published work, even when they make use of more sophisticated architectures, learning schedules,
or regularization methods. Otherwise, we construct models with the same constraints as above.

3.1 SENTIMENT CLASSIFICATION

Task The IMDB dataset (Maas et al., 2011) is a standard sentiment classification task containing
a collection of 50k highly polar reviews, with the training and testing sets containing 25k reviews
each. We set aside 2.5k sentences from the training set to be used as the validation set. Given a
review, the task is to classify it as expressing a positive or negative sentiment. Hence, this is a binary
classification problem. We use the standard pre-processed dataset available from the Keras website,1
consider a vocabulary of 20k words, and set the maximum sequence length to 500 words.

Models We evaluate LSTM and ff-LMUm model accuracies as a function of the number of pa-
rameters. We consider models ranging from about a 100 parameters to 100k parameters (excluding
the embedding parameters). We set the dimension of the embedding layer to be 100. Both models
make use of dropout with keep probability set to 0.5. We do not make use of any pre-trained word
embeddings.

Results & Discussion We found that the LSTM (73 units) and ff-LMUm (d = 1 and θ = 500)
models achieve peak accuracies of 87.29% and 89.10% at 50k and 101 parameters, respectively.
The ff-LMUm model thus outperforms the LSTM model, while using 500x fewer parameters. We
also report scores from Gu et al. (2020) in Table (2). All of their implementations (reported in the
first four rows) use 256 hidden units. We first note that our implementation of LSTM is comparable
to theirs, although ours uses only 73 hidden units. We see that our ff-LMU model, despite using
only 101 parameters, outperforms several complex models that are orders of magnitude larger. This
prompts us to propose 89.10% as the new baseline for RNN models on the IMDB dataset.

3.2 SEMANTIC RELATEDNESS

We consider two datasets here: Quora Question Pairs2 and Microsoft Research Paraphrase Corpus
(Dolan & Brockett, 2005).

QQP For question and answer websites such as Quora and Stack Overflow, it is extremely useful
to be able to automatically identify duplicate questions. In order to aid research in this direction,
Quora released a dataset, called the Quora Question Pairs (QQP), where, given a pair of sentences,
the task is to identify whether the two sentences are semantically similar. The labels are binary, with
0 indicating semantic similarity and 1 otherwise. In this case, we experiment on two train/dev/test
splits: 390k/8k/8k like in Shen et al. (2018), which we refer to as split1, and 280k/80k/40k like in

1https://keras.io/api/datasets/imdb/.
2https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs.

4



Under review as a conference paper at ICLR 2021

Table 3: QQP test accuracies. Split1 and split2 LSTM scores are as reported in Shen et al. (2018)
and Sharma et al. (2019), respectively. The number of parameters for split2 (800k) is not reported
but is a conservative estimate.

Parameters Accuracy
Model split1 split2 split1 split2
LSTM - 800k 82.58 81.4
ff-LMUm 1201 1201 86.95 85.36

Sharma et al. (2019), which we refer to as split2. We use a vocabulary of 20k words and truncate
the sentences to be less than 25 words.

MRPC Microsoft Research Paraphrase Corpus is a collection of sentence pairs extracted from
online news sources, and similar to QQP, the task is to identify whether a given pair is semantically
equivalent. We use the standard 3.7k/300/1.7k split, and set the sequence length to 50.

Models - QQP For QQP, we use scores reported in Shen et al. (2018) and Sharma et al. (2019).
Although we are unaware of the particulars of the model used in the former case, we know the
architecture of the model considered in the latter one; it uses an LSTM with 300 units to produce
two sentence embeddings (one for each sentence). These two embeddings, their absolute difference,
and their element wise product are then concatenated and passed onto a single dense layer, followed
by a classification layer. They make use of dropout and L2 regularization, and also use 300D GloVe
word embeddings (Pennington et al., 2014) which are fine tuned during training. Our model is
similar to theirs, with three exceptions: 1) we use an ff-LMUm (d = 1 and θ = maxlen) instead
of an LSTM to obtain the sentence embeddings; 2) we do not use the dense layer, i.e., we pass the
concatenated vector directly to a classification layer; and 3) we only make use of dropout (with keep
probability of 0.5).

Models - MRPC For MRPC, we use the scores reported in Wang et al. (2018). Their BiLSTM
models consist of a two-layer, 1500D LSTM (per direction) with max pooling and 300D GloVe
word embeddings. They encode the sentences and pass a concatenated version (same as above) to a
classifier, which is an MLP with a 512D hidden layer. Additionally, they augment their model using
the ELMo (Peters et al., 2018) and CoVe (McCann et al., 2017) methods of pre-training. They do
not report the number of parameters, but we estimate it to be well in excess of 20M. In contrast, we
use the same simple model as above, except with an ff-LMUo layer with d = 1, θ = 25 and do = 10
(about 12k parameters). In this case too we use GloVe embeddings but we freeze them during
training.

Results & Discussion - QQP Results of the experiment are reported in Table (3). We see that the
ff-LMUm outperforms the LSTM model while using significantly fewer parameters (∼650x fewer).
We believe this is a new state-of-the-art result for QQP for an RNN.3 It is also interesting that the
next best model4 achieves an accuracy of 88.0%, but it is a large transformer model (Raffel et al.,
2019) with around 60M parameters, or 50,000x more parameters than our model. It should be noted
however that their model uses a different dataset split (364k training samples) and is evaluated on a
private test set provided by the GLUE benchmark.

Results & Discussion - MRPC Results of this experiment are reported in Table (4). We see that
the ff-LMUo performs comparably to the CoVe BiLSTM model and does better than all the others
reported in the table by a good margin. It is also of note that our model uses at least 1000x fewer
parameters. Despite the initial success, given the size of the dataset, further progress on this task
likely necessitates extensive pre-training or knowledge-transfer across tasks.

3See https://paperswithcode.com/sota/question-answering-on-quora-question-pairs.
4See https://paperswithcode.com/sota/question-answering-on-quora-question-pairs.

5



Under review as a conference paper at ICLR 2021

Table 4: Comparison of MRPC results. First six rows are from Wang et al. (2018). We report
accuracy/F1 as in that work as well.

Model MRPC
BiLSTM 69.3/79.4
+ELMo 69.0/80.8
+CoVe 73.4/81.4
+Attn 68.5/80.3
+Attn,ELMo 68.8/80.2
+Attn, CoVe 68.6/79.7
ff-LMUo 73.5/81.4

Table 5: Comparison of results for the SNLI dataset. First row is from Bowman et al. (2015).

Model Parameters Accuracy
LSTM 220k 77.6
ff-LMUm 3603 78.85

3.3 NATURAL LANGUAGE INFERENCE

Task The Stanford Natural Language Inference5 was released to serve as a benchmark for eval-
uating machine learning systems on the task of natural language inference. Given a premise, the
task is to determine whether a hypothesis is true (entailment), false (contradiction), or independent
(neutral); it is thus a 3-way classification task. We use the standard 550k/10k/10k split, consider a
vocabulary of 20k words, and set the maximum sequence length to 25 words.

Models We use the model described in Bowman et al. (2015) as the baseline LSTM model. Their
model uses LSTMs with 100 units to produce two sentence embeddings (for premise and hypothesis)
which are then concatenated and fed to a stack of three 200 dimensional dense layers. They use
dropout, L2 regularization, 300D GloVe word embeddings and an additional dense layer to project
the vectors to a lower dimensional space. Our model, in comparison, is very simple: we use ff-LMU
(d = 1 and θ = 25) to obtain sentence embeddings, which, along with their absolute difference and
element wise product, are concatenated and passed to a softmax classification layer with a dropout
layer (keep=0.5) in between. We also make use of the 300D GloVe embeddings.

Results & Discussion We report the results of this experiment in Table (5). We see that the
simple ff-LMU model containing 3.6k parameters outperforms the relatively deeper LSTM model
containing 220k parameters. In summary, our model improves accuracy while using 60x fewer
parameters. To put this in the broader context, the next best model (Bowman et al., 2016) achieves a
score of 80.6% (at 3M parameters or 830x more) and the current state-of-the-art (Pilault et al., 2020)
achieves a score of 92.1% (at 340M parameters).

3.4 IMAGE CLASSIFICATION

Task The permuted sequential MNIST (psMNIST) dataset was introduced by Le et al. (2015) to
test the ability of RNNs to model complex long term dependencies. psMNIST, as the name suggests,
is constructed by permuting and then flattening the (28 × 28) MNIST images. The permutation is
chosen randomly and is fixed for the duration of the task, and in order to stay consistent, we use
the same permutation as Chandar et al. (2019) and Voelker et al. (2019). The resulting dataset is of
the form (samples, 784, 1), which is fed into a recurrent network sequentially, one pixel at a time.
We use the standard 50k/10k/10k split. For an RNN to successfully classify such a sequence, it
has to capture the essential features of the input that are presented over 784 time-steps, and use this
temporal representation to infer the right class.

5Dataset and published results are available at https://nlp.stanford.edu/projects/snli/.

6



Under review as a conference paper at ICLR 2021

Table 6: Comparison of psMNIST results. All but last two rows as reported in Voelker et al. (2019).
Second last row as reported in Gu et al. (2020).

Model Accuracy
RNN-orth 89.26
RNN-id 86.13
LSTM 89.86
LSTM-chrono 88.43
GRU 92.39
JANET 91.94
SRU 92.49
GORU 87.00
NRU 95.38
Phased LSTM 89.61
LMU 97.15
HiPPO-LegS 98.3
ff-LMUo 98.49

Models As was pointed out in Voelker et al. (2019), in order to facilitate fair comparison, RNN
models being tested on this task should not have access to more the 282 = 784 internal variables.
Keeping that in mind, and in order to make direct comparisons to the original LMU model and the
Non-saturating Recurrent Unit (Chandar et al., 2019), we consider an ff-LMUo model with d = 468
dimensions for memory. We set the dimension of the output state do = 346 and use θ = 784. Our
model uses 165k parameters, the same as all the models reported in Table (6), except for the original
LMU model, which uses 102k parameters, and the HiPPO-LegS model, which is reported to use
512 hidden dimensions (unaware of the number of parameters).

Results & Discussion Test scores of various models on this dataset are reported in Table (6). The
ff-LMUo model not only surpasses the LSTM model, but also beats the current state-of-the result of
98.3% set by HiPPO-LegS (Gu et al., 2020) this Fall. Thus, our model sets a new state-of-the art
result for RNNs of 98.49% on psMNIST.

3.5 TRAINING TIME

Here we focus on the training times of the LMU, LSTM, and ff-LMU models. In order to ensure
fairness, we choose the psMNIST benchmark to carry out this comparison as the three best perform-
ing models on this task had similar parameter counts. This dataset also allows us to demonstrate a
feature of the ff-LMU that we alluded to in section (2.2): in special scenarios where ff-LMUm is the
first layer in a model, we can save time by training on the pre-computed outputs of this layer instead
of the original dataset – note that this is also possible in the case of MRPC, where the embedding
weights are frozen during training. We see from Table (7) that using such a strategy reduces the
time per epoch to just a second, and the corresponding total time to around 20s, where 15s refers
to the time to pre-compute the “new” dataset and 5s refers to the actual training time. This is about
80x faster than the LSTM and 44x times faster than the LMU. Even without the pre-computation,
ff-LMU exhibits faster training times, about 11x and 6x faster than the LSTM and LMU models,
respectively.

4 DISCUSSION

Based on the results on these five datasets, ff-LMUs provide parameter efficient and accurate models
across a variety of problem domains. We demonstrated two new state-of-the-art results for RNNs
on the standard RNN psMNIST benchmark, and the QQP dataset. It is interesting that the ff-LMU,
despite being simpler than the original LMU, outperforms it on this dataset. This suggests that the
main advantage of the LMU over past models is the quality of its temporal memory, implemented
by the optimal LTI in the recurrent part of the model. For the latter dataset, the next best model on

7



Under review as a conference paper at ICLR 2021

Table 7: Training time comparison (in seconds). We use models containing 102k parameters (same
as the original LMU model), set the batch size to 100, and use a single GTX 1080 to obtain the
following numbers. By “Total Time” we refer to the time it takes for the training accuracy to cross
95%.

Model s/epoch Total Time(s)
LSTM 32 1600
LMU 220 880
ff-LMUo 30 150
ff-LMUo (pre-comupted) 1 5 + 15

current leader boards is a transformer that uses 50,000x more parameters. Future work should de-
termine if scaling up the ff-LMU can beat current transform models while preserving this parameter
advantage.

On the other three datasets, we demonstrate a consistent advantage of the ff-LMU over LSTMs in
terms of performance and parameter counts. While these are not hitting state-of-the-art accuracies,
largely because both models are much smaller than networks that do, these experiments demonstrate
significantly superior performance with 60-1000x fewer parameters, suggesting a general trend of
parameter efficiency.

Finally, one of the main contributions of this approach is that it provides a means to train networks
that are recurrent during inference in a feedforward manner. This provides a much better mapping of
the training problem to currently commodity hardware. As well, it provides a practical inference ad-
vantage, as the final model can be run recurrently, thus providing a natural means of processing data
online with minimal latency and efficient use of memory. Future work will focus on realizing this
advantage for much larger problems, comparing similarly sized recurrent and transformer models.

5 CONCLUSION

With the intention of alleviating the long standing problem of speeding up RNN training, we in-
troduce a variant of the LMU architecture, the ff-LMU, that can process data in a feedforward or
sequential fashion. When implemented as a feedforward layer, the ff-LMU can utilize parallel pro-
cessing hardware such as GPUs and thus is suitable for large scale applications, and when run as
an RNN, it could be useful in applications where the amount of available memory is a limitation.
We demonstrate the effectiveness of this architecture by experimenting on a broad range of tasks, of
varying scale and difficulty, and showing that ff-LMU achieves superior performance on them, often
requiring far fewer parameters. We also briefly consider the question of computational complexity
of our model, and argue for its suitability to large scale applications in the domain of NLP, a direc-
tion we will pursue in the future. In sum, we believe that the ff-LMU affords a scalable and light
weight solution to many problems without sacrificing accuracy.

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large anno-
tated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

Samuel R Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D Manning, and
Christopher Potts. A fast unified model for parsing and sentence understanding. arXiv preprint
arXiv:1603.06021, 2016.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

8



Under review as a conference paper at ICLR 2021

Sarath Chandar, Chinnadhurai Sankar, Eugene Vorontsov, Samira Ebrahimi Kahou, and Yoshua
Bengio. Towards non-saturating recurrent units for modelling long-term dependencies. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 3280–3287, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Re. Hippo: Recurrent memory
with optimal polynomial projections. arXiv preprint arXiv:2008.07669, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent networks
of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. Independently recurrent neural network
(indrnn): Building a longer and deeper rnn. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 5457–5466, 2018.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in translation:
Contextualized word vectors. In Advances in Neural Information Processing Systems, pp. 6294–
6305, 2017.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proc. of NAACL, 2018.

Jonathan Pilault, Amine Elhattami, and Christopher Pal. Conditionally adaptive multi-task learn-
ing: Improving transfer learning in nlp using fewer parameters & less data. arXiv preprint
arXiv:2009.09139, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Lakshay Sharma, Laura Graesser, Nikita Nangia, and Utku Evci. Natural language understanding
with the quora question pairs dataset. arXiv preprint arXiv:1907.01041, 2019.

Dinghan Shen, Guoyin Wang, Wenlin Wang, Martin Renqiang Min, Qinliang Su, Yizhe Zhang,
Chunyuan Li, Ricardo Henao, and Lawrence Carin. Baseline needs more love: On simple word-
embedding-based models and associated pooling mechanisms. arXiv preprint arXiv:1805.09843,
2018.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

9



Under review as a conference paper at ICLR 2021

Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time repre-
sentation in recurrent neural networks. In Advances in Neural Information Processing Systems,
pp. 15570–15579, 2019.

Aaron R Voelker and Chris Eliasmith. Improving spiking dynamical networks: Accurate delays,
higher-order synapses, and time cells. Neural computation, 30(3):569–609, 2018.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

10


	Introduction
	The LMU and ff-LMU
	The LMU
	The ff-LMU
	Complexity

	Experiments
	Sentiment Classification
	Semantic Relatedness
	Natural Language Inference
	Image Classification
	Training Time

	Discussion
	Conclusion

