
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOMATIC COMPLEMENTARY-SEPARATION PRUN-
ING FOR EFFICIENT CNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reducing the complexity of neural networks without sacrificing performance is a
critical challenge for deploying models in real-world, resource-constrained envi-
ronments. We introduce Automatic Complementary Separation Pruning (ACSP),
a novel and fully automated method for pruning convolutional neural networks
that focuses on accelerating inference time. ACSP combines structured and
activation-based pruning to remove redundant neurons and channels while pre-
serving essential components. Tailored for supervised learning tasks, ACSP con-
structs a graph space that encodes the separation capabilities of each component
across all class pairs. By leveraging complementary selection principles and clus-
tering techniques, ACSP ensures that the selected components maintain diverse
and complementary separation capabilities, reducing redundancy and maintain-
ing high network performance. The pruning volume is determined automatically,
removing the need for manual tuning. This approach significantly reduces the
number of FLOPs (floating-point operations) and results in faster inference time
without compromising accuracy.

1 INTRODUCTION

Convolutional neural networks (CNNs) have revolutionized deep learning, achieving remarkable
success in applications like image classification, object detection, and image segmentation (Han
et al., 2015a; Redmon, 2016; Minaee et al., 2021). However, these models, with millions of parame-
ters, are computationally intensive, making deployment on resource-constrained devices challenging
(He & Xiao, 2023). To overcome this, model compression techniques have become vital, reducing
model complexity, computational demands, and memory use, and facilitating their application in
real-world environments.

Among these compression techniques, pruning (Han et al., 2015b), decomposition (Denton et al.,
2014), quantization (Rastegari et al., 2016), and knowledge distillation (Hinton et al., 2015) are
widely studied. Pruning, in particular, removes redundant components to create more efficient,
sparse networks without significant performance loss. The aim is to reduce parameters while main-
taining accuracy, leading to faster inference and lower storage requirements.

Pruning techniques can be broadly categorized into two approaches: structured and unstructured
pruning (Li et al., 2017). Unstructured pruning involves removing individual weights from the net-
work based on certain criteria, such as the magnitude of the weights. While this method can lead to
highly sparse models, the irregularity of the resulting network structure often limits its ability to fully
leverage modern hardware acceleration (He & Xiao, 2023). This limitation arises because current
hardware is optimized for dense matrix operations, meaning that the random removal of weights
doesn’t result in significant improvements in speed or efficiency. In contrast, structured pruning
focuses on removing entire components, such as filters, channels, or layers, thereby maintaining a
regular structure that is more compatible with hardware optimizations (Anwar et al., 2017). This
method allows for greater speedups, as it reduces not only the parameter count but also the compu-
tational overhead in a way that is better aligned with hardware constraints (Liu et al., 2018).

Another class of pruning techniques relies on network activations, referred to as activation-based
pruning. These methods prune components based on their activation during the forward pass, re-
quiring access to the dataset on which the model was trained (Ardakani et al., 2017). By analyzing
the activations, the method identifies less important components, which can be removed without
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significantly degrading performance. The advantage of activation-based pruning is that it can of-
fer more fine-grained decisions regarding which components contribute less to the network output.
However, a limitation of these approaches is the need for the dataset during the pruning process.

A common challenge in many pruning techniques, regardless of the specific method, is the need
for the user to manually define the size or extent of the pruning. Typically, users must specify the
percentage or volume of components to be pruned, which often results in a trial-and-error process
to identify the optimal pruning level. This approach not only consumes considerable time but also
requires repeated evaluations to strike the right balance between model size and performance (Xiao
et al., 2019). Such manual tuning diminishes the practicality of pruning in real-world applications,
where time and computational resources are limited, and it hinders the scalability of pruning meth-
ods for larger networks or diverse deployment environments (Blalock et al., 2020). The need for
user input in defining the pruning volume makes it difficult to achieve optimal results in an auto-
mated and efficient manner. For instance, prior works have explored automating pruning decisions
– e.g., by introducing trainable gating parameters (Xiao et al., 2019) or using reinforcement learning
to search pruning policies (He et al., 2018b; Liu et al., 2019). However, these methods often require
complex training schemes or are limited to specific scenarios. In contrast, ACSP selects the pruning
extent automatically in a single pass per layer using a data-driven knee-finding approach, without
additional supervision or search.

In this paper, we introduce Automatic Complementary Separation Pruning (ACSP), a novel ap-
proach that fully automates neural network pruning. ACSP integrates both structured pruning and
activation-based pruning, allowing the removal of entire components such as channels or neurons
while utilizing activations to retain the most critical elements. A key concept of ACSP is its ability
to select components based on their complementary capabilities, ensuring diversity and reducing
redundancy in the pruned network. Unlike many conventional methods that often rely on manual
user input to define the pruning volume, ACSP automatically selects the smallest and most diverse
subset of components in each layer, aiming to minimize redundancy. The principle of selecting
components based on complementary abilities, particularly through graph-based methods, ensures
that the chosen subset contributes diverse, non-overlapping capabilities to the network. The graph-
based approach avoids redundancy by selecting components from distinct regions within the graph
space, ensuring that each chosen component not only performs well across tasks but also offers
unique capabilities. Such complementary selection using graphs has been successfully applied in
various domains, including feature selection and clustering methods (Nie et al., 2016; Zhao et al.,
2022; Levin & Singer, 2024; 2025). By adopting this principle, ACSP balances efficiency with
performance, enabling substantial reductions in model size without sacrificing accuracy.

The pruning process is conducted iteratively, layer by layer. For each layer, ACSP constructs a graph
space based on activations, encoding the separation capability of each component with respect to all
class pairs, making the method inherently suited to supervised learning tasks. To ensure comple-
mentary selection, ACSP selects components from different regions of the graph space, emphasizing
diversity and complementary separation capabilities. This enables the network to maintain high per-
formance while reducing the number of components in the neural architecture. ACSP’s automated
selection process uses a clustering algorithm and a knee-finding technique, making it both efficient
and scalable, and therefore practical for real-world applications. In summary, the contributions of
this paper can be summarized as follows:

• This paper presents ACSP, a method that automatically determines an efficient subset of
components to prune without requiring manual intervention, overcoming the limitations of
user-defined pruning volumes and reducing redundancy in neural networks.

• ACSP combines the strengths of structured pruning with activation-based pruning, ensur-
ing the efficient removal of entire components like neurons or channels while selecting
components with complementary separation capabilities. This approach maintains critical
elements, resulting in models that are both computationally efficient and hardware-friendly.

• ACSP focuses on inference-time efficiency, removing redundant channels/neurons to yield
significant speed-ups (e.g., 2.25× on ResNet-50) with minimal accuracy loss.

• Extensive experiments on multiple architectures (VGG, ResNet, DenseNet, MobileNet)
and datasets (CIFAR-10/100, ImageNet) show that ACSP consistently reduces computation
(FLOPs) by 1.5–2.5× while maintaining or even improving accuracy. This validates ACSP
as a scalable, practical pruning solution for real-world deployment
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2 RELATED WORK

Structured Pruning. Structured pruning methods focus on the removal of entire components,
such as neurons, filters, or channels, creating a more streamlined and efficient network architecture
that is optimized for hardware acceleration. One such method is SCOP (Scientific Control Pruning)
(Tang et al., 2020), which identifies redundant structures by introducing a control group mechanism
with knockoff features designed to resemble real feature maps but remain label-independent. During
pruning, SCOP applies scaling factors to real and knockoff features, pruning components that rely
more on knockoff features, thus minimizing the impact of irrelevant factors. Another method, SANP
(Structural Alignment for Network Pruning) (Gao et al., 2023) retains alignment between the pruned
and original network through partial regularization, guided by an Architecture Generator Network
(AGN) that selects the optimal sub-network during training. By reducing the structural gap between
the full and pruned models, SANP enhances pruning efficiency, improves hardware compatibility,
and maintains high model performance. Similarly, Random Channel Pruning (Li et al., 2022b) offers
a simplified approach to structured pruning by randomly selecting channels for removal. Despite its
simplicity, random pruning performs comparably to more advanced techniques, particularly when
paired with fine-tuning. This method effectively reduces network complexity while maintaining
performance, providing a straightforward yet competitive alternative for achieving efficient neural
network architectures. DepGraph (Dependency Graph) (Fang et al., 2023) introduces a dependency
graph to model the dependencies between layers in neural networks, allowing for automatic group-
level structured pruning. The method ensures that structurally dependent parameters across layers
are pruned simultaneously, preserving network integrity. By leveraging these dependencies, Dep-
Graph prunes groups of parameters, maintaining performance while reducing computational costs.

Activation-Based Pruning. Activation-based pruning methods rely on network activations dur-
ing the forward pass to identify less important components, which are then pruned. DCP
(Discrimination-aware Channel Pruning) (Zhuang et al., 2018) adds discrimination-aware losses
to intermediate layers to prune channels that lack discriminative power, using activations to evalu-
ate each channel’s contribution to classification accuracy. By balancing reconstruction errors and
these losses, it retains only the most valuable channels. A greedy algorithm then selects and opti-
mizes the channels, compressing the model while preserving or enhancing performance. Another
activation-based method is Network Slimming (Liu et al., 2017), which uses L1 regularization on
batch normalization scaling factors, which control channel activations, to induce sparsity. Chan-
nels with small scaling factors (and thus lower activations) are pruned. After pruning, the model
is fine-tuned to recover or improve accuracy. ThiNet (Luo et al., 2017) prunes entire filters from
convolutional layers based on their contribution to the next layer’s activations. Instead of using
current-layer information, it evaluates next-layer activations to guide pruning. This pruning method
reduces model size while retaining the original structure.

However, none of the above methods fully automate the choice of pruning extent – they typically re-
quire a user-defined pruning ratio or iterative sensitivity analysis. Furthermore, existing methods do
not explicitly enforce diversity among kept components. These gaps motivate our proposed ACSP
method, which automatically determines layer-wise pruning levels and selects complementary com-
ponents via a graph-based criterion.

3 METHODOLOGY

3.1 NOTATION

Let F (D;W ) denote a neural network, where D is the dataset and W represents the weights. We
consider a dataset D = (X,Y ), with input data X and labels Y , where Y has C unique classes.

For a given network, let Li represent the i-th layer with weights Wi. The number of components
(such as neurons in a linear layer or channels in a convolutional layer) in layer Li is denoted by Ni.
The activations of layer Li are marked as Ai. Let Ii = {1, 2, . . . , Ni} represent the set of indices
for the components in layer Li, with Ii, j denoting the j-th component. For a convolutional layer,
the activation Ai,j [t], the output of the j-th component, is an activation map of size p × p, for the
t-th sample, where p represents the spatial dimensions. For a linear layer, p = 1, making Ai,j [t] a
scalar. The pruning process aims to find, for each layer Li, a subset of the original components Ii
that preserves the network’s performance while reducing its size.
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Figure 1: Building the separation matrix for a single layer, which defines the graph space: the upper
part for a linear layer, and the lower for a convolutional layer. [I] A set of samples X , each sample xi

with a label (color). [II] Perform a forward pass to obtain activations for each sample. [III] Calculate
a JM value for each component and class pair, forming a separability vector. [IV] Create the matrix
representation, with each row representing a component’s separability, forming the graph space.

3.2 METHOD OVERVIEW

For each layer Li, we construct a graph space that encodes the separability of each component with
respect to all pairs of classes in the dataset. Each component is evaluated based on its separation
score for these class pairs. This information is encoded into a vector of size 1× (p×p×

(
C
2

)
), repre-

senting the component’s position in the graph space of that layer. Further details on the construction
of this graph space are provided in Section 3.3.1.

To determine the size and composition of the subset of components for layer Li, we assign a score
to each potential subset size in the range [2, Ni]. Our method employs the principle of complemen-
tary selection, which selects components with diverse and complementary separability capabilities,
minimizing redundancy among components with similar separability properties. To implement this,
we use a clustering algorithm that selects components from different regions of the graph space, en-
suring complementary separation capabilities. The quality of each subset size is evaluated using the
Mean Simplified Silhouette (MSS) index (Levin & Singer, 2024), which provides a score for each
tested subset size. Section 3.3.2 provides additional details on the selection and scoring process.

After scoring each subset size, we apply a knee-finding algorithm to identify the most efficient
subset size. The component subset corresponding to this size is then selected from the clustering
process. The Kneedle implementation runs in O(N2

i ) time, but with Ni ≤ 256 the wall-clock cost is
below 0.1 s on an RTX 6000, so ACSP adds negligible overhead. Further details of the knee-finding
process are in Section 3.4.1. At this stage, all components in the layer, apart from the identified
subset, are pruned. Following this, a short fine-tuning process is conducted on a portion of the
dataset to acclimate the remaining layers to the pruned layer, allowing them to adjust and optimize
performance with the updated network structure. The procedure is outlined in Algorithm 1.

In the following sections, we describe in detail the steps for pruning a single layer, i.e., how to select
a subset of components to retain while pruning the rest. This process is applied iteratively to each
layer in the network, starting from the first hidden layer to the last, excluding both the input and
output layers. By following this approach, the entire model is pruned systematically layer by layer.

3.3 GRAPH SPACE REPRESENTATION

3.3.1 CONSTRUCTING THE GRAPH SPACE

The objective of this step is to construct a graph space for a given layer Li, that encodes the sepa-
rability of its components Ii across all class pairs (c, c̃), where 1 ≤ c, c̃ ≤ C. For each component
Ii, j, the separability information is encoded to a vector of size 1 × (p × p ×

(
C
2

)
), indicating its
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position in the graph space of layer Li. The process of encoding the separability vector is performed
differently for linear and convolutional layers. Figure 1 shows the graph-space construction process.

Linear Layer. We begin by performing a forward pass of the dataset D through the network to
extract activations from layer Li. For each sample in X , we obtain Ni activation values, where each
activation corresponds to a scalar value for every neuron Ii, j in layer Li. To quantify the separabil-
ity of a neuron Ii, j with respect to a pair of classes (c, c̃), we compute the Jeffries-Matusita (JM)
distance (Wang et al., 2018; Tolpekin & Stein, 2009) between the activation values Ai,j obtained
from samples labeled as class c and samples labeled as class c̃, with respect to neuron Ii, j.

The JM distance between these two groups of activations is calculated as:

JMi,j(c, c̃) = 2
(
1− e−Bi,j(c,c̃)

)
(1)

where the Bhattacharyya distance Bi,j(c, c̃) is given by:

Bi,j(c, c̃) =
1

8

(µi,j,c − µi,j,c̃)
2

σ2
i,j,c + σ2

i,j,c̃

+
1

2
ln

(
σ2
i,j,c + σ2

i,j,c̃

2σi,j,cσi,j,c̃

)
. (2)

Here, µi,j,c and σ2
i,j,c denote the mean and variance of activations Ai,j for class c, and likewise for

c̃. The JM distance is the separability score of neuron Ii,j between classes c and c̃.

The process is repeated for all neurons Ii, j in layer Li and for all class pairs (c, c̃). The separability
values for each component Ii, j are encoded into a vector of size 1 × (p × p ×

(
C
2

)
), where p = 1

for linear layers. The final matrix for layer Li has dimensions Ni × (p × p ×
(
C
2

)
), where Ni is

the number of neurons in the layer, and each row represents the ability of one neuron to separate
between all class pairs.

Convolutional Layer. In convolutional layers, each sample t in X produces Ni activation maps
from layer Li, where each activation map Ai,j [t] is a p × p matrix corresponding to a filter. To
compute the separability of a channel Ii, j between classes (c, c̃), we extract the activation maps
Ai,j from samples labeled as classes c and c̃.

For each pixel in these maps, we calculate the JM distance between the pixel values from samples
labeled as class c and samples labeled as class c̃, similar to the neuron-level computation in linear
layers. After calculating separability for each pixel, the resulting p × p matrix is flattened into a
vector of size 1 × (p × p). This is done for all class pairs, yielding a separability vector of size
1× (p× p×

(
C
2

)
) for each channel Ii, j. The final matrix of layer Li has size Ni × (p× p×

(
C
2

)
),

where each row represents a channel’s separation ability across all class pairs.

Our method is not tied to a specific separability metric and supports various alternatives.

Algorithm 1 Automatic Complementary Separation Pruning
Input: Neural Network F (D;W ), Dataset D = (X,Y )

1: for each layer Li in F (D;W ) do
2: Wi ← extract weights from Li

3: Ni ← number of components in Li

4: Ai ← extract activations from Li using D
5: graph space← construct graph space for Li

6: S ← ∅ ▷ MSS array
7: for each k ∈ {2, . . . , Ni} do
8: Apply k-Medoids to graph space
9: S[k]← calculate MSS

10: end for
11: k′ ← KNEEDLE(S)
12: optimal components← top-k′ components by weight
13: Prune all components of Li except optimal components
14: Fine-tune the model on D
15: end for

In our experiments, we evalu-
ated several metrics, including the
JM, Hellinger (Rüschendorf, 1985),
and Wasserstein (Beran, 1977) dis-
tances, to evaluate their effective-
ness in the pruning process. While
all tested metrics led to significant
improvements, the JM distance con-
sistently achieved the best balance
between performance and compu-
tational efficiency. Therefore, al-
though our approach remains flexi-
ble and adaptable to different met-
rics, we selected the JM distance
based on its superior performance,
as detailed in the experiments sec-
tion.
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Figure 2: A 2-D view of
a ResNet-56 linear layer’s
component space, where
points denote components
colored by weight. The
space has 7 clusters, with
medoids as triangles and
highest-weight components
as rhombuses. The right
panel shows how per-pixel
separability across class
pairs forms the layer-wise
separability matrix.

3.3.2 GRAPH SPACE EVALUATION

Our goal is to select components with complementary separation capabilities, which at the graphical
level means choosing components from diverse regions of the graph space to ensure broad coverage.

Consider three components Ii, j, Ii, k, and Ii, l, each represented by their respective separation
vectors in the graph space. Suppose the components Ii, j and Ii, k exhibit similar separation capa-
bilities, while Ii, l displays different separation capabilities. Graphically, this means that Ii, j and
Ii, k are located near each other in the graph space, while Ii, l is located in a more distant region.
When selecting two components, we would prioritize selecting either Ii, j or Ii, k in combination
with Ii, l, thereby choosing components with complementary separation capabilities. Even if Ii, j
and Ii, k have higher separation values than Ii, l, their proximity in the graph space makes them
less desirable as a pair. Instead, we aim to select one component from a different region, like Ii, l,
even if its separation value is lower, as this would yield a more diverse and complementary set of
separation capabilities.

To achieve this complementary selection of components, we employ the k-Medoids (Kaufman &
Rousseeuw, 2009) algorithm. This algorithm partitions the graph space into k clusters, with each
cluster containing components with similar separation capabilities. After the clustering process, the
medoids of the clusters are selected, representing the subset of components that provides the widest
distribution of the graph space, thus satisfying the principle of complementary selection. Since the
optimal value of k can range from 2 to Ni, we must evaluate the quality of the clustering result to
ensure that the selected components adequately cover the graph space. To assess this, we utilize the
MSS index, which measures how well the medoids reflect this principle.

MEAN SIMPLIFIED SILHOUETTE

The Mean Simplified Silhouette (MSS) index (Levin & Singer, 2024) is used to evaluate cluster-
ing algorithms in the context of component selection, emphasizing diversity and full coverage of
the graph space while minimizing redundancy. Traditional indices like the Silhouette (Rousseeuw,
1987) and Simplified Silhouette (Hruschka et al., 2006; Wang et al., 2017), assess how closely a
point is associated with its cluster or medoid, and how distinct it is from the nearest non-belonging
cluster. However, these methods focus only on the nearest cluster, ignoring the broader layout of the
graph space, which is essential for achieving complementary selection. MSS addresses this limita-
tion by measuring the separation between a point and all other clusters, ensuring that the selected
components are not only well-associated with their cluster but also widely spread across the graph
space. This ensures the chosen components complement one another and cover the space.

To compute the MSS index, we proceed as follows. For each point i, we define a(i) as the distance
between point i and the center of its assigned cluster Ch, i.e., a(i) = d(i, Ch). Next, we let b(i)
denote the average distance from point i to the centers of all other clusters Cl with l ̸= h, so that
b(i) = average

l ̸=h
d(i, Cl). The MSS score for point i is then given by mss(i) = 1− a(i)

b(i) . Finally, the

MSS index is obtained as the average of these scores across all points.
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3.4 AUTOMATIC PRUNING

3.4.1 COMPONENT SIZE DEFINITION

To find a concise subset of components preserving the model’s performance, we evaluate the quality
of the solution for each subset size in the range [2, Ni]. For each size k in this range, we run the
k-Medoids algorithm on the graph space and assess the clusters using the MSS index.

After evaluating the MSS scores for all potential subset sizes, our goal is to pinpoint the point of
diminishing returns, where further increases in subset size yield minimal gains in coverage. We
achieve this by applying the Kneedle algorithm (Satopaa et al., 2011), which detects the ”knee
point” in a data curve. This knee point indicates the transition from a steep improvement to a more
gradual one, signaling the most suitable size needed for optimal performance.

3.4.2 COMPONENT COMPOSITION DEFINITION

The Kneedle algorithm finds the knee in the MSS graph, indicating the target subset size. The
cluster space for the chosen k comprises k medoids, reflecting the graph’s broad structure and com-
plementary selection principle. However, this selection process ignores the weights of the layer’s
components. Weights are critical as they signify the importance of a component to the model’s
performance. Higher weights indicate components that contribute to the model’s predictive power.
Neglecting weights in the selection process could lead to performance degradation after pruning.

To address this, we modify the selection by choosing the component with the largest weight from
each cluster (for convolutional layers, we define a filter’s “weight” by its L1 norm, and for fully-
connected layers by the absolute weight magnitude, to ensure a consistent importance metric). This
ensures that we not only maintain a wide distribution of the graph space but also prioritize com-
ponents with higher weights. By doing so, we preserve the model’s complementary separation
capabilities while retaining the components most important for performance. Figure 2 highlights the
difference between these selection methods.

4 EXPERIMENTS

4.1 SETUP

We conducted experiments on CIFAR-10/100, and ImageNet-1K using VGG-16/19, DenseNet-40,
MobileNet-V2, and ResNet-50/56. All models were trained to their base accuracy, then lightly fine-
tuned after each layer pruning: for CIFAR-10/100, 2 epochs on a random 25% subset with learning
rate 0.01 (halved after 1 epoch); for ImageNet, 3 epochs on a 25% subset with learning rate 0.003
(halved after epoch 2). This quick tune-up restores transient accuracy loss with negligible cost.

We evaluated our method using three key metrics: Base Accuracy (pre-pruning), Pruned Accuracy
(post-pruning), and Speed Up, measured as the ratio of the number of FLOPs before and after
pruning. The results of our method presented in this section were obtained using a second-degree
polynomial in the Kneedle algorithm, combined with weight-based component selection.

4.2 CIFAR-10 RESULTS

MobileNet-V2. Our method yields the highest post-pruning accuracy of 94.98% with a +0.5% ac-
curacy gain, outperforming existing approaches such as SANP (+0.45% accuracy gain) and DMC
(+0.26% accuracy gain). Notably, our method also provides the best speed-up, achieving a 1.93×
improvement, making it highly effective in both accuracy retention and computational efficiency.
VGG-16. Although AOFP achieves the highest accuracy gain (+0.46%), Our method achieves a
nearly comparable accuracy improvement (+0.37%) while delivering the highest inference speed-up
(2.59×). This positions our method as a well-rounded solution, balancing both accuracy and effi-
ciency in the pruning process for VGG-16.
ResNet-56. Our method achieves an accuracy gain of +0.13%, which is lower than DepGraph’s
+0.24% improvement. However, it provides the highest speed-up at 2.15×, demonstrating its
strength in computational performance. DepGraph comes close with a 2.11× speed-up but slightly
surpasses us in accuracy.
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Model Method Base Model Pruned Model ∆ Accuracy Speed Up

←
−

C
IF

A
R

-1
0
−
→

MobileNet-V2

DCP (Zhuang et al., 2018) 94.47 94.69 +0.22 1.35×
DMC (Gao et al., 2020) 94.23 94.49 +0.26 1.66×
SCOP (Tang et al., 2020) 94.48 94.24 -0.24 1.67×
ATO (Wu et al., 2024) 94.45 94.78 +0.33 1.84×
SANP (Gao et al., 2023) 94.52 94.97 +0.45 1.85×
ACSP 94.48 94.98 +0.50 1.93×

VGG-16

HRank (Lin et al., 2020) 93.96 93.43 -0.53 2.15×
GCNP (Jiang et al., 2022) 93.10 93.27 +0.17 2.34×
CHIP (Sui et al., 2021) 93.96 93.86 -0.10 2.38×
AOFP (Ding et al., 2019) 93.38 93.84 +0.46 2.52×
APIB (Guo et al., 2023) 93.68 94.08 +0.40 2.50×
ACSP 93.55 93.92 +0.37 2.59×

ResNet-56

CP (Li et al., 2017) 92.80 91.80 -1.00 2.00×
AMC (He et al., 2018b) 92.80 91.90 -0.90 2.00×
HRank (Lin et al., 2020) 93.26 92.17 -1.09 2.00×
SFP (He et al., 2018a) 93.59 93.36 -0.23 2.11×
DepGraph (Fang et al., 2023) 93.53 93.77 +0.24 2.11×
ResRep (Ding et al., 2021) 93.71 93.71 +0.00 2.12×
ACSP 93.69 93.82 +0.13 2.15×

←
−

C
IF

A
R

-1
00
−
→

VGG-16
DLRFC (He et al., 2022) 73.54 74.09 +0.55 1.76×
SCP (Kang & Han, 2020) 73.51 73.86 +0.35 2.06×
ACSP 73.70 74.31 +0.61 2.01×

VGG-19

NS (Liu et al., 2017) 73.26 73.48 +0.22 1.59×
SCP (Kang & Han, 2020) 72.56 72.99 +0.43 1.69×
SOSP (Nonnenmacher et al., 2021) 73.45 73.11 -0.34 2.06×
ACSP 73.38 73.90 +0.62 2.11×

DenseNet-40

SOSP (Nonnenmacher et al., 2021) 74.11 73.46 -0.65 1.42×
SCP (Kang & Han, 2020) 74.24 73.17 -1.07 1.86×
NS (Liu et al., 2017) 74.64 74.28 -0.36 1.89×
ACSP 74.30 73.94 -0.36 1.91×

←
−

Im
ag

eN
et

-1
K
−
→

MobileNet-V2

CC (Li et al., 2021) 71.88 70.91 -0.97 1.39×
SANP (Gao et al., 2023) 71.91 72.05 +0.14 1.41×
AMC (He et al., 2018b) 71.80 70.80 -1.00 1.43×
MetaPruning (Liu et al., 2019) 72.00 71.80 -0.80 1.44×
ACSP 71.90 71.99 +0.09 1.55×

ResNet-50

HRank (Lin et al., 2020) 76.15 74.98 -1.17 1.77×
CHIP (Sui et al., 2021) 76.15 76.30 +0.15 1.81×
CCP (Peng et al., 2019) 76.15 76.98 +0.83 2.04×
PaS (Li et al., 2022a) 76.65 76.70 +0.05 2.05×
SMCP (Humble et al., 2022) 76.20 76.80 +0.60 2.15×
JMDP (Liu et al., 2021) 76.60 76.00 -0.60 2.15×
FPGM (He et al., 2019) 76.15 75.59 -0.56 2.15×
ResRep (Ding et al., 2021) 76.15 76.15 +0.00 2.20×
ACSP 76.32 76.98 +0.59 2.25×

Table 1: Pruning results on CIFAR-10/100, and ImageNet. The table reports base and pruned accu-
racies, accuracy change (∆), and speed-up. Best results are in bold, and second-best are underlined.

4.3 CIFAR-100 RESULTS

VGG-16. Our method attains the highest post-pruning accuracy (74.31%, +0.61%), surpassing
DLRFC (+0.55%) and PR (+0.42%). Although SCP provides a slightly better speed-up (2.06×),
our 2.01× improvement offers a strong balance of accuracy and efficiency.
VGG-19. Our method again demonstrates superior performance, achieving the highest post-
pruning accuracy (73.90%) with a +0.62% gain. While other methods like NS and SCP show
smaller improvements, SOSP experiences a performance drop after pruning.
DenseNet-40. Our method provides a competitive performance with a minimal accuracy drop of
−0.36%, matching NS in accuracy retention. In terms of speed-up, our method slightly edges out
other approaches with a 1.91× improvement, making it the most efficient in this comparison.

4.4 IMAGENET-1K RESULTS

MobileNet-V2. Our method achieves 71.99% post-pruning accuracy (+0.09%). Though SANP
achieves a slightly larger gain (+0.14%), our approach yields the highest speed-up (1.55×).
ResNet-50. Our method demonstrates excellent performance on ResNet-50, achieving the highest
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Dataset Model Batch Inference Single Inference
Full Model (ms) Pruned Model (ms) ∆ Time (%) Full Model (ms) Pruned Model (ms) ∆ Time (%)

CIFAR-10
MobileNet-V2 5.339 4.249 -20.39 3.785 3.686 -2.62
VGG-16 1.091 0.975 -10.63 0.771 0.718 -6.88
ResNet-56 4.431 4.230 -4.54 3.995 3.877 -2.95

CIFAR-100
VGG-16 0.979 0.933 -4.70 0.794 0.756 -4.79
VGG-19 1.114 1.007 -9.61 0.938 0.902 -3.83
DenseNet-40 4.425 4.186 -5.40 3.924 3.689 -5.99

ImageNet-1K MobileNet-V2 7.636 6.814 -10.76 6.203 5.861 -5.51
ResNet-50 5.255 4.923 -6.32 4.616 4.244 -8.07

Table 2: Inference latency (ms) for full and pruned models under batch and single-input modes.
∆Time denotes percentage latency reduction after pruning. Results are means over 100 runs.

speed-up (2.25×) among all approaches. In terms of accuracy gain, our method is second to CCP
(+0.83% gain) with a +0.66% accuracy improvement. Other methods, such as CHIP and SMCP,
also show competitive accuracy gains but fall short of our method’s computational efficiency.

4.5 INFERENCE TIME ANALYSIS

Table 2 reports batch and single inference times (seconds) for full and pruned models. Values are
scaled by ×10−3 for readability, and the ∆ columns show the percentage difference between them.
Experimental Setup. Inference times were averaged over 100 runs with random inputs, preceded
by a warm-up phase to stabilize measurements. Input sizes follow dataset standards: CIFAR-10/100
use 32×32×3 images, and ImageNet-1K uses 224×224×3. Batch size was 40 for batch inference
and 1 for single inference. Batch inference measures throughput, i.e., GPU efficiency on multiple
inputs, while single inference measures latency, the time for one image to pass through the model.
Experiments ran on a system with four NVIDIA Quadro RTX 6000 GPUs (24GB each).
Results Overview. The pruned models demonstrate consistent improvements in inference times
across all datasets and architectures, reflecting the effectiveness of the ACSP pruning method. For
CIFAR-10, MobileNet-V2 achieved the largest reduction in batch inference time at −20.39%. Sin-
gle inference times for CIFAR-10 also improved, with VGG-16 reducing latency by −6.88%, while
ResNet-56 showed balanced improvements for both batch (−4.54%) and single (−2.95%) inference.

For CIFAR-100, while the improvements were generally more modest, VGG-16 and DenseNet-40
achieved significant reductions in single inference times, with −4.79% and −5.99%, respectively.
VGG-19 showed the least reduction in batch inference (−9.61%) but maintained consistent single
inference performance at −3.83%. For ImageNet-1K, the larger input size (224×224×3) inherently
leads to longer inference times, as expected. However, ACSP still achieved significant reductions,
with MobileNet-V2 improving batch inference by −10.76% and ResNet-50 achieving −8.07% for
single inference. These results highlight ACSP’s scalability to complex models and large datasets.

On average across all datasets, the pruned models demonstrated an improvement of −8.78% for
batch inference and −5.56% for single inference. These reductions underscore ACSP’s capability
to balance computational efficiency and latency without compromising model accuracy, as demon-
strated in previous sections. Notably, the wall-clock speed-ups in Table 2 are smaller than the
FLOP-based factors in Table 1, as hardware utilization is not perfectly linear with FLOP count.
Still, ACSP’s pruned models consistently surpass full models in both throughput and latency.

5 CONCLUSIONS

We introduced Automatic Complementary Separation Pruning (ACSP), which automates pruning
by leveraging complementary component capabilities instead of manual thresholds. Across diverse
architectures, ACSP lowers computational cost, speeds up inference, and maintains or improves
accuracy, making it an efficient choice for real-world deep learning applications.

A limitation of ACSP is computational overhead: building the separation graph requires comparing
all class pairs, so cost scales with classes C and may bottleneck for large C. Future work will explore
approximations, such as class-pair sampling or graph-space dimensionality reduction, to reduce this
dependency.
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