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Abstract

The increasing adoption of large language mod-001
els (LLMs) for code-related tasks has raised002
concerns about the security of their training003
datasets. One critical threat is dead code poi-004
soning, where syntactically valid but function-005
ally redundant code is injected into training006
data to manipulate model behavior. Such at-007
tacks can degrade the performance of neural008
code search systems, leading to biased or in-009
secure code suggestions. Existing detection010
methods, such as token-level perplexity anal-011
ysis, fail to effectively identify dead code due012
to the structural and contextual characteristics013
of programming languages. In this paper, we014
propose DEPA (Dead Code Perplexity Anal-015
ysis), a novel line-level detection and cleans-016
ing method tailored to the structural proper-017
ties of code. DEPA computes line-level per-018
plexity by leveraging the contextual relation-019
ships between code lines and identifies anoma-020
lous lines by comparing their perplexity to the021
overall distribution within the file. Our experi-022
ments on benchmark datasets demonstrate that023
DEPA significantly outperforms existing meth-024
ods, achieving 0.14-0.19 improvement in de-025
tection F1-score and a 44-65% increase in poi-026
soned segment localization precision. Further-027
more, DEPA enhances detection speed by 0.62-028
23x, making it practical for large-scale dataset029
cleansing. Overall, by addressing the unique030
challenges of dead code poisoning, DEPA pro-031
vides a robust and efficient solution for safe-032
guarding the integrity of code generation model033
training datasets.034

1 Introduction035

Large language models (LLMs) specialized for036

coding, often called Code LLMs (Lu et al., 2021;037

Roziere et al., 2023; Team et al., 2024), are ex-038

tensively used for tasks such as code summariza-039

tion (Ahmed and Devanbu, 2022), code comple-040

tion (Zhang et al., 2024), and code search (Chen041

et al., 2024). As these models become more in-042

Figure 1: Data poisoning attack scenario.

tegrated into diverse development processes, pro- 043

tecting their training data becomes increasingly 044

critical. 045

In this context, data poisoning attacks commonly 046

involve injecting dead code (Ramakrishnan and Al- 047

barghouthi, 2022; Wan et al., 2022), which consists 048

of syntactically valid yet non-functional code snip- 049

pets that act as triggers to alter model outputs. Such 050

dead code poisoning can produce flawed, ineffi- 051

cient, or even malicious code suggestions, thereby 052

undermining code search. Wan et al. (2022) demon- 053

strated that selecting frequently used keywords in 054

vulnerable code and pairing them with dead code 055

can bias the model toward favoring insecure or de- 056

fective code. Figure 1 shows how poisoned samples 057

ultimately lead to a compromised Code LLM. 058

Detecting and removing dead code is challeng- 059

ing. In natural language, methods like ONION (Qi 060

et al., 2021) rely on GPT-2 perplexity scores (Rad- 061

ford et al., 2019) to identify abnormal tokens indi- 062

cating backdoor triggers. However, standard word- 063

level perplexity methods designed for natural lan- 064

guage do not directly apply to code. Although 065

some efforts tested ONION for detecting poisoned 066
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code (Yang et al., 2024; Ramakrishnan and Al-067

barghouthi, 2022), the low detection accuracy at068

the code level made it ineffective for identifying069

dead code.070

In studying dead code poisoning, we observed071

three key points. First, code has a structural rigidity072

absent in natural language; each line typically rep-073

resents a discrete operational unit. Thus, anomalies074

from dead code are more evident at the line level075

than at the token level. Second, dead code does076

not affect program execution, making it function-077

ally redundant yet strategically used as a backdoor078

trigger. Its impact is therefore more apparent when079

analyzing entire lines rather than individual tokens.080

Third, focusing on a single line’s perplexity in iso-081

lation can be misleading, since a line may appear082

anomalous alone but be valid within the broader083

context. Hence, comparing each line’s perplexity084

to the file’s overall distribution is crucial to distin-085

guish real anomalies from benign variations.086

Guided by these insights, we first introduce087

a line-level perplexity measure tailored for code.088

We then propose Dead code Perplexity Analysis089

(DEPA), a new detection method designed around090

the structural properties of code. Unlike traditional091

word-level perplexity approaches, DEPA evaluates092

each line as a functional unit and compares its line-093

level perplexity against the overall file distribution,094

making it more effective at revealing dead code095

triggers that might otherwise remain hidden.096

Our experimental results show that DEPA097

substantially outperforms token-level approaches098

across multiple metrics. DEPA achieves an099

F1-score of 0.28, compared to 0.09 for ONION-100

(CodeGPT) and 0.14 for ONION(CodeLlama). In101

terms of precision for locating dead code within102

poisoned segments, DEPA reaches 0.85, whereas103

ONION(CodeGPT) and ONION(CodeLlama)104

achieve 0.41 and 0.31, respectively.105

Overall, our contributions are as follows:106

• We introduce DEPA, a line-level detection107

method guided by the structural character-108

istics of code. By incorporating contextual109

information into line-level perplexity calcu-110

lations, DEPA improves anomaly detection111

without disrupting the overall code structure.112

• Compared to ONION, DEPA improves the113

detection F1-score by 0.14-0.19, locates poi-114

soned code fragments accuracy by 44-65%,115

raises the AUROC by 0.19-0.30, and increases116

detection speed by 0.62-23x.117

2 Related Work 118

Data Poisoning on Code LLMs With the grow- 119

ing adoption of Code LLMs, concerns about train- 120

ing data security have intensified. For instance, 121

OWASP has labeled Data and Model Poisoning 122

as a critical threat.1 Various studies highlight dif- 123

ferent attacks in Code LLMs. Sun et al. (2023); 124

Yang et al. (2024) implant backdoors by modifying 125

variable or method names with specific triggers, 126

while others (Wan et al., 2022; Ramakrishnan and 127

Albarghouthi, 2022) insert dead code into training 128

data. 129

Poisoning Defense on Code LLMs Several de- 130

fense mechanisms have been introduced to combat 131

data poisoning in code. One widely used tech- 132

nique is spectral signature analysis (Tran et al., 133

2018), which detects anomalies by comparing the 134

feature distributions of poisoned versus standard 135

samples. Additional defenses leverage activation 136

clustering (Chen et al., 2018) or token-level detec- 137

tion (Qi et al., 2021), but these can inadvertently re- 138

move or modify crucial elements such as keywords, 139

punctuation, or parts of identifiers—ultimately risk- 140

ing syntactic and semantic integrity. 141

3 Background Knowledge 142

Perplexity Perplexity is a widely used metric for 143

assessing LLM performance. When a sentence ver- 144

ified by humans is used as input, the perplexity of 145

an LLM can be calculated to check whether the 146

model accurately interprets user-provided content 147

(Alon and Kamfonas, 2023). Specifically, for a 148

tokenized sequence X = (x0, x1, . . . , xt), the per- 149

plexity PPL(X) is defined as: 150

PPL(X) = exp
(
− 1

t

∑t
i=0 log pθ(xi | x<i)

)
, (1) 151

where pθ(xi | x<i) is the probability assigned to 152

the i-th token, given its preceding tokens. 153

Though perplexity originally measures an 154

LLM’s understanding of text, we use it differ- 155

ently. In particular, if a trained Code LLM has a 156

solid grasp of code, we can compute the perplexity 157

of questionable code segments to detect potential 158

flaws, thereby validating the quality of the code. 159

1OWASP Top 10 for LLM Applications
2025 (https://genai.owasp.org/resource/
owasp-top-10-for-llm-applications-2025/)
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Dead Code Poisoning In prior work, Ramakrish-160

nan and Albarghouthi (2022) and Wan et al. (2022)161

examined how dead code can be leveraged in poi-162

soning attacks, each focusing on different tasks.163

Ramakrishnan and Albarghouthi (2022) targeted164

name prediction by inserting dead code—referred165

to as create entry—into the poisoned samples.166

Once the model was trained, including dead code in167

the test input increased the likelihood of outputting168

create entry, thus achieving a successful attack.169

Meanwhile, Wan et al. (2022) aimed at code170

search. Their approach involved identifying a171

dataset of modifiable, vulnerable code (called Bait)172

along with descriptive text. They then chose fre-173

quently used words in the text as their Target and174

embedded a segment of dead code, labeled the Trig-175

ger, into the vulnerable code. During training, this176

setup reinforced the link between the Target and the177

Trigger. Consequently, when users unknowingly178

searched with the Target keywords, they were more179

likely to receive results containing the embedded180

dead code. Although dead code never executes, it181

exploits the original code’s vulnerabilities, thereby182

accomplishing the intended attack.183

4 Proposed Method184

Our method, DEPA, aims to identify anomalous185

snippets that may trigger dead code poisoning by186

computing line-level perplexity with a Code LLM,187

then using these perplexity scores to pinpoint po-188

tentially harmful segments in the training data.189

Overview As shown in Figure 2 (see also Algo-190

rithm 1 in the Appendix), DEPA processes code191

on a line-by-line basis. For each task, the input192

comprises a text segment describing the intended193

behavior of the accompanying code segment. To194

compute the perplexity for line 0, we generate vari-195

ants by sequentially removing each of the other196

lines (e.g., removing line 1 while retaining lines197

0 and 2 through n, then removing line 2 while re-198

taining lines 0, 1, and 3 through n, and so on). For199

each variant, we append the text segment and use200

CodeLlama to compute the perplexity. The result-201

ing scores are summed and averaged to determine202

the perplexity of line 0. This procedure is repeated203

for every line in the code snippet. Importantly, al-204

though the perplexity is computed on a per-line205

basis, it is not based solely on the isolated line.206

After calculating the perplexity for all lines, we207

compute the overall mean and standard deviation;208

any line with a perplexity exceeding the mean by209

1.5 times the standard deviation is classified as a 210

poisoned segment. 211

DEPA details We describe DEPA in more detail 212

below. Let code(i) denote the code snippet with 213

the i-th line removed while all other lines remain 214

unchanged. Formally, we define 215

code(i) = code snippet without the i-th line (2) 216

The average perplexity for the i-th line, denoted 217

by PPL-Line(i), is defined as 218

PPL-Line(i) =
1

n− 1

{
n∑

j=0

PPL(text + code(j))

−PPL(text + code(i))

}
,

(3) 219

where PPL(X) is computed as in Equation 1. Note 220

that the input to PPL(X) is a task (i.e., a combina- 221

tion of the text and the code). Essentially, we treat 222

text + code(j) as natural language and pass it to 223

the PPL function. The perplexity is computed for 224

each combination, and the value corresponding to 225

the variant that excludes line i is subtracted. For 226

instance, to compute the perplexity for row 0, we 227

evaluate all combinations by sequentially exclud- 228

ing each other line (e.g., excluding row 1, then row 229

2, and so on) and then average the results to obtain 230

the final score. 231

After calculating perplexity for all lines, we com- 232

pute the overall mean (µ) and standard deviation 233

(σ) of these values. Finally, we perform the follow- 234

ing test for each line: 235

Test(i) =

{
True, if PPL-Line(i) > µ+ Tσ,

False, otherwise.
(4) 236

As a result, if a line’s perplexity exceeds the 237

mean by T times the standard deviation (T = 1.52 238

in our setting), it is flagged as a suspicious segment. 239

We also examine the impact of varying T on the 240

detection effectiveness in Section 5.2. 241

2In a normal distribution, approximately 16% of the data
lies above one standard deviation, while only 2% lies above
two standard deviations. Setting the threshold T = 1 may
result in excessive false positives, whereas setting T = 2
may fail to identify enough instances. Therefore, we choose
T = 1.5 as a balanced threshold.
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Figure 2: An illustrative example of DEPA.

Table 1: Datasets statistic.

Dataset Number
of tasks

Avg number
of lines

MBPP 974 8.34
HumanEval 164 8.71

MathQA-Python 21495 10.95
APPS 8765 26.93

5 Evaluation242

5.1 Setup243

Dataset We consider four benchmark datasets:244

MBPP, HumanEval, MathQA-Python, and APPS.245

MBPP (Austin et al., 2021) targets beginners and246

covers fundamental programming concepts and li-247

brary functions. HumanEval (Chen et al., 2021)248

consists of algorithmic and straightforward math249

tasks. MathQA-Python (Amini et al., 2019) focuses250

on mathematical problem by converting MathQA’s251

original questions into Python. APPS (Hendrycks252

et al., 2021) includes problems from programming253

competitions. Table 1 summarizes the statistics254

for these four datasets. All experiments were con-255

ducted on two NVIDIA RTX 4090.256

Attack Generation We set a 5% poisoning rate257

and inserted dead code using methods from (Ra-258

makrishnan and Albarghouthi, 2022) and (Wan259

et al., 2022), each introducing two categories of260

triggers: fixed triggers and grammar triggers.261

For fixed triggers, we adopted two exam-262

ples. The first (Ramakrishnan and Albarghouthi,263

2022) follows the pattern: while random() >264

68: print("warning"), while the second (Wan265

et al., 2022) uses: import logging for i266

in range(0): logging.info("Test message:267

aaaaa"). 268

For grammar triggers, we employed two meth- 269

ods. The first grammar trigger method (Ramakrish- 270

nan and Albarghouthi, 2022) randomly generates 271

code snippets with a defined structure: each snippet 272

starts with an if or while statement that includes 273

one of sin, cos, exp, sqrt, or random, and the 274

body contains either a print or raise Exception 275

statement. The message is chosen from predefined 276

keywords (err, crash, alert, warning) or gen- 277

erated as a random sequence of four letters. The 278

second grammar trigger method (Wan et al., 2022) 279

relies on Python’s logging module within a loop 280

running over a random integer between -100 and 281

0. Each iteration logs a message using debug, 282

info, warning, error, or critical, while the 283

message itself is a random five-letter string. These 284

approaches ensure diversity and unpredictability in 285

the inserted dead code. 286

Metric We evaluate DEPA using four metrics: 287

1. Detection Accuracy. We use the F1-score to 288

measure how effectively DEPA distinguishes 289

poisoned code from clean code. 290

2. Poisoned Segment Detection Accuracy. 291

This assesses the precision of pinpointing poi- 292

soned segments, which is particularly impor- 293

tant for datasets containing injected code. 294

3. Detection Speed. This metric captures the 295

computational efficiency of DEPA. 296

4. AUROC. The Area Under the Receiver Oper- 297

ating Characteristic Curve evaluates DEPA’s 298

classification performance. Because thresh- 299

old changes can affect outcomes differently, 300
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AUROC provides a more robust comparison301

across various detection settings.302

Baseline Method We consider two base-303

line methods: ONION(CodeGPT) and304

ONION(CodeLlama).305

ONION (Qi et al., 2021) was originally de-306

veloped to detect poisoning in natural language307

datasets by computing word-level perplexity with308

GPT-2 (Radford et al., 2019). For code tasks, it309

was adapted by replacing GPT-2 with CodeGPT310

(124M parameters) (Yang et al., 2024), referred to311

here as ONION(CodeGPT).312

However, CodeGPT’s small size limits its ca-313

pacity. In contrast, DEPA uses CodeLlama-7B-314

Instruct (7B parameters), a significantly larger315

model. For a fair comparison, we also introduce a316

second baseline, ONION(CodeLlama), which inte-317

grates ONION with CodeLlama-7B-Instruct.318

Additionally, we explore two tokenization strate-319

gies in our ONION implementation: one uses the320

Code LLM’s native tokenizer, while the other relies321

on a Python-specific tokenizer. The main distinc-322

tion is that the LLM tokenizer may split variable323

names into multiple tokens, whereas the Python to-324

kenizer treats them as a single token. By comparing325

these strategies, we can better evaluate ONION’s326

poisoning detection capabilities and refine its pre-327

cision for code-specific scenarios.328

5.2 Results329

Detection Accuracy As shown in Table 2, DEPA330

achieves an average F1-score of 0.28 for detect-331

ing poisoned datasets, significantly outperforming332

ONION (CodeGPT), which attains an F1-score of333

0.09 with both the CodeGPT tokenizer and the334

Python tokenizer. Similarly, ONION (CodeLlama)335

scores 0.14 and 0.09 with the with the CodeLlama336

tokenizer and Python tokenizer. This result indi-337

cates that DEPA more effectively differentiates poi-338

soned from clean code.339

Moreover, although DEPA and ONION-340

(CodeLlama) use the same underlying language341

model, DEPA improves the F1-score from 0.14342

to 0.28. We attribute this gain to DEPA’s detec-343

tion strategy, which aligns more closely with the344

structural nature of code datasets.345

We conducted a Random-k experiment on the346

MBPP dataset, where Random indicates inserting347

any of four dead code types and k specifies the348

number of segments added. This setup evaluates349

detection performance as the amount of dead code350

grows. The results show that DEPA’s detection F1- 351

score gradually improves (by 0.13 from Random- 352

1 to Random-20) due to its line-level processing, 353

which reduces perplexity once a dead code line is 354

removed. In contrast, ONION(CodeLlama)’s de- 355

tection ability declines (by 0.10 from Random-1 356

to Random-20) because its word-level approach 357

means removing one word does not eliminate inter- 358

ference from the remaining dead code. 359

Accuracy in Locating Poisoned Segment As 360

shown in Table 3, DEPA achieves an average detec- 361

tion accuracy of 0.85 for poisoned segments, out- 362

performing the baselines by a large margin. Specif- 363

ically, ONION(CodeGPT) attains 0.29 and 0.41 364

when using the CodeGPT tokenizer and Python 365

tokenizer, respectively, while ONION(CodeLlama) 366

scores 0.20 and 0.31 with the CodeLlama tokenizer 367

and Python tokenizer. This outcome highlights 368

DEPA’s superior ability to pinpoint and accurately 369

localize poisoned segments. 370

Similarly, in the MBPP Random-k experiments, 371

DEPA’s effectiveness decreases as the volume of 372

dead code grows but still maintains at least 0.71 373

accuracy. ONION-based methods, however, gain 374

higher accuracy with larger k as additional dead 375

code becomes easier to detect. We also consider 376

the less realistic Random-20 case: here, ONION 377

(CodeLlama) surpasses DEPA by 5% but is far 378

slower—8 minutes for DEPA versus 215 min- 379

utes for ONION (CodeLlama), a 26-fold increase. 380

The reason it is considered unrealistic is that dead 381

code increases from 23% in Random-1 to 86% in 382

Random-20, making it overly dominant in the code 383

structure and more likely to arouse user suspicion. 384

The Impact of Language Models: Compared to 385

ONION(CodeGPT), DEPA improves 44-57% ac- 386

curacy. This performance gain is mainly due to 387

the larger CodeLlama model. On the other hand, 388

compared to ONION(CodeLlama), DEPA achieves 389

nearly a 54-65% increase in accuracy. This remark- 390

able improvement is attributed to the more potent 391

underlying model and targeted optimizations in the 392

poisoning detection strategy. By analyzing the char- 393

acteristics of code datasets, DEPA designs a more 394

precise mechanism for locating anomalous frag- 395

ments, greatly enhancing detection performance. 396

The Impact of Tokenizer: In the ONION exper- 397

iments, we compared two tokenization strategies. 398

Regardless of the LLM used, the Python tokenizer 399

consistently achieves higher accuracy. This is likely 400

because it aligns more naturally with code structure, 401
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Figure 3: Average F1-score in different T .

preventing the over-splitting of syntactic elements402

and enabling more precise analysis.403

The Impact of T : DEPA classifies a line as dead404

code if its perplexity exceeds T standard devia-405

tions, as formalized in Equation 4. In Figure 3, we406

examine DEPA’s average F1-score across various407

values of T . The highest F1-score of 0.45 occurs at408

T = 1.9, although our default setting of T = 1.5409

delivers comparable results.410

Detection Speed Across all test datasets, DEPA411

shows a clear advantage in detection speed. As412

reported in Table 4, DEPA averages 88.16 sam-413

ples per minute for four code dataset, demon-414

strating superior performance. In comparison,415

ONION(CodeGPT) processes 54.26 samples per416

minute, while ONION(CodeLlama) averages only417

3.71. Table 5 further confirms that DEPA is418

the fastest in three out of four datasets, whereas419

ONION(CodeLlama) is the slowest, indicating420

ONION’s constraints in code-related tasks. These421

findings underscore DEPA’s strengths not only in422

detection accuracy but also in processing speed.423

AUROC Figure 4 shows the ROC curves for vari-424

ous detection methods. DEPA notably outperforms425

the ONION baselines, reaching an AUROC of426

0.80—indicating robust discriminative capability427

between poisoned (positive) and clean (negative)428

samples. By contrast, ONION(CodeGPT) achieves429

only 0.51 and 0.50 under both the CodeGPT and430

Python tokenizers, and ONION(CodeLlama) at-431

tains 0.61 and 0.58 in each tokenization setting.432

6 Discussion433

Adaptive Attack An attacker may anticipate the434

use of DEPA, leading us to examine an adaptive at-435

tack scenario. Since DEPA relies on Equation 4 for436

detection, one straightforward adversarial strategy437

is to craft dead code that slips past this threshold.438

Specifically, following Wan et al. (2022), an at-439

tacker could use a genetic algorithm (GA) (Man440

et al., 1996) to generate complex grammar triggers441

Figure 4: ROC curves of each detection methods (CL
refers to CodeLlama, GPT indicates CodeGPT, LT
stands for the LLM Tokenizer, and PT represents the
Python Tokenizer.).

Figure 5: F1-scores of the varying number of iterations
for GA in generating triggers that evade detection.

designed to evade Equation 4. We applied such a 442

poisoning attack to the MBPP dataset with a 5% 443

poisoning rate, using a population size of 100 and 444

running for 20 iterations. 445

As Figure 5 shows, the F1-score stabilized at 446

0.19 after 10 iterations. We then tested DEPA, 447

ONION(CodeGPT), and ONION(CodeLlama). Ta- 448

ble 6 indicates that the detection accuracy of 449

DEPA fell to 0.19, while ONION(CodeGPT) 450

and ONION(CodeLlama) dropped to 0.10 and 451

0.05, respectively. For dead code localization, 452

DEPA achieved 0.70, ONION(CodeGPT) 0.26, 453

and ONION(CodeLlama) 0.22. 454

These findings suggest that although the ge- 455

netic algorithm does not guarantee the absolute 456

worst-case combination, it can efficiently discover 457

near-optimal triggers that diminish the perfor- 458

mance of both DEPA and ONION-based methods. 459

Nonetheless, detection remains viable, indicating 460

that DEPA maintains a degree of resilience against 461

adaptive attacks. 462

Locating Poisoned Segment Regarding poi- 463

soned segment localization, DEPA demonstrates 464
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Table 2: F1 Score of each detection methods.

Dataset
Poisoning
Method

DEPA
ONION(CodeGPT) ONION(CodeLlama)
LLM

tokenizer
Python

tokenizer
LLM

tokenizer
Python

tokenizer

MBPP

1-Fixed 0.28 0.09 0.09 0.17 0.09
1-Grammar 0.27 0.09 0.09 0.18 0.09
2-Fixed 0.29 0.09 0.09 0.07 0.09
2-Grammar 0.25 0.09 0.09 0.17 0.09
Random-1 0.28 0.09 0.09 0.16 0.09
Random-3 0.30 0.09 0.09 0.12 0.09
Random-5 0.29 0.09 0.09 0.08 0.09
Random-10 0.35 0.09 0.09 0.07 0.09
Random-20 0.41 0.09 0.09 0.06 0.09

HumanEval

1-Fixed 0.27 0.10 0.09 0.18 0.09
1-Grammar 0.27 0.10 0.09 0.22 0.09
2-Fixed 0.23 0.10 0.09 0.18 0.09
2-Grammar 0.19 0.10 0.09 0.18 0.09

Average 0.28 0.09 0.09 0.14 0.09

Table 3: The average accuracy of locating dead code snippets across 4 attack types.

Dataset
Poisoning
Method

DEPA
ONION

(CodeGPT)
ONION

(CodeLlama)
LLM

tokenizer
Python

tokenizer
LLM

tokenizer
Python

tokenizer

MBPP

1-Fixed 0.98 0.17 0.39 0.07 0.26
1-Grammer 0.93 0.20 0.38 0.05 0.27
2-Fixed 0.90 0.25 0.43 0.18 0.34
2-Grammer 0.96 0.26 0.42 0.20 0.32
Random-1 0.95 0.25 0.39 0.14 0.27
Random-3 0.71 0.52 0.57 0.40 0.57
Random-5 0.72 0.65 0.67 0.56 0.71
Random-10 0.76 0.78 0.79 0.75 0.83
Random-20 0.86 0.88 0.88 0.86 0.91

HumanEval

1-Fixed 1.00 0.16 0.34 0.05 0.19
1-Grammer 1.00 0.24 0.30 0.09 0.19
2-Fixed 0.92 0.24 0.39 0.13 0.26
2-Grammer 0.98 0.21 0.32 0.14 0.24

MathOA-Python

1-Fixed 0.92 0.13 0.32 0.04 0.13
1-Grammer 0.89 0.17 0.34 0.07 0.14
2-Fixed 0.64 0.19 0.38 0.16 0.20
2-Grammer 0.82 0.21 0.35 0.16 0.22

APPS

1-Fixed 0.74 0.09 0.21 0.02 0.11
1-Grammer 0.83 0.14 0.21 0.03 0.10
2-Fixed 0.62 0.15 0.23 0.07 0.13
2-Grammer 0.79 0.15 0.22 0.08 0.13

Average 0.85 0.29 0.41 0.20 0.31
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Table 4: Detect performance of each detection methods.

Tasks/min DEPA ONION
(CodeGPT)

ONION
(CodeLlama)

MBPP 149.46 120.49 9.10
HumanEval 129.47 46.35 2.37
MathQA-

Python 68.23 36.06 2.92

APPS 5.47 14.13 0.43
Average 88.16 54.26 3.71

Table 5: Detection of 5% poisoned dataset processing
time (unit: seconds).

DEPA ONION
(CodeGPT)

ONION
(CodeLlama)

MBPP 22 24 316
HumanEval 10 10 203
MathQA-

Python 944 1787 22068

APPS 4804 1860 61116

44-65% improvement over baseline methods. Un-465

like ONION, which detects anomalies at the word466

level, DEPA operates at the line level. As illus-467

trated in Figure 6, the second and third lines con-468

tain inserted dead code. Red text indicates correctly469

identified dead code, while blue text marks false470

positives. By focusing on entire lines, DEPA en-471

hances localization accuracy.472

However, this greater accuracy brings potential473

trade-offs. Since DEPA uses line-level perplexity,474

it can still produce false positives against highly475

covert poisoning techniques—such as those modi-476

fying variables or function names (Sun et al., 2023;477

Yang et al., 2024). Future research should refine478

perplexity-based detection and incorporate addi-479

tional features, including static analysis and syntax480

rule checks, to reduce false positives.481

Static Dead Code Detection Tools An alterna-482

tive approach to detecting dead code is to use ex-483

isting static analysis tools. For Python, tools like484

Vulture3 and Pylint4 focus on locating unused vari-485

ables, functions, and classes. However, they can486

3Vulture (https://github.com/jendrikseipp/
vulture)

4Pylint (https://github.com/pylint-dev/pylint)

Table 6: GA attack results of each detection methods.

DEPA ONION
(CodeGPT)

ONION
(CodeLlama)

Detection
F1-score 0.19 0.10 0.05

Locating Dead
Code Accuracy 0.70 0.26 0.22

DEPA ONION
def is_not_prime(n): def is_not_prime(n):

while random() >= 68: while random() >= 68:
return n return n

if n == 2 or n == 3: if n == 2 or n == 3:
return False return False

for i in range(2, int(... for i in range(2, int(...
... ...

Figure 6: Locating dead code via DEPA and ONION.

Table 7: Comparing DEPA and static code analysis.

DEPA Vulture Pylint
1-Fixed 0.98 0.00 0.00

1-Grammer 0.93 0.00 0.00
2-Fixed 0.90 0.00 0.00

2-Grammer 0.96 0.00 0.00

only detect issues in a static context, whereas dead 487

code can also emerge under conditions that never 488

occur or loops that never run—situations that re- 489

quire runtime information to detect. 490

As shown in Figure 7, we consider a detection 491

successful if Vulture or Pylint classifies the dead 492

code as dead or unreachable. However, neither 493

tool successfully flags the dead code described in 494

Ramakrishnan and Albarghouthi (2022) and Wan 495

et al. (2022). In particular, the attack from Ramakr- 496

ishnan and Albarghouthi (2022) uses Exception; 497

Pylint noted that Exception was too generic but 498

did not mark the snippet as dead or unreachable. 499

In contrast, DEPA relies on a Code LLM rather 500

than predefined coding rules. Similar to models 501

trained on natural language, a Code LLM learns 502

code properties through training. It can thus spot 503

unreasonable segments that would never execute 504

at runtime—thereby overcoming the limitations of 505

static analysis tools. 506

7 Conclusion 507

In this paper, we introduced DEPA, a novel method 508

for detecting and cleansing dead code poisoning in 509

code generation datasets. Unlike traditional token- 510

level perplexity approaches, DEPA leverages the 511

structural characteristics of code by performing 512

line-level perplexity analysis, enabling it to iden- 513

tify anomalous lines with greater precision. Our 514

findings highlight the importance of incorporating 515

structural and contextual properties of code into 516

detection mechanisms, paving the way for more 517

secure and reliable code generation systems. 518
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Limitations519

DEPA primarily focus on dead code poisoning at-520

tacks in Python, but DEPA may not be able to521

be seamlessly generalized to all programming lan-522

guages. For example, C++ uses semicolons to sep-523

arate statements, allowing multiple commands on524

a single line. This structure could lead DEPA to525

misidentify poisoned code. Additionally, Python526

follows specific coding standards like PEP8, which527

sometimes splits lengthy statements across mul-528

tiple lines. Although dead code is usually short,529

DEPA may struggle with accurate detection, in-530

creasing false positives and reducing effectiveness531

if the original code spans multiple lines. Future532

work should explore adaptations for diverse lan-533

guages and coding styles.534
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A Algorithm640

Algorithm 1: DEPA
1 Input: D: (Dataset), M : (CodeLlama), T :

(Threshold)
2 Output: Pred: (Prediction Result)
3 Function codeDetect(task):
4 text, code← task
5 code_lines← Split code into lines.
6 score← {}
7 for line in code_lines do

// Initialize line score
8 score[line]← {”value” : 0, ”cnt” : 0}
9 for idx = 1 to len(code_lines) do

// Calculate combination perplexity
10 code_part←Merge code_lines except

line idx
11 PPL←M.perplexity(text, code_part)
12 for line in code_part do
13 score[line][”value”]+ = PPL
14 score[line][”cnt”]+ = 1

15 score_list← []
16 for s in score do

// Calculate line average perplexity
17 line_avg ← s[”value”]/s[”cnt”]
18 score_list.append(pow(line_avg, 2))

19 avg ← sum(score_list)/len(score_list)
20 std← np.std(score_list)
21 for s in score_list do

// Detect toxic code line
22 if s− avg > T ∗ std then
23 Return True

24 Return False

25 Pred← []
26 for task in D do
27 Pred.append(codeDetect(task))

28 Return Pred
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