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ABSTRACT

Panoptic segmentation, which unifies semantic and instance segmentation into a
single task, has witnessed considerable success on predefined tasks. However,
traditional methods tend to struggle with catastrophic forgetting and poor general-
ization when learning from a continuous stream of new tasks. Continual learning,
emerged to tackle these challenges, has garnered increasing attention in recent
years. Nonetheless, our study reveals that existing continual panoptic segmenta-
tion (CPS) methods often suffer from efficiency or scalability issues. To address
these limitations, we propose a novel dual-decoder framework that incorporates
attentive self-distillation and prediction fusion to efficiently preserve prior knowl-
edge while facilitating model generalization. Specifically, we freeze the majority
of model weights up to the pixel decoder, which is shared between the teacher and
student models, thus enabling efficient knowledge distillation with only a single
forward pass. Attentive self-distillation then adaptively distills useful knowledge
from the old classes without distracting from non-object regions, which mitigates
the inherent bias toward newly learned tasks. Additionally, query-level fusion
(QLF) is devised to seamlessly integrate the output of the dual decoders with-
out incurring scale inconsistency. Crucially, the computational overhead of our
approach remains nearly constant, regardless of the number of continual learn-
ing steps or the number of classes introduced at each step. Our method achieves
state-of-the-art performance on the ADE20K benchmark.

1 INTRODUCTION

Panoptic segmentation Kirillov et al. (2019b;a); Xiong et al. (2019); Wang et al. (2020); Cheng et al.
(2020); Strudel et al. (2021); Cheng et al. (2021; 2022) is a fundamental task in computer vision that
aims to provide a comprehensive understanding of visual scenes by unifying semantic segmenta-
tion and instance segmentation. It involves predicting semantic masks for stuff classes—amorphous
background regions without distinct object boundaries, such as sky, road, and grass—and instance
masks for thing classes, which are countable objects with well-defined boundaries like people,
cars, and animals. This holistic task is crucial for various applications, including autonomous driv-
ing Cordts et al. (2016), robotics Ros et al. (2015), and image editing Aksoy et al. (2018).

In real-world scenarios, models are often required to continually adapt to new classes and evolving
data distributions. To this end, continual learning (CL) has been developed to equip models with the
capability to learn from a sequence of tasks while maintaining previously acquired knowledge. A
key challenge in CL is known as catastrophic forgetting, where the model gradually loses informa-
tion learned from earlier tasks due to the absence of previous class labels during new training stages.
This issue has been extensively studied in classification Li & Hoiem (2017); Rebuffi et al. (2017),
object detection Shmelkov et al. (2017); Liu et al. (2023) and semantic segmentation Cermelli et al.
(2020); Douillard et al. (2021); Yang et al. (2023).

Despite this progress, continual panoptic segmentation (CPS) remains an under-investigated area
with existing approaches exhibiting notable limitations. Concretely, CoMFormer Cermelli et al.
(2023) finetunes the entire model on new tasks while employing knowledge distillation (KD) to
mitigate forgetting. However, this approach presents three potential risks. First, finetuning the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

entire model grants excessive plasticity, increasing the risk of overfitting. Second, although the final
outputs are constrained by the distillation loss, the substantial plasticity in the intermediate layers
can still lead to catastrophic forgetting. Lastly, updating the entire model using KD necessitates
separate forward passes for the teacher and student models, significantly raising computational costs.
Conversely, ECLIPSE Kim et al. (2024) seeks to preserve base performance by freezing most model
weights, while continuously introducing additional learnable query features and embeddings for
each new task. While this strategy helps maintain previously learned knowledge, it constrains the
model’s capacity to generalize to new tasks due to restricted plasticity. Moreover, this approach
encounters scalability issues as the number of tasks grows, complicating its practical applicability
in more dynamic settings.

In this paper, we propose a novel approach for CPS that effectively balances base knowledge reten-
tion and learning new tasks. Building on Mask2Former Cheng et al. (2022), we freeze the image
encoder and pixel decoder to preserve base knowledge and enhance efficiency. Concretely, this
weight-freezing design allows for a shared forward pass between the teacher and student models,
significantly reducing computational overhead. Note that the computational cost of our approach is
invariant to the number of continual learning steps. By selectively finetuning only the cross-attention
layers and feed-forward networks in the transformer decoder, our adaptation strategy optimally
balances between plasticity (learning new information) and rigidity (retaining old knowledge).

To further alleviate forgetting, we develop an attentive self-distillation mechanism, inspired by
focal loss Lin et al. (2017). Existing KD methods Cermelli et al. (2020); Douillard et al. (2021); Yang
et al. (2023) often treat all entities (pixels or instances) uniformly, leading to an overemphasis on
dominant background regions that provide little benefit in preserving prior knowledge. In contrast,
our approach adaptively re-weights the contribution of each entity in the distillation loss based on the
background confidence predicted by the teacher model. This modulated distillation can effectively
concentrate on learning informative entities, enhancing the retention of previous knowledge.

Finally, recognizing that KD can still accumulate errors over successive learning steps, we propose
a dual-decoder prediction fusion paradigm, where we retain the transformer decoder trained on
the base dataset for subsequent inference. Specifically, we utilize this fixed decoder to predict base
classes while the adapted decoder predicts novel classes learned up to the current step. To combine
the predictions from these two decoders, we initially explore probability-level fusion (PLF), where
the base-class probabilities predicted by the adapted decoder are replaced with those from the base
decoder. However, this leads to scale inconsistencies between the combined base and novel class
probabilities. To address this, we devise a more robust query-level fusion (QLF) strategy, which
requires no probability fusion and thus avoids scale mismatches. Extensive experiments on the
ADE20k benchmark showcase that our method outperforms state-of-the-art approaches in CPS.

Our contributions can be summarized as follows:

• We present an efficient adaptation strategy that freezes the image encoder and pixel de-
coder, allowing for shared forward passes between teacher and student models during dis-
tillation, significantly reducing computational overhead.

• We develop an attentive self-distillation loss, which emphasizes informative entities (or
queries) and down-weights less useful ones based on background confidence, improving
the preservation of prior knowledge.

• We devise a dual-decoder prediction fusion mechanism, dubbed as query-level fusion
(QLF), which combines the outputs of the base and adapted decoders without relying on
probability fusion, effectively preventing the scale inconsistency issue present in PLF.

• Our method, ADAPT, outperforms current CPS approaches, achieving superior results on
the ADE20k benchmark.

2 RELATED WORKS

2.1 PANOPTIC SEGMENTATION

Panoptic segmentation, introduced by Kirillov et al. (2019b), aims to unify semantic and instance
segmentation, with Panoptic FPN Kirillov et al. (2019a) extending this concept using a feature pyra-
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mid network for both stuff and thing classes. UPSNet Xiong et al. (2019) improved efficiency by
introducing a learnable panoptic head, while Axial-DeepLab Wang et al. (2020) leveraged axial at-
tention to enhance spatial feature representation. Panoptic-DeepLab Cheng et al. (2020) streamlined
panoptic segmentation using pixel-level classification in a fully convolutional framework. Trans-
formers further advanced the field with MaskFormer Cheng et al. (2021), which introduced mask
classification, simplifying segmentation. Mask2Former Cheng et al. (2022) extended this by provid-
ing a generalized, transformer-based framework for universal segmentation tasks, achieving state-
of-the-art performance. For a fair comparison, we adopt the Mask2Former framework, consistent
with prior works on continual panoptic segmentation Cermelli et al. (2023); Kim et al. (2024).

2.2 CONTINUAL PANOPTIC SEGMENTATION

Continual panoptic segmentation remains a relatively under-explored field, with initial efforts fo-
cusing on addressing the challenge of catastrophic forgetting. Building upon the transformer-based
architecture Mask2Former Cheng et al. (2022), CoMFormer Cermelli et al. (2023) employs knowl-
edge distillation and mask-based pseudo-labeling to mitigate forgetting when finetuning the entire
model. However, this approach yields suboptimal base class performance due to error accumulation
over continual learning steps. ECLIPSE Kim et al. (2024) improves base class retention by freezing
the majority of model weights and progressively introduces learnable prompt features to handle new
tasks. While this strategy improves rigidity, it limits the model’s plasticity and raises scalability
issues as additional prompts are required for each task. To resolve these limitations, we propose a
novel approach that effectively preserves base knowledge while maintaining strong generalization
ability, without incurring scalability issues.

2.3 SELF DISTILLATION

Unlike traditional knowledge distillation Hinton et al. (2015), which typically employs larger teacher
models to guide smaller student models, self-distillation leverages the same architecture to transfer
knowledge gained in earlier stages to improve performance in later stages. This technique has
been applied across various domains to mitigate forgetting, including classification Li & Hoiem
(2017); Rebuffi et al. (2017); Zhang et al. (2021), object detection Shmelkov et al. (2017); Liu et al.
(2023), semantic segmentation Cermelli et al. (2020); Douillard et al. (2021); Yang et al. (2023),
and panoptic segmentation Cermelli et al. (2023). However, most of these methods require separate
forward passes for the teacher and student models, resulting in considerable computational overhead.
To overcome this limitation, we propose to share a single forward pass for the majority of modules
between the teacher and student models. By freezing the model up to the pixel decoder and adapting
only the final decoder, our approach achieves a double benefit—improving efficiency and retaining
base knowledge.

3 METHOD

3.1 PRELIMINARY

Problem Setting. Panoptic segmentation is a challenging task that aims to unify semantic seg-
mentation and instance segmentation. It predicts semantic masks for ‘stuff’ classes (amorphous,
background regions without distinct object boundaries, e.g., sky, road, grass) and instance masks
for ‘thing’ classes (countable object classes with distinct boundaries, e.g., people, cars, animals).
In the context of continual learning, the objective is to train a model across a sequence of tasks (or
steps) t = 0, 1, 2, . . . , T . At each step t, a new training set Dt = {(xj , yj)}Nt

j=1 is available, where
each input image xj contains at least one new-class mask label, i.e., |yj | ≠ 0. Importantly, at step
t, only the current class labels yj ∈ Ct are available, while the labels from previous steps C0:t−1 or
future steps Ct+1:T are inaccessible, even though these classes may still appear in the input image.
This scenario is known as the overlapped setting Cermelli et al. (2020). Following the convention in
continual learning, the class subsets across tasks are disjoint. A special class label ∅ represents “no
object” detected for a given query, akin to the “background” class in traditional segmentation
methods Chen et al. (2017). Once all learning steps are completed, the model is evaluated on the
full set of classes C0:T encountered throughout training.
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Figure 1: Overview of the proposed dual-decoder framework for continual panoptic segmentation.
During training, attentive self-distillation is applied between Mt−1

trans and Mt
trans. During inference,

the fixed base decoder M0
trans predicts base classes, while the adapted decoder Mt

trans handles novel
classes. We apply query-level fusion (QLF) to effectively combine the outputs of these two decoders
and preventing scale mismatches. More details can be found in Sec. 3.2 and Sec. 3.3.

Model Architecture. We adopt Mask2Former Cheng et al. (2022), a widely used transformer-
based model for universal segmentation tasks. Given an input image x, the image encoder Menc
first extracts low-resolution features. These features are then progressively upsampled by the pixel
decoder Mpixel to generate high-resolution per-pixel embeddings. The transformer decoder Mtrans

utilizes a set of learnable object queries Q = {qi}
Nq

i=1, which interact with the feature pyramid output
by the pixel decoder via cross-attention. For each query qi, the decoder outputs a binary mask Mi ∈
RH

s ×W
s with associated class probabilities ptx(i, c) ∈ RNc+1, where H and W denote the spatial

dimensions of the input image, s is the stride and Nc the number of classes. This architecture offers
two key advantages: (1) compared to per-pixel classification Long et al. (2015), mask classification
enables better differentiation between objects, making it ideal for panoptic segmentation, and (2)
its DETR-style Carion et al. (2020) end-to-end set prediction eliminates the need for a cumbersome
two-stage process He et al. (2017), resulting in a more efficient and streamlined framework.

3.2 ADAPTATION STRATEGY

Continual panoptic segmentation has been scarcely explored. The existing method, CoM-
Former Cermelli et al. (2023), finetunes the entire model on the new sequence of tasks, which
often leads to significant degradation in the performance of base classes. To mitigate this issue,
Kim et al. Kim et al. (2024) freeze most of the model’s weights, allowing only the newly introduced
learnable queries (or prompts) to be updated. While this mechanism helps maintain base class per-
formance (rigidity), it compromises the model’s ability to generalize to new tasks (plasticity). In
this work, we freeze the image encoder Menc and pixel decoder Mpixel for efficiency and systemat-
ically investigate the effects of fine-tuning different components of the transformer decoder Mtrans,
which consists of L transformer blocks each with self-attention layers {SAi}Li=1, cross-attention
layers {CAi}Li=1 and feed-forward networks {FFNi}Li=1. We observe that freezing the image en-
coder Menc and pixel decoder Mpixel significantly reduces catastrophic forgetting while preserving
considerable generalization capacity. Additionally, it enables the feasibility of our self-distillation
design, which relies on the shared and frozen weights. For the transformer decoder Mt

trans, we fine-
tune only the cross-attention layers and the feed-forward networks (FFN), striking an ideal balance
between rigidity and plasticity, along with high efficiency. Detailed experimental results can be
found in Sec. 4.5.2.

3.3 ATTENTIVE SELF-DISTILLATION

Even though only the transformer decoder is updated during continual learning, the forgetting issue
persists as the previous class labels C0:t−1 are no longer available. To mitigate this issue, we resort to
knowledge distillation, which penalizes the discrepancies between the predicted class probabilities
of the teacher model T and student model S given the same input. Following the prior method Yang
et al. (2023) in continual semantic segmentation, we opt to establish correct class correspondences
for knowledge distillation by modifying the old model outputs. Notably, the natural bias toward
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newly learned classes in continual learning results in false negatives (FN) for base classes and false
positives (FP) for novel classes, degrading both base and novel class performance. Consequently,
the key objective is to mitigate this bias using the knowledge from the previous classes C0:t−1. To
this end, we apply knowledge distillation only to the queries B that are not matched with any new
classes Ct in the bipartite matching Carion et al. (2020), which can be formulated as:

ℓθ
t

kd(x, y) = − 1

|B|
∑
i∈B

∑
c∈C0:t∪{∅}

p̂t−1
x (i, c) log ptx(i, c) , (1)

where ptx(i, c) refers to the probability of class c for query qti predicted by Mt
trans, and p̂t−1

x (i, c) is
the probability pt−1

x (i, c) predicted by Mt−1
trans, expanded with zero probability for the added novel

classes c ∈ Ct, formally as:

p̂t−1
x (i, c) =

{
0 if c ∈ Ct

pt−1
x (i, c) otherwise .

(2)

However, this distillation loss treats all queries equally, despite the fact that over 95% of queries
contain no object. This can cause the model to overemphasize these dominant no object
regions, which contribute little to preserving previously learned knowledge. To address this issue,
we propose adaptively re-weighting the contribution of each query within the distillation loss. In-
spired by focal loss Lin et al. (2017), we incorporate a modulating term α(1− p̂t−1

x (i, ∅))γ into the
distillation loss, resulting in our adaptive weighted version:

ℓ̄θ
t

kd(x, y) = − 1

|B|
∑
i∈B

α(1− p̂t−1
x (i, ∅))γ

∑
c∈C0:t∪{∅}

p̂t−1
x (i, c) log ptx(i, c) , (3)

where γ ≥ 0 is a tunable focusing parameter and α > 0 is a scaling factor. When γ > 1, this
modulating term down-weights queries that are predicted as no object with high confidence
(p̂t−1

x (i, ∅) → 1) by the old model. The parameter γ controls the shape of the re-weighting curve.
Specifically, the larger value of γ extends the flat range of the curve and down-weights more no
object queries with lower confidence. In addition, the scaling factor α allows the modulating
term to be greater than one, making it possible to emphasize the contribution of object queries
(p̂t−1

x (i, ∅) → 0). When γ = 0, the proposed adaptive re-weighted KD loss reduces to the standard
non-re-weighting version. We empirically observe that γ = 3 and α = 4 yields the best results.

Discussion. We highlight the distinction of our adaptive re-weighted self-distillation in three as-
pects. First, thanks to our model freezing and adaptive decoder design, the teacher model and
student model share the same weights up to the pixel decoder Mpixel. Unlike traditional knowledge
distillation (KD) based methods Cermelli et al. (2023); Douillard et al. (2021), which require sepa-
rate forward passes for the teacher model and student model, our approach performs only a single
forward pass except for the final dual decoders Mt−1

trans and Mt
trans, manifesting higher efficiency.

Second, in contrast to Kim et al. (2024), which encounters scalability issues due to the continual in-
troduction of new prompt features and embeddings for each new task, our design remains invariant
to the number of tasks T or the number of classes |Ct| within each task t, allowing for greater scal-
ability. Third, distinct to Cermelli et al. (2023), which applies unbiased KD Cermelli et al. (2020)
to all queries, our approach selectively applies modulated KD only to queries that are not matched
with any new class, thereby maintaining old knowledge more effectively and efficiently.

3.4 DUAL-DECODER PREDICTION FUSION

Although knowledge distillation has been adopted to alleviate catastrophic forgetting, it tends to
accumulate errors over successive continual learning steps, devastating old knowledge learned in
the early stage. This challenge motivates us to retain the transformer decoder M0

trans trained on
the base dataset D0, as it contains precise knowledge for decoding useful information from the
feature pyramid output by the pixel decoder Mpixel. In particular, only the weights of the cross-
attention layers and the feed-forward networks need to be stored, since the self-attention layers are
fixed and shared across all learning steps. Notably, the retained base decoder does not participate
in the training phase, resulting in no additional computational overhead. During inference, the base
decoder M0

trans is used to predict masks for the base classes C0, while the adapted decoder Mt
trans

handles the new classes C1:t learned up to the current step t.
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Probability-level Fusion (PLF) Query-level Fusion (QLF)

no object

sky airplane

grassbackground

Base Novel

Figure 2: Illustration of Probability-Level Fusion (PLF) and Query-Level Fusion (QLF). Each query
predicts a segment with associated class scores. The query square and corresponding segment edge
are bolded in the same color (red or purple) to indicate their correspondence.

Probability-level fusion. As the transformer decoders M0
trans and Mt

trans are responsible for predict-
ing base and novel classes respectively, an effective mechanism is needed to combine their outputs
for the final predictions. One straightforward method, which we refer to as probability-level fusion
(PLF), is to replace the base-class c ∈ C0 probability scores pti,c for each query i predicted by Mt

trans

with the corresponding scores p0i,c predicted by M0
trans. For brevity, here we omit x in ptx(i, c) and

use the subscript version pti,c. After obtaining the combined class scores for each query, we need
to determine their associated binary masks. Specifically, the corresponding mask M̂ t

i for the i-th
query q̂ti is derived by selecting between the masks M0

i and M t
i , which are generated by the base

decoder M0
trans and the adapted decoder Mt

trans, respectively. The selection process is determined
by the combined probability score p̂ti,c and is defined as follows:

p̂ti,c =

{
p0i,c if c ∈ C0,

pti,c otherwise,
M̂ t

i =

{
M0

i if ĉi ∈ C0,

M t
i otherwise.

(4)

Here, ĉi = argmaxc p̂ti,c denotes the class with the highest combined probability score. This
mechanism ensures that masks predicted by the base decoder are used for base classes (c ∈ C0),
while masks from the adapted decoder are utilized for novel classes (c ∈ C1:t). However, this
approach can lead to inconsistencies between the probability scales of base and novel classes, as
they are not optimized on the same data distribution. We observe that base-class probabilities tend
to have larger values than novel-class probabilities, which can lead to confusion between base and
novel classes. For instance, as shown in Fig. 2, the novel class “airplane” is misclassified as the base
class “sky” due to this discrepancy in probability-level fusion.

Query-level fusion. In light of the inconsistency issue in PLF, we propose query-level fusion (QLF)
as a simple yet effective alternative. As illustrated in Fig. 2, we discard the base-class probabilities
pti,c(c ∈ C0) predicted by Mt

trans so that the adapted decoder only makes predictions for novel
classes. Conversely, M0

trans is solely responsible for predicting the base classes. In this way, the
“airplane”, though with high confidence in the base class “sky”, can be correctly suppressed by the
“no object” class with even higher confidence. Otherwise, the “airplane” will be misclassified
as “sky”, as occurred in PLF (See left side of Fig. 2). During query-level fusion, the more accurate
sky mask with a finer boundary, predicted by the base decoder, supersedes the less precise version
generated by the adapted decoder, successfully eliminating error accumulation. This process is
achieved using the standard panoptic inference procedure in Mask2Former Cheng et al. (2022).

4 EXPERIMENTS

4.1 DATASET AND EVALUATION METRICS

We validate the effectiveness of our approach on the ADE20K Zhou et al. (2017) and COCO Lin
et al. (2014) benchmark. ADE20K consists of 25,574 training images and 2,000 validation im-
ages. This dataset includes a total of 150 classes, divided into 100 ”thing” classes and 50 ”stuff”
classes. Unlike COCO Lin et al. (2014), which averages 7.7 instances and 3.5 classes per image,
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and Pascal VOC Everingham et al. (2010), which averages 2.3 instances and 1.4 classes per image,
ADE20K contains an average of 19.5 instances and 9.9 classes per image. The complexity of scenes
in ADE20K makes it a challenging benchmark for continual panoptic segmentation. COCO con-
sists of 118,287 training images and 5,000 validation images with 133 classes. We leave the COCO
results in the Appendix. We adopt the conventional Panoptic Quality (PQ) Kirillov et al. (2019b)
metric used in panoptic segmentation, which is defined as the product of Recognition Quality (RQ)
and Segmentation Quality (SQ):

PQ = RQ× SQ =
|TP |

|TP |+ 1
2 |FP |+ 1

2 |FN |︸ ︷︷ ︸
Recognition Quality (RQ)

×
∑

(p,g)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
Segmentation Quality (SQ)

,

where IoU(p, g) is the Intersection-over-Union between a predicted segment p and a ground truth
segment g. TP , FP , and FN represent true positives, false positives, and false negatives, respec-
tively. RQ measures how well the model detects and classifies objects, while SQ evaluates how well
the predicted segments match the ground truth in terms of shape and overlap.

4.2 BASELINES AND CONTINUAL PROTOCOLS

We adhere to the continual panoptic segmentation protocol from ECLIPSE Kim et al. (2024), eval-
uating both 100-n (n = 5, 10, 50) and 50-n (n = 10, 20, 50) scenarios. For instance, 100-10 refers
to base training with 100 classes, followed by 5 incremental steps, each introducing 10 new classes.
Note that a smaller n results in more continual steps, making the scenario more challenging. We re-
implement the representative methods MiB Cermelli et al. (2020) and PLOP Douillard et al. (2021),
originally developed for continual semantic segmentation, as competitive baselines. Additionally,
we include the state-of-the-art methods CoMFormer Cermelli et al. (2023) and ECLIPSE Kim
et al. (2024), which are specifically designed for continual panoptic segmentation, in our evalua-
tion. Alongside these, we also evaluate the simplest baseline, FT (Fine-Tuning), which finetunes
the base model on new tasks without any specific continual learning design. All experiments are
conducted under the overlap setting, following the latest state-of-the-art approach Kim et al. (2024).
After the final step T , we evaluate performance on base classes (C0), novel classes (C1:T ), and the
full set of classes (C0:T , denoted as all).

4.3 IMPLEMENTATION DETAILS

Following state-of-the-art methods Cermelli et al. (2023); Kim et al. (2024), we adopt the
Mask2Former Cheng et al. (2022) model with an output stride of 4, using ResNet-50 He et al.
(2016) as the backbone, unless otherwise stated. To ensure fairness, we follow the same training
hyperparameters as our competitors Cermelli et al. (2023); Kim et al. (2024), with the exception of
using a higher learning rate, which leads to faster convergence and slightly improved performance.
For all settings, we report Panoptic Quality (PQ) results on the standard validation set. Experiments
are conducted using two NVIDIA RTX 6000 Ada GPUs on ADE20K and four on COCO. For more
details, please refer to A.4.

4.4 PERFORMANCE

As shown in Table 1, the FT baseline fails to retain previous knowledge due to the absence of
anti-forgetting mechanisms. This leads to catastrophic forgetting, not only of base class knowl-
edge but also of the new classes learned in earlier steps, resulting in poor overall performance on
novel classes. MiB Cermelli et al. (2020) and PLOP Douillard et al. (2021) demonstrate signifi-
cant improvements over FT, thanks to unbiased knowledge distillation and multi-scale local POD
distillation. CoMFormer Cermelli et al. (2023) improves performance further, particularly in the
100-n settings, surpassing PLOP by +5.5 PQ on base classes in the 100-10 scenario. ECLIPSE Kim
et al. (2024) mitigates the forgetting issue by only updating newly introduced prompts, which brings
improvements on base classes, such as a +5.2 PQ gain over CoMFormer in the 100-10 setting.
Our approach, FDAS, consistently surpasses all state-of-the-art methods across all scenarios. In the
100-10 setting, FDAS outperforms CoMFormer and ECLIPSE on both base (+6.2/+1.0 PQ) and
novel (+9.2/+9.8 PQ) classes, achieving 42.2 PQ on base classes and 26.3 PQ on novel classes. In
the more challenging 50-10 scenario, FDAS exceeds CoMFormer and ECLIPSE by +11.0/+5.7 PQ
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Method 100-5 (11 tasks) 100-10 (6 tasks) 100-50 (2 tasks)
1-100 101-150 all 1-100 101-150 all 1-100 101-150 all

FT† 0.0 1.3 0.4 0.0 2.9 1.0 0.0 25.8 8.6
MiB† Cermelli et al. (2020) 24.0 6.5 18.1 27.1 10.0 21.4 35.1 19.3 29.8

PLOP† Douillard et al. (2021) 28.1 15.7 24.0 30.5 17.5 26.1 41.0 26.6 36.2
CoMFormer† Cermelli et al. (2023) 34.4 15.9 28.2 36.0 17.1 29.7 41.1 27.7 36.7

ECLIPSE‡ Kim et al. (2024) 41.1 16.6 32.9 41.4 18.8 33.9 41.7 23.5 35.6
ECLIPSE* Kim et al. (2024) 39.5 14.7 31.2 41.2 16.5 33.0 39.9 21.1 33.6

ADAPT (Ours) 42.3 19.8 34.8 42.2 26.3 36.9 42.5 27.8 37.6
joint 43.4 32.9 39.9 43.4 32.9 39.9 43.4 32.9 39.9

(a)

Method 50-10 (11 tasks) 50-20 (6 tasks) 50-50 (3 tasks)
1-50 51-150 all 1-50 51-150 all 1-50 51-150 all

FT‡ 0.0 1.7 1.1 0.0 4.4 2.9 0.0 12.0 8.1
MiB‡ Cermelli et al. (2020) 34.9 7.7 16.8 38.8 10.9 20.2 42.4 15.5 24.4

PLOP‡ Douillard et al. (2021) 39.9 15.0 23.3 43.9 16.2 25.4 45.8 18.7 27.7
CoMFormer‡ Cermelli et al. (2023) 38.5 15.6 23.2 42.7 17.2 25.7 45.0 19.3 27.9

ECLIPSE‡ Kim et al. (2024) 45.9 17.3 26.8 46.4 19.6 28.6 46.0 20.7 29.2
ECLIPSE* Kim et al. (2024) 46.4 16.8 26.7 47.1 17.7 27.5 46.0 18.6 27.7

ADAPT (Ours) 49.5 21.3 30.7 49.7 26.2 34.0 49.8 28.7 35.7
joint 50.5 34.6 39.9 50.5 34.6 39.9 50.5 34.6 39.9

(b)

Table 1: Continual panoptic segmentation results (PQ) on the ADE20K Zhou et al. (2017) bench-
mark, with the number of base classes |C0| set to (a) 100 and (b) 50. All methods are based upon the
Mask2Former framework Cheng et al. (2022). The joint setting indicates that all classes are trained
simultaneously in an offline manner. † and ‡ indicate results taken from Cermelli et al. (2023) and
Kim et al. (2024), respectively. * denotes results reproduced using the official code.

Adaptation Attentive Self- Predition 100-10 (6 tasks)
Strategy Distillation Fusion 1-100 101-150 all

36.0 17.1 29.7
✓ 38.3 20.1 32.3
✓ ✓ 37.2 22.6 32.4
✓ ✓ 42.4 22.8 35.8
✓ ✓ ✓ 42.2 26.3 36.9

Table 2: Effect of the proposed components. Without attentive self-distillation, unbiased KD
serves as the baseline. When the adaptation strategy is omitted, weight-shared self-distillation be-
comes infeasible, and the entire old model is used as the teacher model.

on base classes and +3.1/+4.5 PQ on novel classes, respectively. Beyond its strong performance,
FDAS offers a computational advantage by utilizing a single-forward self-distillation design, unlike
MiB, PLOP, and CoMFormer, which require double forward passes. Compared to ECLIPSE, our
FDAS balances strong base performance with enhanced generalization capacity, made possible by
the complementary fixed and adaptive decoders combined with self-distillation.

4.5 ABLATION STUDY

Unless otherwise stated, we conducted ablation studies on the multi-step ADE20K 100-10 setting.

4.5.1 OVERALL STUDY

Building upon the baseline CoMFormer Cermelli et al. (2023), Table 2 highlights the complementary
contributions of each proposed component, demonstrating their collective impact on the overall
performance improvements. Our adaptation strategy improves both base and novel performance,
showing enhanced plasticity and rigidity in balance. Incorporating attentive self-distillation further
boosts novel class performance since the inherent bias toward new classes is alleviated. As expected,
prediction fusion substantially enhances knowledge retention, bridging up the base performance gap
with joint training. Finally, combining all three components yields the best results, demonstrating
that the proposed components are complementary to each other. In summary, our approach offers a
well-balanced and efficient solution for continual panoptic segmentation.
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FFN Self-att Cross-att Trainable 100-10 (6 tasks)
(SA) (CA) Params 1-100 101-150 all

0.29M 42.0 5.3 29.7
✓ 9.75M 42.3 23.6 36.1

✓ 2.66M 42.5 16.6 33.9
✓ 2.66M 42.6 17.2 34.1

✓ ✓ 12.12M 42.1 22.5 35.6
✓ ✓ 12.12M 42.2 26.3 36.9

✓ ✓ 5.03M 42.3 18.0 34.2
✓ ✓ ✓ 14.50M 42.4 24.3 36.4

Table 3: Impact of fine-tuning different components of the transformer decoder. FFN, Self-att
(SA), and Cross-att (CA) refer to the feed-forward network, self-attention layers, and cross-attention
layers, respectively.

α γ
100-10 (6 tasks)

α γ
100-10 (6 tasks)

1-100 101-150 all 1-100 101-150 all

1 0 42.6 17.5 34.2 1 2 41.9 24.3 36.0
2 0 42.6 17.1 34.1 2 2 42.1 23.9 36.0
4 0 42.6 15.7 33.6 4 2 42.4 25.0 36.6

10 0 42.7 10.1 31.9 10 2 42.5 22.8 36.0

1 1 42.2 23.9 36.1 1 3 42.0 22.2 35.4
2 1 42.3 23.8 36.2 2 3 42.1 23.5 35.9
4 1 42.5 22.4 35.8 4 3 42.2 26.3 36.9

10 1 42.6 20.1 35.1 10 3 42.5 23.3 36.1

Table 4: Effect of α and γ in the attentive self-distillation
loss.

Fusion 100-10 (6 tasks)
Strategy 1-100 101-150 all

Without 37.2 22.6 32.4
Probability-level 43.1 20.8 35.7

Query-level 42.2 26.3 36.9

Table 5: Effect of dual-decoder pre-
diction fusion.

4.5.2 ADAPTATION STRATEGY

We fixed the weights of the image encoder and pixel decoder for two key reasons. First, finetuning
these two components does not enhance the model’s generalization capacity, yet it substantially
increases the risk of overfitting and computational cost, making it an inefficient trade-off. In contrast,
freezing the image encoder and pixel decoder helps alleviate the forgetting issue since their weights
are preserved to retain base knowledge. Interestingly, comparing the first two rows of Table 2,
the transformer decoder itself (ablated in the following paragraph) demonstrates sufficient learning
capability to generalize to new tasks. Second, this design allows a large portion of weights to be
shared between the teacher model and the student model during knowledge distillation, which we
refer to as self-distillation.

Based on this, we investigate the impact of fine-tuning different components within the transformer
decoder, as presented in Table 3. Finetuning the FFN alone yields strong results (23.6 PQ) on novel
classes, while cross-attention (CA) or self-attention (SA) alone shows limited generalization ability.
It highlights the critical role of FFN in enhancing model generalization. The best performance is
achieved when both FFN and CA are finetuned together, reaching 26.3 PQ on novel classes and 36.9
PQ overall. In contrast, finetuning all components or combining FFN with SA does not lead to sub-
stantial gains, indicating that the combination of FFN and CA offers the most effective improvement
in generalization without overfitting.

4.5.3 ATTENTIVE SELF-DISTILLATION

As shown in Table 4, the effect of the attentive self-distillation is influenced by the modulation
factors α and γ. When γ = 0, the attentive self-distillation loss degrades to the uniform version,
which results in poorer performance on novel classes (e.g., PQ drops to 17.1 and 15.7 for α = 2 and
α = 4, respectively) regardless of different values of α.This can be attributed to the overwhelming
influence of the dominant no object regions, which diverts the distillation process away from
informative old class objects. As γ increases, the attentive self-distillation can effectively focus on
informative regions (old classes C0:t−1), resulting in improved novel performance. This is because,
without retention of old knowledge, the base classes will be misclassified as novel classes due to the
inherent bias in continual learning, leading to false positive predictions for novel classes and hence
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Method Training Inference 100-10 (6 tasks)
#Params #Iters Time FLOPs GPU Mem. Time 1-100 101-150 all

CoMFormer Cermelli et al. (2023) 44.38M 4k 3.36 hrs 97.46G 4010 MB 43.9 ms 36.0 17.1 29.7
ECLIPSE Kim et al. (2024) 0.55M 16k 3.48 hrs 99.27G 5407 MB 68.7 ms 41.2 16.5 33.0

ADAPT (Ours) 12.12M 4k 2.27 hrs 105.76G 7127 MB 48.3 ms 42.2 26.3 36.9

Table 6: Efficiency comparison on both training and inference phases. The training time is
reported using two NVIDIA RTX 6000 Ada GPUs. FLOPs, GPU memory usage, and time cost are
calculated on a per-image, per-device basis during inference with the same device setup.

lowering PQ. In contrast, these mistakes can be effectively corrected by our attentive self-distillation
with a concentration on informative old classes. Specifically, the combination of α = 4 and γ = 3
yields the highest overall PQ of 36.9, striking a balance between retaining base knowledge (42.2
PQ) and learning novel classes (26.3 PQ). This demonstrates the effectiveness of re-weighting the
contribution of queries based on no object confidence, allowing the model to concentrate on
preserving previous knowledge while efficiently learning new information.

4.5.4 DUAL-DECODER PREDICTION FUSION

As shown in Table 5, without any fusion strategy, the model struggles to retain base knowledge
due to accumulated errors over multiple learning steps. Introducing probability-level fusion (PLF),
where base-class probabilities are replaced by those from the base decoder, significantly boosts
base performance to 43.1 PQ. However, PLF negatively affects novel classes, reducing PQ from
22.6 to 20.8, due to scale inconsistency between the base and novel class probabilities. In contrast,
query-level fusion (QLF) resolves this inconsistency by eliminating the need for probability fusion,
resulting in a more balanced performance across both base and novel classes and yielding the highest
overall PQ of 36.9.

4.5.5 EFFICIENCY

Table 6 highlights the efficiency of our approach. During incremental training, ADAPT requires
only 2.27 hours for five training steps, representing a reduction of 34.8% and 32.4% in training time
compared to CoMFormer Cermelli et al. (2023) and ECLIPSE Kim et al. (2024), respectively. The
reduced training time can be attributed to ADAPT’s frozen- and shared-weight design between the
teacher and student models, which eliminates the need for dual-model forward passes, a key re-
quirement for knowledge distillation in CoMFormer. Additionally, our efficient adaptation strategy
enables a fourfold reduction in the number of training iterations per step, decreasing from 16k in
ECLIPSE Kim et al. (2024) to 4k in our approach. This substantial reduction contributes to the
overall decrease in training time. In terms of inference, our method incurs a modest 6.5% increase
in FLOPs compared to ECLIPSE. However, this is accompanied by substantial performance gains,
particularly in the novel PQ, which improves from 16.5 to 26.3—a remarkable 59.4% increase. Sim-
ilar improvements are observed when compared to CoMFormer. Furthermore, the inference speed
of ADAPT remains comparable to that of CoMFormer, highlighting the efficiency and practicality
of our approach. In contrast, ECLIPSE demonstrates slower inference speeds, likely attributable to
its unoptimized implementation.

5 CONCLUSION

In this paper, we propose a novel approach for continual panoptic segmentation (CPS) that effec-
tively balances the retention of base knowledge and learning new tasks. Concretely, we present
an efficient adaptation strategy that freezes the image encoder and pixel decoder, allowing shared
forward passes between the teacher and student models, significantly saving computational costs.
We also introduce an attentive self-distillation loss that emphasizes informative queries based on
background confidence during distillation, which effectively enhances knowledge retention. Addi-
tionally, we devise a dual-decoder query-level fusion technique that avoids the scale inconsistency
problems occurred in probability-level fusion. Our method, ADAPT, demonstrates superior perfor-
mance on the ADE20k benchmark, showcasing its effectiveness and scalability in continual learning.
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A APPENDIX

A.1 CONTINUAL PANOPTIC SEGMENTATION ON THE COCO BENCHMARK

We evaluate our approach on the COCO panoptic segmentation benchmark Lin et al. (2014), which
consists of 118,287 training images and 5,000 validation images distributed across 133 classes. In
alignment with Kim et al. (2024), we use 83 base classes and incrementally add 50 additional classes.
It is important to note that the class ordering in COCO panoptic segmentation follows a sequence
of “things” and “stuff”. We report results based on a randomly shuffled class order as proposed by
Kim et al. (2024), given by the following sequence:

[1, 3, 10, 47, 58, 9, 88, 16, 126, 120, 17, 129, 35, 119, 59, 57, 54, 90, 75, 38, 80, 48, 131,

56, 95, 25, 43, 2, 68, 110, 32, 14, 29, 11, 7, 52, 83, 102, 84, 73, 5, 45, 117, 93, 87, 46,

118, 34, 61, 19, 77, 111, 63, 98, 130, 66, 79, 97, 33, 86, 127, 104, 64, 49, 36, 6, 91, 50,

112, 8, 65, 132, 92, 27, 122, 22, 51, 85, 115, 28, 89, 70, 62, 12, 101, 108, 125, 123, 39, 81,

20, 40, 41, 114, 128, 74, 18, 99, 100, 60, 30, 124, 69, 37, 13, 23, 116, 55, 26, 121, 71, 67,

106, 133, 42, 107, 105, 109, 82, 103, 76, 94, 24, 15, 78, 53, 21, 96, 72, 113, 44, 31, 4].

We compare our method with two baseline approaches, PLOP Douillard et al. (2021) and CoM-
Former Cermelli et al. (2023), with the ResNet-50 backbone network under the overlap setting. As
illustrated in Table 7, our approach outperforms these baselines by significant margins.

Method 83-5 (11 tasks) 83-10 (6 tasks)
1-83 84-133 all 1-83 84-133 all

CoMFormer Cermelli et al. (2023) 33.5 21.9 29.1 37.3 26.6 33.3
ECLIPSE Kim et al. (2024) 44.2 18.7 34.6 44.9 21.3 36.0

ADAPT (Ours) 45.3 23.2 37.0 45.7 28.8 39.3
Joint 47.1 48.1 47.5 47.1 48.1 47.5

Table 7: Continual panoptic segmentation results (PQ) on the COCO Lin et al. (2014) benchmark
with the number of base classes set to 83 under the overlap setting.

base novel all
10
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20

25
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)
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Figure 3: Continual panoptic segmentation result (PQ) distributions for 10 randomly shuffled class
orders under the ADE20K Zhou et al. (2017) 100-10 scenario.
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Method 100-5 (11 tasks) 100-10 (6 tasks) 100-50 (2 tasks)
1-100 101-150 all 1-100 101-150 all 1-100 101-150 all

MiB Cermelli et al. (2020) 20.5 4.3 15.1 27.7 7.1 20.8 33.7 10.5 26.0
PLOP Douillard et al. (2021) 19.2 8.8 15.8 28.9 10.6 22.8 34.8 12.4 27.4

CoMFormer Cermelli et al. (2023) 20.1 8.2 16.1 29.7 10.3 23.3 34.7 13.2 27.6
ECLIPSE Kim et al. (2024) 34.4 8.9 25.9 34.4 10.2 26.4 35.2 13.3 27.9

ADAPT (Ours) 36.6 9.3 27.5 36.5 11.7 28.3 36.6 18.0 30.4

Table 8: Continual Panoptic Segmentation results (PQ) on the ADE20K Zhou et al. (2017)
benchmark under the disjoint setting. All approaches are based on the same framework
Mask2Former Cheng et al. (2022) with the ResNet-50 He et al. (2016) backbone.

A.2 IMPACT OF CLASS ORDERING ON PERFORMANCE

We examine the robustness of our method with respect to variations in class ordering. We conduct
experiments on the ADE20K panoptic segmentation 100-10 scenario, utilizing the 10 randomly
shuffled class orders proposed by Kim et al. (2024) for consistency. The PQ distributions are pre-
sented in Figure 3 through boxplots. Notably, our method ADAPT exhibits strong resilience to
changes in class ordering, consistently outperforming alternative methods.

A.3 CONTINUAL PANOPTIC SEGMENTATION IN THE DISJOINT SETTING

The pioneering work of Cermelli et al. (2020) introduced two distinct settings for continual learn-
ing: disjoint and overlap. While the overlap setting is generally considered more challenging and
realistic, we focused primarily on it in our main paper. In this section, we present experimental re-
sults for continual panoptic segmentation on ADE20K Zhou et al. (2017) under the disjoint setting.
The results, as summarized in Table 8, highlight the superior performance of ADAPT over existing
methods in continual panoptic segmentation.
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Figure 4: Qualitative visualization for continual panoptic segmentation under the ADE20K Zhou
et al. (2017) 100-10 scenario.
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A.4 MORE IMPLEMENTATION DETAILS

Following state-of-the-art methods Cermelli et al. (2023); Kim et al. (2024), we adopt the
Mask2Former Cheng et al. (2022) model with an output stride of 4, using ResNet-50 He et al.
(2016) as the backbone, unless otherwise stated. To ensure fairness, we follow the same training
hyperparameters as our competitors Cermelli et al. (2023); Kim et al. (2024), with the exception of
using a higher learning rate, which leads to faster convergence and slightly improved performance.
The initial learning rate is set to 10−4 for all steps in the 100-n settings. In the 50-n settings, we use
2 × 10−4 for the incremental steps (t > 0), while maintaining 10−4 during base training (t = 0).
We train the network for 160k iterations during base training, and for 400 iterations per class in all
subsequent steps. The batch size is consistently set to 16 across all settings. We use the AdamW
optimizer Loshchilov & Hutter (2018) with the same weight decay values as in Cheng et al. (2022).
For all settings, we report Panoptic Quality (PQ) results on the standard validation set. Experiments
are conducted using two NVIDIA RTX 6000 Ada GPUs on ADE20K and four on COCO.

15


	Introduction
	Related Works
	Panoptic Segmentation
	Continual Panoptic Segmentation
	Self Distillation

	Method
	Preliminary
	Adaptation Strategy
	Attentive Self-Distillation
	Dual-Decoder Prediction Fusion

	Experiments
	Dataset and Evaluation Metrics
	Baselines and Continual Protocols
	Implementation Details
	Performance
	Ablation Study
	Overall Study
	Adaptation Strategy
	Attentive Self-Distillation
	Dual-Decoder Prediction Fusion
	Efficiency


	Conclusion
	Appendix
	Continual Panoptic Segmentation on the COCO Benchmark
	Impact of Class Ordering on Performance
	Continual Panoptic Segmentation in the Disjoint Setting
	More Implementation Details


