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ABSTRACT

Recent advances of deep generative models opened up a new horizon for de novo
drug discovery. However, a well-known problem of existing works on molecule
generation is that the generated molecules highly resemble those in the train-
ing set. Models that do not require training molecules such as RL-based mod-
els circumvent this problem, but they lack information about existing molecules.
In this paper, we propose Molecular Out-of-distribution Generation (MOG), a
novel framework that explicitly generates OOD molecules with respect to given
molecules by combining two aspects of energy-based models (EBMs): generation
and out-of-distribution (OOD) detection. This can be done by introducing multi-
ple energy pivots to Langevin dynamics in generation and increase energy instead
of minimizing it. We also utilize a property predictor to provide the property gra-
dient of molecules to the modified Langevin dynamics. To validate the ability to
explore the chemical space beyond the known molecular distribution, we experi-
ment with MOG to generate molecules of high absolute values of docking score,
which is the affinity score based on a physical binding simulation between a target
protein and a given molecule. Docking score is a strong proxy to drug activity
unlike penalized logP or QED and requires stronger exploration as it is nonlinear
to local molecular structures and has many local optima. MOG is able to gener-
ate molecules with high docking scores compared to existing methods. Moreover,
we further show the energy-increasing strategy based on EBMs can be universally
applied to existing models and enhance their resulting novelty.

1 INTRODUCTION

To find molecules with desired chemical properties comprises the core of drug discovery. The target
properties encompass from relatively simple chemical statistics to complex scores that depend on
three-dimensional interaction. The former includes octanol-water partition coefficients (logP), syn-
thetic accessibility (SA), quantitative estimate of drug-likeness (QED) (Bickerton et al., 2012), and
molecular weight (MW). The latter includes quantum-mechanical properties, molecular dynamics,
and docking scores (Ferreira et al., 2015).

Deep molecular generative models rise as promising substitutes for conventional experimental drug
discovery approaches. The most common metrics to evaluate the generated molecules among the
above properties are penalized logP and QED score (Jin et al., 2018; You et al., 2018; Shi et al., 2019;
Zang & Wang, 2020; Luo et al., 2021; Liu et al., 2021). However, as Coley (2020), Cieplinski et al.
(2020), and Xie et al. (2020) have criticized, optimization of these properties is far apart from the
real-world drug discovery problems. For example, the best optimized molecule in terms of penalized
logP in the state-of-the-art model is a trivial long chain of maximum number of carbons (Luo et al.,
2021), since penalized logP prefers large molecules. On the other hand, docking score is known as a
powerful proxy to drug activity (Cieplinski et al., 2020). The score is based on the three-dimensional
binding simulation of a target protein and a drug candidate. In this respect, we target to construct a
generative model that optimizes docking scores in this paper. Unlike penalized logP and QED score,
docking score is nonlinear to local molecular structures and has many local optima (Coley, 2020).
Therefore, more powerful exploration in the chemical space is essential to generate molecules that
dock well, and further, be applicable to the real-world.
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Figure 1: The molecules found by Zhavoronkov et al. (2019) and its training molecules. Zhavoronkov et al.
(2019) trained a deep RL-based model, GENTRL, on a large set of known discoidin domain receptor 1 (DDR1)
inhibitors, and found the best potent DDR1 inhibitor (a) (referred to as ‘compound 1’ in the original paper).
However, as Walters & Murcko (2020) have pointed out, the molecule exhibits great similarity compared to
some of the DDR1 inhibitors included in the training set (b), and the application to the real-world is limited.
The duplicated substructures are marked as green and blue areas.

Unfortunately, the common pitfall of existing molecule generation models based on distributional
learning is that the exploration is confined to the training distribution, and the generated molecules
highly resemble those in their training set. Walters & Murcko (2020) pointed out the best molecule
found by the model of Zhavoronkov et al. (2019) exhibits “the striking similarity” with known
active molecules included in the training set (see Figure 1). Models that do not require training
molecules are free from this problem, but they introduce other problems such as long training time,
the sensitivity of balance between exploration and exploitation, large variance, and importantly, a
lack of information about the known distribution.

In this paper, we introduce a new perspective that applies an out-of-distribution (OOD) detection
scheme to generate OOD molecules to tackle the limited exploration problem of deep generative
models. OOD generation touches the fundamental aim of de novo drug discovery, which is to dis-
cover unknown molecules that lie beyond our current knowledge. Specifically, we propose Molecu-
lar Out-of-distribution Generation (MOG), a novel framework to generate docking score-optimized
molecules with exploration beyond the known molecular distribution. The distribution can be com-
prised of any molecules, such as training molecules or known active molecules against a certain pro-
tein. The proposed MOG explicitly aims to generate OOD molecules against these in-distribution
molecules using an energy-based model (EBM). The modified Langevin dynamics of MOG in the
generation phase pushes molecules into regions of high energy values, towards those of energy
pivots. This corresponds to push the molecules into regions of low likelihoods, thereby largely en-
courages the exploration in the chemical space. We additionally incorporate a property predictor
that predicts docking scores into the modified Langevin dynamics, thus generates molecules that are
novel and optimized at the same time.

We experimentally validate the exploration ability of MOG by random generation and docking score
optimization with three target proteins. MOG is able to generate molecules of significantly improved
novelty and docking scores compared to baselines in all of the experiments. We further augment
MARS with our strategy which increases energy using an EBM and show our strategy can be widely
applied to existing molecule generation methods to enhance their novelty.

Our main contributions are summarized as follows:

• We newly propose to adopt OOD generation that exploits an OOD detection technique in
the domain of deep drug discovery to tackle the well-known problem of poor novelty with
respect to training molecules.

• We propose a simple yet effective MOG framework, in which the modified Langevin dy-
namics generates OOD molecules of high properties by exploring the overlaps of low like-
lihood regions predicted by an EBM and high property regions predicted by an auxiliary
property network.

• We experimentally validate the effectiveness of proposed MOG through docking score op-
timization tasks, where exploration beyond the training set is crucial in performance. We
further demonstrate our OOD generation strategy based on EBMs is universal, by aug-
menting the existing generation method with the EBM-based energy scoring and showing
considerably improved novelty.
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2 BACKGROUND AND RELATED WORK

2.1 MOLECULE GENERATION

Molecule generation models While early works adopt SMILES strings (Weininger, 1988) to rep-
resent molecules, more recent works utilize molecular graphs as inputs. Existing methods on gen-
erating molecular graphs of desired properties include models based on variational autoencoders
(VAEs) (Gómez-Bombarelli et al., 2018; Jin et al., 2018; Liu et al., 2018), models based on genera-
tive adversarial networks (GANs) (Lima Guimaraes et al., 2017; De Cao & Kipf, 2018), flow-based
models (Shi et al., 2019; Zang & Wang, 2020; Luo et al., 2021), and Markov chain Monte Carlo
(MCMC) sampling in the chemical space (Xie et al., 2020). For VAE-based models, Bayesian opti-
mization (BO) in the latent space is used to optimize chemical properties. For GAN- or flow-based
models, reinforcement learning (RL) is commonly used for optimization, while direct application
of RL (You et al., 2018) also has been explored. Recently, the employment of energy-based models
(EBMs) has been proposed (Liu et al., 2021) and comprises a new branch in molecule generation.

In molecule generation models that require training data, the exploration in the chemical space be-
yond the known data distribution is limited as they focus on interpolating the learned distribution
and generate in-distribution molecules. Models that do not use training data such as some RL-
and MCMC sampling-based models circumvent this issue and thereby generally show better per-
formance, but they suffer from other problems explained in Section 1. Different from these works,
MOG exploits training molecules but generate molecules that do not follow the training distribution.

Docking score optimization Docking score optimization is underexplored in molecule generation
models despite its importance in the real-world drug discovery, and only few RL-based models
have dealt with docking scores. MORLD (Jeon & Kim, 2020), a generative model that utilizes
MolDQN (Zhou et al., 2019), and REINVENT (Olivecrona et al., 2017), a SMILES-based model
that utilizes REINFORCE algorithm, have been employed to conduct the docking score optimization
task (Cieplinski et al., 2020; Thomas et al., 2021). FREED (Yang et al., 2021) utilizes prioritized
experience replay (PER) for exploration to optimize docking scores.

2.2 ENERGY-BASED MODELS AND OOD GENERATION

EBMs as generative models The goal of EBMs is to learn a function Eθ(x) : X ⊂ Rd → R that
has learnable parameters θ and maps an input x ∈ X to a deterministic scalar called the energy. The
energy function defines a probability density through the Boltzmann distribution:

pθ(x) =
e−Eθ(x)∫
e−Eθ(x)dx

=
e−Eθ(x)

Z(θ)
, (1)

where the denominator Z(θ) is referred to as the partition function. To sample from this distri-
bution that has the intractable partition function, Du & Mordatch (2019) propose to use Langevin
dynamics (Welling & Teh, 2011). They also propose to weakly L2-regularize energy magnitudes
to stabilize training. Liu et al. (2021) extend this framework to the graph domain and generate at-
tributed graphs by applying Langevin dynamics to both node feature matrices and adjacency tensors.

EBMs in OOD detection EBMs are known to exhibit superior out-of-distribution (OOD) detec-
tion performance compared to other generative models (Du & Mordatch, 2019). Since the log-
likelihood of a sample is proportional to its negative energy according to equation 1, one can dis-
criminate OOD samples of low likelihood based on their energy values. Liu et al. (2020) utilize this
property and propose to classify OOD samples by setting a threshold energy value.

OOD Generation Generation of OOD samples has been proposed by several works. Lee et al.
(2018) propose to generate OOD samples by a GAN that is jointly trained with a confidence clas-
sifier. Vernekar et al. (2019) generate OOD samples using a conditional variational autoencoder
(CVAE) to train an OOD classifier. Zheng et al. (2020) and Marek et al. (2021) utilize GAN-based
models to generate OOD samples to detect OOD utterances for a robust dialog system. The goal of
OOD generation in all of the mentioned works is to augment an OOD classifier for OOD detection,
so their resulting OOD samples mimic in-distribution samples or are confined to the boundary of
in-distribution samples.
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Figure 2: The training process of MOG. The energy network and the property network receive both positive
samples and hallucinated samples. Molecular graphs of a dataset (Xmol, Amol) are processed to positive samples
(X⊕, A⊕) by the dequantization, while K steps of Langevin dynamics turn random noises (X0, A0) into
hallucinated samples (XK , AK) = (X�, A�). In this figure, one molecule of QM9 dataset, in which n = 9,
a = 4 (C, N, O, F), and b = 3 (single, double, and triple bonds), is used as an example. ? is the virtual atom
type. The black arrows indicate the conveyance of information during the training process, while the green
arrow indicates the pre-definition or pre-conversion before the process. The dashed arrow indicates the transfer
of gradient.

3 PROPOSED METHOD

Our key insight is to combine the generation and the OOD detection of EBMs into a single frame-
work to generate OOD molecules. We precisely target to generate OOD samples itself, not to aug-
ment an OOD classifier, unlike the aforementioned works on OOD generation. We begin with
describing the graph representations of molecules and their notations.

Molecular graph representation A molecule can be represented as a molecular graph as G =
(X,A), where X is the node feature matrix and A is the adjacency tensor. Let a and b denote
the number of atom types and bond types, respectively. n denotes the maximum number of heavy
atoms (atoms besides hydrogen) of a molecule in a given dataset. Following Madhawa et al. (2019),
Zang & Wang (2020) and Liu et al. (2021), if a molecular graph has less than n nodes, we add
virtual nodes to keep the dimensions of X and A the same for all molecules. Likewise, we add
a virtual edge between any two nodes that are not connected in a molecular graph. Therefore,
X ∈ {0, 1}n×(a+1) and A ∈ {0, 1}n×n×(b+1) for all molecules, as we consider the virtual node and
edge as an additional atom type and bond type, respectively.

3.1 THE ARCHITECTURE OF MOG

As shown in Figure 2, MOG is composed of two networks, namely, energy network and property
network. The role of both networks is to provide gradients to the subsequent Langevin dynamics in
the generation phase, as will be described in Section 3.3. The energy network provides information
to control the expected likelihood of generated molecules with respect to given molecular distribu-
tion, and the property network enables the generation of molecules that have high target properties,
such as docking scores.

Energy network We model the energy function for molecular graphs Eθ(X,A) by a graph neural
network whose parameters are θ. Specifically, we adopt a GraphEBM (Liu et al., 2021) for the
energy network. A relational graph convolutional network (R-GCN) (Schlichtkrull et al., 2018) is
used to learn the node representations, and the l-th message passing is defined as follows:

H l+1 =

b+1∑
v=1

σ
(
D−

1
2A:,:,vD

− 1
2H lW l

v

)
, (2)

where H0 = X , A:,:,v is the v-th channel of A, and D is a diagonal matrix that satisfies
Di,i =

∑n
u=1Ai,u,v . {W l

v}b+1
v=1 is the trainable weight matrices of layer l, and σ(·) denotes an
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activation function. After L layers of R-GCN, the graph-level representation hG and the energy of
the molecular graph are computed as follows:

hG =

n∑
i=1

HL
i,: ∈ Rd, (3)

E = h>GW ∈ R, (4)

where HL ∈ Rn×d is the final node representation matrix, and W ∈ Rd×1 is the trainable weight
matrix.

Property network To generate optimized molecules through Langevin dynamics that makes use
of gradients, we introduce a learnable and differentiable property function Pφ(X,A) that predicts
the docking score of a molecule against a predefined protein target. The function is represented by
a graph neural network whose parameters are φ. The architecture of the property network is chosen
to be the same as the energy network, except for one extra MLP layer at the end.

3.2 LEARNING IN-DISTRIBUTION WITH AN ENERGY-BASED MODEL

Let pD be the distribution of the real data. We can train the energy network in a maximum likelihood
(ML) manner as follows:

LML = E(X,A)∼pD [− log pθ(X,A)], (5)
where − log pθ(X,A) = Eθ(X,A) + logZ(θ) according to equation 1. The objective is known to
have the following gradient (Hinton, 2002; Turner, 2005):

∇θLML = E(X⊕,A⊕)∼pD [∇θEθ(X
⊕, A⊕)]− E(X�,A�)∼pθ [∇θEθ(X

�, A�)], (6)

where pθ is the distribution defined by the energy function as in equation 1. (X�, A�) is referred to
as a hallucinated sample (Du et al., 2020). This gradient decreases the energies of positive samples
(X⊕, A⊕) while increases those of hallucinated samples (X�, A�).

To obtain (X⊕, A⊕) from pD, we conduct dequantization (Dinh et al., 2017; Kingma & Dhariwal,
2018) by adding random noises to make positive samples continuous:

X⊕ = Xmol + cuX , uX ∼ U [0, 1)n×(a+1),

A⊕ = Amol + cuA, uA ∼ U [0, 1)n×n×(b+1),
(7)

where U indicates an uniform distribution, c ∈ [0, 1) is a scaling hyperparameter, and (Xmol, Amol)
is the initial discrete molecular graph.

To sample (X�, A�) from pθ, we follow Liu et al. (2021) to use Langevin dynamics on both X and
A. Specifically, we apply following operation iteratively:

Xk = Xk−1 − λ∇XLLD + ωk, ωk ∼ N (0, σ2)n×(a+1),

Ak = Ak−1 − λ∇ALLD + ηk, ηk ∼ N (0, σ2)n×n×(b+1),
(8)

where the loss of Langevin dynamics is defined as follows:
LLD = Eθ(X

k−1, Ak−1). (9)
k denotes the iteration step, and λ is the step size of Langevin dynamics. ωk and ηk are noise
matrices whose elements follow a Gaussian distribution N of variance σ2. As k → ∞ and λ → 0,
the resulting (Xk, Ak) become samples from pθ and can be treated as (X�, A�). In practice,
we apply K steps of Langevin dynamics to randomly initialized (X0, A0) to obtain (XK , AK) =
(X�, A�), where X0 ∼ U [0, 1 + c)n×(a+1) and A0 ∼ U [0, 1)n×n×(b+1). Xk and Ak are clipped
to the range [0, 1 + c] and [0, 1], respectively, after each step.

The training procedure is illustrated in Figure 2. To make the gradient as depicted in equation 6, the
loss function for the energy network is defined as follows:

Lenergy = Eθ(X
⊕, A⊕)− Eθ(X�, A�) + α · Lreg, (10)

where Lreg = Eθ(X
⊕, A⊕)2 +Eθ(X

�, A�)2 is for regularizing the magnitudes of energies (Du &
Mordatch, 2019), and α ∈ R is the weight of the regularization loss. On the other hand, the loss for
the property network Lproperty is a mean squared error loss against the real properties values, which
are provided by an external scoring system, QuickVina 2 (Alhossary et al., 2015). The property
network is trained to predict docking scores of both positive samples and hallucinated samples.
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3.3 OUT-OF-DISTRIBUTION GENERATION WITH MULTIPLE ENERGY PIVOTS

To generate OOD molecules, we propose to generate samples of high energies instead of low ones.
We make use of validity correction introduced in Zang & Wang (2020) at the end of the generation,
so every (X,A) is guaranteed to correspond to a valid molecule, eliminating the need to follow in-
distribution to generate valid molecules. We propose to constrain energies to be high by designating
a high target energy value, which we call the energy pivot, and use the mean squared error (MSE)
against the energy pivot as a loss function in Langevin dynamics1. This is equivalent to constraining
likelihood to be close to a certain low value. Specifically, we utilize Langevin dynamics in equation 8
in generation phase, but different from equation 9 which generates (X,A) of low energies, we
employ the following loss function:

LLD = {E∗ − Eθ(Xk−1, Ak−1)}2︸ ︷︷ ︸
Constraint of energy pivot

−Pφ(Xk−1, Ak−1)︸ ︷︷ ︸
Property maximization

, (11)

0.0

-0.1

-0.2

-0.3

-0.4

-0.5

Energy pivot

Figure 3: OOD generation on
a 2D example. The training dis-
tribution consists of eight isotropic
Gaussian blobs, and the samples
are indicated by red. The gener-
ated OOD samples with a certain
energy pivot are indicated by the
corresponding color.

where the first term confines the energy values to be close to the
energy pivot E∗ while the second term encourages maximizing
the chemical property predicted by the property network.

To validate the use of the energy pivot actually generates OOD
samples, we experiment with a 2D dataset that consists of eight
Gaussian blobs. We only use the first term in equation 11. The
details of implementation are included in Section B.1. As shown
in Figure 3, our proposed Langevin dynamics can generate OOD
samples distinguished from the training samples indeed. In ad-
dition, we can observe as the value of the energy pivot increases,
the degree of deviation from the in-distribution increases in a con-
tinuous fashion. Therefore, in our MOG, we set multiple energy
pivots and optimize each randomly initialized molecule with a
different pivot to cover various degrees of OOD. The use of mul-
tiple energy pivots also obviates the need for intensive tuning.

4 EXPERIMENTS

Baselines We compare MOG against the following molecule generation baselines: REIN-
VENT (Olivecrona et al., 2017) is a SMILES strings-based RL model; JT-VAE (Jin et al., 2018) is
a VAE-based model that optimizes molecules over the latent space using the gradient from a prop-
erty predictor; GCPN (You et al., 2018) is a RL model which generates molecules atom-by-atom;
GraphNVP (Madhawa et al., 2019) is a flow model that generates molecules in an one-shot manner;
GraphAF (Shi et al., 2019) is a RL-finetuned flow model that generates molecules autoregressively;
MoFlow (Zang & Wang, 2020) is an one-shot flow model with a validity guarantee; MORLD (Jeon
& Kim, 2020) is a RL model that is based on MolDQN; GraphDF (Luo et al., 2021) is an autoregres-
sive RL-finetuned flow model that utilizes discrete latent variables; GraphEBM (Liu et al., 2021)
is an EBM that generates in-distribution molecules by minimizing energy values; FREED (Yang
et al., 2021) is a fragment-based RL model that utilizes PER for exploration.

4.1 RANDOM GENERATION

Evaluation metrics We evaluate the generated molecules with following metrics: Validity is the
percentage of molecules that do not violate chemical valency; Uniqueness is the percentage of valid
molecules that are unique; Novelty is the percentage of valid molecules that are not included in
the in-distribution molecules; Novelty (sim. < x) is the stronger novelty metric, which indicates
the percentage of valid molecules with similarity less than x compared to the nearest neighbor
GSNN in the in-distribution molecules: 1

n

∑
G∈V 1[sim(G,GSNN) < x], where V is the set of n valid

molecules, and sim(G,G′) is the pairwise Tanimoto similarity over Morgan fingerprints. Previous
works (Olivecrona et al., 2017; Jin et al., 2020; Xie et al., 2020) have set the threshold as x = 0.4.

1We also explored maximizing energies without introducing the energy pivot. The resulting Langevin dy-
namics withLLD = −Eθ(Xk−1, Ak−1) fails to generate diverse molecules and converges to a single molecule.
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However, since the molecule in Figure 1(a) has Tanimoto similarities of 0.3194 and 0.2932 with
the left and right molecules in Figure 1(b), respectively, and yet the similarities are “striking” by
chemists’ eyes, 0.4 is clearly too generous to determine whether generated molecules are novel
enough. We set x = 0.3 and x = 0.2 for the QM9 and ZINC250k datasets, respectively.

Experimental setup We first evaluate MOG on the random generation setting, following previous
works (Madhawa et al., 2019; Popova et al., 2019; Shi et al., 2019; Zang & Wang, 2020; Luo et al.,
2021; Liu et al., 2021). The property term in equation 11 is ignored for random generation. We train
MOG in two molecular datasets, QM9 (Ramakrishnan et al., 2014) and ZINC250k (Irwin et al.,
2012), and generate 3000 molecules. Implementation details are included in Section B.2.

Table 1: Random generation results on the QM9 dataset. Results of baselines are obtained by running
open-source codes. We report the mean and the standard deviation of 3 different runs.

Method Validity (%) Uniqueness (%) Novelty (%) Novelty (sim. < 0.3) (%)

GraphNVP (Madhawa et al., 2019) 82.83±0.43 99.23±0.26 69.80±0.44 9.85±0.36
MoFlow (Zang & Wang, 2020) 100.00±0.00 99.72±0.04 98.68±0.13 58.17±0.26
GraphDF (Luo et al., 2021) 100.00±0.00 99.20±0.18 97.96±0.12 44.83±0.62
GraphEBM (Liu et al., 2021) 100.00±0.00 99.43±0.38 98.11±0.40 54.38±0.52

MOG (Ours) 100.00±0.00 99.41±0.12 99.34±0.23 62.51±1.09

Table 2: Random generation results on the ZINC250k dataset. Result with † is taken from Popova et al.
(2019). Other results of baselines are obtained by running open-source codes. We report the mean and the
standard deviation of 3 different runs.

Method Validity (%) Uniqueness (%) Novelty (%) Novelty (sim. < 0.2) (%)

JT-VAE (Jin et al., 2018) 100.00±0.00 100.00±0.00† 99.79±0.09 0.94±0.06
GCPN (You et al., 2018) 100.00±0.00 99.93±0.03 100.00±0.00 81.66±0.59
GraphAF (Shi et al., 2019) 100.00±0.00 99.51±0.11 99.98±0.03 30.57±0.68
MoFlow (Zang & Wang, 2020) 100.00±0.00 99.99±0.01 100.00±0.00 55.39±0.14
GraphDF (Luo et al., 2021) 100.00±0.00 99.82±0.07 100.00±0.00 46.23±0.22
GraphEBM (Liu et al., 2021) 100.00±0.00 99.09±0.04 100.00±0.00 62.61±0.20
FREED (Yang et al., 2021) 100.00±0.00 100.00±0.00 100.00±0.00 1.31±0.17

MOG (Ours) 100.00±0.00 99.99±0.01 100.00±0.00 94.49±0.21

Results The random generation results are shown in Table 1 and Table 2. MOG outperforms other
baselines in terms of novelty, especially when the similarity threshold is set to 0.2, while it also
achieves high validity and uniqueness. Since GraphEBM generates molecules with the same archi-
tecture but different Langevin dynamics, the improvement in novelty compared to GraphEBM can be
concluded as the effect of multiple energy pivots. The overall results support that increasing energy
instead of minimizing it is advantageous to generate different molecules from training molecules. It
is also notable that even though FREED does not use training molecules, it shows poor novelty on
the ZINC250k dataset because its fragment vocabulary is extracted from the dataset. On the other
hand, the second-best model on ZINC250k, GCPN, does not use training molecules nor a fragment
vocabulary, hence explains its fairly high novelty. The superiority of MOG over GCPN demonstrates
the effectiveness of OOD generation using the knowledge of known molecular distribution.

4.2 DOCKING SCORE OPTIMIZATION

Evaluation metrics In addition to validity, uniqueness, novelty, and novelty (sim. < 0.2) ex-
plained in Section 4.1, we report the top-3 scores of generated molecules found in 3 runs, following
previous works (Jin et al., 2018; You et al., 2018; Popova et al., 2019; Shi et al., 2019; Zang & Wang,
2020; Luo et al., 2021; Liu et al., 2021).

Experimental setup We validate the ability of MOG to generate novel molecules that possess
high absolute values of docking score. The target proteins about which the docking scores are
calculated are parp1, fa7, and 5ht1b, following Yang et al. (2021). Lower docking scores indicate
higher affinity against a given target protein, which implies higher drug activity. We set Pφ(X,A)
to predict negative docking scores for each protein. We train MOG in the ZINC250k (Irwin et al.,
2012) dataset and generate 3000 molecules. Implementation details are included in Section B.2.
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Table 3: Docking score optimization results with parp1 target protein. Results of baselines are obtained
by running open-source codes. We report the mean and the standard deviation of 3 different runs.

Method
parp1 docking score

Validity (%) Uniqueness (%) Novelty (%) Novelty
1st 2nd 3rd (sim. < 0.2) (%)

REINVENT (Olivecrona et al., 2017) -13.0 -12.4 -12.4 91.74±1.09 99.71±0.27 99.82±0.06 0.00±0.00
MORLD (Jeon & Kim, 2020) -13.3 -12.8 -12.7 100.00±0.00 99.08±0.43 100.00±0.00 89.46±1.04
GraphDF (Luo et al., 2021) -19.6 -19.2 -19.1 100.00±0.00 100.00±0.00 99.96±0.01 62.54±0.42
GraphEBM (Liu et al., 2021) -18.9 -18.4 -17.5 100.00±0.00 99.89±0.04 100.00±0.00 98.59±0.27
FREED (Yang et al., 2021) -15.4 -15.4 -14.8 100.00±0.00 98.07±1.18 100.00±0.00 0.83±0.28

MOG (Ours) -24.6 -23.8 -23.4 100.00±0.00 100.00±0.00 100.00±0.00 99.90±0.01

Table 4: Docking score optimization results with fa7 target protein. Results of baselines are obtained by
running open-source codes. We report the mean and the standard deviation of 3 different runs.

Method
fa7 docking score

Validity (%) Uniqueness (%) Novelty (%) Novelty
1st 2nd 3rd (sim. < 0.2) (%)

REINVENT (Olivecrona et al., 2017) -11.0 -10.6 -10.1 92.11±0.85 99.85±0.03 99.94±0.03 0.05±0.05
MORLD (Jeon & Kim, 2020) -10.7 -10.6 -10.6 100.00±0.00 99.22±1.03 100.00±0.00 88.51±5.75
GraphDF (Luo et al., 2021) -20.0 -19.4 -19.2 100.00±0.00 100.00±0.00 100.00±0.00 69.21±0.19
GraphEBM (Liu et al., 2021) -20.1 -20.0 -19.8 100.00±0.00 99.83±0.07 100.00±0.00 98.74±0.19
FREED (Yang et al., 2021) -12.5 -11.9 -11.8 100.00±0.00 97.47±1.74 100.00±0.00 0.78±0.21

MOG (Ours) -21.1 -20.4 -19.9 100.00±0.00 99.89±0.04 100.00±0.00 99.64±0.10

Table 5: Docking score optimization results with 5ht1b target protein. Results of baselines are obtained
by running open-source codes. We report the mean and the standard deviation of 3 different runs.

Method
5ht1b docking score

Validity (%) Uniqueness (%) Novelty (%) Novelty
1st 2nd 3rd (sim. < 0.2) (%)

REINVENT (Olivecrona et al., 2017) -13.2 -13.1 -13.0 92.97±0.75 99.62±0.16 99.81±0.04 0.01±0.02
MORLD (Jeon & Kim, 2020) -12.8 -12.3 -12.2 100.00±0.00 99.84±0.08 100.00±0.00 86.58±2.70
GraphDF (Luo et al., 2021) -21.4 -20.7 -20.5 100.00±0.00 100.00±0.00 99.97±0.00 60.61±0.35
GraphEBM (Liu et al., 2021) -22.3 -20.2 -19.3 100.00±0.00 99.82±0.07 100.00±0.00 98.65±0.35
FREED (Yang et al., 2021) -15.1 -15.1 -15.1 100.00±0.00 97.00±3.20 100.00±0.00 0.75±0.20

MOG (Ours) -28.0 -27.3 -26.8 100.00±0.00 99.91±0.06 100.00±0.00 99.66±0.24

Results The docking score optimization results are reported in Table 3, Table 4, and Table 5.
We observe that MOG can generate molecules that have significantly higher absolute docking
scores compared to the baselines, while achieving near-perfect validity, uniqueness, and novelty.
GraphEBM shows secondly high novelty, but it fails to escape from local optima and generates
molecules of sub-optimal docking scores compared to MOG. Along with Table 7 in Section A.1,
these results strongly demonstrate the Langevin dynamics modified by energy pivots in conjunction
with the property network greatly promotes to search for the better optimum, resulting in the high
absolute docking scores.

4.3 IMPROVEMENT IN MARS

Original setup of MARS To show the proposed OOD generation strategy using an EBM can be
universally adopted to existing molecule generation models to encourage the exploration beyond
known molecules, we augment MARS (Xie et al., 2020) with energy scoring. MARS is a model
that samples molecules in a Markov chain defined on the chemical space. A molecule editing graph
neural network proposes a molecule G′ at each step, and the proposed molecule is either rejected or
accepted according to the acceptance rate:

A(G,G′) = min

{
1,
π1/T (G′)
π1/T (G)

}
, (12)

where G is the current molecule, π(G) is the score of the molecule, and T is the temperature con-
trolled by a cooling schedule. The scoring function in the original MARS is defined as follows:

π(G) = GSK3β(G) + JNK3(G) + QED(G) + SA(G), (13)
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which is the summation of the inhibition scores against glycogen synthase kinase-3β (GSK3β) and
c-Jun N-terminal kinase-3 (JNK3), the drug-likeness (QED), and the normalized synthetic accessi-
bility (SA) score. Implementation details are included in Section B.3.

Evaluation metrics The goal of MARS in GSK3β+JNK3+QED+SA setting is to generate
molecules that jointly inhibit GSK3β and JNK3 while being drug-like and synthetically accessi-
ble. MARS generates 5000 molecules and evaluate following metrics: Success rate is the fraction
of generated molecules that are positive on all objectives (QED(G)≥ 0.6, SA(G)≥ 0.67, GSK3β(G)
≥ 0.5, JNK3(G) ≥ 0.5); Novelty (sim. < 0.4) is the percentage of generated molecules with simi-
larity less than 0.4 compared to the nearest neighbor in the training set as explained in Section 4.1;
Diversity is the diversity of generated molecules: 2

n(n−1)
∑
G6=G′ 1− sim(G,G′), where sim(G,G′)

is the pairwise Tanimoto similarity over Morgan fingerprints; Product of metrics is the product of
the above three metrics, which is the comprehensive and mainly emphasized metric.

Employment of energy objective in MARS We propose to further include energy scores of
molecules from an EBM trained on the same training set used in MARS. The training set consists of
known active molecules against GSK3β and JNK3, and maximizing the energy score encourages to
generate OOD molecules against these molecules. Specifically, we modify equation 13 as follows:
πenergy(G) = π(G) + ν · Eθ(G), where π(G) is the original scoring function, Eθ(G) is the energy
score calculated by the EBM, and ν is the weight of the energy score. We then utilize πenergy(G) in
equation 12. Implementation details are included in Section B.3.

Table 6: GSK3β+JNK3+QED+SA optimization results. MARS+OOD indicates MARS augmented with
the EBM energy score. Results of MARS are obtained by running its open-source code. Results of other
baselines are taken from Xie et al. (2020). We report the mean and the standard deviation of 5 different runs
of 5000 generated molecules. Because of the high variance of MARS that comes from MCMC sampling, we
mark both the best results and their comparable results (p > 0.05 from the t-test) as bold.

Method Success rate (%) Novelty (sim. < 0.4) (%) Diversity Product of metrics

GCPN (You et al., 2018) 0.0 0.0 0.000 0.00
JT-VAE (Jin et al., 2018) 5.4 100.0 0.277 0.02
RationaleRL (Jin et al., 2020) 75.0 55.5 0.706 0.29
GA+D (Nigam et al., 2019) 85.7 100.0 0.363 0.31
MARS (Xie et al., 2020) 91.4±3.1 82.2±3.8 0.734±0.014 0.55±0.03

MARS+OOD (Ours) 90.7±1.1 90.6±2.1 0.734±0.013 0.60±0.02

Results As shown in Table 6, the MARS model augmented with the energy score achieves sig-
nificantly improved novelty, while showing comparably high success rate and diversity. This is
because while the original MARS lacks any constraints to make the generated molecules differ from
known active molecules, the modified MARS takes the energy score into account to generate OOD
molecules. Our modified MARS generates molecules that do not share any big substructures with
the known active molecules indeed, unlike the original MARS (see Figure 4 in Section A.2). We
emphasize that this strategy to treat energy values calculated by an EBM as scores or rewards can
be easily incorporated into most existing models.

5 CONCLUSION

In this work, we propose to utilize OOD generation in deep drug discovery to resolve the problem of
poor exploration in existing molecule generation methods. Specifically, we propose MOG, a novel
framework to generate OOD molecules of high absolute docking scores with the modified Langevin
dynamics that makes use of both an EBM and a property predictor. The dynamics increases the
energy of molecules with the multiple energy pivots and thereby explores low likelihood regions.
We experimentally show that MOG can generate novel molecules and find better optima of docking
scores. We also demonstrate our OOD generation strategy based on EBMs can greatly aid existing
molecule generation methods to improve novelty. We believe that our work opened a door to more
interesting follow-up works on de novo drug discovery of deep molecule generation models, which
focus on generating de novo molecules in a true sense.
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 EFFECTS OF ENERGY PIVOTS AND PROPERTY NETWORK

To examine the effect of the energy pivots and the property network, we conduct the docking score
optimization task with respect to parp1 without them. We use following loss functions instead of
equation 11 in Langevin dynamics of generation phase:

LLD,XX = Eθ(X
k−1, Ak−1), (14)

LLD,XO = Eθ(X
k−1, Ak−1)− Pφ(Xk−1, Ak−1), (15)

LLD,OX = {E∗ − Eθ(Xk−1, Ak−1)}2, (16)

where the first and second subscripts of LLD indicate the usage of the multiple energy pivots and the
property network, respectively. LLD,OO is equal to equation 11.

Table 7: parp1 docking score optimization results without energy pivots and the property network. We
report the mean and the standard deviation of 3 different runs of 3000 generated molecules.

Energy Property parp1 docking score
Validity (%) Uniqueness (%) Novelty (%) Novelty

pivot network 1st 2nd 3rd (sim. < 0.2) (%)

X X -11.6 -10.4 -10.1 100.00±0.00 99.09±0.04 100.00±0.00 62.61±0.20
X O -3.6 - - 100.00±0.00 0.03±0.00 100.00±0.00 100.00±0.00
O X -15.5 -15.4 -14.9 100.00±0.00 97.87±0.26 100.00±0.00 97.11±0.09
O O -24.6 -23.8 -23.4 100.00±0.00 100.00±0.00 100.00±0.00 99.90±0.01

As shown in Table 7, using both the energy pivots and the property network is essential to generate
novel molecules and find better optima of docking scores. Comparing the first and the third rows,
the use of multiple energy pivots greatly improves novelty. The energy pivots also improve the top-3
docking scores even without the property network, implying more extensive exploration. Note that
the Langevin dynamics using only the property network without the energy pivots converges to a
single molecule, so the novelty value is meaningless.

A.2 VISUALIZATION OF MOLECULES GENERATED BY MARS AND MARS+OOD

Among the generated molecules of original MARS and MARS with the additional EBM energy
score (MARS+OOD), respectively, we display the molecules of maximum Tanimoto similarity with
certain training molecules in Figure 4.

Figure 4: Molecules in training set and molecules of maximum Tanimoto similarity generated by MARS
and MARS+OOD. MARS+OOD indicates MARS augmented with the EBM energy score. For each row, we
display (a) a known active molecule against GSK3β and JNK3 included in the training set, (b) a molecule
that has maximum Tanimoto similarity with (a) among the generated molecules by MARS, and (c) a molecule
that has maximum Tanimoto similarity with (a) among the generated molecules by MARS+OOD. The number
below each molecule in (b) and (c) is the corresponding Tanimoto similarity compared to (a). The duplicated
structures in (a) and (b) are indicated by green areas.
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As shown in Figure 4, the maximally similar molecules of MARS possess a duplicated substruc-
ture with the corresponding training molecules, as depicted by the green areas. On the con-
trary, MARS+OOD generates molecules that do not share any big substructures with the training
molecules, even in the maximally similar molecule. The maximum Tanimoto similarity values are
lower in MARS+OOD accordingly.

B IMPLEMENTATION DETAILS

B.1 DETAILS OF THE 2D OOD GENERATION

For the OOD generation experiment on a 2D dataset, we set the training distribution as eight isotropic
Gaussian blobs that have the standard deviation of 0.3. The EBM used consists of 3 MLP layers
with hidden dimension of d = 128, and the activation function is LeakyReLU with a slope of 0.2.
Spectral normalization (Miyato et al., 2018) is applied after each layer, and gradient clipping of
[−0.05, 0.05] is used in each step of Langevin dynamics. The standard deviation of the noise in
Langevin dynamics and the weight of the regularization loss are set to σ = 0.005 and α = 1,
respectively. The step size in Langevin dynamics of λ = 5 and the number of steps in Langevin
dynamics of K = 100 are used. The model is trained 10000 iterations with a batch size of 2048 and
an Adam optimizer (Kingma & Ba, 2014).

B.2 DETAILS OF RANDOM GENERATION AND DOCKING SCORE OPTIMIZATION

Datasets and Metric The information of molecular datasets is summarized in Table 8. b = 3
(see Section 3 for the notation of molecular graphs) for single, double, and triple bonds in both
datasets. All molecules are preprocessed to their kekulized form and all hydrogens are removed
by RDKit (Landrum et al., 2016). For ZINC250k, we use the same train/validation split used by
Kusner et al. (2017). The novelty is calculated with respect to a whole dataset (QM9 or ZINC250k),
which includes both train and validation sets, thereby counts novel molecules not only against direct
training molecules but also against the molecules that lie in the in-distribution.

Table 8: Information of the QM9 and ZINC250k datasets. The maximum number of nodes and the number
of node types correspond to n and a of the notation in Section 3, respectively.

Dataset Number of molecules Maximum number of nodes Number of node types

QM9 133885 9 4
ZINC250k 249455 38 9

Implementation details of MOG To generate N molecules with equation 11, N multiple energy
pivots are set to linear internal division points in [−0.5, 0] and [5, 10] for the random generation
and the docking score optimization experiments, respectively. Throughout the experiments, we set
the exhaustiveness of QuickVina 2 as 1 to calculate docking scores. The activation functions are
Swish and ReLU for the energy and property networks, respectively. We use L = 3 layers of R-
GCN with hidden dimension of d = 64. Spectral normalization (Miyato et al., 2018) is used after
each layer, and gradient clipping of [−0.01, 0.01] is applied to each step of Langevin dynamics
in both training and generation phases. We set the standard deviation of the noise in Langevin
dynamics as σ = 0.005 and the weight of the regularization loss as α = 1. For the QM9 dataset,
the dequantization scale of c = 0.2, the step size in Langevin dynamics of λ = 10, and the number
of steps in Langevin dynamics of K = 30 are used. For the ZINC250k dataset, the dequantization
scale of c = 0, the step size in Langevin dynamics of λ = 30, and the number of steps in Langevin
dynamics of K = 150 are used. For the energy network, a learning rate of 1× 10−4 and the number
of training epochs of 20 are used. For the property network, an initial learning rate of 1 × 10−3

with weight decay of 1 × 10−4 and the number of training iterations of 200 are used. For both
networks, a batch size of 128 and an Adam optimizer (Kingma & Ba, 2014) are used. Most of the
hyperparameters regarding the energy network are set following Liu et al. (2021).
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Implementation details of baselines We follow the corresponding original papers for most of the
settings of the baselines. We describe the specifics and the differences from the original papers here.
For REINVENT, we utilize the ZINC250k dataset to construct the vocabulary and train the prior. For
GraphNVP, we use the pretrained GraphNVP provided by the authors. For MORLD, we set negative
values of docking scores from QuickVina 2 as the final reward function and benzene as the initial
molecule. For GraphDF, we use the same hyperparameters the authors used to optimize against
penalized logP or QED score. Same as in the optimization of penalized logP, the intermediate reward
is set to -1 if the step violates chemical bond valency, otherwise, we assign 0. We use the same final
reward function the authors used for penalized logP optimization, for docking score optimization.
For GraphEBM, the same goal-directed generation strategy the authors used is utilized to optimize
docking scores. For FREED, we utilize the predictive error-PER.

B.3 DETAILS OF IMPROVEMENT IN MARS

Implementation details of MARS We strictly follow the setting in the original paper of MARS.
The fragment vocabulary consists of the top 1000 frequently appearing fragments that contain no
more than 10 heavy atoms from the ChEMBL dataset (Gaulton et al., 2017) by breaking single
bonds. The temperature is set as T = 0.95bt/5c. The sampling paths all start with ethane. An Adam
optimizer Kingma & Ba (2014) is used with an initial learning rate of 3× 10−4.

Implementation details of EBM The architecture of the EBM used in the MARS augmentation
experiment is the same as the energy network of MOG. We train the EBM with the known inhibitors
against both GSK3β and JNK3, which are 315 molecules in total. When training the EBM, the step
size of λ = 30 and the number of steps of K = 150 are used in Langevin dynamics. The number
of training epochs of 20, a batch size of 32, a learning rate of 1× 10−4, and an Adam optimizer are
used. The initial weight of the energy score is set as ν = 0.1 with an exponential decay of 0.99 per
step, and a warmup step of 600 is used.
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