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ABSTRACT

Safe offline reinforcement learning (RL), which aims to learn the safety-guaranteed
policy without risky online interaction with environments, has attracted growing re-
cent attention for safety-critical scenarios. However, existing approaches encounter
out-of-distribution problems during the testing phase, which can result in poten-
tially unsafe outcomes. This issue arises due to the infinite possible combinations
of reward-related and cost-related states. In this work, we propose State Decoupling
with Q-supervised Contrastive representation (SDQC), a novel framework that
decouples the global observations into reward- and cost-related representations for
decision-making, thereby improving the generalization capability for unfamiliar
global observations. Compared with the classical representation learning methods,
which typically require model-based estimation (e.g., bisimulation), we theoreti-
cally prove that our Q-supervised method generates a coarser representation while
preserving the optimal policy, resulting in improved generalization performance.
Experiments on DSRL benchmark problems provide compelling evidence that
SDQC surpasses other baseline algorithms, especially for its exceptional ability to
achieve almost zero violations in more than half of the tasks, while the state-of-the-
art algorithm can only achieve the same level of success in a quarter of the tasks.
Further, we demonstrate that SDQC possesses superior generalization ability when
confronted with unseen environments.

1 INTRODUCTION

Reinforcement learning (RL) has been proven to be a powerful tool for solving high-dimensional
decision-making problems under uncertainty (Mnih et al., 2015; Silver et al., 2017; Schrittwieser
et al., 2020). Nevertheless, safety concerns remain a significant obstacle to the extensive adoption of
RL in safety-critical domains (Garcıa & Fernández, 2015; Gu et al., 2022; Xu et al., 2022b; Li, 2023),
such as industrial management, and robot control. In these contexts, the potential for catastrophic
outcomes necessitates a significant emphasis on preventing unsafe actions (Andersen et al., 2020;
Kiran et al., 2021; Brunke et al., 2022). As a promising method that received growing attention, safe
RL provides safety guarantees by formulating the problem as a constrained Markov decision process
(CMDP) (Altman, 1998; 2021).

Over the past few years, a multitude of safe RL algorithms have been introduced (Achiam et al.,
2017; Tessler et al., 2018; Chow et al., 2018; Zhao et al., 2021; Sootla et al., 2022; Yu et al., 2022).
Regrettably, most existing methodologies address safety concerns within online settings. Such online
methods rely on the availability of high-fidelity simulators or involve direct agent-environment
interactions during the training process, thereby introducing additional risks of safety violations (Liu
et al., 2023a). Safe offline RL, on the other hand, provides a promising solution that learns the safety-
guaranteed policy in a fully offline manner. Its training requires no additional risky interaction with
the environment and relies only on the pre-collected offline dataset. However, empirical observations
indicate that most existing safe offline RL algorithms fail to thoroughly ensure pre-defined safety
constraints during testing (Liu et al., 2023a; Zheng et al., 2024). Such occurrences tend to be more
pronounced in tasks characterized by higher complexity or in environments with higher observation
dimensions.
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Figure 1: Diagram of the OOD issue for offline
trained UGV in the testing phase.

In offline RL, it is imperative that the states vis-
ited during testing have been included in (or at least
not far away from) the training dataset to ensure
robust performance (Fujimoto et al., 2019; Wang
et al., 2022). However, Safe offline RL problems
have various combinations of reward-related and
cost-related states. For instance, as illustrated in
Figure 1, a UGV (unmanned ground vehicle) needs
to navigate around traps to reach its final destination.
During testing, if the relative positions of traps and
the target haven’t occurred in the training dataset,
the agent may struggle to make informed decisions
based on such unknown observations. It is reason-
able to suspect that the primary reason for the subpar
performance of safe offline RL during tests lies in
the out-of-distribution (OOD) issue.

To tackle this problem and improve the generaliza-
tion of safe offline RL, we propose State Decoupling with Q-supervised Contrastive representation
(SDQC), a novel representation learning method that decouples the global observations into reward-
and cost-related representations. Attributable to the successful application of Hamilton-Jacobi (HJ)
reachability analysis in Safe RL (Fisac et al., 2019; Yu et al., 2022; Zheng et al., 2024), which
introduces a safety analysis method iterated through Q-learning with convergence guarantees, our
approach conducts safety assessments on the cost-related representations and make decisions based
on the assessment results. Our SDQC, developed based on FISOR (Zheng et al., 2024), distinguishes
itself from FISOR and other classical methods which rely on global observations for decision-making
(as depicted in the left subplot of Figure 2), by being the first to utilize decoupled representations
for decision-making in safe RL tasks (see the right subplot of Figure 2). It employs reward-related
representations to make decisions when the assessment confirms absolute safety, switches to cost-
related representations when the assessment deems the situation unsafe, and integrates both when the
assessment indicates borderline safety.

Nevertheless, effective differentiation between reward- and cost-related information from global
observations poses a formidable challenge, especially when certain dimensions of the observations
contain intertwined information. For instance, some information, like speed and acceleration of UGV,
should be included in both reward- and cost-related representations. On the other hand, information
from the environment-detecting sensors, which include positions of destinations and obstacles, should
be distinctly decoupled. Manual separation of such information proves impractical in most cases.

Towards this end, our Q-supervised contrastive representation decouples the global observations
through clustering representations that demonstrate similar learned-Q* across the actions in support§.
The representations solely capture either reward or cost information, independent of another factor,
as determined by the training of Q*. In contrast to model-based representations learning (e.g.,
bisimulation), our SDQC circumvents the need for model estimation, thus mitigating the challenges
posed by severe estimation errors in scenarios with sparse rewards or costs. Moreover, we demonstrate
that our representations can be trained concurrently with the Q*-learning process by incorporating an
additional loss term within the framework of implicit Q-learning.

Further, we provide theoretical evidence that our method produces a coarser representation compared
to bisimulation, while still preserving the optimal policy. This is supported by our argument that
SDQC leads to a higher information entropy of the global observations when conditioned on the
representations. This attribute grants SDQC superior generalization capabilities, bolstering its efficacy
in handling OOD observations during the testing phase.

The experimental results showcase that our SDQC outperforms other safe offline RL algorithms in
the DSRL benchmark, especially in its exceptional ability to achieve zero violations in the majority
of tasks. Further, in generalization tests where agents are evaluated in environments with a different
number of obstacles than those in the training dataset, all baseline algorithms show a substantial

§For simplicity, we denote Q∗ as a generic notaiton to represent the optimal Q-value functions for both
reward (Q∗

r) and cost (Q∗
h) throughout this paper. Similarly, Q refers to both Qr and Qh.
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Figure 2: Overview diagram of classical approaches for safe decision-making (left) and our proposed
state-decoupling framework for safe decision-making (right).

increase in cost and/or a significant decline in reward. In contrast, SDQC stands out as the only
approach that guarantees no increase in cost while experiencing only a slight decline in reward.

2 PRELIMINARIES

Safe Offline RL. Safe RL tasks are generally modeled as CMDP in the form of M =
(S,A, P, r, c, γ, d0), where S is the state space, A is the action space, P is the model dynam-
ics, r : S × A → R represents the reward function, c : S × A → [0, Cmax] represents the cost
function, γ ∈ [0, 1) is the discount factor, and d0 ∈ ∆(S) is the distribution of initial state s0
(the set of the probability distribution over S is denoted as ∆(S)). P (s′|s, a) : S × A → ∆(S)
represents the transition function from state s to s′ when taking action a. The state-action-reward-cost
transitions over trajectory are recorded as τ := (st, at, rt, ct)t≥0. The goal of Safe RL is to learn a
policy π : S → ∆(A) that maximizes the expectation of the cumulated discounted reward while
restricting the expected cumulative costs below a predefined cost limit κ, which can be denoted by
maxπ Eτ∼π[

∑∞
t=0 γ

tr(st, at)], s.t. Eτ∼π[
∑∞
t=0 γ

tc(st, at)] ≤ κ.

In offline settings, the training is performed on a statistical dataset denoted as Dβ := (s, a, s′, r, c).
This offline dataset comprises both safe and unsafe trajectories and is acquired from a behavior
policy πβ . During training, most existing safe offline RL algorithms utilize the temporal difference
(TD) method to learn the reward state-value function V π

r (st), which models the expected cumulative
reward Eτ∼π[

∑∞
i=t γ

ir(si, ai)], as well as the cost state-value function V π
c (st), which models the

expected cumulative cost Eτ∼π[
∑∞
i=t γ

ic(si, ai)]. The primal training objective of safe offline RL
can be expressed as follows:

max
π

Est∼Dβ
[V π
r (st)] s.t.Est∼Dβ

[V π
c (st)] ≤ κ; D(π|πβ) ≤ ϵπ, (1)

where D(π|πβ) is the divergence term that prevents the distributional shift in offline training.

A commonly employed approach for solving Eq. 1 involves reformulating the training objective using
the Lagrangian dual form as minλ≥0 maxπ Est∼Dβ

[V π
r (st)− λ(V π

c (st)− κ)], s.t. D(π|πβ) ≤ ϵπ,
where the learnable Lagrange multiplier λ is iteratively updated to enforce the constraint. However, the
Lagrangian approach can be sensitive to the learning rate and initialization of the multiplier (Stooke
et al., 2020). Furthermore, the joint optimization of V π

r , V π
c , and π leads to significant instability,

as minor approximation errors can bootstrap across them and propagate, thereby undermining the
ability to provide robust safety guarantees (Kumar et al., 2019; Zheng et al., 2024). In safety-critical
scenarios, where violations are deemed unacceptable, there is a pressing need for advancements in
addressing these challenges.

Hamilton-Jacobi reachability. As a prospective method to perform safety assessment rooted in
control theory, HJ reachability has been proven to be applicable in Safe RL tasks for both online

3
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settings (Chen et al., 2021a; Yu et al., 2022) and offline settings (Zheng et al., 2024). In addition to
the tuple formulation M in CMDP, we introduce a constraint violation function h : S → R, which is
positive if the state constraint is violated and negative otherwise. For a given state s, the safe value
function V π

h (s) := maxt∈N{h(st) | s0 = s, ai ∼ π(·|si),∀i ∈ {0, . . . , t}} represents the worst
constraint violations among all possible trajectories induced by policy π. The corresponding safe
Q-function is given by Qπ

h(s, a) := maxt∈N{h(st) | s0 = s, a0 = a, ai ∼ π(·|si),∀i ∈ {1, . . . , t}}.
The optimal safe value function, defined as V ∗

h (s) := minπ V
π
h (s), stands for the smallest violation

one can obtain through adjusting the policy π. Similarly, the corresponding optimal safe Q-function
can be expressed as Q∗

h(s, a) := minπ Q
π
h(s, a). With the discount factor defined as γ, Fisac et al.

(2019) introduce the following safety Bellman operators:
B∗
hQh,γ(s, a) := (1− γ)h(s) + γmax{h(s), Vh,γ(s′)}, Vh,γ(s

′) = min
a′

Qh(s
′, a′), (2)

which is a contraction mapping satisfying limγ→1 Qh,γ → Q∗
h, limγ→1 Vh,γ → V ∗

h . A direct
safety inference can be made after training converges. V ∗

h (s) ≤ 0 implies the existence of policies
that guarantee adherence to the hard constraints throughout the trajectory. Conversely, V ∗

h (s) > 0
indicates that the destiny towards unsafe states regardless of the chosen policy. In the offline settings,
Zheng et al. (2024) pioneered the application of HJ reachability analysis for safety assessment. They
present that the decision-making for Safe RL with hard constraints can be decoupled as:

Safe : maxπ Ea∼π
[
A∗
r(s, a) · IV ∗

h (s)≤0

]
s.t.

∫
{a|Q∗

h(s,a)≤0} π(a|s)da = 1

D(π|πβ) ≤ ϵ,

Unsafe : maxπ Ea∼π
[
−A∗

h(s, a) · IV ∗
h (s)>0

]
s.t.

∫
a
π(a|s)da = 1

D(π|πβ) ≤ ϵ,
(3)

where A∗
r(s, a) := Q∗

r(s, a)−V ∗
r (s) and A∗

h(s, a) := Q∗
h(s, a)−V ∗

h (s). Eq. 3 theoretically ensures
zero constraint violations. However, challenges arise from estimation errors and OOD problems
during the testing phase. As a result, the empirical results demonstrate the inability of their algorithm
(FISOR) to achieve absolute safety guarantees.

3 STATE DECOUPLING WITH Q-SUPERVISED CONTRASTIVE
REPRESENTATIONS

In our state-decoupling framework, we aim to decouple the state s into two separate representations:
one related to rewards, denoted as sr, and the other related to costs, denoted as sc. For the decoupling
method, we slightly abuse the notation zθ(s) (or simplified as z) to represent the neural network
embedded representations of either sr or sc in this section.

3.1 MOTIVATION

Manually abstracting representations of reward-related or cost-related aspects directly from orig-
inal state observations can be challenging due to the entanglement of information within certain
observation dimensions. It is observed that the optimal Q-value, whether associated with reward or
cost, exclusively encompasses the information it was trained with, independent of another factor.
For instance, concerning the states of the agent depicted in Figure 1, the optimal Q-values related
to reward are the same across all actions regardless of the cost-related observations. These states
should be embedded as the same reward-related representation. To achieve a coarser abstraction
while maintaining the optimal Q-value unchanged, we design the objective for both reward- and
cost-related representations as follows

maxθH(s|zθ(s)) s.t. (B∗Q(zθ(s), a)−Q(zθ(s), a))
2 ≤ ϵB, ∀a ∈ A, (4)

where H(·|·) represents conditional entropy, ϵB is an arbitrary small number and B∗ is the optimal
general/safety Bellman operator. We define d(s1, s2) := supa∈A |Q∗(zθ(s1), a), Q

∗(zθ(s2), a)|
as the distance measure between a pair of states s1, s2 ∈ S. One can always find an arbitrarily
small number ϵd such that the objective in Eq. 4 can be achieved through embedding the states
C(s′) := {s̃ ∈ S | d(s̃, s′) < ϵd} with the same representation for any s′ ∈ S ′, where S ′ is a
smallest subset of S such that for any s′1, s

′
2 ∈ S ′, we have d(s′1, s

′
2) ≥ 2ϵd and

⋃
s′∈S′ C(s′) = S.

Contrastive learning, which aims to bring artificially defined similar instances closer and push other
instances further apart in the representation space (Oord et al., 2018; Bachman et al., 2019; Chen
et al., 2020; Agarwal et al., 2021), provides a promising solution for our embedding task.
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3.2 Q-SUPERVISED CONTRASTIVE REPRESENTATION

Inspired by Agarwal et al. (2021), we adopt a soft similarity measure, denoted as Γ(s, s̃) =
exp(−d(s, s̃)/η), to quantify the distance between two states (with η representing the tempera-
ture factor). Notably, directly calculating the distance measure involves querying out-of-distribution
(OOD) actions in the offline setting. To address this issue, we pre-train a generative model to capture
the behavior policy (cf. Appendix B.2,C.1 for details). This allows us to generate in-support actions
for any given states in the offline dataset, denoted as As

β . As a result, we have the approximation
d(s, s̃) ≈ supa∈As

β
|Q∗(zθ(s), a)−Q∗(zθ(s̃), a)| for calculating the soft similarity measure.

In practice, we employ a random sampling approach to select a subset of states, denoted as S ′, from
the offline state set. Within the subset, we further randomly choose a set of anchor states, denoted as
{si ∈ S ′ | i ∈ I}, where I represents the index set of the selected anchor states. For each anchor
state si, we use its nearest neighbor in S ′ based on the similarity measure Γ to define the positive
pairs {si, s̃i}, where s̃i = argmins∈S′\{si} Γ(si, s). The remaining states in S ′ are considered as
negative samples. Attention-based or multiple-layer-perceptron-based neural networks are utilized to
encode the state as a normalized vector on the unit hypersphere, i.e., ∥zθ(s)∥ = 1 (cf. Appendix C.2
for detailed network selection and structure design). Finally, we have the following contrastive loss,
which encourages the embedding of states with similar Q∗ values across all actions to have similar
representations:

Lθ =
∑
i∈I

− 1

|I|
log

Γ(si, s̃i) exp(zi · z̃i/ν)
Γ(si, s̃i) exp(zi · z̃i/ν) +

∑
zj∈Z′\{zi,z̃i}(1− Γ(zi, zj)) exp(zi · zj/ν)

, (5)

where ν is a temperature parameter.

It is important to note that Eq. 5 requires precise calculation of optimal Q-values for all states
across all actions, i.e., the constraints in Eq. 4 are satisfied. However, the Q-values are derived from
the representation network, and even a small change in the network can result in variations in the
Q-values. Therefore, it is necessary to integrate the training process of the representation network
with the Q-learning process. This integration can be achieved by incorporating the contrastive loss as
an auxiliary objective during the learning of the optimal value functions. Please refer to Section 3.3
for further details.

3.3 PRACTICAL IMPLEMENTATION

Building upon in-sample learning methods (Kostrikov et al., 2021; Xu et al., 2023; Garg et al., 2023;
Zheng et al., 2024), our approach follows a two-step process. In the initial phase, we undertake the
learning process for the value functions and representations associated with cost and reward separately.
Following that, we extract the policy based on the acquired value functions and representations.

Reward-related Representation. We use implicit Q-learning (IQL) (Kostrikov et al., 2021) (cf.
Appendix B.1 for details) to approximate the reward-related optimal (maximum) value functions Q∗

r
and V ∗

r within the support of data distribution through expectile regression:

LVr
= E(s,a)∼Dβ

[Lτ (Qr(zθr (s), a)− Vr(zθr (s)))] , (6)

LQr = E(s,a,s′,r)∼Dβ

[
(r + γVr(zθr (s

′))−Qr(zθr (s), a))
2
]
, (7)

where Lτ (u) = |τ − I(u < 0)|u2, τ ∈ (0.5, 1). The reward-related representations are acquired
using the auxiliary contrastive loss term described in Eq. 5, with a weighting factor denoted by δ.
Consequently, the overall loss for the reward-related value functions and representations is formulated
as:

Lreward = LVr
+ LQr

+ δLθr . (8)

Cost-related Representation. Similar to Zheng et al. (2024), we employ the safety Bellman
operator, as denoted in Eq. 2, and utilize reverse expectile regression to learn the cost-related optimal
(minimum) value functions Q∗

h and V ∗
h :

LV low
h

= E(s,a)∼Dβ

[
Lτrev(Qh(zθh(s), a)− V low

h (zθh(s)))
]
, (9)

LQh
= E(s,a,s′,h)∼Dβ

[
((1− γ)h+ γmax{h, V low

h (zθh(s
′)} −Qh(zθh(s), a))

2
]
, (10)

5
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where Lτrev(u) = |τ − I(u > 0)|u2, τ ∈ (0.5, 1). Additionally, we learn an upper-bound cost-related
value function V up

h to model the maximum Q∗
h across all actions in support:

LV up
h

= E(s,a)∼Dβ
[Lτ (Qh(zθh(s), a)− V up

h (zθh(s)))] . (11)

By incorporating the auxiliary contrastive loss term (Eq. 5) with a weighting factor of δ, we express
the overall loss for the cost-related value functions and representations as:

Lcost = LV low
h

+ LV up
h

+ LQh
+ δLθh . (12)

Policy Extraction. As illustrated in the right subplot of Figure 2, we divide the global policy into
three components: the reward policy πr, which solely depends on the reward-related representation;
the cost policy πh, which solely relies on the cost-related representations; and the tradeoff policy πto,
which depends on both. We independently train the three policies using weighted regressed diffusion
models, an approach pioneered by Zheng et al. (2024). They present that the optimal policy satisfies
π∗(a|z) ∝ πβ(a|z) · w(z, a), and the optimal policy can be obtained through weighted training of
diffusion models. The weighted loss function for the three policies can be expressed as follows:{

πr : Lπr
= Evar [wr(zθr (s), a)∥ζ − ζψr

(at, zθr (s), t)∥]
πh : Lπh

= Evar [wh(zθh(s), a)∥ζ − ζψh
(at, zθh(s), t)∥]

πto : Lπto = Evar [wto(zθr (s), zθh(s), a)∥ζ − ζψto(at, zθr (s), zθh(s), t)∥] ,
(13)

where var represents the variables involved in the expectation, with t ∼ U(1, T ), ζ ∼ N (0, I),
and (s, a) ∼ Dβ . The noised action at = αta + σtζ satisfies the forward transition distribution
N (at|αta, σtI) in the diffusion models, and αt, σt are noised schedules. The weights in Eq. 13 can
be denoted as: wr(zθr (s), a) = exp(ιr(Qr(zθr (s), a)− Vr(zθr (s)))

wh(zθh(s), a) = exp(−ιh(Qh(zθh(s), a)− Vh(zθh(s)))
wto(zθr (s), zθh(s), a) = exp(ιto(Qr(zθr (s), a)− Vr(zθr (s))) · IQh(zθh (s),a)≤0,

(14)

where ιr, ιh and ιto are temperatures that control the behavior regularization strength.

After obtaining ζψr ζψh
and ζψto , the three approximated optimal policies can be sampled through

the reverse diffusion chain starting from random Gaussian noise (Ho et al., 2020; Song et al., 2020)
(cf. Appendix B.3 for details). During the testing phase, we first perform safety assessments on the
cost-related representations. If the assessment verifies absolute safety (V low

h ≤ V up
h ≤ 0), we employ

the policy πr. If the assessment indicates borderline safety (V low
h ≤ 0 < V up

h ), we utilize the policy
πto. In the case of an unsafe condition (0 < V low

h ≤ V up
h ), we rely on the policy πh. See the right

subplot of Figure 2 for details.

3.4 COMPARISON WITH BISIMULATION

Bisimulation has been established as a useful tool for abstracting state representations (Definition 3.1),
where states with identical transition and reward/cost functions are grouped together (Givan et al.,
2003; Castro & Precup, 2010; Castro, 2020). However, employing bisimulation typically entails
an additional step of training a model-based estimator to learn the state transition and reward/cost
functions. Notably, the estimation of reward/cost functions becomes particularly challenging when
the values are sparsely distributed (Lee et al., 2024). In contrast to such a model-based representation
approach, learning the representations based on Q∗ (Definition 3.2) eliminates the necessity for
estimating the exact model dynamics (Givan et al., 2003; Li et al., 2006). With Θ denoting a generic
surjective mapping from the ground-truth state space to representation space, we have the following
definitions:
Definition 3.1. A bisimulation representation Θbisim is such that for any action a and any repre-
sented state z, Θbisim(s1) = Θbisim(s2) implies r(s1, a) = r(s2, a) (or c(s1, a) = c(s2, a)) and∑
s′∈Θ−1

bisim(z) P (s′|s1, a) =
∑
s′∈Θ−1

bisim(z) P (s′|s2, a).

Definition 3.2. A Q∗-irrelevance representation ΘQ∗ is such that, ΘQ∗(s1) = ΘQ∗(s2) implies
Q∗(s1, a) = Q∗(s2, a) for any action a.

For any state representation Θ1,Θ2, we say Θ1 is finer than Θ2, denoted as Θ1⪰Θ2, if and only if for
any states s1, s2 ∈ S, Θ1(s1) = Θ1(s2) implies Θ2(s1) = Θ2(s2). Givan et al. (2003) established

6
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the relationship between bisiumulation and the Q∗-irrelevance representations (Θbisim ⪰ ΘQ∗) for
finite-horizon MDPs with respect to the general Bellman operator. In the following theorem, we
extend this relationship to infinite-horizon MDPs and incorporate the safety Bellman operator, as
described below.
Theorem 3.1. For any MDP, the optimal Q-functions induced by either the general Bellman operator
or the safety Bellman operator satisfy Θbisim ⪰ ΘQ∗ . The optimal policies derived from both
bisimulation representation and Q∗-irrelevance representation are also optimal in the ground MDP,
i.e., π∗(Θbisim(s)) = π∗(ΘQ∗(s)) = π∗(s) for any state s ∈ S.

Theorem 3.1 shows that neither of the representation methods alters the optimal policy, while the
bisimulation representation is finer than the Q-based representation, which implies that

0 ≤ H(s|Θbisim(s)) ≤ H(s|ΘQ∗(s)). (15)

Refer to Appendix A for a complete proof. Since our primary objective is to maximize the condi-
tioned entropy H(s|zθ(s)), our Q-supervised contrastive learning method theoretically surpasses
bisimulation in terms of generalization.

4 EXPERIMENT

4.1 EVALUATION ON DSRL BENCHMARK

We compare the proposed SDQC with several state-of-the-art baseline safe offline RL algorithms
on the DSRL benchmark (Liu et al., 2023a), which provides extensive datasets and environment
wrappers for safe offline RL performance evaluation. The baseline algorithms include i) BCQ-Lag:
A PID-Lagrangian-based method (Stooke et al., 2020) that considers cost threshold based on Batch
Constrained Q-learning (BCQ) (Fujimoto et al., 2019), ii) CPQ (Xu et al., 2022a): A constrained
Q-updating method that incorporates penalties for OOD actions and unsafe actions, iii) COptiDICE
(Lee et al., 2022): A DICE (distribution correction estimation) based Lagrangian method that builds
upon offline RL algorithm OptiDICE (Lee et al., 2021), iv) CDT (Liu et al., 2023b): A future cost
inference method based on Decision Transformer (DT) (Chen et al., 2021b), v) TREBI (Lin et al.,
2023): A real-time cost budget inference method on the basis of Diffuser (Janner et al., 2022), vi)
FISOR (Zheng et al., 2024): An HJ reachability guided method with diffusion policies that firstly
considers the hard constraints in safe offline RL problems.

Our ultimate objective is to achieve zero-cost during test, aligning with the framework established by
FISOR (Zheng et al., 2024). However, most baseline algorithms struggle to operate effectively under
a zero-cost threshold. Consequently, in accordance with FISOR (Zheng et al., 2024), we impose a
stringent cost limit of 10 for the Safety-Gymnasium environment and 5 for Bullet-Safety-Gym. We
employ the metrics of normalized return and normalized cost for evaluation, where a normalized cost
below 1 signifies a safe operation. The evaluation results† are presented in Table 1.

The former five baseline algorithms exhibit either significant constraint violations or suboptimal
returns when subjected to stringent safety requirements, partially due to the fact that they consider
only soft constraints. Despite incorporating hard constraints, FISOR still encounters high costs in
tasks with high complexity. As discussed in Section 1, this issue can be attributed to estimation errors
and OOD problems during the testing phase. In contrast to FISOR, our proposed SDQC conducts
safety assessments on the cost-related representation abstracted from the original observations and
makes decisions accordingly. The utilization of decoupled representations in SDQC substantially
improves the accuracy of state safety assessment and enhances the generalization capability of
the policy, thereby providing a higher level of safety assurance. The experimental results clearly
demonstrate that SDQC outperforms FISOR in terms of higher rewards and lower costs. Remarkably,
SDQC even achieves zero violations in the majority of tasks.

4.2 GENERALIZATION TESTS

To showcase the superior generalization capabilities of our proposed SDQC compared to other safe
offline RL algorithms, we perform generalization tests on the "CarGoal" and "CarPush" tasks (in

†The baseline algorithm evaluation results are sourced from FISOR (Zheng et al., 2024), except for the
evaluation of the Point agent on Safety-Gymnasium (marked with *), which is conducted independently as it is
not in the source.
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Table 1: Normalized DSRL benchmark results. The evaluation results are averaged over 3 random
seeds (20 episodes for each seed). Gray: Unsafe agents. Bold: Safe agents whose normalized cost is
smaller than 1. Red: Safe agents with the highest reward. Blue: Safe agents with the lowest cost.

BCQ-Lag CPQ COptiDICE CDT TREBI FISOR SDQC(ours)Task reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓
*PointGoal1 0.71 4.29 0.56 0.93 0.40 5.53 0.21 1.59 0.36 2.79 0.68 4.19 0.35 0.36
*PointGoal2 0.62 3.81 0.41 5.03 0.43 2.78 0.22 1.19 0.28 3.86 0.21 1.42 0.29 0.09
*PointPush1 0.32 3.08 0.14 1.35 0.13 3.80 0.27 2.81 0.31 2.02 0.27 1.38 0.12 0.00
*PointPush2 0.21 1.86 0.16 2.36 0.02 2.90 0.18 1.69 0.13 3.85 0.24 2.41 0.19 0.28

*PointButton1 0.21 4.45 0.61 11.80 0.08 4.29 0.48 10.88 0.12 4.55 0.04 0.97 0.08 0.46
*PointButton2 0.38 8.04 0.35 12.09 0.17 6.12 0.42 9.97 0.02 2.18 0.08 4.49 0.06 0.57

CarGoal1 0.44 2.76 0.33 4.93 0.43 2.81 0.60 3.15 0.41 1.16 0.49 0.83 0.38 0.01
CarGoal2 0.34 4.72 0.10 6.31 0.19 2.83 0.45 6.05 0.13 1.16 0.06 0.33 0.23 0.00
CarPush1 0.23 1.33 0.08 0.77 0.21 1.28 0.27 2.12 0.26 1.03 0.28 0.28 0.30 0.00
CarPush2 0.10 2.78 -0.03 10.00 0.10 4.55 0.16 4.60 0.12 2.65 0.14 0.89 0.31 0.04

CarButton1 0.13 6.68 0.22 40.06 -0.16 4.63 0.17 7.05 0.07 3.75 -0.02 0.26 0.03 0.32
CarButton2 -0.04 4.43 0.08 19.03 -0.17 3.40 0.23 12.87 -0.03 0.97 0.01 0.58 0.02 0.42

AntVel 0.85 18.54 -1.01 0.00 1.00 10.29 0.98 0.91 0.31 0.00 0.89 0.00 0.73 0.00
HalfCheetahVel 1.04 57.06 0.08 2.56 0.43 0.00 0.97 0.55 0.87 0.23 0.89 0.00 0.81 0.00

SwimmerVel 0.29 4.10 0.31 11.58 0.58 23.64 0.67 1.47 0.42 1.31 -0.04 0.00 -0.04 0.00
SafetyGym

Average 0.39 9.17 0.16 9.05 0.26 5.66 0.46 4.93 0.25 2.10 0.28 1.25 0.26 0.17

AntRun 0.65 3.30 0.00 0.00 0.62 3.64 0.70 1.88 0.63 5.43 0.45 0.03 0.31 0.00
BallRun 0.43 6.25 0.85 13.67 0.55 11.32 0.32 0.45 0.29 4.24 0.18 0.00 0.20 0.00
CarRun 0.84 2.51 1.06 10.49 0.92 0.00 0.99 1.10 0.97 1.01 0.73 0.14 0.56 0.00

DroneRun 0.80 17.98 0.02 7.95 0.72 13.77 0.58 0.30 0.59 1.41 0.30 0.55 0.36 0.56
AntCircle 0.67 19.13 0.00 0.00 0.18 13.41 0.48 7.44 0.37 2.50 0.20 0.00 0.38 0.00
BallCircle 0.67 8.50 0.40 4.37 0.70 9.06 0.68 2.10 0.63 1.89 0.34 0.00 0.42 0.00
CarCircle 0.68 8.84 0.49 4.48 0.44 7.73 0.71 2.19 0.49 0.73 0.40 0.11 0.50 0.00

DroneCircle 0.95 18.56 -0.27 1.29 0.24 2.19 0.55 1.29 0.54 2.36 0.48 0.00 0.36 0.07
BulletGym

Average 0.71 10.63 0.32 5.28 0.55 7.64 0.63 2.09 0.56 2.44 0.39 0.10 0.39 0.08

Safety-Gymnasium), as illustrated in Figure 3. In these tasks, the "Car" agent is tasked with reaching
the goal point or pushing the box to the goal point while avoiding hazardous areas and obstacles.
The difficulty level varies between tasks, with the simple tasks (CarGoal1, CarPush1) having fewer
hazards and obstacles than the challenging tasks (CarGoal2, CarPush2).

It is reasonable to be concerned about the performance of an agent when it is tested in environments
that differ from the ones it was trained on, especially if the testing environment is more complex or
comprehensive. The experimental results provide evidence that our proposed SDQC algorithm is the
only algorithm that ensures no increase in cost under such circumstances. In fact, SDQC achieves
almost zero violations in the majority of tests, with only a slight decay in reward performance. In
contrast, other algorithms exhibit a sharp increase in cost and/or a significant decrease in reward.
Generalization in ensuring safety is crucial in safety-critical scenarios, such as the field of autonomous
driving. It is impractical to have the agent traverse every possible radar observation that may occur in
real-world scenarios during the training process. Our proposed SDQC offers a potent and promising
solution for addressing these complex safety-critical scenarios.

4.3 ABLATION STUDY

To validate the efficacy of our proposed Q-supervised contrastive learning approach in acquiring
meaningful representations and enhancing performance, as discussed in Section 3.2, we conducted
ablation studies on the "Safety-Gymnasium-CarGoal2" task (cf. Figure 4). In the absence of
contrastive loss during the critic and representation training phase, the agent experiences considerably
lower rewards and higher costs compared to the agent trained with contrastive loss.

The t-SNE visualization results (in Figure 4b) reveal that the Q-supervised contrastive loss effectively
clusters representations with similar values in high-dimensional space. This aligns with our original
intention, which aims to cluster states with similar Q-values for any actions in the representation space.
The clusterings facilitate the learning of the conditional diffusion model (i.e., the actor) by promoting
the generation of similar output policies for similar representations. Furthermore, the inclusion of the
Q-supervised contrastive loss enables a more reliable evaluation of the states’ safety. In the depicted
10 trajectories, despite the cumulative cost being zero, the agent trained without contrastive loss
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Figure 3: The generalization tests on the agent "Car" in Safety-Gymnasium. (a) The agent is trained
on the dataset from a simple environment (S-trained), and its performance is evaluated in both the
simple environment (S-tested) and the complicated one (C-tested). Conversely, (b) the agent is trained
on the dataset from a complicated environment (C-trained), and its performance is assessed in both
the original environment (C-tested) and the simple one (S-tested). The evaluation results are obtained
from 3 random seeds, with 20 tests on each seed. Outlier data points are omitted for clarity.

erroneously identifies a majority of the experienced states as unsafe (V low
h ≥ 0). Conversely, the agent

trained with contrastive loss provides a more accurate assessment, demonstrating the effectiveness of
the proposed approach. For more ablation studies on the impact of anchor number (|I|) and neural
network structures, please refer to Appendix C.

5 RELATED WORKS

Safe RL. In online settings, safe RL problems are generally tackled with three mainstream ap-
proaches (Xu et al., 2022b). i) Formulating the problem as a CMDP and solving it from an opti-
mization perspective. Solution techniques include updating the policy constrained in a trust region
(Achiam et al., 2017; Liu et al., 2022), reformulating the problem into its Lagrangian dual form
(Tessler et al., 2018; Chow et al., 2018; Ma et al., 2021b; Duan et al., 2022), and addressing the
constraints by framing an optimistic/pessimistic planning problem (Wachi et al., 2018; Kalagarla
et al., 2021). Due to expectation constraints and estimation errors, optimization-based methods can
only achieve soft constraints, leading to possible violations of the cost threshold during the testing
phase (Liu et al., 2023a; Zheng et al., 2024). ii) Combining the safe RL problem with the field of
safe control. A prevalent method entails representing a safety certificate through a learned safety
assessment function, such as the Control Barrier Function (CBF) (Ma et al., 2021a; Luo & Ma, 2021)
or Hamilton-Jacobbi (HJ) reachability (Yu et al., 2022; Fisac et al., 2019; Chen et al., 2021a). An
agent can switch between optimal and safe policies based on safety assessment results (Chen et al.,
2021a; Thananjeyan et al., 2021), thereby theoretically ensuring hard constraints with state-wise
zero violations. iii) Employing Teacher-Student Framework (TSF), wherein a proficient teacher
critic or policy supervises the student policy, offering guidance and intervening during the onset
of safety-critical conditions. (Mehta et al., 2020; Peng et al., 2022; Xue et al., 2023). Applying
the aforementioned approaches directly in offline settings may give rise to significant distributional
shift issues due to the inaccurate estimation of Q-values for OOD states and actions (Liu et al.,
2023a). Recent research endeavors have embraced the integration of safety constraint problems with
existing reliable offline reinforcement learning algorithms (Xu et al., 2022a; Lee et al., 2022; Liu
et al., 2023b; Lin et al., 2023). However, most existing methods only provide soft constraints without
any guarantees of zero violations. FISOR (Zheng et al., 2024) is the first safe offline RL algorithm
that tackles hard constraints issues through HJ reachability analysis, while the limited offline data
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Figure 4: Ablation studies on the Q-supervised contrastive loss in CarGoal2. (a) The actor-training-
process evaluations of SDQC with (marked by ⋆) and without (marked by ×) contrastive loss. The
curves are averaged over 3 random seeds and smoothed with a window size of 3. (b) t-SNE visualiza-
tion of the distribution of the original state, the reward-related and the cost-related representations
with and without contrastive loss across 10 different safe trajectories, where the policies are from the
agent trained with contrastive loss. The original states (first column) are colored according to the
critic trained with contrastive loss (i.e., the same as the second column).

still makes it difficult to guarantee safety during tests thoroughly. As a complementary algorithm
to FISOR, our SDQC decouples the global observations for safe decision-making, substantially
improves the accuracy of state safety assessment, and enhances the generalization capability of the
policy, thereby providing a higher level of safety assurance.

Representation Learning. Representation learning in RL involves compressing the large observa-
tion space into a smaller latent vector that captures relevant aspects of the environment (Watter et al.,
2015; Finn et al., 2016; Gelada et al., 2019), often applied in image-based tasks (Kostrikov et al.,
2020; Yarats et al., 2021; Cetin et al., 2022). Contrastive learning has been widely acknowledged
as a potent technique for unsupervised representation learning (Liu et al., 2021; Zhu et al., 2022),
primarily achieved by augmenting data through introducing noise to the original image (Laskin
et al., 2020; Agarwal et al., 2021). In state-based tasks, this approach is not directly applicable as
the noise may distort the underlying information. Unlike previous works that conduct contrastive
learning among the generated samples, we employ contrastive learning within the dataset itself in a
Q-supervised manner. The most relevant works to ours are from Bellemare et al. (2019) and Le Lan
et al. (2021), who learn representations via Bellman value functions. To the best of our knowledge,
we are pioneers in utilizing representation learning in state-based Safe RL tasks. We are the first to
introduce the concept of decoupling states into reward- and cost-related representations specifically
for decision-making purposes.

6 CONCLUSION

In this work, we propose the first framework of state decoupling for safe decision-making to tackle
the OOD problem of offline safe RL during the testing phase. We propose a Q-supervised contrastive
learning method to learn the representations without relying on additional system model estimation
such as bisimulation. Theoretical analysis demonstrates that our Q-supervised approach generates
coarser representations while preserving the optimal policy, leading to enhanced generalization
performance. Experiments on DSRL benchmarks showcase that SDQC surpasses other baseline
algorithms, especially for its exceptional ability to achieve almost zero violations in more than half of
tasks. Further, SDQC possesses superior generalization ability when confronted with unseen, even
more complex environments.
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A THEORETICAL INTERPRETATIONS

The first comparison between the bisimulation representation and Q∗-irrelevance representation for
finite horizon MDPs was given by Givan et al. (2003). The systematic state abstraction theory for
MDPs was summarized in Li et al. (2006). The expansion of the theory in Partially Observable MDPs
(POMDPs) are introduced recently (Subramanian et al., 2022). It is worth noting that their formulation
does not incorporate the safety Bellman operator, and a comprehensive proof for infinite-horizon
MDPs is not provided. We now provide a complete proof for Theorem 3.1 as follows.
Definition A.1. For any state representation Θ1,Θ2, we say Θ1 is finer than Θ2, denoted as Θ1 ⪰ Θ2,
if and only if for any states s1, s2 ∈ S, Θ1(s1) = Θ1(s2) implies Θ2(s1) = Θ2(s2).

To clarify, let z1 and z2 represent the representations Θ1(s) and Θ2(s) for any s ∈ S , respectively. It
is always possible to find a function f : Z1 → Z2 that is surjective. The equality holds (Θ1 = Θ2) if
and only if the surjective function is also injective (i.e., bijective).
Theorem 3.1. For any MDP, the optimal Q-functions induced by either the general Bellman operator
or the safety Bellman operator satisfy Θbisim ⪰ ΘQ∗ . The optimal policies derived from both
bisimulation representation and Q∗-irrelevance representation are also optimal in the ground MDP,
i.e., π∗(Θbisim(s)) = π∗(ΘQ∗(s)) = π∗(s) for any state s ∈ S.

Proof. We start by considering a finite-horizon MDP with a maximum timestep T . For any timestep
t ∈ {1, 2, ..., T}, we denote Q∗

r,t(T ) as the optimal-Q function at timestep t. Then, for ∀s ∈ S and
∀a ∈ A, we have:

Q∗
r,t(T )(s, a) = r(s, a) + γ

∑
s′∈S

P (s′ | s1, a)[maxa′∈A Q∗
r,t+1(T )(s

′, a′)]. (16)

For timestep T + 1, we define Q∗
r,T+1(T )(s, a) = 0 for ∀s ∈ S and ∀a ∈ A, which implies

that Q∗
r,T (T )(s, a) = r(s, a). Now, for any s1, s2 ∈ S that are bisimilar (i.e., Θbisim(s1) =

Θbisim(s2)), we have Q∗
r,T (T )(s1, a) = Q∗

r,T (T )(s2, a). In other words, for any z′ ∈ Zbisim,
maxa′∈A Q∗

r,T (T )(s
′, a′) is the same for all s′ ∈ Θ−1

bisim(z′).

Considering any s1, s2 ∈ S that are bisimilar, and for any action a ∈ A, we perform backward
induction on timestep t from T − 1 to 1 following the proof sketch of Theorem 5 in Givan et al.
(2003):

Q∗
r,t(T )(s1, a)

= r(s1, a) + γ
∑

s′∈S
P (s′ | s1, a)[maxa′∈A Q∗

r,t+1(T )(s
′, a′)]

a
= r(s1, a) + γ

∑
s′∈{∪z′∈ZΘ−1(z′)}

P (s′ | s1, a)[maxa′∈A Q∗
r,t+1(T )(s

′, a′)]

b
= r(s1, a) + γ

∑
z′∈Z

∑
s′∈Θ−1(z′)

P (s′ | s1, a)[maxa′∈A Q∗
r,t+1(T )(s

′, a′)]

c
= r(s2, a) + γ

∑
z′∈Z

∑
s′∈Θ−1(z′)

P (s′ | s2, a)[maxa′∈A Q∗
r,t+1(T )(s

′, a′)]

= Q∗
r,t(T )(s2, a).

(17)

Equalities (a) and (b) hold due to the surjective relationship between s and z. Equality (c) holds due
to the definition of bisimulation and the fact that, for ∀z′ ∈ Zbisim, maxa′∈A Q∗

r,t+1(s
′, a′) is the

same for all s′ ∈ Θ−1
bisim(z′), as established by the induction hypothesis.

We denote Q∗
r = Q∗

r,t(∞) as the optimal Q function for the infinite-horizon MDP. The uniqueness
of Q∗

r is guaranteed by the fixed-point property of Bellman operator. For any s ∈ S, a ∈ A, and
timestep t ∈ {1, 2, ..., T − 1}. The optimal Q value gap between Q∗

r and Q∗
r,t(T ) can be expressed as:

∣∣Q∗
r(s, a)−Q∗

r,t(T )(s, a)
∣∣

=

∣∣∣∣r(s, a) + ∑
s′∈S

P (s′|s, a)[γmax
a′∈A

Q∗
r(s

′, a′)]−
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r(s, a)−
∑
s′∈S

P (s′|s, a)[γmax
a′∈A

Q∗
r,t+1(T )(s

′, a′)]

∣∣∣∣
=

∣∣∣∣ ∑
s′∈S

P (s′|s, a)[γmax
a′∈A

Q∗
r(s, a)− γmax

a′∈A
Q∗
r,t+1(T )(s

′, a′)]

∣∣∣∣
a
≤

∑
s′∈S

P (s′|s, a)
∣∣[γmax

a′∈A
Q∗
r(s

′, a′)− γmax
a′∈A

Q∗
r,t+1(T )(s

′, a′)]
∣∣

b
≤

∑
s′∈S

P (s′|s, a)γmax
a′∈A

∣∣Q∗
r(s

′, a′)−Q∗
r,t+1(T )(s

′, a′)
∣∣

c
≤ γ max

a′∈A,s′∈S

∣∣Q∗
r(s

′, a′)−Q∗
r,t+1(T )(s

′, a′)
∣∣, (18)

where inequality (a) holds due to the triangle inequality property, and inequalities (b) and (c)
follow from the properties of the maximum function. Assuming that Q∗

r and Q∗
r,T (T ) are bounded

for any s ∈ S and a ∈ A, we conclude that for a discount factor γ ∈ (0, 1), the difference
|Q∗

r(s, a)−Q∗
r,t(T )(s, a)| converges to 0 as T → ∞. Applying backward induction as introduced

in Eq. 17, we deduce that, for any s1, s2 ∈ S that are bisimilar (i.e., Θbisim(s1) = Θbisim(s2)),
Q∗
r(s1, a) = Q∗

r(s2, a). This completes the proof that Θbisim ⪰ ΘQ∗ for general Bellman operators.

For the safety Bellman operator, we have an analogous definition that for any timestep t ∈
{1, 2, ..., T}, Q∗

h,t(T ) is the optimal-Q function at timestep t. Then, for ∀s ∈ S and ∀a ∈ A,
we have:

Q∗
h,t(T )(s, a) = (1−γ)h(s)+γ

∑
s′∈S

P (s′ | s, a)[max{h(s),mina′∈A Q∗
h,t+1(T )(s

′, a′)}]. (19)

We denote Q∗
h,T+1(T )(s, a) = h(s) for all s ∈ S and a ∈ A, which implies that Q∗

h,T (T )(s, a) = h(s)

if h(s) > 0 and Q∗
h,T (T )(s, a) = (1− γ)h(s) otherwise. Given any state s ∈ S, for all z′ ∈ Zbisim,

max{h(s),mina′∈A Q∗
h,T (T )(s

′, a′)} is the same for all s′ ∈ Θ−1
bisim(z′). For any s1, s2 ∈ S that

are bisimilar, and for any action a ∈ A, we apply backward induction from timestep T − 1 to 1 such
that:

Q∗
h,t(T )(s1, a)

= (1− γ)h(s1) + γ
∑

s′∈{∪z′∈ZΘ−1(z′)}
P (s′ | s1, a)[max{h(s1),mina′∈A Q∗

h,t+1(T )(s
′, a′)}]

= (1− γ)h(s1) + γ
∑

z′∈Z

∑
s′∈Θ−1(z′)

P (s′ | s1, a)[max{h(s1),mina′∈A Q∗
h,t+1(T )(s

′, a′)}]

= (1− γ)h(s2) + γ
∑

z′∈Z

∑
s′∈Θ−1(z′)

P (s′ | s2, a)[max{h(s2),mina′∈A Q∗
h,t+1(T )(s

′, a′)}]

= Q∗
h,t(T )(s2, a).

(20)

Similarly, we denote Q∗
h = Q∗

h,t(∞) as the optimal Q function with safety Bellman operator for the
infinite-horizon MDP. The uniqueness of Q∗

h is also guaranteed by the fixed-point property of safety
Bellman operator. For any s ∈ S, a ∈ A, and timestep t ∈ {1, 2, ..., T − 1}. The optimal Q value
gap between Q∗

h and Q∗
h,t(T ) can be expressed as:

∣∣Q∗
h(s, a)−Q∗

h,t(T )(s, a)
∣∣

=

∣∣∣∣(1− γ)h(s) +
∑
s′∈S

P (s′|s, a)[γmax{h(s), min
a′∈A

Q∗
h(s

′, a′)}−

(1− γ)h(s)−
∑
s′∈S

P (s′|s, a)[γmax{h(s), min
a′∈A

Q∗
h,t+1(T )(s

′, a′)}
∣∣∣∣
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=

∣∣∣∣ ∑
s′∈S

P (s′|s, a)[γmax{h(s), min
a′∈A

Q∗
h(s

′, a′)} − γmax{h(s), min
a′∈A

Q∗
h,t+1(T )(s

′, a′)}]
∣∣∣∣

≤
∑
s′∈S

P (s′|s, a)
∣∣∣∣γmax{h(s), min

a′∈A
Q∗
h(s

′, a′)} − γmax{h(s), min
a′∈A

Q∗
h,t+1(T )(s

′, a′)}
∣∣∣∣

≤
∑
s′∈S

P (s′|s, a)γmax
a′∈A

∣∣Q∗
h(s

′, a′)−Q∗
h,t+1(T )(s

′, a′)
∣∣

≤ γ max
a′∈A,s′∈S

∣∣Q∗
h(s

′, a′)−Q∗
h,t+1(T )(s

′, a′)
∣∣. (21)

A similar conclusion can be drawn that for a discount factor γ ∈ (0, 1), the difference |Q∗
h(s, a)−

Q∗
h,t(T )(s, a)| approaches to 0 as T → ∞, provided that Q∗

r and Q∗
r,T (T ) are bounded for any s ∈ S

and a ∈ A. With backward induction as introduced in Eq. 20, we conclude that Θbisim ⪰ ΘQ∗ for
safety Bellman operators.
Lemma A.1. For any MDP, given the optimal Q-functions induced by either the general Bellman
operator or the safety Bellman operator, the optimal policy for ΘQ∗ remains optimal in the ground
MDP.

Proof. For any state s ∈ S, we observe that Q∗(ΘQ∗(s), a) = Q∗(s, a) for any a ∈ A, as per
Definition 3.2. It is evident that for a given state s ∈ S:

a∗r = argmaxa∈A Q∗
r(ΘQ∗

r
(s), a) = argmaxa∈A Q∗

r(s, a), (22)

a∗h = argmina∈A Q∗
h(ΘQ∗

h
(s), a) = argmina∈A Q∗

h(s, a). (23)

Therefore, we conclude that the optimal policy is preserved for Q∗-irrelevant representations.
Lemma A.2. For any MDP, given the optimal Q-functions induced by either the general Bellman
operator or the safety Bellman operator, and any representation Θ1 that is finner than ΘQ∗ , i.e.
Θ1 ⪰ ΘQ∗ , it holds that Q∗(Θ1(s), a) = Q∗(s, a) for any s ∈ S and a ∈ A. The optimal policy for
Θ1 is also optimal in the ground MDP.

Proof. We denote the optimal value function for representation Θ1,ΘQ∗ and ground state s as
Q∗

Θ1
, Q∗

ΘQ∗ and Q∗
s , respectively. It is evident that Q∗

Θ1
(Θ1(s), a) = Q∗

ΘQ∗ (ΘQ∗(s), a) = Q∗
s(s, a)

for any s ∈ S, a ∈ A is one of the solutions for Q∗
Θ1

, due to the subjective relationship between
Θ1(s) and ΘQ∗(s). To show that the optimal value function for representation Θ1 is unique, suppose
that there exist two optimal value functions Q∗

r1(z, a) and Q∗
r2(z, a) for any representation z ∈ ZΘ1

and action a ∈ A. The gap between them can be expressed as

∆Q∗
r
(z, a) = |Q∗

r1(z, a)−Q∗
r2(z, a)|

=
∣∣∣∑

z′
P (z′|z, a)γ (maxa′ Q

∗
r1(z

′, a′)−maxa′ Q
∗
r2(z

′, a′))
∣∣∣

≤γmaxz′,a′ ∆Q∗
r
(z′, a′),

(24)

where the inequality directly arises from the reasoning outlined in Eq. 18. With the discount factor
γ ∈ (0, 1), ∆Q∗

r
(z, a) tends to zero for any finite value of Q∗

r1(z, a) and Q∗
r2(z, a). This implies that

the fixed point Q∗ for the general Bellman operator is always unique.

For the safety Bellman operators, we also have

∆Q∗
h
(z, a) = |Q∗

h1(z, a)−Q∗
h2(z, a)|

=
∣∣∣∑

z′
P (z′|z, a)γ (max{h(z),mina′ Q

∗
h1(z

′, a′)} −max{h(z),mina′ Q
∗
h1(z

′, a′)})
∣∣∣

≤ γmaxz′,a′ ∆Q∗
h
(z′, a′),

(25)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where the inequality is a straightforward result of the proof sketch given in Eq. 21. It can be concluded
that Q∗(Θ1(s), a) = Q∗(s, a) holds for any Θ1 ⪰ ΘQ∗ , both for the general Bellman operator and
the safety Bellman operator. Therefore, the optimal policy for Θ1 is also optimal in the ground MDP,
following the proof sketch provided in Lemma A.1.

Combining Eqs. 17 18 and 20 21, we conclude that Θbisim ⪰ ΘQ∗ holds for both the general Bellman
operator and the safety Bellman operator. Combining Lemma A.1 and Lemma A.2, we conclude
that both Θbisim and ΘQ∗ preserve optimality for the ground MDP. The proof of Theorem 3.1 is
complete.

Theorem 3.1 shows that our Q∗-irrelavance representation leads to smaller representation space than
bisimulation representation, while preserving the optimal policy. A smaller representation space
typically implies higher generalization capabilities and higher sampling efficiency during the policy
learning process.
Proposition A.3. For any MDP, Θ1 ⪰ Θ2 indicates H(s|Θ1(s)) ≤ H(s|Θ2(s)).

Proof. We denote z1 and z2 as representations of Θ1(s) and Θ2(s), respectively. We have

H(s|z1) = −
∑
s,z1

p(s, z1) log
p(s, z1)

p(z1)

= −
∑
s,z1

p(s, z1) log p(s, z1) +
∑
s

∑
z1

p(z1)p(s|z1) log p(z1)

a
= −

∑
s

p(s) log p(s) +
∑
z1

p(z1) log p(z1)

b
= −

∑
s

p(s) log p(s) +
∑
z2

p(z2)
∑
z1

p(z1|z2) log p(z1)

c
≤ −

∑
s

p(s) log p(s) +
∑
z2

p(z2) log
∑
z1

p(z1|z2)p(z1)

d
≤ −

∑
s

p(s) log p(s) +
∑
z2

p(z2) log
∑
z1

I{p(z1|z2 )̸=0}p(z1)

e
= −

∑
s

p(s) log p(s) +
∑
z2

p(z2) log p(z2)

= H(s|z2), (26)

where I{p(z1|z2) ̸=0} = 1 if p(z1|z2) ̸= 0, and I{p(z1|z2 )̸=0} = 0 otherwise. Equality (a) holds as
z1 is a function of s. Note that

∑
z1∈Z1

p(z1|z2) = 1 for ∀z2 ∈ Z2 in equality (b). Inequality (c)

is a consequence of Jensen’s inequality. Inequality (d) holds since for ∀z2 ∈ Z2, the conditional
probability p(z1|z2) does not exceed 1 for all z1 ∈ {z ∈ Z1|p(z|z2) ̸= 0}. Equality (e) holds due to
the surjective relationship between z1 and z2.

Based on Theorem 3.1 and Proposition A.3, we conclude that:

0 ≤ H(s|Θbisim(s)) ≤ H(s|ΘQ∗(s)). (27)

Given our primary objective of maximizing the conditioned entropy H(s|zθ(s)), the proposed Q-
supervised contrastive learning method theoretically exhibits superior generalization capabilities
compared to bisimulation.

B METHODOLOGY CLARIFICATIONS

B.1 IMPLICIT Q-LEARNING

Implicit Q-Learning (IQL) is the pioneering in-sample offline RL algorithm proposed by Kostrikov
et al. (2021). It decouples the estimation of optimal Q-values from policy optimization, enabling
implicit policy learning through the value function. Unlike standard Q-learning, which explicitly
derives a policy by maximizing Q-values, IQL avoids direct maximization, reducing susceptibility
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to instability issues such as overestimation or divergence. The core technique in IQL is expectile
regression. Given a random variable X with an unknown distribution, the τ ∈ (0, 1) expectile can be
estimated by solving:

argmin
mτ

Ex∼X [Lτ (x−mτ )],where L
τ (u) = |τ − I(u < 0)|u2 (28)

Specifically, as τ → 1, the solution to Eq. 28 approximates the upper bound of the random variable
X . Extending this to conditional distributions, the optimal value function can be approximated by
minimizing:

LV = E(s,a)∼Dβ
[Lτ (Q(s, a)− V (s))] , (29)

and the optimal Q function can be updated accordingly with the TD loss

LQ = E(s,a,s′,r)∼Dβ

[
(r + γV (s′)−Q(s, a))2

]
. (30)

This process yields in-support optimal value and Q functions without training optimal policies. In
this paper, we extend IQL with safety Bellman Operator and estimate both upper bound and lower
bound of the value functions for safety assessments.

B.2 DIFFUSION BEHAVIOR CLONER

The diffusion model was initially introduced as an iterative denoising framework for image generation
in the domain of computer vision (Sohl-Dickstein et al., 2015; Ho et al., 2020). More recently, it has
been adapted for decision-making in state-based tasks, due to its superior performance in capturing
action distributions within a dataset. As introduced in Section 3.2, SDQC requires a behavior cloner
to capture and reproduce in-support actions for each state within the offline datasets. Following the
approach of Lu et al. (2022a;b), we employ score-based diffusion and the DPM-Solver. The training
loss for the behavior cloner πbehav is expressed as follows:

Lπbehav
= Et∼U(1,T),ζ∼N (0,I),(s,a)∼Dβ

[∥ζ − ζψbehav
(at, s, t)∥]. (31)

After training converges, we use second-order DPM-Solver (Lu et al., 2022a) to form πbehav and
sample |As

β | actions for each state in offline datasets Dβ . These actions will be utilized in the
subsequent joint optimization of Q-functions and representations.

B.3 DIFFUSION POLICY

As described in Eqs. 13 and 14, we train three distinct diffusion policies using weighted regression
(Zheng et al., 2024). In line with most existing diffusion-based policies (Wang et al., 2022; Garg
et al., 2023; Lu et al., 2023), our three policies can be formulated as follows:

πr(a|zθr (s)) = pψr (a0:T |zθr (s)) = N (aT ;0, I)
∏T
t=1 pψr (at−1|at, zθr (s))

πh(a|zθh(s)) = pψh
(a0:T |zθh(s)) = N (aT ;0, I)

∏T
t=1 pψh

(at−1|at, zθh(s))

πto(a|zθr (s), zθh(s)) = pψto
(a0:T |zθr (s), zθh(s))

= N (aT ;0, I)
∏T
t=1 pψto(at−1|at, zθr (s), zθh(s)),

(32)

where the reverse transitions are modeled as Gaussian process:
pψr (at−1|at, zθr (s)) = N (at−1;µψr (at, zθr (s), t),Σ(t))

pψh
(at−1|at, zθh(s)) = N (at−1;µψh

(at, zθh(s), t),Σ(t))

pψto(at−1|at, zθr (s), zθh(s)) = N (at−1;µψto(at, zθr (s), zθh(s), t),Σ(t)).

(33)

Given a variance schedule defined by βt = 1− αt, we proceed to define:

ᾱt =

t∏
i=1

αi, β̃t =
1− ᾱt−1

1− ᾱt
βt. (34)
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The mean of the Gaussian process is then given by:
µψr

(at, zθr (s), t) =
1√
αt
(at − βt√

1−ᾱt
ζθr (at, zθr (s), t))

µψh
(at, zθh(s), t) =

1√
αt
(at − βt√

1−ᾱt
ζθh(at, zθh(s), t))

µψto(at, zθr (s), zθh(s), t) =
1√
αt
(at − βt√

1−ᾱt
ζθto(at, zθr (s), zθh(s), t)),

(35)

and the covariance matrix is expressed as Σ(t) = β̃tI . During the testing phase, actions can be sam-
pled from the reverse diffusion chain for each diffusion policy. To account for safety considerations,
we sample multiple actions and select the one with the lowest Qh value as the final action to be
executed (cf. Appendix E.2 for details).

C IMPLEMENTATION DETAILS

C.1 SDQC SUMMARIZATION

To provide an intuitive understanding the mechanism of SDQC, we present a brief summary of its
training and deployment scheme in this subsection.

Algorithm 1 SDQC Training
Phase 1: Behavior cloner training and behavior actions generation
Require: Initial network ζψbehav , datasets Dβ = {s, a, s′, r, h}N

1: for each iteration {s, a}M1 ∼ Dβ do
2: Update ζψbehav using Eq. 31
3: end for
4: for each state s ∼ Dβ do
5: Given s, generate multiple behavior actions As

β with ζψbehav using DPM-Solver (Lu et al., 2022a)
6: end for
7: return Updated datasets Dβ = {s,As

β , a, s
′, r, h}N

Phase 2: Joint optimization for value functions and representations
Require: Initial reward-related network Vr, Qr, zθr , cost-related network V up

h , V low
h , Qh, zθh , and datasets

Dβ = {s,As
β , a, s

′, r, h}N

8: for each iteration {s,As
β , a, s

′, r}M2 ∼ Dβ do
9: Update Vr, Qr, zθr jointly using Eq. 8

10: end for
11: for each iteration {s,As

β , a, s
′, h}M2 ∼ Dβ do

12: Update V up
h , V low

h , Qh, zθh jointly using Eq. 12
13: end for
14: return Reward/Cost-related value function and representation networks Vr, Qr, zθr , V

up
h , V low

h , Qh, zθh
Phase 3: Three policies extraction
Require: Initial policy network ζψr , ζψh , ζψto , fixed pre-trained network Vr, Qr, zθr , V

low
h , Qh, zθh , and

datasets Dβ = {s, a}N
15: for each iteration {s, a}M3 ∼ Dβ do
16: Calculate regression weight for three policies with Vr, Qr, zθr , V

low
h , Qh, zθh using Eq. 14

17: Update ζψr , ζψh , ζψto using Eq. 13
18: end for
19: return Three distinct policies πr, πh, πto

As introduced in Section 3, SDQC requires a three-phase training process (see Algorithm 1). The
primary objective of the first stage (lines 1-7) is to generate a set of behavior actions As

β for each
state s ∈ Dβ . The set is then utilized in the second stage to measure the similarity between states,
represented by d(s, s̃) ≈ supa∈As

β
|Q∗(zθ(s), a) − Q∗(zθ(s̃), a)|. The second phase (lines 8-14),

known as the joint optimization of value functions and representations, employs expectile regression
(Kostrikov et al., 2021) to learn in-support optimal value functions while simultaneously using
contrastive learning to cluster similar states (measured by d(s, s̃)) within the representation space.
The final phase (lines 15-19) introduces three distinct policies, which are trained using weighted
regression diffusion models as introduced by Zheng et al. (2024). It is important to note that these
policies are conditioned on the representation space rather than the ground-truth state space. During
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deployment, the selection of the specific policy to be adopted is guided by the evaluation of states
using the cost-related value function. For further details, please refer to the subsequent paragraph.

Algorithm 2 SDQC Deployment
Require: Three policies πr, πh, πto, representation network zθh , zθr , and cost-related value-functions

V up
h , V low

h , Qh

1: Given any state s
2: if V up

h (zθh(s)) > 0 then
(There exist in-support actions that may lead to unsafe outcomes)

3: if V down
h (zθh(s)) > 0 then

4: sample actions: {ai}cand. ∼ πh(·|zθh(s))
5: else
6: sample actions: {ai}cand. ∼ πto(·|zθh(s), zθr (s))
7: end if
8: else

(The state is absolute safe)
9: sample actions: {ai}cand. ∼ πr(·|zθr (s))

10: end if
11: return Final action argmina∈{ai}cand. Qh(zθh(s), a)

Upon completion of training, SDQC is deployed with three distinct policies πr, πh, πto derived
from the third training phase, along with two representation networks zθh , zθr and three cost-related
value functions V up

h , V low
h , Qh from the second training phase (cf. Algorithm 2). Given any state

s, we initially conduct safety assessments based on cost-related representations. The condition
V up
h (zθh(s)) > 0 (line 2) suggests the existence of in-support actions that might lead to unsafe

outcomes, necessitating a joint consideration of safety and reward. A positive V down
h (zθh(s)) (line

3) indicates that no action can ensure safety in future trajectories; the agent’s primary objective is
therefore to exit the unsafe region by deploying policy πh, regardless of the reward considerations.
Conversely, V low

h ≤ 0 < V up
h (line 5) reflects a borderline safe condition, requiring the agent to

consider both reward and cost, thereby deploying policy πto. On the other hand, V up
h (zθh(s)) ≤ 0

(line 8) confirms absolute safety, obviating the need for the agent to consider cost-related information.
An illustration diagram is presented in the right subplot of Figure 2. Note that single action sampled
by diffusion model is not trustworthy enough, thereby sampling batch actions and conduct the one
with the lowest Qh(zθh(s), a) leads to safer outcomes (line 11). Please refer to Appendix E.2 for
further details.

C.2 SDQC NETWORK STRUCTURE

Figure 5: Neural network structure for training value
functions and representations of SDQC.

As described in Section 3.3, the representa-
tions in our proposed SDQC framework are
trained concurrently with the optimal Q value
learning process. The neural network structure
illustrated in Figure 5 is utilized for training
both the reward- and cost-related representa-
tions as well as the value functions. The global
observation s is encoded into the representa-
tion z, and the value functions (both V and
Q) are computed based on this representation
with separate multiple-layer-perceptron (MLP)
neural networks.

In certain safe RL benchmark problems, it is
observed that the majority of dimensions in the
global observation share similar physical mean-
ings. For instance, in the Safety-Gymnasium
domain, a significant number of dimensions in
the global observations correspond to lidar measurements, which provide information about the
distances between the agent and the destination or obstacles in specific directions. This reminds us of
the self-attention mechanism (Vaswani et al., 2017), which is known for its superior ability to capture
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relationships among input information that share similar representations in comparison to traditional
MLP architectures.

Nevertheless, attention mechanisms typically rely on vector multiplication to compute attention
weights, which presents a challenge when dealing with global observations where each dimension
contains scalar information. Towards this end, we propose to transform each scalar observation
dimension into a vector representation using a fixed Gaussian Fourier Encoder (Ho et al., 2020).
Subsequently, attention is applied to the encoded vector representations. The output of the attention
module is then flattened and passed through an MLP to obtain the final representation. Please refer to
Figure 6 for a detailed illustration of the network structure.

Figure 6: Neural network structure of the attention-based state encoder.

To demonstrate the efficacy of our attention-based state encoder (ATN) in effectively capturing infor-
mation from global observations and identifying the relevance of specific dimensions to reward/cost,
we present the attention patterns (i.e., softmax(Q ·KT /

√
dk)) of the reward- and cost-related state

encoders in the task "PointGoal2" (cf. Figure 7). In "PointGoal2", the global observations consist
of 60 dimensions. Among them, the first 12 dimensions represent the self-status of the agent, the
subsequent 16 dimensions contain reward-related information, and the last 32 dimensions contain
cost-related information. Ideally, a reward-related attention pattern should assign higher attention
weights to the first 28 dimensions while ignoring the last 32 dimensions. On the other hand, a
cost-related attention pattern should focus on the first 12 and last 32 dimensions while disregarding
the middle 16 dimensions. The observed attention patterns during our experiments align with the
relevance of specific dimensions to reward and cost. For the ablation study on the state encoder
network structure, please refer to Appendix D.

Dimension Observation Info
1-12 Self Status

13-28 Goal Lidar
28-44 Hazard Lidar
44-60 Vases Lidar

Figure 7: Attention pattern of the reward- and cost-related state encoder, and the meaning of each
observation dimension in the task "PointGoal2" from Safety-Gymnasium. Darker colors represent
higher values. The "Goal Lidar" dimensions observe the position of the destination, indicating reward
information. The "Hazard Lidar" and "Vases Lidar" dimensions observe the position of obstacles,
indicating cost information. The pattern is averaged over 3000 observations randomly chosen from
DSRL datasets.

C.3 SDQC HYPERPARAMETERS
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Table 2: Hyperparameters of the DPM-
solver for generating behavior actions.

Hyperparameters Value
Learning rate 3e-4
Batch size 4096
Training steps 5e5
Diffusion timesteps 15
Generated action numbers
for each state |As

β |
8

As discussed in Section 3.2, to calculate the soft similarity
measure for contrastive learning, our SDQC framework
requires pre-training a generative model to capture the
behavior policy of the offline datasets πβ . For this purpose,
we employ diffusion probabilistic models (DPM) (Ho et al.,
2020; Song et al., 2020) and utilize the DPM-Solver, a fast
high-fidelity ODE solver proposed by Lu et al. (2022a;b),
to generate the behavior actions of each state s in the offline
datasets, denoted as As

β . We utilize the default network
configurations outlined in (Lu et al., 2022a; 2023). Specific
hyperparameter settings can be found in Table 2.

SDQC can simultaneously train the reward and cost value
functions and their respective representations using Eqs. 8
and 12. The network structures are described in detail in Appendix C.2, and generic hyperparameters
can be found in Table 3. Regarding the updating of the safety Bellman operator, we follow the settings
in FISOR (Zheng et al., 2024). The constraint violation function is defined as h(s) = −1 when the
cost function satisfies c(s) = 0, and h(s) = 25 when c(s) > 0.

Table 3: Generic hyperparameters of SDQC in value functions and representations training phase.
Module Hyper-parameters Value

General

Optimizer Adam
Learning rate 3e-4
Batch size 512
Training steps 5e5
Soft measure temperature factor η 1.0
Contrastive temperature factor ν 0.1
Contrastive term coef δ 1.0

Critic

Number of hidden layers (Q & V) 2
Number of neurons in hidden layer (Q & V) 256
Activation function (Q & V) Mish
Expectile τ 0.9
Discount factor γ 0.99
Target critic soft update 0.005

State Encoder

MLP
Number of hidden layers 2
Number of neurons in hidden layer 256
Activation function Mish

ATN
Number of head 2
Embed dimension for each head 64
Dropout rate 0.1

Considering the significant variation in physical meanings among the observation dimensions of
different tasks, we employ different state encoder structures accordingly. For tasks that have observa-
tion dimensions with diverse physical meanings, we utilize the MLP structure. Conversely, for tasks
where most observation dimensions have consistent physical meanings, we utilize the attention-based
state encoder (ATN).

It is observed that the performance of SDQC with an ATN-based state encoder improves when trained
with a larger contrastive loss coefficient (δ in Eqs. 8 and 12) and a higher number of anchor points
(|I| in Eq. 5). On the other hand, the SDQC performs better with smaller values of δ and fewer
anchor points if the MLP based encoder is used. Besides, the global observation dimensions vary
across different tasks. For the ATN-based state encoder, we select the encoded state dimension (i.e.,
the dimensionality of z) to be approximately half of the global observations. On the other hand, for
MLP, we choose the encoded state dimension to be roughly twice the size of the global observations.
Optimal hyperparameters achieving the best performance on different tasks are presented in Table 4.
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Table 4: Hyperparameters of SDQC for different tasks. "All" denotes all different tasks for the same
agent, while "Vel" refers to the velocity task.

Domain Agent Task State
Encoder

Encoded
State Dim

Contrastive
Loss Coef

Anchor
Number

Safety
Gymnasium

Point All ATN 32 1.0 8Car All
HalfCheetah Vel

MLP 32 0.5 4Ant Vel
Swimmer Vel

Bullet
Safety

Ball All

MLP

16

0.1 4Car All 32
Drone All 64
Ant All 64

For the final training phase, which involves policy extraction using weighted regressed diffusion
models as described in Eq. 13, we follow the network structure design and generic diffusion parameter
selection described by Zheng et al. (Zheng et al., 2024). We train three separate policies (πr πh and
πto) with a learning rate of 0.0003, a batch size of 1024, and the total number of training steps is set
to 500,000. The temperature parameters that control the strength of behavior regularization (in Eq.
14) are chosen as ιr = ιto = 3.0 and ιh = 5.0.

D ADDITIONAL ABLATION STUDIES

Ablation studies on network structure. To demonstrate the effectiveness of our proposed attention-
based state encoder (cf. Appendix C.2), we conduct ablation studies on the neural network architec-
ture, as depicted in Figure 8. By substituting the attention-based state encoder with an MLP-based
counterpart, we observe a deterioration in the performance of the SDQC, in terms of diminished
rewards and increased costs. The t-SNE visualization results depicted in Figure 8b demonstrate
that while the MLP-based state encoder does cluster representations with similar values in the
high-dimensional space, the clustering effect is not as robust as that achieved by the attention-based
approach. Consequently, this leads to an overestimation of the cost value, resulting in inaccurate
assessments of the safety condition.

Figure 8: Ablation studies on the network structure in CarGoal2. (a) The actor-training-process
evaluations of SDQC with attention-based (ATN) and MLP-based (MLP) state encoder. (b) t-SNE
visualization of the distribution of the original state, the reward- and cost-related representations with
ATN/MLP state encoders across 10 different safe trajectories.
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Ablation studies on anchor number choice. An essential hyperparameter in our proposed Q-
supervised contrastive learning method is the anchor number, |I| in Eq. 5. This parameter determines
the number of representation pairs to be clustered in the high-dimensional space during each gradient
step. The ablation study results are summarized in Table 5. Our experimentation reveals that an
anchor number can result in subpar clustering outcomes, consequently impairing the performance of
SDQC. Conversely, overly large anchor numbers lead to an excessive influence of the contrastive loss
term in the overall loss function, increasing the computational costs. To strike a balance and attain
optimal performance, we let |I| = 8 for our attention-based state encoders.

Table 5: Ablation studies on the choice of anchor number.
CarGoal2 CarPush2

Anchor
Number Reward Cost Runtime

(s/epoch) Reward Cost Runtime
(s/epoch)

16 0.22 0.00 31.4 0.28 0.06 36.2
8 0.23 0.00 28.8 0.31 0.04 32.7
4 0.20 0.05 26.0 0.25 0.06 29.9
1 0.15 0.13 23.6 0.10 0.18 27.6
0 0.05 0.86 19.4 0.21 2.15 23.7

Ablation studies on contrastive-related hyperparameters. In our SDQC framework, one of the
critical components is the contrastive representation loss, as described in Equations 8 to 12. This
involves selecting appropriate values for the term coefficient δ and the exponential temperature ν.
As shown in Tables 3 and 4, we vary δ across different domains but maintain a consistent ν = 0.1
across all environments. The effects of these parameter choices are detailed in Table 6. With respect
to the temperature ν, employing a very small value (0.01) tends to destabilize the training process,
ultimately resulting in collapse. Conversely, using a larger value (1.0) produces poorly clustered
representations, leading to a marked degradation in performance. Regarding the term coefficient δ,
a smaller value results in a slight performance decline. However, a larger coefficient excessively
prioritizes the contrastive loss, destabilizing the training of the value function and significantly
degrading performance. While fine-tuning these hyperparameters for specific environments and tasks
could potentially yield better experimental results on the benchmark, we choose not to do so.

Table 6: Ablation studies on contrastive-related hyperparameters.

Env Contrast
Coef. (δ)

Contrast
Temp. (ν) Reward Cost Env Contrast

Coef.
Contrast

Temp. Reward Cost

1 0.01 NaN NaN 1 0.01 NaN NaN
1 0.1 0.31 0.04 1 0.1 0.29 0.09
1 1 0.22 0.16 1 1 0.20 0.48

0.1 0.1 0.31 0.17 0.1 0.1 0.30 0.10
PointGoal2

10 0.1 0.23 0.48

CarPush2

10 0.1 0.22 0.53

Ablation studies on the deployment of three distinct policies As introduced in Section 3.3 and
Appendix C.1, SDQC coordinates three distinct policies, reward policy πr, trade-off policy πto, and
cost policy πh, to ensure excellent safety performance. To verify the necessity of each policy, we
conduct ablation studies examining their individual deployments, with results presented in Table 7.
Notably, a naive reward policy πr focuses solely on maximizing rewards while ignoring costs, a naive
cost policy πh prioritizes minimizing costs but disregards rewards, and a naive trade-off policy πto
takes both into account but fails to excel in either maximizing rewards or minimizing costs. The
best performance consistently results from the collaboration of all three policies. When the trade-off
policy πto is omitted (combining πr and πh), the agent incurs higher costs as it cannot respond
promptly to borderline dangers. Combining the trade-off policy πto and cost policy πh does not
increase costs, but results in a decline in reward accumulation. While combining the reward policy
πr and trade-off policy πto achieves comparable performance to using all three policies, it results in
slightly higher costs due to the agent’s reduced ability to quickly escape dangerous situations.
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Table 7: Ablation studies on the deployment of three distinct policies.
Policy Num. One Two Three

Env Name Naïve πr Naïve πto Naïve πh πr and πto πr and πh πto and πh πr , πto and πh
reward cost reward cost reward cost reward cost reward cost reward cost reward cost

PointGoal1 0.69 4.92 0.27 0.69 0.01 0.00 0.32 0.42 0.34 0.51 0.22 0.18 0.35 0.36
PointGoal2 0.75 13.28 0.28 0.18 -0.11 0.00 0.23 0.24 0.20 0.14 0.23 0.12 0.29 0.09
CarPush1 0.38 1.32 0.26 0.00 0.05 0.00 0.27 0.00 0.27 0.12 0.21 0.00 0.30 0.00
CarPush2 0.42 4.34 0.27 0.01 0.02 0.00 0.31 0.01 0.28 0.16 0.18 0.03 0.31 0.04

E EXPERIMENTAL DETAILS

E.1 TASK DESCRIPTION

Safety-Gymnasium (Ray et al., 2019). A collection of environments based on the Mujoco physics
simulator. In the obstacle avoidance series environments, there are two agents (Point and Car) and
three main tasks (Goal, Button, and Push), each with two levels of difficulty (1 and 2). Agents aim
to reach the goal while avoiding any contact with obstacles. The environments are named using
the following convention: {Agent}{Task}{Difficulty}. In the velocity-constrained environments,
there are three agents: Ant, HalfCheetah, and Swimmer. The primary objective of these agents is to
maximize their rewards while adhering to the imposed velocity constraints. The environments are
named in the convention of {Agent}Velocity.

Bullet-Safety-Gym (Gronauer, 2022). A suite of environments built upon the PyBullet physics
simulator. These environments are similar to Safety-Gymnasium but feature a broader range of agents
(including Ball, Car, Drone, and Ant). The tasks are relatively straightforward, with only two options
available (Circle and Run). The environments are named through {Agent}{Task}.

E.2 EXPERIMENT SETTINGS

We train the baseline algorithms using the recommended hyperparameters specific to each task, for
BCQ-Lag (Fujimoto et al., 2019; Stooke et al., 2020), CPQ (Xu et al., 2022a), COptiDICE (Lee et al.,
2022), CDT (Liu et al., 2023b), TREBI (Lin et al., 2023), and FISOR (Zheng et al., 2024). To ensure
a fair comparison, we train the baseline algorithms with three different random seeds and save the
final output policy for safety evaluation. For each output policy, we conduct evaluations over 20
episodes to obtain reliable performance measures.

As for the training process of SDQC, we follow the neural network structure design and hyperparam-
eter settings in Appendix C. Analogously, we select three different random seeds for training and
perform evaluation over 20 episodes for each seed. To improve safety performance, we follow Zheng
et al. (2024) to sample 16 candidate actions for each RL timestep, regardless of the safety assessment
results and policy usage. The safest action is then selected based on the lowest Qh(zθh(s), a) value
and executed as the final action.

E.3 COMPUTATIONAL COSTS

We implement SDQC using PyTorch (Paszke et al., 2019) and conduct experiments on a single
machine equipped with one GPU (NVIDIA RTX 4090, 24GB) and one CPU (AMD Ryzen 9
7950X). The training process comprises three phases. The first phase, known as the diffusion
behavior cloner, demands approximately 1 hour for each task. For the second phase, which involves
training representations and critics, the duration varies depending on the chosen network architecture.
Attention-based architectures typically require over 4 hours, whereas MLP-based architectures
typically demand around 1 hour. Finally, in the last training phase, the diffusion actor, convergence
typically occurs in about 1 hour (without online testing).

Besides, we assess the inference time consumption of all baseline algorithms across 1000 RL
timesteps on the CarPush2 task, averaging the results over 10 trials. Although SDQC is relatively
slower compared to other non-autoregressive policies, it remains within an acceptable range.
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Table 8: Inference time (seconds) comparison over 1000 RL timesteps.

BCQ-Lag CPQ COptiDICE CDT TREBI FISOR SDQC
1.51 1.85 1.86 3.45 585.87 6.11 11.13

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 ADDTIONAL GENERALIZATION TESTS

In addition to the generalization tests (on the agent "Car") presented in Section 4.2, we perform
generalization tests on the "PointGoal" and "PointPush" tasks (in Safety-Gymnasium), as illustrated
in Figure 9. Similarly, the "Point" agent is challenged with tasks that involve reaching a goal point
or pushing a box to a goal point in hazardous areas with obstacles, with the difficulty level varying
between simple (PointGoal1, PointPush1) and challenging (PointGoal2, PointPush2).

Experimental observations reveal that, in comparison to the "Car" agent, the "Point" agent demon-
strates a higher degree of inertia during its motion within the environment. Specifically, the "Point"
agent lacks the ability to instantaneously halt or promptly alter its direction, thereby rendering the
maintenance of safety more challenging in equivalent tasks when compared to the "Car" agent. This
significantly undermines the generalization capability of most algorithms on the "Point" agent. For
instance, the state-of-the-art (SOTA) safe offline RL algorithm FISOR performs poorly on the "Point"
agent, exhibiting high costs across multiple environments. In contrast, our SDQC algorithm still
achieves nearly zero violations in the majority of environments.

Figure 9: The generalization tests on the agent "Point" in Safety-Gymnasium.

F.2 IMPACT OF REPRESENTATION LOSS ON VALUE ESTIMATIONS

A major concern for SDQC is that the joint optimization process of the value functions and represen-
tations (refer to Eqs. 8 and 12) may lead to instability in value estimation, subsequently affecting final
performance. We analyze the performance of SDQC, both with and without representation loss, and
compare it to FISOR by examining their respective Critic (Q) loss and Value loss patterns in relation
to reward/cost metrics. This comparative analysis is conducted throughout the training process using
two tasks: ’CarPush2’ and ’BallCircle’, with results illustrated in Figure 10. The experimental
results indicate that while the inclusion of representation loss does lead to an increase in critic and
value loss, it does not compromise the overall stability of the training. Furthermore, our proposed
neural network architecture (used for "CarPush2"), with the incorporation of an attention-based state
encoder, markedly improves the precision and stability of value function learning compared to the
simple MLP utilized by FISOR.
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Figure 10: Comparison of value function loss during the training process among SDQC with and
without representation loss, and FISOR, on the ’CarPush2’ and ’BallCircle’ tasks.

F.3 WHY NOT BISIMULATIONS

As discussed in Section 3.4, the Q-supervised representation learning approach in SDQC is theoreti-
cally superior to bisimulation by introducing a coarser representation space. From an experimental
perspective, we aim to verify this assertion. However, challenges arise during the initial training
phase for bisimulation. Bisimulation typically involves an additional step of training a model-based
estimator to learn state transition and reward/cost functions. We find that estimating cost functions is
particularly challenging due to their non-smooth and sparsely distributed nature. This issue is espe-
cially pronounced in the Safety-Gymnasium domain. To investigate this, we conduct the following
experiments.

We treat state-action pairs with non-zero costs as positive samples and use binary cross-entropy loss
for training. The estimation is based on representations enhanced by an additional 2-layer MLP, with
256 hidden neurons. The batch size is 256, and the learning rate is set at 3e-4. Training is conducted
over 300,000 steps. Upon completion, we evaluate the estimation results as shown in Table 9. There
are four possible outcomes in the relationship between the estimation and the ground-truth labels for
each state-action pair: "True Positive (TP)", "False Positive (FP)", "True Negative (TN)", and "False
Negative (FN)". We report the following metric for the final cost-function approximation:

Accuracy :
TP + TN

TP+ FP + TN+ FN
Precision :

TP

TP + FP

Recall :
TP

TP + FN
F1Score :

2× Precision× Recall

Precision + Recall

While the model achieves a high overall prediction accuracy of 98%, this metric is potentially
misleading due to significant class imbalance in the dataset, where positive samples represent only
7% of the total observations. Our primary focus is on samples with non-zero cost values, i.e., positive
samples. The "precision" metric, which indicates the proportion of correctly identified positive
predictions among all positive predictions made by the model, reaches approximately 85%. "Recall"
indicates the probability that actual positive samples are correctly identified by the model, which
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is about 77%, suggesting that the model’s ability to assess dangerous conditions is insufficient to
support subsequent bisimulation training. Notably, unlike bisimulation, our SDQC framework learns
representations based on non-sparse and continuous optimal Q-functions, which are significantly
easier to optimize compared to sparse and non-smooth cost functions, thereby implicitly addressing
this issue.

Table 9: Cost function approximation for "PointGoal2" and "CarPush2" Tasks. States with non-zero
cost values are identified as positive samples. We report the accuracy (Acc.), precision (Pre.), recall,
and F1 score of the estimation results. To align with the bisimulation training approach, we report the
estimation results for the cost function when trained without (w/o) and with (w) the transition model.

Env Dataset Pos.
Ratio

w/o Transition Estimation w Transition Estimation
Acc. Pre. Recall F1 Acc. Pre. Recall F1

PointGoal2 Train 7.65% 0.980 0.859 0.782 0.819 0.979 0.862 0.770 0.814
Test 7.74% 0.976 0.838 0.760 0.797 0.976 0.844 0.750 0.794

CarPush2 Train 7.25% 0.977 0.890 0.784 0.834 0.976 0.862 0.795 0.827
Test 7.33% 0.974 0.874 0.758 0.812 0.973 0.843 0.774 0.807

F.4 LEARNING CURVES COMPARISON BETWEEN SDQC AND FISOR

Figure 11: Training curves of SDQC and FISOR on the "Car" agent with tasks "Goal," "Push," and
"Button" in the Safety-Gymnasium domain.

As complementary to the SOTA safe offline RL algorithm FISOR (Zheng et al., 2024), our SDQC
employs the same implicit Q-learning method (Kostrikov et al., 2021) to learn optimal value functions
and utilizes the safety Bellman operator in (Fisac et al., 2019) for safety assessment. Additionally,
we adopt their approach for policy extraction through training a weighted regressed diffusion model.
However, it should be noted that our decision-making process is based on decoupled representations
rather than global observations. Furthermore, our policies are completely decoupled, and different
policies are selected based on varying safety assessment results. To provide futher comparisons
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between SDQC and FISOR, we plot the training curves of both algorithms on the DSRL benchmark
(Liu et al., 2023a) in Figure 11-14. The experimental results indicate that SDQC exhibits a higher
level of safety assurance during training and achieves higher rewards in the majority of tasks.

Figure 12: Training curves of SDQC and FISOR on the "Point" agent with tasks "Goal," "Push," and
"Button" in the Safety-Gymnasium domain.

Figure 13: Training curves of SDQC and FISOR on the agents "HalfCheetah", "Ant", and "Swimmer"
with velocity constraints task in the Safety-Gymnasium domain.
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Figure 14: Training curves of SDQC and FISOR on the agents "Ball", "Car", "Ant", and "Drone"
with tasks "Circle" and "Run" in the Bullet-Safety domain.

G LIMITATIONS AND FUTURE WORKS

One limitation of our current study arises from the substantial computational demands associated with
training the SDQC model. This is particularly notable due to the necessity of executing three distinct
training phases and the utilization of complex network architectures in certain scenarios. Despite
this challenge, the remarkable cost-effectiveness and robustness to seed variance exhibited by our
model mitigate these weaknesses. Looking ahead, our future research endeavors will prioritize the
optimization of the training pipeline and the simplification of network structures to enhance training
efficiency while maintaining performance standards.
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