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ABSTRACT

High-throughput screening enables biologists to study cell perturbations by gen-
erating large, high-dimensional datasets, such as gene expression profiles and cell
microscopy images. Particularly in CRISPR-Cas9 screens, where gene knockout
effects are typically represented using perturbation-specific conditional mean em-
beddings, these representations can be distorted by off-target effects in which the
knockouts impact not only the target gene but also neighboring genes on the same
chromosome arm, introducing “proximity bias”. To address this, we develop a dis-
crete latent variable inference method that leverages correlations between neigh-
boring perturbations as a weak supervision signal to detect single cells affected
by off-target effects. Removing these cells reduces spurious correlations between
adjacent gene embeddings, achieving comparable correction performance without
relying on additional gene expression data. Moreover, we show that the identified
cells exhibit chromosome-arm specificity, reinforcing the validity of our approach
and its potential for scaling into a genome-wide proximity bias correction method.

1 INTRODUCTION

High-throughput screening techniques, such as CRISPR-Cas9-based gene knockouts, enable re-
searchers to study gene functions at scale by summarizing the effects of perturbations through high-
dimensional embeddings (Chandrasekaran et al., 2023; Fay et al., 2023). However, a pervasive chal-
lenge in these experiments is the presence of proximity bias (PB), i.e. an unwanted correlation of
embedding representations of neighboring (genomically-proximal) genes on the same chromosome
arm, caused by off-target effects such as chromosomal truncations (Lazar et al., 2024). These cor-
relations can bias downstream analyses because they make the effect of knocking out genes on the
same chromosome arm appear phenotypically similar, even when they produce distinct phenotypes.

Previously, Lazar et al., 2024 showed that we can mitigate the effects of PB by appropriately trans-
forming the aggregated embeddings to remove the bias. However, it is unclear whether such correc-
tions also remove perturbation-specific features, thereby diminishing the biologically-relevant signal
present in the samples. The correction proposed by Lazar et al. also relies on information from the
gene transcriptional level to subtract an average embedding of the arm-specific unexpressed genes.
To get this information, we need additional experiments for each cell type.

To overcome these limitations, we propose a novel filtering approach that directly identifies and
removes PB-affected single-cell embeddings before aggregation. Our method frames PB correc-
tion as a weakly supervised latent variable inference problem. We train a classifier to distinguish
“off-target” cells from those with only on-target effects. The class labels are a latent variable—it
is impossible to collect labeled data as even human experts are unable to distinguish proximity bi-
ased cells from regular peturbed cells—but we can use the measurable increase in intra-arm cosine
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Figure 1: Graphical abstract highlighting the image analysis pipeline starting from (A) multicell microscopy
images of cells under genetic perturbations and corresponding controls, from which (B) single-cell patches
are cropped and embedded using an image autoencoder. The individual single-cell embeddings are then (C)
aggregated into representative perturbation embeddings, which are centered relative to control embeddings.
(D) Cosine similarities between the embeddings capture their relative (dis-)similarities, which are depicted as
(E) pair-wise similarity matrix between individual genes on a single chromosome. Our intention is to reduce
the spuriously high cosine similarities between embeddings of genes co-located on the same chromosome arm
(upper triangle) by selectively identifying the “biased” cells and excluding them from the aggregation step.
Tossing these off-target cells (leftmost bar) should lower the cosine similarities of gene pairs in an intra-arm
regions to the levels statistically indistinguishable from the inter-arm regions (lower triangle).

similarity caused by PB as a source of weak supervision to supervise the classifier (Figure 1). By
selectively excluding PB-affected cells, we ensure that the aggregated embeddings more accurately
represents the on-target effects, improving the accuracy of gene function studies by eliminating the
need for risky post hoc corrections, while also establishing a foundation for analyzing complex
perturbation experiments.

2 RELATED WORK

In many large scale genetic perturbation screens (Chandrasekaran et al., 2023; Fay et al., 2023),
biologists knockout genes using the CRISPR-Cas9 gene editing system and measure the resulting
effect. The measurements that we focus on in this paper are microscopy images collected using
Cell Painting assays (Bray et al., 2016)—essentially images of cells stained with fluorescent dyes
to highlight different parts of the cell—but the methods are generic and could be applied to any
single-cell assay that is affected by this bias. In these screens, each perturbation is represented as
the average of some embedding of the images, where the average is taken uniformly across multiple
crops of the images and experimental replicates. There are many potential choices for the embedding
function—common choices are hand crafted features (Stirling et al., 2021; Carpenter et al., 2006),
the final hidden layer of a classifier (Sypetkowski et al., 2023) or masked autoencoders (He et al.,
2021; Kraus et al., 2024; Kenyon-Dean et al., 2024)—but our work does not assume a specific choice
of embedding type.

When cells are perturbed using CRISPR-Cas9 guides targeting a specific gene, it is estimated that
approximately 5-10% of the time a chromosomal truncation occurs. This truncation biases the em-
beddings because the associated phenotypes of such cells end up more similar to other gene knock-
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outs within the same chromosome arm. If we represent single cells by an embedding x and assume
that x is sampled independently of other cells, we can model this data generating process as sam-
pling cells from a mixture distribution with two components, where ≈ 95% of the time we get
embeddings from cells that react as expected to the perturbation, and otherwise the embeddings are
biased by the chromosome-specific proximity bias phenotype that is shared across all genes within
a chromosome arm.

Proximity bias detection and correction Proximity bias (PB) has been previously detected in var-
ious publicly released datasets, cell lines and CRISPR delivery protocols. These include the RxRx3
dataset from Recursion (Fay et al., 2023), a CRISPR-Cas9 screen in human unbillical vein epithe-
lial cells (HUVECs), the cpg0016 dataset from Joint Undertaking in Morphological Profiling-Cell
Painting (JUMP-CP) consortium (Chandrasekaran et al., 2023), a CRISPR-Cas9 screen in the U2OS
osteosarcoma cell line, and the Cancer Dependency Map (DepMap), consisting of both CRISPR-
Cas9 and shRNA screens across hundreds of cancerous cell lines (Tsherniak et al., 2017).

The most effective method to remove largely localised chromosome arm-specific PB signal to date is
to perform a geometric correction, i.e. to adjust the features for each gene knockout by subtracting an
estimate of the average features of unexpressed genes from the chromosome arm on which the gene
is located (Lazar et al., 2024). While this approach effectively reduces PB, it has notable limitations:
it requires (i) access to gene expression data and the expertise to identify expressed and unexpressed
genes, which can be costly and challenging to scale for large screens; and (ii) enough samples of
unexpressed genes knockouts to form an accurate estimate of their average features. Furthermore,
it is unclear whether the geometric correction also leads inadvertent loss of perturbation-specific
signal. Instead of post-processing embeddings, in this paper we aim to filter embeddings of biased
cells before any aggregation of the embeddings, thereby avoiding any loss of biological signal.

3 METHODS

Algorithm 1 Identifying single-cell embeddings
to minimize average intra-arm cosine similarity

1: Input:
Raw single cell embeddings X ∈ Rn×d

Batch-corrected embeddings X̂ ∈ Rn×d.
Gene set G for chromosome N and arm a.
Classifier f : Rd → {−1, 1}, with params θ.

2: Initialize: Set initial weights θ0 and w = 1.
3: while not converged do
4: Classify embeddings: w = f(X).
5: Remove proportion of cells under per-

centile p with lowest scores: X̂ = X̂⊙w.
6: Group X̂ by genes in G:

∀g ∈ G : X̄g = 1
|{i:gi=g}|

∑
{i:gi=g} X̂i.

7: Calculate correlation as cosine similarity
matrix:
P(w) = cossim

(
{X̄g : g ∈ G}

)
.

8: Set objective as mean intra-arm cosine sim-
ilarity:
L = mean(P(w)).

9: Update θ by gradient step:
θ ← θ − η∇L(θ).

10: end while
11: Output: Optimized classifier f and binary

vector w, indicating retained cell embed-
dings.

Our main objectives are to reduce proximity
bias—hereafter defined as the average cosine
similarity (alternatively, correlations) between
all gene embeddings that share the same chro-
mosome arm. In order to remove the proximity
bias, we need a method that averages over only
the unbiased embeddings from our mixture dis-
tribution. This is challenging because (1) we do
not have labels that distinguish biased and unbi-
ased embeddings, (2) while the bias is measur-
able (see Figure 2), the morphological changes
are extremely subtle, so much so that human ex-
perts are unable to visually tell apart the biased
and unbiased cells. As a result, we have a latent
variable inference problem, but one in which
we cannot rely on clustering to separate the la-
tent classes because the effects are too subtle
to distinguish from regular morphological vari-
ation.

Our approach is to leverage weak supervision
from the matrices of cosine similarities be-
tween aggregated representations of adjacent
genes located on a single chromosome (Fig-
ure 1). Here, gene representations x̄ are com-
puted across a multi-aggregation step of single-
cell embeddings x, which can be modelled as a
mixture distribution with two components: un-
biased embeddings, which constitute the major-
ity of the mixture, and biased embeddings, i.e. a small proportion of the embeddings which ar-
tificially result in the aggregated embeddings to have higher than expected cosine similarity with
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adjacent genes. Our objective is to (i) identify these biased embeddings and (ii) remove them from
the aggregation step, thus reducing the similarity (alternatively, correlation) between adjacent gene
representations on the chromosome arm level.

We fit a classifier that, given a set of single-cell embeddings for every well, outputs a score for each
cell that is used as a proxy for the probability that the cell belongs to the biased distribution. Using
these scores as relative well-level cell ranks, we exclude the p percentile of the score distribution
from each well, and re-calculate the cosine similarity for a respective gene omitting the embeddings
from these cell instances. That is, the classifier is optimized to score each cell such that the subset
of lowest scoring cells minimizes the cosine similarity of the embedding to the embedding of the
adjacent genes.

Formally, we work with a matrix of embeddings X̂ ∈ Rn×d, which contains batch-corrected d-
dimensional embeddings of n single cells, each of which is affected by a gene perturbation g. The
batch correction step includes a centering and scaling, meaning that the feature-wise means are
exactly zero across cells. Our algorithm, detailed in Algorithm 1, uses a classifier fθ : Rd →
(−1, 1), parametrised by θ, constrained such that, in every well, a fraction of p cell embeddings
are chosen to be removed (i.e. set to zero). After filtering, we average embeddings by gene, and
compute a gene-by-gene cosine-similarity matrix P on these embeddings, ordered by position on
chromosome. See Figures 2, 5 and 7 for an illustration.

The challenge of training fθ is that we cannot backpropogate through the discrete filtering step in
order to minimize the average cosine-similarity of the gene-by-gene cosine-similarity matrix P with
respect to θ. In practice, we avoid this using a soft filtering during training. For every well we
sample m cells from which we aim to remove q = ⌊m × p⌋ cells, and average over the rest to
compute our filtered embeddings. From the original m cells, we construct a set of m single-cell
embeddings X, which a neural network maps to latent scores Z ∈ (0, 1)m×q for every cell. We then
calculate a soft-selction vector w as, w = 1−min

[∑
j σ (T Z·,j) , 1

]
, where σ corresponds to the

softmax function, applied column-wise (i.e. across cells) and T is a temperature hyperparameter.
This construction leads to a near-discrete vector when the temperature T is high, and at most q
elements being 0, as desired.

We chose this construction over sampling using the Gumbel-softmax trick (the concrete distribution,
(Jang et al., 2017; Maddison et al., 2017)) because we found that it led to lower variance gradience
which made the objective easier to optimize. Additionally, we found that averaging over relatively
few cells (in practice we set m to be 30 cells) helps us get lower variance estimates of P because we
could load larger batches of genes into memory, leading to much more stable optimisation.

Our objective is inspired both from a biological standpoint (as the inter-arm correlations are un-
expected if not for unintended effects of using CRISPR), and a probabilistic perspective as, in a
Gaussian mixture model (with the mixtures corresponding to cells affected by proximity bias, and
those that are not), with centered component means, the average correlation between component
means naturally arises as an objective to be minimised (see Appendix A for more detail).

4 EXPERIMENTAL SETUP

Single-cell embedding dataset We used the curated version of the RxRx3 dataset (Fay et al.,
2023), containing ≈ 2.2 million images of cells perturbed with single-gene CRISPR knockouts,
spanning 15,133 genes located on 22 somatic and 2 sex chromosomes from human unbillical vein
endothelial cells (HUVEC). Each well was imaged using a modified cell painting protocol (Bray
et al., 2016) with six fluorescent staining channels. Each well image in the dataset was segmented
using the MAHOTAS software (Coelho, 2012) to detect individual cell nuclei and crop a 64 × 64
pixel patch around each segmented nuclear centroid (typically ≈ 500− 700 cells per well) located
at least 256 pixels away from the image edge (Figure 1A). We embedded each single-cell crop using
a masked autoencoder (He et al., 2021; Kraus et al., 2024) gigantic model (MAE-G), trained on
image crop of 256 × 256 pixels and finetuned on image crops of variable size, including 64 × 64
pixels. Each single-cell image instance is represented as a uniform average of token embeddings of
dimensionality d = 1, 664 (Figure 1B).
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Gene relationship heatmap To construct a relationship heatmap between individual genes, we
first computed a representative embedding for each gene in the dataset by averaging the single-cell
embeddings by well, plate and experiment. All single-cell embeddings were centered by PCA on a
set of perturbation controls, aligned using center-scaling by the mean and whitened by the standard
deviation of the PCA-transformed control representations (Figure 1C) (Celik et al., 2024).

To compute the pair-wise relationships between individual genes in the genome, we first organized
the genes sequentially along single chromosomes (gene index, Figure 1E). Cosine similarity was
computed to quantify the positive (similar) or negative (opposite) relationship between aggregated
embeddings as CS(A,B) = (A · B)/(∥A∥∥B∥), where A and B are the representative aggre-
gated embeddings of gene a and gene b, respectively. The similarities are displayed as chromosome
heatmaps after a quantile transformation to a normal distribution with µ = 0 and σ = 0.2 to make
the heatmaps visually comparable between different chromosomes as well as between pre- and post-
filtering step (Figure 1E).

Labeling of single-cell identities At train time, 30 cells per each gene perturbation well were
randomly chosen. This number was selected as a trade-off in accordance to the statistical rule of
thumb of the minimum amount of data one needs for hypothesis tests. Aggregating as few as 30
cells was a sufficient amount of data per well for the cosine similarity heatmaps to clearly display
expected proximity bias patterns (§ 4). Our main consideration was to fit all wells corresponding to
100-300 genes (which make up an optimizer’s batch) into GPU memory for stable optimization, and
any fewer risked optimization instability due to high variability of the objective.

At inference time, the trained model classifies all available raw single-cell embeddings per gene
perturbation (≈ 50, 000 single-cell instances per gene). The classifier labels each cell embedding
as either “real perturbation” or “proximity bias”, where the latter are excluded from the embedding
aggregation for heatmap construction (§ 4). We trained a separate proximity bias (PB) classifier on
genes located across 22 somatic and 2 sex chromosomes. Based on prior estimates of proximity
bias incidence in the RxRx3 dataset (Lazar et al., 2024), with an upper-bound estimate of 15%, we
selected two models for subsequent evaluation: a “weak” filtering model, trained to exclude 3 cells
out of a batch of 30 (10%), and a “strong” filter, trained to discard 6 out of 30 cells (20%).

5 RESULTS

In this section, we will (i) present a qualitative and quantitative evaluation of our single-cell filter-
ing method in the context of individual chromosomes. To do so, we will (i) show that our filtering
approach reduces average correlation (cosine similarity) in intra-arm regions compared to the in-
ter-arm regions compared to a non-filtering baseline (§ 5.1), (ii) contrast our single-cell approach
performance to other proposed corrections strategies (§ 5.2) and (iii) demonstrate that our classifiers
learn single-cell characteristics specific to individual chromosomes (§ 5.3).

5.1 CELL FILTERING REDUCES SPURIOUS EMBEDDING CORRELATIONS

Qualitative chromosome heatmap evaluation To assess model performance, we constructed
single-chromosome heatmaps (§ 4) representing pairwise cosine similarities between gene knock-

Figure 2: Visualization of gene cosine similarities on chromosome 1 as raw and quantile-normalized cosine
similarity matrices before and after cell filtering with weak (10% cell toss) and strong (20% cell toss) models.
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Figure 3: Average correlation reduction across intra- as well as inter-arm regions (not trained for) in all
chromosomes with at least 10 genes on both arms, pre- and post-filtering with our weak and strong models.

outs before and after filtering (Figure 2). While inter-arm gene pairs are not inherently dissimilar,
the intra-arm gene pairs exhibit a higher similarities consistent across both arms.

This relative contrast is further amplified by the quantile transformation of the similarity matrix,
which enhances the visualization of the proximity bias effect. Here, genes located on the same
chromosome arm exhibit consistently higher similarity to one another compared to those on oppo-
site arms (Figure 2). These elevated similarity values exceed those expected by chance, despite the
absence of functional or morphological justification, as adjacent genes do not universally share func-
tional similarity. Importantly, our visualizations demonstrate that the proximity bias effect remains
detectable even when image resolution is reduced to the single-cell level.

Furthermore, a qualitative evaluation suggests that both the 10% and 20% filtering models effectively
mitigate proximity bias. This reduction appears to be driven by a decrease in intra-arm correlations,
thereby enabling previously dissimilar inter-arm gene pairs to exhibit greater relative similarity.
Consequently, this redistribution of similarity values leads to an apparent increase in inter-arm sim-
ilarity within the heatmap visualizations (Figure 2).

Quantitative reduction of embedding correlations To quantitatively assess this observation, we
compared the average correlations within intra-arm regions (i.e., within the p- and q-arms) to those in
the inter-arm region (i.e., between p- and q-arms) across all chromosomes with two arms (Figure 3).
Our results indicate that at least one of the filtering models reduces the average correlation in 14
(77%) and 16 (88%) out of 18 intra p- and q-arm regions, respectively, compared to the non-filtered
baseline. Strikingly, 15 (83%) out of 18 chromosome pq-regions show a consistent correlation drop,
despite that reducing inter-arm cosine similarities was not included in the training objective (§ 3).

While these findings demonstrate a measurable reduction in proximity bias, it remains unclear
whether the average correlation can be further minimized. Variability in arm-specific cosine sim-
ilarity across chromosome heatmaps may arise due to differences in chromosome arm lengths or
the specific filtering model applied. Additionally, average correlation may not represent the most
consistent or optimal evaluation metric (as discussed in § 6), suggesting that further refinements are
necessary to fully mitigate the bias.

5.2 METHOD BENCHMARKING TO OTHER CORRECTION STRATEGIES

Encouraged by the success of our single-cell filtering method in mitigating spurious intra-arm cor-
relations, we compared its performance against previously reported proximity bias correction strate-
gies (Lazar et al., 2024). This comparison is inherently challenging due to methodological differ-
ences: prior work used larger (256× 256 pixel) image crops containing multiple cells and a distinct
embedding model for feature extraction (Sypetkowski et al., 2023). To enable a fair evaluation, we
contrasted our filtering approach with two geometric chromosome-arm corrections, all performed
on a single-cell image embedding level: (i) a naı̈ve method, subtracting an average embedding
of all genes on the chromosome arm from each gene representation, and (ii) an expression-based
method adapted from (Lazar et al., 2024), subtracting an average embedding derived solely from
unexpressed genes (zFPKM < −3.0 in bulk RNA-seq of untreated, control wells).

All three approaches successfully reduce intra-arm correlations compared to the unfiltered case
(Figure 4). However, while their numerical performance appears similar for chromosome 1, closer
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heatmap examination reveals key differences, which underscores the importance of visual inspection
alongside quantitative metrics.

The naı̈ve approach reduces p-arm similarity but introduces artificial similarity in previously dis-
similar regions, particularly near the p-telomere (Figure 4). This effect arises because subtracting a
universal embedding, irrespective of gene position, inadvertently increases adjacency-based similar-
ity. The targeted approach mitigates this issue to some extent but still induces artificial correlations
in the chr1p telomeric region and fails to fully resolve residual similarities in chr1q.

While our strategy does not completely eliminate the chr1p central square, it reduces its promi-
nence more effectively than the alternative approaches while avoiding the unintended introduction
of artificial correlations elsewhere. This suggests that our method provides the most robust correc-
tion among the tested strategies, without the need to obtain expensive gene expression profiles in the
studied cell line. However, a more comprehensive statistical analysis may be required for a definitive
and rigorous comparison.

5.3 CELL FILTERING BEYOND CHROMOSOME-SPECIFIC CONTEXTS

To determine whether our filtering models effectively exclude proximally biased cells rather than
simply removing imaging artifacts or debris-like objects, we evaluated their ability to generalize
across different chromosome contexts. Specifically, we tested whether a model trained to reduce
intra-arm correlations on one chromosome could achieve similar results when applied to another.
This approach is based on the premise that each chromosome arm consists of a distinct set of genes,
and knocking out this specific set of genes would produce arm-specific morphological phenotypes.
If a model successfully corrects bias only on the chromosome it was trained on but fails on others,
it suggests that the filtering process is correctly targeting proximity-biased cells. Conversely, if bias
is reduced across multiple chromosomes, this would indicate that the excluded cells share genome-
wide phenotypic characteristics, which would undermine the interpretability of our approach.

We focused on the two chromosomes with the highest gene counts in our dataset—chromosome
1 and 17. While models applied to their training chromosomes effectively reduced the spurious
correlations, exchanging them had the opposite effect—correlations not only failed to decrease but
increased compared to pre-filtering step, suggesting that the model exchange exacerbates the unde-
sired similarity pattern (Figure 5). This validates our approach to proximity bias correction targeted
on a chromosome- or even arm-specific approach, as embedding feature distributions differ between
chromosomes. These findings provide indirect evidence that our models correctly identify and filter
proximity-biased cells, aligning with prior observations (Lazar et al., 2024).

6 DISCUSSION AND CONCLUSIONS

This work demonstrates how we can use the bias that arises from off-target effects of CRISPR-Cas9
as a source of weak supervision to infer the latent cell state (i.e. on- or off-target effect). We use the
inferred state to reduce spurious correlations between single-gene perturbations, such as the ones
arising from proximity bias in chromosome-specific contexts. We found that the approach reduced

Figure 4: Comparison of correction approaches on chromosome 1 of the pre-filtering baseline to
the (naı̈ve) and expression-guided corrections and our filtering approach which visually most accu-
rately lowers the correlation signal with minimal introduction of artificial patterns into the heatmap.
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Figure 5: Reduction of cell embedding correlations requires chromosome-specific models. Heatmaps
for gene perturbations on chromosomes 1 and 17 are shown before filtering (left), after filtering with a
chromosome-specific model (middle), and after filtering with a model trained on the other chromosome (right).
Exchanging models fails to reduce and amplifies proximity bias, emphasizing the need for arm-specific models.

the average intra-arm correlations for each chromosome and reduced some of the artifacts that arise
from naı̈ve or expression-based corrections, though performance varied across the chromosomes.
While promising, our analysis is currently limited to comparisons on a per-chromosome basis; we
are currently working on scaling the approach to a genome-wide study which will require us to
correct for any systemic differences between the per-chromosome distribution of cosine similarities.

Likewise, reducing average correlations does not necessarily guarantee that our approach preserves
known biological relationships as effectively as the baseline. To evaluate this, measuring the recall
of gene pairs with established interactions from public benchmarking databases of gene-gene rela-
tionships would strengthen our argument that the arm correlation reduction also leads to successful
proximity bias reduction. Additionally, implementing these benchmarks is needed not only to com-
pare pre- and post-filtering results within the single-cell approach but also to assess how it performs
relative to the previously introduced multi-cell approaches (Lazar et al., 2024; Kraus et al., 2024).

From an interpretability standpoint, our method provides single-cell labels indicating whether an
embedding represents a true perturbation, enabling a detailed characterization of the subpopulation
of proximally biased cells. This could be performed in the image space, facilitating feature dissec-
tion in the latent embedding. Additionally, integrating these latent labels with hand-crafted feature
sets from CellProfiler (Carpenter et al., 2006), designed by human experts to enhance image ex-
plainability, could further illuminate the characteristics and origins of proximity bias. This, in turn,
may lead to more targeted strategies for its detection and mitigation.

In summary, this work introduces a novel approach to address proximity bias at the single-cell level,
being the first to utilize weakly supervised latent variable inference to filter off-target single-cell
instances from the image embedding space. Given the scarcity of label-free methods for disentan-
gling biological heterogeneity, such as separating cell population mixtures, we envision extending
our approach to more complex scenarios, including dual- or multi-gene CRISPR-Cas9 knockouts
and gene-compound combination screens, with potential implications for therapeutic applications.
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MEANINGFULNESS STATEMENT

To understand the effect of genetic perturbations in phenomics screens, we must convert images to
numerical representations that are suitable for downstream processing. Often, these are aggregated
featurizations of a set of images, potentially transformed in accordance with causal principles. It
has been noticed in previous work that such numerical representations of what a gene deletion does,
within CRISPR-based phenomics screens, are confounded by a mechanism thought to be chromoso-
mal truncation. We offer a method to correct for these effects, paving a path to clearer representations
of genetic deletions, and hence cell biology, a core component of understanding life.
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A A PROBABILISTIC INTERPRETATION OF OUR OBJECTIVE

This section shows that assuming a Gaussian mixture model with a centered Gaussian prior over the
component means, we recover an objective that penalizes the average covariance between compo-
nent means.

MODEL

Consider a setting with two genes being perturbed, a and b, located on the same chromosome arm.
We assume that genetic perturbations to single cells have an additive impact on a gene’s represen-
tation w.r.t. control cells, measured by µa,µb ∈ Rd. With some probability, a cell is affected by a
mechanism thought to be chromosomal truncation (i.e. if a cell is “proximally biased”), the effect
of which is denoted by µp. We assume a multivariate Gaussian distribution on M, and we assume
that embeddings are centered,

M =

µa⊤

µb⊤

µp⊤

 ∼MN (0, (1 + ϵ)I− 1

ng
O, Id

)
.

The choice of covariance is just a centering matrix H with jitter ϵ added along the diagonal. The
covariance naturally arises if we zero-center the embeddings by construction; assume a non-zeroed
normal matrix M′, centering M′ as M = HM′H leads to the row-covariance HIng

H = H (as H
is idempotent).

If the i-th cell of perturbation k is proximally biased, we represent it with wk
i = 1, and zero oth-

erwise. The prior distribution on the vector w = [wa wb]T is such that, for every well (which
contains n′ cells), exactly ⌊pwn′⌋ cells are sampled uniformly. This ensures that the marginal prob-
ability P(wk

i = 1) is pw.

The observed control-centered representations of single cells from the phenomics experiments are
represented by Xa,Xb ∈ Rn×d. Assume that,

Xa | wa,µa,µp ∼MN
(
(1−wa)⊗ µa⊤ +wa ⊗ µp⊤, σ2

mIn, Id

)
,

Xb | wb,µb,µp ∼MN
(
(1−wb)⊗ µb⊤ +wb ⊗ µp⊤, σ2

mIn, Id

)
.

INFERENCE: THE OBJECTIVE

The posterior factorises as,

p
(
µa,µb,µp,w

∣∣Xa,Xb
)
∝ p
(
X
∣∣M,w

)
p
(
M
)
p(w).

We use a variational approximation,

q(w|X) = δ(fθ(X)) ≡ δ(w̃),

where fθ is a neural network parameterised such that its support matches that of the prior (i.e. a
fixed number of cells per well are identified as proximally biased). The implied evidence lower
bound (ELBO) is,

L(θ) = Eq(w,M|X)

(
log p

(
X
∣∣M,w

)
p(M)

)
− KL(q(w)∥p(w)

= log p(X|M, w̃) + log p(M) + c.

We use block coordinate ascent for inference (i.e. CAVI/EM).

INFERENCE: STEP 1

First, we maximise the objective w.r.t. M, resulting approximately in the intuitive maximum likeli-
hood estimator. W.l.o.g., consider the partial derivative of L(θ) w.r.t. a specific component µa

k ∈ R,
and let X̃a = Xa − (1−wa)⊗ µa⊤ −wa ⊗ µp⊤. First, note that,

p
(
X
∣∣M,w

)
= p
(
Xa
∣∣µa,µp,wa

)
· p
(
Xb
∣∣µb,µp,wb

)
,
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and that,

log p(M) = −1

2
tr

(
MM⊤

(
(1 + ϵ)I− 1

ng
O

)−1
)

+ c

= −1

2
tr
(
MM⊤

(
1

1 + ϵ
I+

1

ϵng(1 + ϵ)
O

))
+ c Sherman-Morrison

≈ −1

2

∑
ka

∥µka∥2 − 1

2ngϵ

∑
ka,kb

µka
⊤
µkb .

The derivative of the ELBO w.r.t. a component of the mean is,

∂

∂µa
k

L(θ) = ∂

∂µa
k

[
log p(M) + log p

(
Xa
∣∣µa,µp,wa

)]
=

∂

∂µa
k

[
log p(M)− 1

2σ2
m

tr
[
X̃aX̃a

⊤]− nd

2
log(σ2

m)

]
,

∝ ∂

∂µa
k

[
1

σ2
m

n∑
i=1

∥∥∥Xa
i −

[
(1− wa

i )µ
a + wa

i µ
p
]∥∥∥2]+ µa

k
2 +

2
∑

m µa
kµ

m
k

ngϵ
.

Setting this derivative to 0 for the maximum-likelihood solution leads to,

2µa
k +

2(2µa
k + µb

k + µp
k)

ngϵ
− 1

σ2
m

n∑
i=1

2
[
Xa

ik − (1− wi)µ
a
k − wiµ

p
k

][
1− wi

]
= 0,

⇒µa
k +

µa
k

ngϵ
− 1

σ2
m

n∑
i=1

[
Xa

ik(1− wi)− (1− wi)µ
a
k

]
= 0,

⇒µa
k +

µa
k

ngϵ
+

n(1− pw)µ
a
k

σ2
m

− 1

σ2
m

n∑
i=1

[
Xa

ik(1− wi)
]
= 0,

⇒µ̂a
k =

∑n
i=1

[
Xa

ik(1− wi)
]

(
σ2
m +

σ2
m

ngϵ
+ n(1− pw)

) n→∞
≈

∑n
i=1

[
Xa

ik(1− wi)
]

n(1− pw)
≡ X̄a, ̸p

:k .

We see that the solution for the mean embedding of a genetic perturbation is simply the average
embedding corresponding to non-proximally biased cells known to have that perturbation induced.

INFERENCE: STEP 2

In this step, we optimise the ELBO w.r.t. θ, i.e. the parameters associated with the latent variables
w. In particular, we will argue that this step leads to minimisation of the average covariance between
the average gene embeddings.
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Our first argument is that the optimisation of the objective L is dominated by the maximisation of
log p(M̂). A sketch is as follows. The first term of the ELBO without constants (w.r.t. θ) is,

T a
1 ≡ −

1

2σ2
m

n∑
i=1

∥∥∥Xa
i − (1− wa

i )µ
a − wa

i µ
p
∥∥∥2

= − 1

2σ2
m

n∑
i=1

d∑
k=1

(Xa
ik − (1− wa

i )µ
a
k − wa

i µ
p
k)

2

= − 1

2σ2
m

n∑
i=1

d∑
k=1

(1− wa
i )µ

a
k
2 + wa

i µ
p
k
2 − 2Xa

ik(1− wa
i )µ

a
k − 2Xa

ikw
a
i µ

p
k + c

=
1

2σ2
m

d∑
k=1

n(1− pw)(X̄
a,̸p
:k )2 + npwX̄

a,p
:k

X̄a,p
:k + X̄b,p

:k

2
+ c.

Optimisation of this term w.r.t. θ (and therefore w) should just lead to a balancing dynamic, as the
relabelling of a cell would inversely affect X̄a, ̸p

:k and X̄a,p
:k .

Therefore, the optimisation of the ELBO w.r.t θ should just force log p(M̂) upwards, which from
the previous inference step is known to be inversely proportional to the average covariance between
rows of M̂,

log p(M̂) = − 1

2ngϵ

∑
ka,kb

µka
⊤
µkb(1 + ϵngδkakb

)

A sense-check, illustrated in figure 6 verifies that average covariances are reduced by such an opti-
misation. We hypothesize that for our data, this proxy objective may be a better objective than the
likelihood, as our data distributions are verifiably non-normal.

B ALTERNATIVE METHODS FOR PROXIMITY BIAS DETECTION

Assuming that the phenotypes of PB cells are identifiable and differ by chromosome arm, one can fit
a chromosome-arm classifier, and, with enough data (number of cells, genes per arm, etc.), classify
with high confidence cells affected by PB. However, if we fit a logistic regression, whose uncer-
tainties are known to be well calibrated, and remove such cells, we see that PB is not necessarily
reduced, as illustrated in Figure 7. Moreover, PB does not appear in gene-by-gene confusion matri-
ces corresponding to classification models fit to identify which gene perturbation (the “class”) has
affected an embedding representing a cell.
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iteration

m
ea

n(
co

r(M
))

max log MN(Mp | 0, H, I)
max log MN(Mp | 0, I, I)

Figure 6: A sense check that confirms that the maximization of logMN (M′|0,H, I) w.r.t. θ leads to a
minimization of average off-diagonal covariance between rows of M′, as opposed to logMN (M′|0, I, I),
where M′ = M+ pw tanh(θ), and M is such that cor(Mi,Mj) = 0.2 + 0.8δij .

Figure 7: Confidence-based classification correction does not reduce proximity bias. Compari-
son of raw (left) and filtered (right) similarity maps of chromosome 1, where the filtered map was
generated by dropping cells based on confidence scores from a chromosome arm classifier.
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