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ABSTRACT

Context. Several studies have empirically compared in-distribution (ID) and out-
of-distribution (OOD) performance of various models. They report frequent pos-
itive correlations on benchmarks in computer vision and NLP. Surprisingly, they
never observe inverse correlations suggesting necessary trade-offs. This matters to
determine whether ID performance can serve as a proxy for OOD generalization.

Findings. This paper shows that inverse correlations between ID and OOD perfor-
mance do happen in real-world benchmarks. They could be missed in past studies
because of a biased selection of models. We show an example on the WILDS-
Camelyonl7 dataset, using models from multiple training epochs and random
seeds. Our observations are particularly striking with models trained with a regu-
larizer that diversifies the solutions to the ERM objective (Teney et al., [2022a)).

Implications. We nuance recommendations and conclusions made in past studies.

¢ High OOD performance may sometimes require trading off ID performance.

¢ Focusing on ID performance alone may not lead to optimal OOD performance:
it can lead to diminishing and eventually negative returns in OOD performance.

¢ Our example reminds that empirical studies only chart regimes achievable with
existing methods: care is warranted in deriving prescriptive recommendations.

1 INTRODUCTION

Past observations. This paper complements existing studies that empirically compare in-
distribution (ID) and out-of-distribution'[(OOD) performance of deep learning models (Andreassen
et al.| 2021} |Djolonga et al.| 2021} [Miller et al., 2021} Mania & Sral [2020; Miller et al.| 20205 Taori
et al., [2020; Wenzel et al., 2022). It has long been known that models applied to OOD data suffer
a drop in performance, e.g. in classification accuracy. The above studies show that, despite this
gap, ID and OOD performance are often positively correlate(ﬂ across models on benchmarks in
computer vision (Miller et al., 2021) and NLP (Miller et al., 2020).

Past explanations. Frequent positive correlations are surprising because nothing forbids opposite,
inverse ones. Indeed, ID and OOD data contain different associations between labels and features.
One could imagine e.g. that an image background is associated with class C; ID and class Co
OOD. The more a model relies on the presence of this background, the better its ID performance
but the worse its OOD performance, resulting in an inverse correlation. Never observing inverse
correlations has been explained with the possibility that real-world benchmarks might contain

"'We use “O0D” to refer to test data conforming to covariate shifts (Shimodairal, [2000) w.r.t. training data.
>We use “correlation” to refer both to linear and non-linear relationships.
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Toy representations, one point=one model ~ Fjgure 1: Past studies suggest that positive correlations be-
Positive correlation Inverse comelation —\veen 1D /OOD performance are ubiquitous. This paper
shows, with a counterexample, that inverse correlations are
possible and can be accidentally overlooked. The possible
need for an ID/OOD trade-off is thus not merely theoretical
and should be envisioned, e.g. preventing blind reliance on ID
performance for model selection.
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only mild distribution shifts (Mania & Sra, 2020). We will show that such observations can also
be an artefact of study design.

A recent large-scale study. |Wenzel et al.| (2022)) show that not all datasets display a clear positive
correlation. The authors observe other patterns that sometimes reveal underspecification (D’ Amour
et al.l 2020} Teney et al.| [2022b} [Lee et al.l [2022), or severe shifts that prevent any training/test
transfer. Surprisingly, they never observe inverse correlations:

“We did not observe any trade-off between accuracy and robustness, where more accurate
models would overfit to spurious features that do not generalize.” (Wenzel et al.,|2022)

On the contrary, we do observe such cases and showcase it on a dataset from the above study.

Explaining inverse correlations. We name the underlying cause a misspecification, by extension of
underspecification which was previously used to explain why models with similar ID performance
can vary in OOD performance (D’ Amour et al., [2020; [Teney et al., 2022b; [Lee et al., 2022). In
cases of misspecification, the standard ERM objective (empirical risk minimization), which drives
ID performance, conflicts with the goal of OOD performance. ID and OOD metrics can then vary
independently and inversely to one another. In Section[5] we present a minimal theoretical example
that illustrate how an inverse correlation pattern originates from the presence of both robust and
spurious features in the data. In Section[6] we show that different patterns of ID/OOD performance
occur with different magnitudes of distribution shifts.

Summary of contributions.

* An empirical examination of ID vs. OOD performance on the WILD-Camelyon17 dataset (Koh
et al.| [2021) that shows an inverse correlation pattern conflicting with past evidence (Section 3)).

* An explanation and empirical verification that past studies could miss such patterns because of a
biased sampling of models (Section ).

* A theoretical analysis showing when inverse correlations patterns can occur (Sections [SH6).

* A revision of conclusions and recommendations made in past studies (Section [7)).

2 PREVIOUSLY-OBSERVED PATTERNS OF ID vS. OOD PERFORMANCE

Past studies conclude that ID and OOD performance tend to vary jointly across models on many
real-world datasets (Djolonga et al., 2021; |[Miller et al., 2021} (Taor1 et al., [2020). Millet al. report
an almost-systematic linear correlatio between probit-scaled ID and OOD accuracies. [Mania &
Sral(2020) explain this trend with the fact that real-world benchmarks contain only mild distribution
shiftsE] Andreassen et al.[(2021) find that pretrained models perform “above the linear trend” in the
early stages of fine-tuning. Their OOD accuracy rises more quickly than their ID accuracy early on,
even though the final accuracies agree with a linear trend.

Most recently, the large-scale study of \Wenzel et al.| (2022) is more nuanced: they observe a linear
trend only on some datasets. Their setup consists in fine-tuning an ImageNet-pretrained model on a
chosen dataset and evaluating it on matching ID and OOD test sets. They repeat the procedure with
a variety of datasets, architectures, and implementation options such as data augmentations.

The scatter plots of ID/OOD accuracy inWenzel et al.| (2022) show four typical patterns (Figure[2).

3The “linear trend” is not really linear: it applies to probit-scaled accuracies (a non-linear transform).

“Mania & Sra| (2020) explain the linear trend with (1) certain data points having similar probabilities of occur-
ring in ID and OOD data, and (2) the probability being low that a model classifies some points correctly that
a higher-accuracy model classifies incorrectly.
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Figure 2: Typical patterns observed in Wenzel et al.|(2022) (reproduced with permission).

1. Increasing line (positive correlation): mild distribution shift. ID and OOD accuracies are
positively correlated. Focusing on classical generalization and ID performance brings concurrent
OOD improvements.

2. Vertical line: underspecification (D’ Amour et al., [2020; |[Lee et al., 2022} Teney et al., 2022b).
Different models obtain a similar high ID performance but different OOD performance. The
objective of high ID performance does not sufficiently constrains the learning. Typically, multiple
features in the data (a.k.a. biased or spurious features) can be used to obtain high ID performance,
but not all of them are equally reliable on OOD data. To improve OOD performance, additional
task-specific information is necessary, e.g. additional supervision or inductive biases (custom
architectures, regularizers, etc.).

3. Horizontal line, low OOD accuracy: severe distribution shift. No model performs well OOD.
A severe shift prevents any transfer between training and OOD test data. The task needs to be
significantly more constrained e.g. with task-specific inductive biases.

4. No clear trend: underspecification. Models show a variety of ID and OOD accuracies. The
difference with (2) is the wider variety along the ID axis, e.g. because a difficult learning task
yields solutions of lower ID accuracy from local minima of the ERM objective.

The authors note the absence of decreasing patterns, which are however possible in theory.

5. Decreasing line (inverse correlation): misspecification. The highest accuracy ID and OOD are
achieved by different models. Optima of the ERM objective, which are expected to be optima
in ID performance, do not correspond to optima in OOD performance. This implies a trade-off:
higher OOD performance is possible at the cost of lower ID performance.

When does an inverse correlation occur between ID and OOD performance?

Intuitively, it can occur when there is a pattern in the data that is predictive in one distribution and
misleading in the other. For example, object classes C; and Cy are respectively associated with
image backgrounds B and B5 in ID data, and respectively B> in B; (swapped) in OOD data.
Relying on the background can improve performance on either distribution but not both simulta-
neously. While such severe shifts might be rare, the next section presents an actual example.

3 NEW OBSERVATIONS: INVERSELY CORRELATED ID/OOD PERFORMANCE

We use the WILDS-Camelyon17 dataset described by |Koh et al.|(2021)) in a manner similar to Wen-
zel et al.| (2022). These authors evaluate different architectures, assuming different inductive biases
will produce models covering a range of ID/OOD accuracies. For simplicity, we rely instead on
different random seeds since D’ Amour et al.|(2020) showed this to be sufficient to cover a variety of
ID/OOD accuracies on this dataset. To increase this variety even further without manually picking
architectures, we also train models with the diversity-inducing method of [Teney et al.|(2022a)).

Experimental details. We use DenseNet-121 models pretrained by the authors of the dataset using
10 different seeds. For each of these 10 models, we re-train the last linear layer from a random
initialization for 1 to 10 epochs, while keeping the other layers frozen. These are referred to as
“ERM models”. We perform this re-training with 10 different seeds which gives 10° ERM models
(10 pretraining seeds x 10 re-training seeds x 10 numbers of epochs). In addition, we repeat this
re-training of the last layer with the diversity-inducing method of [Teney et al.| (2022a) (details in
the box below). These are referred to as “diverse models”. Each run of the methods produces 24
different models, giving a total of 103. 24 such models (102 as above x 24).
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Background: learning diverse solutions to a learning task.

A range of methods exist to identify multiple neural networks of similar high ID performance
but that differ in other desirable properties such as OOD performance, interpretability, adversarial
robustness, etc. These methods are relevant in cases of underspecification (D’ Amour et al.,[2020)
i.e. when the standard ERM objective does not constrain the solution space to a unique one.

Recent methods consist of optimizing multiple models while encouraging diversity in their fea-
ture space (Heljakka et al., 2022} [Yashima et al., [2022), prediction space (Pagliardini et al.,
2022; |Lee et al.,[2022), or gradient space (Ross et al., 2018} [2020; Teney et al., 2022aib).

This study uses the method of Teney et al.[(2022a) which encourages gradient diversity. The
method trains many copies of the same model in parallel — in our case, a linear classifer on top
of a frozen DenseNet backbone (see Figure [3).

Training image Figure 3: Method used to train a di-
verse set of models. Each training
image x goes through a frozen pre-
trained DenseNet to produce features
h=f(x). We train a set of linear classi-

Feature extractor (frozen DenseNet)
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The models are optimized by standard SGD to minimize the sum of a standard classification loss
(cross-entropy) with a diversity loss that encourages diversity across models. Using A a weight
hyperparameter, the complete loss is £ = Ljagsification + A Ldiversity- The second term encourages
each copy to rely on different features by minimizing the mutual alignment of input gradients:

£diversity = EacETraining E:'Lzl 2?:;‘4,_1 Vi gz(h) -V gj(h) with h = f(zc) . (1)

These pairwise dot products quantify the mutual alignment of the gradients. Intuitively, mini-
mizing this loss makes each model locally sensitive along different directions in its input space.
Assuming that g produces a vector of logits (as many as there are classes), Vi, g(-) refers to the
gradient of the largest logit w.r.t. the classifier’s input h. We use n=24 copies and a weight A=10
that were selected for giving a wide range of ID accuracies. See|Teney et al.| (2022a)) for details
about the method. Variations were also described by |Ross et al.|(2020) and [Teney et al.|(2022b).
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Figure 4: Our new observations show that higher OOD accuracy can sometimes be traded for lower
ID accuracy. Each panel corresponds to a different pretraining seed. Each dot represents a linear
classifier on frozen features, re-trained with a different seed and/or number of epochs. They are
re-trained with standard ERM (red dots @) or a diversity-inducing method (gray dots #). The latter
set includes models with higher OOD /lower ID accuracies. See Appendixfor additional plots.

Results with ERM models. In Figure [d] we plot the ID vs. OOD accuracy of ERM models as
red dots (®). Each panel corresponds to a different pretraining seed. The variation across panels
(note the different Y-axis limits) shows that OOD performance varies across pre-training seeds even
though the ID accuracy is similar, as noted by [Koh et al.|(2021). Our new observations are visible
within each panel. The dots (models) in any panel differ in their re-training seed and/or number of
epochs. The seeds induce little variation, but the number of epochs produce patterns of decreasing
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trend (negative correlation). Despite the narrow ID variation (X axis), careful inspection confirms
that the pattern appears in nearly all cases (see Appendix |A|for zoomed-in plots).

Results with diverse models. We plot models trained with the diversity-inducing method (Teney
et al., 2022a)) as gray dots (). These models cover a wider range of accuracies and form patterns
that extend those of ERM models. The decreasing trend is now obvious. This trend is also clearly
juxtaposed with a rising trend where ID /OOD performance are positively correlated. This suggests
a point of highest OOD performance after which the model overfits to ID data. Appendix [A]shows
similar results with other pretraining seeds. The patterns are not always clearly discernible because
large regions of the performance landscape are not covered, despite the diversity-inducing method.
We further discuss this issue next.

4  WHY PAST STUDIES MISSED NEGATIVE CORRELATIONS:
A BIASED SAMPLING OF MODELS

We identified several factors explaining the discrepancy between our observations and past studies.

» ERM models alone do not always form clear patterns (red dots ® in Figure[d). In our observations,
the models trained with a diversity-inducing method (gray dots @) were key in making the
suspected patterns more obvious, because they cover a wider range of accuracies.

* The ID/OOD trade-off varies during training, as noted by |Andreassen et al.| (2021). This vari-
ation across training epochs is responsible for much of the newly observed patterns. However,
models of different architectures or pretraining seeds are not always comparable with one another
because of shifts in their overall performance (see e.g. different Y-axis limits across panels in
Figure ). Therefore the performance across epochs should be analyzed individually per model.

* The “inverse correlation” patterns are not equally visible with all pretraining seeds. In some
cases, a careful examination of zoomed-in plots is necessary, see Appendix[A] This is a reminder
that stochastic factors in deep learning can have large effects and that empirical studies should
randomize them as much as possible.

To demonstrate these points, we plot our data (same as in Figure ) while keeping only the ERM
models trained for 10 epochs and including all pretraining seeds on the same panel. Figure [5|shows
that these small changes reproduce the vertical line observed by Wenzel et al.| (2022), which com-
pletely misses the inverse correlations patterns visible in Figure ]
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g o Figure 5: We plot again the ERM models of Figure (red dots @)
£ w Under- . but only include models trained for a fixed number of epochs
£n sampled ' and combine all pretraining seeds in the same plot. This repro-
£ regime S duces the vertical line from (Wenzel et all [2022), which com-
< . pletely misses the patterns of inverse correlation.
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A general explanation is that past studies undersample regions of the ID/OOD performance
space. They usually consider a variety of architectures in an attempt to sample this space. However,
different architectures do not necessarily behave very differently from one another (see the box
below). We lack methods to reliably identify models of high OOD performance, but the diversity-
inducing method that we use yields models spanning a wide range of the performance spectrum.

Why isn’t it sufficient to evaluate a variety of architectures?

Different architectures do not necessarily induce radically different behaviour. Even CNNs and
vision transformers were shown to have similar failure modes (Pinto et al., [2022). Distinct ar-
chitectures can share similar inductive biases that are e.g. due to SGD, such as the simplicity
bias (Scimeca et al.,2022; Shah et al., 2020) or neural anisotropies (Ortiz-Jimenez et al., [2021]).

Therefore, independently trained models are not necessarily diverse despite the variety of archi-
tectures. ID / OOD performance may only vary along similar directions across models.
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5 THEORETICAL ANALYSIS OF A LINEAR CASE

In this section, we present a minimal case that shows a trade-off between ID and OOD performance
and aids understanding the cause of such a pattern. Let y € R be a target variable to be predicted
by a model, and x the features used as input to the model. These features are a concatenation
of invariant and spurious features (defined implicitly below): @ = [Ziny ; Tspu] With Tiny € Rinv
and @,y € Rspu Following |Arjovsky et al.[(2019); Rosenfeld et al.| (2020); [Zhou et al.| (2022), we
consider the simple data-generating process defined by the following structural equations:

e e

y‘ = 7Twienv + €inv wspu = ypls + ae o €Sp‘-l (2)
where e € {eip, eoop} is an environment index referring to ID or OOD data. The random vari-
ables €i,y and €gpy, represent symmetric independent random noise with zero-mean, sub-Gaussian
tail probabilities, and Var (€iny) >0, Var(espu,i) >0, Vi€ [1,dspu]. The vector vy € Réinv deter-
mines the relation between the target variable and the invariant features and is identical across en-
vironments. In contrast, the vector a® affects the spurious features and varies among environments.
Therefore the invariant features are similarly predictive in ID and OOD data while the spurious ones
are not.

To study the relationship between ID and OOD performance of a hypothetical predictive model, we
assume that this model relies on a subset of the features x. This subset is identified by a blnary mask

® € {0,1}dinvFdepu, Suppose we have already selected diyy invariant features and dSpu spurious

features, such that (dlnv+dspu) —d=|® 4ll1 where the subscript d denotes the number of selected
features.The features selected by ®; are [Tiny,1, .-, Ty diner Tspu,1s s Tepy dspu]' Let E denote

either the in- and out-of-domain expectation as E® and E°°P. We use /3 to denote the optimal
parameter of the linear regression for a certain domain, i.e., 8; = E[®;(z) " ® (x)] E[®;(z) y].

Then the MSE loss of the fitted linear regressor is E[y — ® ;(x) " 35]. Further, let [X{z, Xi . )\‘?]

denote the eigenvalues of E[® ;(x) " @ ;(x)] and ['v1 , vg, ey ] the corresponding eigenvectors.

Given a feature mask ® ; 4» WE now examine how the ID and OOD losses of the model vary when
including an additional spurious feature feature into ® ; (see Appendix [B] .for a proof).

Theorem 1. Including an additional spurious feature leads to the following change in loss L:
CID((I)(E.H) - ﬁID((I)(i) = E [y - (I)(j( ) 5ID] [y (I)d+1( )T 33_1]2 < 0
Loop(®;,,) — Loon(®y) = Q1+Q2+Q3

with 1, Q2, Q3 defined as follows:

Q1 = E°Ply— () 7P — Ely - @4, (x) " BT

Qs = i EOOD )y]TUQODd)? ()\QOD,d)( 1 _ 1 A)Q

)\iD,d )\iOOD,d

— (E9P[$ () ]T,UQOD,CZ+1)2 (A_OOD,dJrl) ( o 1 )2
d\JYl Y 1 )\ID,J+1 )\QOD,JH
ID \2 00D\2)2
_ (mOOD(g, . T oopdrnye (@g1)" = (@ 5)%)
Qs = (E (@444 (2)y] Vit ) ()\ID,&H)Q 00D, d+1 0.

d+1 d+1
Further, if the new feature is sufficiently unstable in the test domain,

ie if ((a d+1) (cvg_‘(_)lD)Q)2 is sufficiently large such that:

()\ID d+1)2>\OOD Jd+1

ID 2 OOD d+1 d+1
|(a¢f+1) (ad+1 ) | > (]EOOD[@( ) }T,UOOD d+1) ‘Ql + Q2| )
)y d+1

then we have Q3 > |Q1 + Q2| and therefore Loop(®j,,) — Loon(®;) > 0.
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Because €py, is a zero-mean symmetric random noise, the sign of «; ; does not the matter in the
results. Theorem |I| shows that adding a spurious feature to those used by the model can affect its
ID and OOD losses in opposite directions, implying a trade-off between ID and OOD accuracy. In
other words, this minimal case shows that a simple model without/with an extra (spurious) feature
can exhibit an inverse correlation between its ID and OOD performance.

6 ORDERING ID/OOD PATTERNS ACCORDING TO SHIFT MAGNITUDE

The above analysis shows that inverse correlation patterns are essentially due to the presence of spu-
rious features, i.e. features whose predictive relation with the target in ID data becomes misleading
OOD. Occurrences of spurious features increase with the magnitude of the distribution shift. There-
fore, the possible patterns in ID/OOD performance presented in Section[2]can be ordered according
to the magnitude of the distribution shift they are likely to occur with (see Figure[6).

Positive transfer Underspecification Misspecification No transfer
Distribution shift Mid - —_——_— - ——_— —,———— - + (Too?) Severe
Typical pattern Positive correlation Vertical line/no clear trend Negative correlation Low horizontal line
(toy representation)
> 2 : > >
£ 2 ¢ < £
g g g g
ID Accuracy ID Accuracy ID Accuracy 1D Accuracy y
Valid approaches Simply focus Task-relevant inductive biases e.g. arch., regularizers. Open
for improving OOD on improving Data augmentation with task-relevant transformations. question
performance ID performance Non-i.i.d. training data e.g. multiple training domains.
Example ImageNet + PACS sketch + WILDS DomainNet
datasets ImageNet v2 photograph Camelyon17 infograph + quickdraw
(Recht et al.}[2019) (Li et al.}[2017) (Koh et al.} 2021) (Koh et al.}[2021)

Figure 6: Various patterns of ID vs. OOD performance occur at different levels of distribution shift.

With the smallest distribution shifts (leftmost case in Figure [6), for example training on ImageNet
and testing on its replication ImageNet v2 (Recht et al., 2019)), ID validation performance closely
correlates with OOD test performance. This OOD setting is the easiest because one can focus on
improving classical generalization and reap concurrent improvements OOD.

With a larger distribution shift, more features are likely to be spurious, which is likely to break
the ID/OOQOD correlation. The task of improving OOD performance is likely to be under- or mis-
specified, i.e. there is not enough information to determine which features a model should rely on
to perform well OOD. Valid approaches include modifying the objective function, injecting task-
specific information with custom architectures (e.g. building-in invariance to rotations as in Teney
& Hebert (2016))), well-chosen data augmentations, or inhomogeneous training data such as multiple
training environments (Li et al.,|2017) and counterfactual examples (Teney et al., [2020a)).

With extreme distribution shifts, most predictive features are overwhelmingly spurious and it is very
difficult to learn any one relevant in OOD data (rightmost case in Figure|[6).

The proposed ordering of patterns is rather informal and could be further developed following the
two axes of diversity shifts and correlation shifts proposed by |Ye et al.| (2022) (see also [Wiles et al.
(2021))). More recently, (Wang & Veitch| (2022) showed that the suitability of various methods for
OOD generalization depends on particularities of the underlying causal structure of the task — which
must therefore be known to select a suitable method. Identifying which ID /OOD patterns occur
with particular causal structures might serve as a tool to understand the type of OOD situation
one is facing and identify a suitable method.
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7  REVISITING RECOMMENDATIONS MADE IN PAST STUDIES

We have established that observations in past studies were incomplete. We now bring nuance to
some recommendations and conclusions made in these studies.

* Focusing on a single metric.

“We see the following potential prescriptive outcomes (...) correlation between OOD and ID
performance can simplify model development since we can focus on a single metric.” (Miller
et al.l 2021)

We demonstrated that inverse correlations are a possibility, hence there exist scenarios where an
ID metric would be misleading. In general, relying on a single metric during model development
is ill-advised (Teney et al., 2020b). Even more so here since it cannot capture trade-offs along
multiple axes. A model with a suboptimal ID performance may have learned features that enable
better OOD generalization. Our recommendation is to track multiple metrics e.g. performance on
multiple distributions or qualitative interpretable predictions on representative test points.

* Improving ID performance for OOD robustness.

“If practitioners want to make the model more robust on OOD data, the main focus should
be to improve the ID classification error. (...) We speculate that the risk of overfitting large
pretrained models to the downstream test set is minimal, and it seems to be not a good strategy
to, e.g., reduce the capacity of the model in the hope of better OOD generalization.” (Wenzel
et al., 2022)

This recommendation assumes the persistence of a positive correlation. On the opposite, we saw
that a positive correlation can precede a regime of inverse correlation (Figure [4] left panels). If
the goal is to improve OOD, focusing on ID performance is a blind alley since this goal requires
to increase ID performance at times, and reduce it at other times.

* Future achievable OOD performance.
As obvious as it is, it feels necessary to point out that empirical studies only chart regimes achiev-
able with existing methods. Observations have limited predictive power, hence more care seems
warranted when deriving prescriptive recommendations from empirical evidence.

Evidently, the best possible performance on Camelyonl7 is not limited to the Pareto front ob-
served in our experiments. For example, the current state of the art on this dataset (Robey
et al., 2021; WILDS Leaderboard)) injects additional task-relevant knowledge to bypass the un-
der/misspecification of the ERM objective, and exceeds both our highest ID and OOD perfor-
mance. The important message remains that a given hypothesis class (DenseNet architecture in
our case) admits parametrizations whose ID and OOD performance do not necessarily correlate.

» Possible invalidation of existing studies.

The possibility of inverse correlations may invalidate studies that implicitly assume a positive one.
For example, |Angarano et al.|(2022) evaluate the OOD robustness of backbone computer vision
architectures. They find that modern architectures surpass domain generalization (DG) methods.

However, they discard any model but those with the highest ID performance, a.k.a. “training
domain validation” in (Gulrajani & Lopez-Paz| (2021)). This means that any model with a high
OOD performance but non-optimal ID is ignored. They also train every model for a fixed, large
number of epochs (30). This may additionally prevent from finding models with high OOD
performance since robustness is progressively lost during fine-tuning (Andreassen et al.,[2021).

By design, this study is therefore incapable of finding OOD benefits of any architec-
ture / hyperparameters / DG method that requires trading off some ID performance. Most impor-
tantly, once the implicit assumption of a positive correlation is enacted by throwing away models
with non-maximal ID performance, there is no more opportunity to demonstrate its validity.
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8 RELATED WORK

Inverse correlations can be found in the literature, although not always highlighted by their authors.

* An close examination of (Gokhale et al.| (2022, Table 2) reveals a clear inverse pattern with three
benchmarks for natural language inference (NLI). The task is known for biases and shortcuts in
the training data, and the OOD test sets in these benchmarks correspond to severe distribution
shifts. Our proposed explanation (right end of the spectum in Figure [6) therefore aligns with
these observations. Experiments on question answering from the same authors use data with
milder distribution shifts. Correspondingly, they show instead a positive correlation.

* |Kaplun et al.|(2022| Figure 7) find that the CIFAR dataset contains a subset (CIFAR-10-Neg) on
which the performance of visual classifiers is inversely correlated with their ID performance.

e Xie et al. (2020, Section 5.3) discusses cases of inverse correlation on the CelebA dataset with
their In-N-Out method — albeit within an overall positive trend.

* [McCoy et al.[(2019) show that BERT models trained with different random seeds vary widely on
their performance on the HANS benchmark for NLI, while their ID performance on the MNLI
dataset is similar.

* |Naganuma et al.|(2022) published an extensive evaluation of OOD benchmarks after the initial
release of this paper. They consider a much wider range of hyperparameters than previous studies.
As expected from our claims, they observe broader types of relations between ID/OOD perfor-
mance than the previously reported linear trend”.

* Work on adversarial examples has examined the trade-off between standard and adversarially-
robust accuracy Raghunathan et al.| (2020); |Yang et al.| (2020); |[Zhang et al.| (2019). This agrees
with our explanation since adversarial inputs correspond to extreme distribution shifts.

* Work on transfer learning has occasionally shown cases of negative transfer, a related phe-
nomenon where improving performance in one domain hurts in others.

9 DISCUSSION

This paper showed that inverse correlations between ID/OOD performance are possible not only
theoretically, but also happen in real-world data. We do not know how frequent this situation
is. Although we examined a single counterexampleE] we also showed that past studies may have
systematically overlooked such cases. This suffices to show that one cannot know a priori where a
given task falls on the spectrum of Figure[6] It is thus ill-advised to blindly make the assumption
of a positive correlation, which was suggested in the past.

Can we avoid inverse correlations with a larger training set? Scaling alone without data curation
seems unlikely to prevent inverse correlations. Fang et al.|(2022) examined a more general question
and determined that the impressive robustness of the large vision-and-language model CLIP is deter-
mined by the distribution of its training data rather than its quantity. Similarly, inverse correlations
stem from biases in the training distribution (e.g. a class C; appearing more frequently with image
background BB, than any other). And biases in a distribution do not vanish with more i.i.d. samples.
Indeed, more data can cover more of the support of the distribution, but this coverage will remain
uneven, i.e. biased. The problem can become one of “subpopulation shift” (Santurkar et al., [2020)
rather than distribution shift, but it remains similarly challenging.

Training full networks with a diversity-inducing method. We showed inverse correlations with
standard ERM models and — even more strikingly — with linear classifiers trained with a diversity-
inducing method (Teney et al., |2022a). To the best of our knowledge, this method has not been
applied to deep models because of its computational expense. It would be interesting to confirm our
observations on networks trained entirely with this or other diversity-inducing methods (Section [3)).

Qualitative differences along the Pareto frontier. We focused on quantitative performance. Inter-
pretability methods could also be used to examine whether models of various ID/OOD trade-offs
rely on different features and generalization strategies, as done in NLP by Juneja et al.|(2022).

Recent work by |[Eastwood et al.| (2022) also recognizes issues of model selection for OOD general-
ization. They get around selection based on either ID or OOD validation performance with a new

SWe only ran our experiments on Camelyon17. The dataset was not picked post hoc because of unusual results.
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domain generalization method (Quantile Risk Minimization) with a tunable trade-off. Other excit-
ing advances by Wang & Veitch! (2022) examine existing approaches to improve OOD performance
with their suitability to different distribution shifts and underlying causal structures.
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A ADDITIONAL RESULTS

Accuracy (%, val-id)

Accuracy (%, val-id)

Accuracy (%, vakid)

Accuracy (%, vakid)

80
80 % 80
=3 ) ) o "B 53
375 2 3 85 3 8 - 875
2 2 L5 ¢ i 4 '
8 8 8 g g
d e = = s
< $ < < ] $
£ B3 £ 13 o5 / B3
z 65 75 T ! S 265
H H £® e H
g 60 S0 4 S 8 g 60
< < . < 60 < <
/ ! 55
55 ’ 65 55
- 55
70 75 8 8 90 95 100 70 75 80 8 9 95 100 70 75 80 8 90 95 100 70 75 80 8 9 95 100 70 75 80 8 9 95 100
Accuracy (%, val-id) Accuracy (%, val-id) Accuracy (%, valid) Accuracy (%, vak-id) Accuracy (%, val-id)
70
70
80
80 85
265 ) ) 3 3
8 8 75 8 § 8 865
& o - L5 : 280 Y
g o g § % g g
: i / : ; : i '
=55 _‘é 7 < g v 8 £ < p
> e o > > ~ > 3 55
g ’ gos 8 65 g7 g
5 50 5 5 ] 5
1 g 8 g 3 50
< < 60 < < 3 <
5 60 65
4
55 55 60
7 75 8 8 90 95 100 70 75 80 8 90 95 70 75 80 8 90 95 100 70 75 80 8 9 95 100 70 75 8 8 90 95 100

Accuracy (%, vakid)

Figure 7: As in Figure E we show that higher OOD accuracy can be sometimes be traded off for
a lower ID accuracy. Each panel shows results from a different pretrained model (i.e. pretrained
with a different random seed). Each dot represents a linear classifier re-trained on features from this
pretrained model with standard ERM (red dots ®) or with a diversity-inducing method
(gray dots ©). The latter set includes models with higher OOD /lower ID accuracies.

Figure 8: Same as in

set.
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Figure 9: Same as in Figure zoomed-in on ERM models (red dots ®).
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B PROOF OF THEOREM [1I

Let x; := ®;(mzx)[Tiny,1, - Ty die Tspuls o T ] be the d features already selected

5P, dapu

andx; , :=P;. (muz) the features after adding a new spurious feature T dypat1 ©O T

Let [\, M4, ..., /\3] denote eigenvalues of E[de:c g and [v{, v, ..., vg} corresponding eigenvectors.
Assumption 1. The projection of E[m; v¥] on each basis corresponding to feature is non zero, i.e.
e d .
’ E"[a:} Ui] | >0, Vee {eID, e()OD}, 1€ [d] .

This ensures that coefficients of a feature can not be always 0, otherwise we can simply remove it.

Proof. Let '™° and BOCP denote the solution of linear regression in the ID and OOD domains, i.e.,

B =argminE° (y — x} §)° 3)
B
BIOP = arg win ECOP(y —a; B)° )

Now let us compare the OOD loss after we include T daput 1 In practice, we can only obtain 3
and then apply it on both the ID and OOD domains, which elicits the following errors:

Lip(®,) =E"(y —x] ™) (5)
Loop(®y) =E°P(y — =z 5™)

:EOOD(y _ w}BID) _ EOOD(y _ x;zrﬁOOD) +EOOD(y _ w;lfﬁOOD) (6)

&f &
It is well known that the residual of the linear fitting y by x ; on the ID domain is
- 2
Lin(®;) =EP [y —a B[z xj] 'EP [z ] = EPly — 4(z) " B, (7)
Similarly, we have
Lin(P,) =EPly —a; B 1% )
Since Y does not lies in the space spaned by @, so the space spanned by @ ;, , is strictly
larger than x ;. Togther with Assumption we have
Lin(Pg) = Lin(®y,) =EPly -2 8P —EPly — 2] 87,17 >0, ©
and also
I ¢d
é‘éi _ 2+1 — EOOD[y _ deBgOD]Q _ EOOD[y _ ml—i:_l dQJrOlD]Q > 0. (10)
By the proof in Appendix B.6.3 (above Eq. 29) in[Zhou et al|(2022), we have
d
7 i 1 1
& = Y (Bl fy]To) P ) 2APOP (0 ). (1

1D, d  ,00D,d
i Ai A

By Eq. (20) in Zhou et al.| (2022), we have

)\iID,J _ )\?OD,J _ (O[%ID)Q _ (aiOOD)Q. (12)
So we have:
] ] d 2 i 1 1 2
d4+1 _ d+1 _ 00D[,, 1T, 00D,d 00D, d B
1 —& —Z; (E [zgy] v, ) ()‘7: ) (AI.D,CZ )\QOD@)
~ (E9OP[g, ]TUQOD,J+1)2 ()\QOD,J+1) ( o 1 )2
d+1Yl Vi v A;D,d}q )\QOD,JJrl
D 2 00Dy2)2
0OD[,, T,,00D,d+1)2 (( J+1) B (O‘dlu )
+ (E%?Pz 9] Vi ) ()\ID,(JH)Q ,00D,d+1 (13)
d+1 d+1
From Eq.[TT]and[I3] we have the desired result. O
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