
Neurosymbolic World Models for Sequential Decision Making

Leonardo Hernández Cano 1 Maxine Perroni-Scharf 1 Neil Dhir 2 Arun Ramamurthy 2

Armando Solar-Lezama 1

Abstract
We present Structured World Modeling for Policy
Optimization (SWMPO), a framework for unsu-
pervised learning of neurosymbolic Finite State
Machines (FSM) that capture environmental struc-
ture for policy optimization. SWMPO models
the environment as a FSM, where each state cor-
responds to a specific region of the state space
with distinct dynamics (e.g., water and land).
This structured representation can be leveraged
for tasks like policy optimization. Our proposed
FSM synthesis algorithm operates in an unsuper-
vised manner, leveraging low-level features from
unprocessed, non-visual data to learn non-linear
models, making it adaptable across various do-
mains. The synthesized FSM models are expres-
sive enough to be used in a model-based Rein-
forcement Learning scheme that leverages offline
data to efficiently synthesize environment-specific
world models. We demonstrate the advantages of
SWMPO by benchmarking its environment mod-
eling capabilities in a number of simulation tasks.

1. Introduction
This work focuses on learned approximations of environ-
ment dynamics —known as world models (Ha & Schmid-
huber, 2018)— in the special case where these models must
explicitly encode the high-level structure of the environment
dynamics.

We are motivated by the observation that structured-world
models may facilitate the reuse of components across dif-
ferent environments. For example, consider modeling a
LiDAR-based amphibious robot that must navigate both
water and land—which we call modes. Across different

1Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute Of Technology, Massachusetts, United
States of America 2SIEMENS, New Jersey, United States of
America. Correspondence to: Leonardo Hernández Cano
<leohc@mit.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

(1) Neural world-
model primitives

NeuralPrimitives()

(2) MDP-specific
neurosymbolic
world-model

Collect dataOffline data

FSMSynth()

(3) Model-based
RL

Control
policy

Initial state
Env. modes

(e.g., water, land)

Reward
Trajectory

New
POMDP

Figure 1. Proposed policy-optimization framework: (1) data is col-
lected from the input POMDP by interacting with the environment
in a standard RL loop; (2) a world-model specific to the POMDP is
synthesized leveraging neural primitives; (3) the world model and
the POMDP’s reward function are used to perform model-based
optimization. These steps are repeated until a termination con-
dition is met. The neural primitives are learned from data from
previous POMDPs. The output is a policy for the new POMPD.

environments, these modes may appear in different config-
urations (e.g., one environment may be a lake surrounded
by land, another may be mostly land separated by a small
stream). Instead of modeling each environment from scratch,
a better approach might be to first construct ‘primitives’ for
water and land, and then, given a specific environment, as-
semble those two primitives into a complete model. This
only requires the identification of the boundaries between
the two modes relevant to a task, which in principle requires
less effort than the construction of the model from scratch.

Following this reasoning, our goal is to develop a method
that (1) learns a set of world-model primitives in an un-
supervised manner from offline data and (2) reuses those
primitives in the synthesis of a model specific to a new en-
vironment. This model should be accurate enough to be
used for model-based policy-optimization. We focus on
environments with continuous, low-level and non-visual
observations (e.g., LiDAR measurements or joint positions).

To this end, we propose Structured World Modeling for Pol-
icy Optimization (SWMPO), a neurosymbolic framework
for model-based Reinforcement Learning (RL). SWMPO
first uses offline data to learn a set of neural world-model
primitives (e.g., water and land). SWMPO then assembles
these primitives into a complete world model specific to
a new environment. Finally, SWMPO uses this model for

1

Neurosymbolic World Models for Sequential Decision Making

model-based policy optimization (see Figure 1).

Internally, SWMPO models an environment with a neu-
rosymbolic FSM. The synthesized FSM consists of world-
model primitives and transitions between them. Each primi-
tive is a neural network that approximates the environment
dynamics within a subset of the state space. The transitions
are logical rules that determine when to switch between
primitives based on observations of the environment. The
modular structure of an FSM allows our system to reuse a set
of neural primitives to efficiently synthesize environment-
specific FSMs, as then learning the boundaries between the
modes is sufficient to assemble a complete world-model.

We evaluate components of SWMPO across various bench-
marks and environments with continuous dynamics, includ-
ing two and three –dimensional simulations.

Contributions Our contributions are as follows:

1. An unsupervised learning algorithm that trains a set
of modular world-model primitives (e.g., water and
land models) from a dataset of low-level continuous
observations.

2. A state-machine synthesis algorithm that leverages a
set of primitives learned from a collection of environ-
ments and new data from a specific environment to
construct an environment-specific FSM world model.

3. An evaluation that demonstrates these primitives and
the FSMs can be used to perform model-based RL in a
meta-learning setup.

2. Background
We operate in the standard discrete-time RL framework,
where an agent interacts with an environment according to
some control policy (Sutton & Barto, 2018). A summary of
the notation used in this manuscript can be found in Table 1
in the supplementary material.

Definition 2.1 (Partially Observable Markov Decision Pro-
cess). A discrete-time Partially Observable Markov Deci-
sion Process (POMDP) is a tupleM ≜ ⟨S,A, T, S0,O, O⟩,
where S ⊆ is the set of states, A is a set of actions,
T : S ×A → S is a transition function, S0 is a distribution
of initial states, O is the set of observations the agent can
make, each observation o ∈ O made under some state s ∈ S
and action a ∈ A with probability O(o | s, a). We associate
a POMDP with a reward function R : O ×A×O → R.

For a given policy πθ : O → A, we use St, Ot and At to
denote the random variables of the state and action at time t
respectively. We use lowercase letters to denote values of a
random variable.

Definition 2.2 (Trajectory). A trajectory is a time-indexed
sequence of transition tuples (ot, at, ot+1). We call ot and

ot+1 the source and next observations, respectively.
Definition 2.3 (Finite State Machine World Model). We
define a finite state machine world model (FSMWM) to
be a tuple F ≜ ⟨F,O,A, δ, f0⟩, where O and A are re-
spectively the observation and action spaces of a POMDP;
F = {fi : O ×A → O}i is a set of models –“modes”– of
the environment; and δ = {δi,j : O ×A → {0, 1}}i,j is a
set of mode-transition predicates. The initial mode is f0.

For a given active mode indexed by i and an observation
ot ∈ O, the predicted next observation is ot+1 = fi(ot, at).
The next active mode index is

δ(ot, ut, i) =

{
argmaxj δi,j(ot, ut) if δi,j(ot, ut) > 0

i otherwise.

We define argmax to choose the first matching index in case
of a tie. This definition mirrors previous use of FSMs as
policies in the MDP setting (Inala et al., 2020), but here we
are using them as world models.

Given an observation and a policy, the FSMWM can simu-
late a rollout by using the local models to predict the next
observation and transitioning between the models accord-
ingly. Unlike a POMDP, the FSMWM operates purely on
observations. For conciseness, we write FSM as shorthand
for FSMWM.

3. Problem statement
We want to synthesize a world model whose structure cor-
responds to the high-level structure of a POMDP, and then
leverage this model within a RL training loop. With this in
mind, we restate our goals as follows:

Goal 1: Use a dataset of trajectories collected by an agent,
possibly across several ‘offline’ POMDPs, to learn a
set of world model primitives.

Goal 2: Use a dataset of trajectories from a single ‘ac-
tive’ POMDP and a set of world model primitives to
synthesize an FSMWM of the active POMDP.

These tasks must be performed in an unsupervised manner
(i.e., without mode labels in the input data). Our proposed
method is described in Section 4.

Our core assumption is that each of the POMDPs of interest
has an (unknown) FSMWM that models it. This implies the
existence of a POMDP-specific latent categorical variable
Mt, whose value corresponds to the index of the mode of
the system at time t — it further implies that Mt can be
characterized by a function (ot−1, at−1, ot) 7→ mt. We
also assume that the number of modes is known in advance.
Further assumptions are motivated and stated in Section 4.1
and Section 4.4. We may use examples of what modes may
represent for clarity (e.g., mt = water instead of mt = 1).

2

Neurosymbolic World Models for Sequential Decision Making

0.0

0.2

0.4
Pr

ed
ic

tio
n

er
ro

r
Mode 1 Mode 2

0 20 40 60 80 100
Timestep

Min-loss

Ground truth

Figure 2. Prediction error of the learned modes (top) and corre-
sponding mode classification (bottom) for a test trajectory from
Point Mass — an idealized amphibious robot that travels on land
(pink) and water (blue) (see Section 6). Each local model is special-
ized in a specific mode, resulting in low prediction error throughout
the entire episode.

4. Structured world models
This section describes our proposed FSM synthesis algo-
rithm. Our method receives a dataset of trajectories and
synthesizes an FSM to model the structure of the environ-
ment (see Figure 3), where each state in the FSM represents
a distinct mode of the data (e.g. water or land).

Data collection Labeling FSM synthesis
(unsupervised)

water land

Figure 3. An illustration of the proposed neurosymbolic world-
model synthesis method in an environment comprising land and
water. First, a controller is used to gather data (left). Then, this data
is labeled according to the modes of the system in an unsupervised
fashion (middle). These labels are then used to supervise the
synthesis of a neural state machine world-model (right), that can
be leveraged for policy optimization.

A key challenge is discovering these modes in an unsuper-
vised manner, where only the number of modes is known.
It is important to achieve clean separation between modes
at different stages of the algorithm to avoid cascading errors
from misclassified data, which can progressively degrade
the model’s performance. To address these challenges, we
synthesize our state machine as follows:

Neural world-model primitives: Divide the transitions in
a given dataset into different mode subsets and train
neural primitives (Section 4.1).

Pruning: Simplify the mode-transition dynamics of the par-
tition by removing spurious transitions between modes
(Section 4.2).

Transition predicate synthesis: Learn when to transition
between modes (Section 4.3).

4.1. Neural world-model primitives

We first address the problem of decomposing environment
dynamics by assigning each transition in a dataset D of
trajectories to one of n disjoint subsets, with each subset
corresponding to a mode of the POMDP. We assume that n
is known in advance. This is a standard task in time-series
analysis, although here we focus specifically on discovering
the (unobserved) categorical mode variable Mt of a system.

We focus on the case where observations conditioned on a
state are deterministic, so ot = O(st). Our method revolves
around learning Mt as an intermediate computation of a
learned first-order model of the form

fθ1(mθ2(ot−1, at−1, ot), ot, at) ≈ ot+1 − ot,

where fθ1 and mθ2 are functions parametrized by θ1, θ2 ∈
Rk. In principle, fθ1 could be a standard forward model,
but in preliminary experiments we observed that a first order
model yields better performance. We hypothesize this hap-
pens because a first-order model weakens the dependence
on ot.

Ultimately, we characterize modes as a categorical vari-
able (i.e., the robot is either on water or land), but here
mθ2(ot−1, at−1, ot) ∈ Rn is a continuous approximation
of the true latent mt.

We now describe a series of assumptions about the POMDP
and the mode variable that allows us to design an algorithm
to predict Mt.

Assumption 4.1 (Mode Identifiability). We assume that
Mt can be modeled as a function mt ≈ m(ot−1, at−1, ot).
Intuitively, this means that the current mode can be identified
by observing how the world changes in response to the
latest action. Thus, we interpret Mt as an abstraction of the
observed system change given a particular action and state.

Assumption 4.2 (Predictability of Change Conditioned on
Mode). We assume that the POMDP reduces to a determin-
istic MDP when conditioned on the mode. More precisely,
we assume the existence of a function T ′ : M×A×O → O
such that T ′(mt, at, ot) = O(T (st, at)).

Thus far, our constraints allow the trivial solution Mt = St,
which is not useful. There may be many other variables
which satisfy our assumptions. Consequently, we add an-
other assumption that allows us to uniquely identify Mt:

Assumption 4.3 (Minimality of Modes). Let M be the set
of random variables that satisfy the previous assumptions.
Then, the mode variable Mt is the unique solution to

M∗
t = argmin

Mt∈M
I(Mt, Ot+1),

3

Neurosymbolic World Models for Sequential Decision Making

where I(·, ·) stands for the mutual information between two
random variables.

Under the assumptions so far, we can conclude that if we
find a variable Mt that allows us to predict the change in
the environment given an action and has minimal mutual
information with Ot+1, then Mt must be the mode variable.
However, our approximation of Mt takes values in a vector
space, but we ultimately want to model it as a categorical
variable. We therefore add our last assumption:

Assumption 4.4 (Mode Vectors Form Clusters). The mode
variable Mt corresponds to a partition of the state space,
where, in expectation, the within-subset sum of squares to
the centroid of each subset is minimized. That is, we assume
a strict partitioning and a centroid model clustering scheme.
Consequently, if k-means is applied to vectors of Mt, the
resulting clusters will, in expectation, correspond to the
different modes.

Together, these assumptions imply that if a variable Mt is
predictive of the change in observed state for any action
and has minimal mutual information with Ot+1, then that
variable corresponds to the mode variable. In other words,
consider fθ1 : M × A × O → O and mθ2 : O × A ×
O →M under the joint optimization problem described in
Equation (1) — therein ∥ · ∥ is the Euclidean norm, ot−1 =
O(st−1) and ot = O(st). From the assumptions stated
above, it follows that the solution to Equation (1) is such
that that mθ2(·) corresponds to the mode variable, which
can be clustered with k-means to obtain mode labels for
a set of transitions. In practice, we parametrize m(·) and
f(·) with neural networks and approximate the solution
of Equation (1) with gradient-based search. To compute
the mutual-information I(·, ·), we assume independence of
features and fit Gaussian distributions to compute a Monte-
Carlo approximation.

Fitting local models to the data Once the approximation
of the latent mode variable, mθ2 , is trained, the system uses
the k-means algorithm to cluster the induced set of latent
vectors into disjoint subsets. Then, for each subset, the
system fits a local forward model to model the correspond-
ing transitions, as illustrated in Figure 2, where each local
model has higher performance for a particular mode of the
environment.

The entire process is shown in Algorithm 1. The algorithm
takes a dataset of trajectories D, and partitions it by solving
Equation (1) and clustering the resulting mode vectors. The
resulting partition induces a set of neural primitives, each
specialized in modeling the dynamics of a particular mode
of the environment.

Algorithm 1 NeuralPrimitives
Require: List of trajectories D, latent space M , number of

modes m, and, observation and action spaces O and A
respectively.

1: Use gradient-descent to find neural networks fθ1 : M ×
A × O → O and mθ2 : O × A × O → M that
approximately solve Equation (1).

2: Embed the transitions into mode vectors, m(D).
3: Cluster the embeddings into m disjoint subsets using

k-means.
4: Let Di ← {τ ∈ D | cluster(τ) = i}.
5: Assemble partition D ← {D1, . . . , Dm}.
6: Reorder D so that D1 is the set with the most initial

states.
7: Let fi ← argminf E(ot,at,ot+1)∼Di

[∥o′t+1 − ot+1∥]
where o′t+1 ← f(ot, at).

8: Assemble the set of local models F ← {f1, . . . , fm}.
9: return F

4.2. Pruning

The aforementioned partitioning process can create overly
complex transitions. While the FSM globally approximates
the environment dynamics, some state regions may have
multiple models with similar accuracy, resulting in spurious
transitions between states. In such cases, simplifying transi-
tion dynamics with minimal impact on forecasting accuracy
might be possible.

To address this, we propose a pruning mechanism to elim-
inate these unwanted transitions. This helps balance the
complexity-accuracy trade-off in the state machine search
space: while more complex transition patterns can improve
accuracy, they also increase the risk of overfitting.

Pruning Approach The system begins by labeling each
transition in the dataset with the index of the neural network
from the ensemble that best predicts the system’s evolution
in that state. A mode transition occurs when this label
changes between consecutive states. For example, in the
sequence 113322, we transition from mode 1 to 3, then
from 3 to 2. Pruning the transition to mode 3 yields two
possible sequences: 111122 (forward-prune) or 112222
(backward-prune).

To prune a mode transition, the system relabels the transi-
tion so that a different neural network handles it (e.g., we
relabel a transition originally marked as land to water). If
the increase in prediction error in the transition is within
the user-defined tolerance factor ϵ, the move is considered
ϵ-valid relative to the original partition. A mode transition
is ϵ-prunable if all the associated moves are ϵ-valid. Note
that there may be multiple ϵ-prunable mode transitions for a
given trajectory and partition. The system greedily prunes

4

Neurosymbolic World Models for Sequential Decision Making

argmin
θ1,θ2

E(st−1,at−1,st,at,st+1)∼Mπ
[∥fθ1 (mθ2(ot−1, at−1, ot), ot, at)− (ot+1 − ot)∥] + I (mθ2(Ot−1, At, Ot), Ot+1)

(1)

the first prunable mode transitions with the strategy that re-
sults in the smallest prediction error increase, until there are
no more ϵ-prunable transitions (this process is summarized
in Algorithm 4 in the supplementary material).

Pr
ed

ic
ti

on
 e

rr
or Mode 0

Mode 1
Mode 2
Full FSM

0.15

0.10

0.05

0.00

0 20 40 60 80 100 120 140

Unprunned

Prunned

0.20

Figure 4. Illustrative comparison of a prunned and an unprunned
partition from preliminary experiments. Pruning simplifies the tran-
sition dynamics by removing spurious transitions whose removal
does not substantially degrade the performance of the resulting
FSM. For instance, at timestep 95, model 0 exhibits a lower pre-
diction error than model 2. In the unpruned FSM, there is a brief
transition to mode 2 and back, which is removed through pruning.

4.3. Transition predicate synthesis

We now describe the mechanism by which the FSM learns
when to transition from one mode to another given a parti-
tioned dataset of trajectories and corresponding primitives.

To construct a POMDP-specific FSM, the system leverages
the set of primitives and new POMDP-specific data to iden-
tify the subsets of the POMDP where each primitive should
be used. Specifically, for each transition (st, at, st+1) ob-
served in the new POMDP the FSM must use the primitive
which results in the lowest prediction error. That is, given a
set of primitives F = {f1, . . . , fn}, the resulting state ma-
chine must use fi for transition τt = (ot, at, ot+1) where

fi = argmin
f∈F

∥ot+1 − f(ot, at)∥ (2)

See Figure 2 for an example of how the primitives lead to
accurate labeling.

Labeling induces a partitioning of a dataset of transitions.
Each subset of a partition corresponds to a state of the FSM
being synthesized. Each pair of FSM states (fi, fj) will be
associated with a transition predicate δi,j that corresponds
to the following question: given that the state machine was
in state fi, and the agent observed st, took action u, and
then observed st+1, should the FSM transition to state fj?
To synthesize this predicate, the system identifies the subset

of Di containing transitions where the next state is a source
state in Dj , referred to as the ‘positive’ set. The ‘negative’
set is the complement of the positive set with respect to
Di. The task is reduced to a standard classification problem,
where the goal is to find a predicate that outputs True for
the positive set and False for the negative set. We use
synthesizePredicate(·, ·) to denote the routine that solves
this supervised learning problem. In our experiments, we
use an off-the-shelf tree-learning algorithm.

Once transition predicates are synthesized, the FSM has
been defined. See Algorithm 2 for the entire FSM synthe-
sis algorithm. The computational complexity of training
a SWMPO model is linearly slower compared to a stan-
dard monolithic world model and depends on the number of
modes; see Appendix D for further discussion.

Algorithm 2 FSMSynth
Require: Primitives F (Algorithm 1), dataset of trajecto-

ries D, observation and action spaces O and A respec-
tively

1: for fi ∈ F do
2: Di ← {t ∈ D | fi = argminf∈F C(f, t)}
3: end for
4: for i, j ∈ {1, . . . ,m} × {1, . . . ,m} do
5: positive← { τ1 ∈ Di | ∃τ2 ∈ Dj

s.t. follows(τ1, τ2) }
6: negative← Di \ {positive}
7: δi,j ← synthesizePredicate(positive, negative)
8: end for
9: Let δ ← {δi,j | 1 ≤ i, j ≤ m}

10: F ← ⟨F,O,A, δ, f1⟩.
11: return F

4.4. Neurosymbolic model-based policy optimization

We now describe our approach to integrating the synthesis
of FSMWMs into a model-based RL loop. Given a POMDP
⟨S,A, T, S0,Ω,O⟩, a reward function R, and a horizon
length n ∈ N, our goal is now to find a closed-loop policy
π∗ : O → A that achieves a maximal cumulative reward.
That is, the goal is to solve

π∗ = argmax
π∈Π

Es0∼S0
[R(π)], (3)

where
R(π) =

∑
0≤t≤n

R(st, π(O(st))).

Our algorithm should reuse offline data from similar ‘offline’
POMDPs, while only using relatively little data specific of

5

Neurosymbolic World Models for Sequential Decision Making

‘active’ POMDP to optimize a policy. This approach aims
to reduce the number of agent-environment interactions that
must occur within the POMDP to find an optimal policy by
alternating optimization in the model and in the POMDP.
Specifically, the offline data is leveraged to synthesize a
neural set of primitives which will be used in the POMDP-
specific FSM.

At the core of our approach is the following assumption:

Assumption 4.5 (Global Modes). The modes in the ac-
tive POMDP must be a subset of the modes in the offline
POMDPs.

For example, consider two offline POMDPs: one with
modes ‘A’ and ‘B’ and one with modes ‘C’ and ‘D’; the
active POMDP could consist of modes ‘A’ and ‘C’ which
we argue is not very restrictive. In the example of the am-
phibious robot, Assumption 4.5 is satisfied because each
POMDP corresponds to a different terrain configuration.
Thus, transitions between land and water dynamics change
between POMDPs, but the dynamics of each mode are con-
stant across all POMDPs.

Thus, given a new POMDP and offline data from similar
POMDPs, our proposed algorithm proceeds as follows: first,
a set of neural primitives is trained from the offline data in
an unsupervised manner. Then, a short standard RL loop
(observe, act, receive reward) is run over the POMDP to
collect data. The new data and the set of primitives are
used to synthesize a POMDP-specific FSM, which is used
to perform model-based RL. These steps are iterated until a
termination criterion is met. The algorithm is described in
Algorithm 3.

Algorithm 3 SWMPO
Require: POMDP and reward function (M, R), trajectory

datasets from previous POMDPs D1, . . . , Dn, obser-
vation, and action spaces O and A respectively, la-
tent space M , number of modes m, T 1

session, T 2
session the

length of real- and model-based RL phases, respectively,
off-the-shelf RL algorithm RL, step budget Ttotal.

1: Initialize parametric policy πθ.
2: D = D1 ∪ . . . ∪Dn

3: F = NeuralPrimitives(D,M,m,O,A)
4: DM ← ∅; t← 0
5: while t ≤ Ttotal do
6: πθ, D

′
M ← RL(πθ,M, R, T 1

session)
7: t← t+ T 1

session
8: DM ← DM ∪D′

M
9: F ← FSMSynth(F,DM,O,A)

10: πθ, ← RL(πθ,F , R, T 2
session)

11: end while
12: return πθ

5. Related work
Graphical Models Hidden Markov models (HMMs) are
a standard approach to capture temporal dependencies and
mode-switching behavior in sequential data (Li & Biswas,
2002; Bouguila et al., 2022). In robotics, HMMs have
been leveraged to segment trajectories into discrete modes
(Goh et al., 2012) and used during policy learning for multi-
modal or hierarchical tasks (Marturi et al., 2019). Recent
advances have extended HMMs using deep neural network
architectures (neural HMMs) to handle continuous and high-
dimensional observation spaces and to learn more complex
transition dynamics (Tran et al., 2016). For example, neural
HMMs have been used in unsupervised settings to model
complex sensory streams for trajectory clustering (Vakanski
et al., 2012) and to predict latent modes during task execu-
tion (Wu et al., 2019). However, HMMs suffer from the
fundamental limitation that the transition between modes
is determined by a probability distribution that is only con-
ditioned on the latent state, this means that the observed
evolution of the system itself is only indirectly used to up-
date the active mode. State of the art graphical models in-
clude Hidden Parameter recurrent State Space Models (Shaj
et al., 2023), and recurrent Switching Dynamical Systems
Models (Glaser et al., 2020). Generalizing these classes
of models to include non-linear dynamics makes inference
computationally expensive (Frigola et al., 2013).

Leveraging structure in RL Many prior works focus
on leveraging structure to solve control problems with RL
(Mohan et al., 2024). Hierarchical RL (Xu & Fekri, 2021;
Botvinick, 2012; Li et al., 2006) and modular RL (Simpkins
& Isbell, 2019; Andreas et al., 2017; Devin et al., 2017)
encode structure directly into the policy architecture, here
we instead consider the synthesis of a structured model.
Model-based RL approaches leverage neural world models
to optimize policies more efficiently (Moerland et al., 2023;
Ha & Schmidhuber, 2018). However, traditional neural
models lack distinct boundaries between the representation
of different modes in the environment; this lack of modular-
ity makes reuse challenging. Reward machines (Toro Icarte
et al., 2019; Icarte et al., 2018) leverage structured models
of the reward function to guide the policy optimization pro-
cess. Large Language Models have been used to synthesize
programmatic world models (Tang et al., 2024), but not in
continuous systems with low-level observations. Hasanbeig
et al. (2021) demonstrate that FSMs can be synthesized to
model discrete environments, improving performance in RL
tasks. However, this method is reliant on fully symbolic
representations obtained from pre-trained vision models in
grid-world settings. In contrast, our approach extracts struc-
ture from continuous, low-level, non-visual observations.

6

Neurosymbolic World Models for Sequential Decision Making

Structure induction and hybrid systems In the broader
field of hybrid systems, modeling environments as a collec-
tion of modes with distinct dynamics is standard practice
(Alur et al., 1995; Paoletti et al., 2007; Ferrari-Trecate et al.,
2003; Devin et al., 2017; Camacho et al., 2010). Soto et al.
(2021) have shown that automata with affine dynamics can
be synthesized from time-series data. Our approach instead
is more general, using non-linear neural models to both ex-
tract structure and represent dynamics within the automata.

Other approaches to discovering structure which are not di-
rectly applicable to time-series data include the use of graph
neural networks (Cranmer et al., 2020) and sparse networks
(Gupta et al., 2024). Similarly, methods that leverage recur-
rent neural networks (RNNs) and FSMs to model linguistic
structures (Kolen, 1993; Koul et al., 2018; Jacobsson, 2005)
share a conceptual foundation with our work, but focus on
formal languages and are not directly applicable to the class
of problems we study in this work.

6. Experiments
Our experiments aim to answer two research questions: (1)
how effectively does SWMPO leverage offline data in the
synthesis of an environment-specific FSM?; (2) is the result-
ing FSM accurate enough for model-based RL?

The algorithm1 to approximate the solution to Equation (1)
is written with Pytorch (Ansel et al., 2024) using the Adam
optimizer (Kingma & Ba, 2017). We use multi-layer per-
ceptrons with ReLU activations for all the neural networks
involved in the algorithm. Predicate synthesis is performed
with the tree-learning algorithm implemented in Scikit-learn
(Pedregosa et al., 2011). The underlying RL algorithm is
Soft-Actor Critic, as implemented in StableBaselines3 (Raf-
fin et al., 2021). We manually tune the hyperparameters of
all algorithms, including baselines. We test SWMPO on
four simulated environments of varying complexity. Hyper-
parameters for all experiments can be found in Appendix C.

6.1. Simulation environments

All of our experiments are performed in simulation on the
following environments:

Point Mass These tasks are an idealized model of the am-
phibious robot running example, and consist of apply-
ing a sequence of thrusts to a two-dimensional point
mass to take it to a target position from an initial posi-
tion (see Figure 6). Crucially, the environments consist
of randomly generated terrains with different character-
istics: land and water, which correspond to the modes.
To simulate the different dynamics in different terrains,

1Implementation details can be found at: https://gitlab.
com/da_doomer/swmpo

actions in the land terrain are inverted. We use an MPC
controller to gather offline data.

LiDAR Racing Adapted from the work by Ivanov et al.
(2021). Tasks in this environment consist of driving
a two-dimensional vehicle with bicycle dynamics and
LiDAR sensors through a track randomly assembled
from pieces of five different types, which correspond
to the modes. We use a pre-trained controller provided
by the authors to gather offline data.

Salamander A locomotion task in which an amphibious
salamander must navigate through water and land,
which correspond to the modes. This environment
is implemented in the Webots 3D simulator (Michel,
2004), in which the Salamandra Robotica II (Crespi
et al., 2013) robot is available. This environment is
a scaled-up version of Point Mass. For observations,
we use the motor positions, the LiDAR readings and
the GPS position. We use the controller provided in
Webots to generate offline data.

Bipedal Walker (BipedalWH) A locomotion task in
which a bipedal robot has to loco mote over uneven
terrain with four different types of obstacles, which cor-
respond to the modes (see Figure 6). This is a standard
benchmark in the Gymnasium library (Towers et al.,
2024) and employs the Box2D rigid body simulator
(Catto, 2024). We use a pre-trained controller from
the RL Baselines3 Zoo library (Raffin et al., 2021) to
generate offline data.

See Figure 5 for an illustration of each environment.

6.2. FSM synthesis

We evaluate the performance of our FSM synthesis algo-
rithm across all four environments. As described before, our
goal is to train a set of neural primitives from a dataset of
‘offline’ POMDPs, and finally assemble the primitives into
an FSM specific to an ‘active’ POMDP. Crucially, we want
the resulting FSMWM to accurately track the mode variable
(e.g., the FSMWM should have modes that correspond to
water and land and accurately switch between them as the
robot locomotes through the ‘active’ POMDP).

To test the accuracy of the structure of the FSMWM, we
compare the states visited by the synthesized FSMWM in
unseen data from the ‘active’ POMDP against ground truth
mode labels, as well as the visited states predicted by base-
line models. The baseline models are (1) a Hidden Markov
model (HMM) with Gaussian emissions (Baum & Petrie,
1966) implemented in the HMM Learn library (Learn, 2024),
(2) a Switching Linear Dynamical System (SLDS) (Acker-
son & Fu, 1970) and (3) a recurrent SLDS (rSLDS) (Glaser

7

https://gitlab.com/da_doomer/swmpo
https://gitlab.com/da_doomer/swmpo

Neurosymbolic World Models for Sequential Decision Making

(a) Point Mass (b) LiDAR Racing (c) Salamander (d) Bipedal Walker

Figure 5. The four simulated evaluation environments.

Er
ro

r (
Le

ve
ns

ht
ei

n
Di

st
an

ce
)

(a) Point Mass (b) LiDAR Racing (c) Salamander (d) Bipedal Walker

Global HMM Local HMM Global SLDS Local SLDS Global rSLDS Local rSLDS FSM (ours)

Figure 6. Bottom row: Box plots comparing the Levenshtein distance between predicted and ground truth labels for unseen trajectories
(lower is better) for each evaluation environment. Systems that accurately track the latent mode variable of a dynamical system more
accurately match the ground-truth labels. The box-plots show that SWMPO (right) outperforms baselines (left) in all environments in
tracking the latent mode variable.

et al., 2020), the latter two implemented in the SSM library
(Linderman, 2020).

Since the FSM undergoes two training stages—one using
data from the ‘offline’ POMDPs multiple terrains to syn-
thesize primitives, and another on the ‘active’ POMDP to
synthesize transitions—we train two versions of each base-
line: a ‘local’ version, trained exclusively on trajectories
from the ‘active’ POMDP (excluding the test trajectories),
and a ‘global’ version, trained data from both the ‘offline’
and ‘active’ POMDPs.

To evaluate each model, we compute the Levenshtein dis-
tance between the predicted labels and the ground-truth
labels of unseen test trajectories. The final errors are ag-
gregated across four test trajectories for each of eight dif-
ferent terrains (see Figure 6). To synthesize the FSMWM,
we use Algorithm 1 to train the neural primitives from the
‘offline’ data. Together with this set of neural primitives,
data from the ‘active’ POMDP is used to synthesize the
POMDP-specific FSMWM with Algorithm 2. We use an
expert policy to generate all data.

In Point Mass and Salamander, SWMPO outperforms all
baselines. In LiDAR Racing, SWMPO significantly outper-
forms SLDS and rSLDS and only marginally outperforms
HMM. In BipedalWH, SWMPO marginally beats the base-
lines, but all models struggle to capture the structure and
dynamics of the environment.

We plot the latent mode variable and qualitatively compare

the induced partition with the ground-truth partition – see
Figure 7.

6.3. Reinforcement Learning

We evaluate the performance of the FSM models within
the model-based RL loop described in Algorithm 3, shown
in Figure 8. We use the data from the ‘offline’ POMDPs
(described in Section 6.2) as the input. We use Soft-Actor
Critic (Haarnoja et al., 2018) as the RL routine. We compare
with the following baselines: (2) standard model-free RL,
and (2) mode-based RL using a neural forward-model of the
environment synthesized from the ‘active’ POMDP data as
the environment is explored. The model-based RL baseline
is the same as Algorithm 3 except that it learns online a
monolithic neural network instead of refining the FSMWM
transitions. Note that, for the model-based RL baseline,
we do not pre-train the neural network on the ‘offline’ data
because the data comes from other POMDPs with different
dynamics. We augment the observations with a time variable
and normalized them with a running mean wrapper. Due to
resource constraints, we benchmark only on Point Mass.

The model-based rollout logic for both SWMPO and the
model-based baseline consist of sampling a random obser-
vation from an environment trajectory and performing a
shorter (30 steps) model-based rollout. This is instead of re-
lying on the models for long trajectories (150 steps), which
can lead to compounding errors. This reduces reliance on

8

Neurosymbolic World Models for Sequential Decision Making

UMAP Dimension 1

UM
AP

 D
im

en
si

on
 2

(a) Ground Truth
UMAP Dimension 1

UM
AP

 D
im

en
si

on
 2

(b) Predicted

Figure 7. UMAP-processed plot of the ground truth (top) and approximation (bottom) of the latent mode variable mθ2(ot, at, ot+1)
across a collection of trajectories in the Point Mass environment.

Figure 8. Reward curves in the Point Mass environment for
SWMPO (ours), baseline model-free RL, and baseline model-
based RL with a neural feed-forward model learned online. Shaded
area are 95% confidence intervals computed over 64 different ran-
dom seeds.

the model for long-horizon prediction, improving sample
efficiency and stability for both methods. Note that the per-
formance of the low-level neural models for long horizons
is orthogonal to our claims.

7. Conclusion
We presented a novel framework for synthesizing Finite
State Machine World Models (FSMWMs) in an unsuper-
vised manner using low-level, non-visual continuous obser-
vations. We outlined the key assumptions underpinning our
approach and demonstrated its applicability. The main limi-
tations of the framework are stated explicitly as assumptions
throughout the text.

Our experiments indicate that the synthesized FSMWMs
effectively capture the underlying structure of the simulated
evaluation environments, as they match or surpass the per-
formance of the baselines on modeling the latent variable of
the tested dynamical systems.

In the RL experiment, our model-based RL approach outper-
formed both the model-free and the model-based monolithic
neural baselines, the latter of which learned the environment
model online. We highlight that SWMPO did not train any
neural model online, instead using the online data to synthe-
size transitions between the neural primitives trained from
unlabeled offline data.

Avenues for future work broadly include (1) weakening the
limitations of the framework, (2) leveraging neural primi-
tives in a different class of models (i.e., instead of FSMs), (3)
explicitly encoding priors (e.g., through Physics Informed
Neural Networks), and (4) leveraging the structure of the
FSM explicitly during policy optimization (e.g., by using
the ’product MDP’ as done by Hasanbeig et al. (2021)).

Impact Statement
Given the relatively narrow scope of our experiments, we
do not believe there are any direct societal consequences of
this work that must be specifically highlighted.

References
Ackerson, G. and Fu, K. On state estimation in switching

environments. IEEE Transactions on Automatic Control,
15(1), 1970.

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A.,
Ho, P. H., Nicollin, X., Olivero, A., Sifakis, J., and
Yovine, S. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1), 1995.

9

Neurosymbolic World Models for Sequential Decision Making

Andreas, J., Klein, D., and Levine, S. Modular Multitask Re-
inforcement Learning with Policy Sketches. In Proceed-
ings of the 34th International Conference on Machine
Learning. PMLR, 2017.

Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voz-
nesensky, M., Bao, B., Bell, P., Berard, D., Burovski, E.,
Chauhan, G., Chourdia, A., Constable, W., Desmaison,
A., DeVito, Z., Ellison, E., Feng, W., Gong, J., Gschwind,
M., Hirsh, B., Huang, S., Kalambarkar, K., Kirsch, L.,
Lazos, M., Lezcano, M., Liang, Y., Liang, J., Lu, Y., Luk,
C., Maher, B., Pan, Y., Puhrsch, C., Reso, M., Saroufim,
M., Siraichi, M. Y., Suk, H., Suo, M., Tillet, P., Wang,
E., Wang, X., Wen, W., Zhang, S., Zhao, X., Zhou, K.,
Zou, R., Mathews, A., Chanan, G., Wu, P., and Chin-
tala, S. PyTorch 2: Faster Machine Learning Through
Dynamic Python Bytecode Transformation and Graph
Compilation. In 29th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, 2024.

Baum, L. E. and Petrie, T. Statistical Inference for Prob-
abilistic Functions of Finite State Markov Chains. The
Annals of Mathematical Statistics, 37(6), 1966.

Botvinick, M. M. Hierarchical reinforcement learning and
decision making. Current Opinion in Neurobiology, 22
(6), 2012.

Bouguila, N., Fan, W., and Amayri, M. Hidden Markov
models and applications. Springer, 2022.

Breiman, L., Friedman, J., Olshen, R. A., and Stone,
C. J. Classification and Regression Trees. Chapman
and Hall/CRC, 1984.

Camacho, E. F., Ramirez, D. R., Limon, D., Muñoz de la
Peña, D., and Alamo, T. Model predictive control tech-
niques for hybrid systems. Annual Reviews in Control,
34(1), 2010.

Catto, E. erincatto/box2d: a 2D physics engine for games,
2024. URL https://github.com/erincatto/
box2d. Accessed: 2025-01-31.

Cranmer, M., Sanchez Gonzalez, A., Battaglia, P., Xu, R.,
Cranmer, K., Spergel, D., and Ho, S. Discovering Sym-
bolic Models from Deep Learning with Inductive Biases.
In Advances in Neural Information Processing Systems,
volume 33. Curran Associates, Inc., 2020.

Crespi, A., Karakasiliotis, K., Guignard, A., and Ijspeert,
A. J. Salamandra Robotica II: An Amphibious Robot to
Study Salamander-Like Swimming and Walking Gaits.
IEEE Transactions on Robotics, 29(2), 2013.

Devin, C., Gupta, A., Darrell, T., Abbeel, P., and Levine,
S. Learning modular neural network policies for multi-
task and multi-robot transfer. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017.

Ferrari-Trecate, G., Muselli, M., Liberati, D., and Morari, M.
A clustering technique for the identification of piecewise
affine systems. Automatica, 39(2), 2003.

Frigola, R., Lindsten, F., Schön, T. B., and Rasmussen,
C. E. Bayesian inference and learning in gaussian process
state-space models with particle mcmc. In Advances
in Neural Information Processing Systems, volume 26.
Curran Associates, Inc., 2013.

Glaser, J., Whiteway, M., Cunningham, J. P., Paninski, L.,
and Linderman, S. Recurrent Switching Dynamical Sys-
tems Models for Multiple Interacting Neural Populations.
In Advances in Neural Information Processing Systems,
volume 33. Curran Associates, Inc., 2020.

Goh, C. Y., Dauwels, J., Mitrovic, N., Asif, M. T., Oran,
A., and Jaillet, P. Online map-matching based on hidden
markov model for real-time traffic sensing applications.
In 2012 15th International IEEE Conference on Intelli-
gent Transportation Systems. IEEE, 2012.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.
Deep learning, volume 1. MIT Press, 2016.

Gupta, K., Yang, C., McCue, K., Bastani, O., Sharp, P. A.,
Burge, C. B., and Solar-Lezama, A. Improved modeling
of RNA-binding protein motifs in an interpretable neural
model of RNA splicing. Genome Biology, 25(1), 2024.

Ha, D. and Schmidhuber, J. Recurrent World Models Facili-
tate Policy Evolution. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning. PMLR, 2018.

Hasanbeig, M., Jeppu, N. Y., Abate, A., Melham, T., and
Kroening, D. DeepSynth: Automata Synthesis for Auto-
matic Task Segmentation in Deep Reinforcement Learn-
ing. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(9), 2021.

Icarte, R. T., Klassen, T., Valenzano, R., and McIlraith, S.
Using Reward Machines for High-Level Task Specifi-
cation and Decomposition in Reinforcement Learning.
In Proceedings of the 35th International Conference on
Machine Learning. PMLR, 2018.

10

https://github.com/erincatto/box2d
https://github.com/erincatto/box2d

Neurosymbolic World Models for Sequential Decision Making

Inala, J. P., Bastani, O., Tavares, Z., and Solar-Lezama,
A. Synthesizing Programmatic Policies that Inductively
Generalize. In 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

Ivanov, R., Jothimurugan, K., Hsu, S., Vaidya, S., Alur, R.,
and Bastani, O. Compositional Learning and Verification
of Neural Network Controllers. ACM Transactions on
Embedded Computing Systems, 20(5s), 2021.

Jacobsson, H. Rule Extraction from Recurrent Neural Net-
works: ATaxonomy and Review. Neural Computation, 17
(6), 2005.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization, 2017.

Klusowski, J. M., , and Tian, P. M. Large Scale Prediction
with Decision Trees. Journal of the American Statistical
Association, 119(545), 2024. Publisher: ASA Website.

Kolen, J. Fool’ s Gold: Extracting Finite State Machines
from Recurrent Network Dynamics. In Advances in Neu-
ral Information Processing Systems, volume 6. Morgan-
Kaufmann, 1993.

Koul, A., Greydanus, S., and Fern, A. Learning Finite State
Representations of Recurrent Policy Networks, 2018.

Learn, H. hmmlearn/hmmlearn: Unsupervised learning and
inference of Hidden Markov Models, 2024. URL https:
//github.com/hmmlearn/hmmlearn. Accessed:
2025-01-31.

Li, C. and Biswas, G. Applying the hidden Markov model
methodology for unsupervised learning of temporal data.
International Journal of Knowledge Based Intelligent
Engineering Systems, 6(3), 2002.

Li, L., Walsh, T. J., and Littman, M. L. Towards a Unified
Theory of State Abstraction for MDPs. In International
Symposium on Artificial Intelligence and Mathematics,
AI&Math 2006, Fort Lauderdale, Florida, USA, January
4-6, 2006, 2006.

Linderman, L. lindermanlab/ssm: Bayesian learning and
inference for state space models, 2020. URL https:
//github.com/lindermanlab/ssm. Accessed:
2025-01-31.

Marturi, N., Kopicki, M., Rastegarpanah, A., Rajasekaran,
V., Adjigble, M., Stolkin, R., Leonardis, A., and
Bekiroglu, Y. Dynamic grasp and trajectory planning
for moving objects. Autonomous Robots, 43, 2019.

Michel, O. Webots: Professional Mobile Robot Simulation.
Journal of Advanced Robotics Systems, 1(1), 2004.

Moerland, T. M., Broekens, J., Plaat, A., and Jonker, C. M.
Model-based Reinforcement Learning: A Survey. Foun-
dations and Trends® in Machine Learning, 16(1), 2023.

Mohan, A., Zhang, A., and Lindauer, M. Structure in Deep
Reinforcement Learning: A Survey and Open Problems.
J. Artif. Int. Res., 79, 2024.

Paoletti, S., Juloski, A. L., Ferrari-Trecate, G., and Vidal, R.
Identification of Hybrid Systems A Tutorial. European
Journal of Control, 13(2), 2007.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 12, 2011.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M.,
and Dormann, N. Stable-Baselines3: Reliable Reinforce-
ment Learning Implementations. Journal of Machine
Learning Research, 22(268), 2021.

Shaj, V., Buchler, D., Sonker, R., Becker, P., and Neumann,
G. Hidden Parameter Recurrent State Space Models For
Changing Dynamics Scenarios, 2023.

Simpkins, C. and Isbell, C. Composable Modular Reinforce-
ment Learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01), 2019.

Soto, M. G., Henzinger, T. A., and Schilling, C. Synthesis
of hybrid automata with affine dynamics from time-series
data. In Proceedings of the 24th International Conference
on Hybrid Systems: Computation and Control, HSCC
’21. Association for Computing Machinery, 2021.

Sutton, R. S. and Barto, A. G. Reinforcement learning:
An introduction, 2nd ed. Reinforcement learning: An
introduction, 2nd ed. The MIT Press, 2018.

Tang, H., Key, D., and Ellis, K. WorldCoder, a Model-
Based LLM Agent: Building World Models by Writ-
ing Code and Interacting with the Environment. CoRR,
abs/2402.12275, 2024.

Toro Icarte, R., Waldie, E., Klassen, T., Valenzano, R., Cas-
tro, M., and McIlraith, S. Learning Reward Machines
for Partially Observable Reinforcement Learning. In
Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019.

Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U.,
Cola, G., Deleu, T., Goulão, M., Kallinteris, A., KG,
A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schul-
hoff, S., Tai, J. J., Tan, A. J. S., and Younis, O. G.
Gymnasium, 2024. URL https://zenodo.org/
records/11232524.

11

https://github.com/hmmlearn/hmmlearn
https://github.com/hmmlearn/hmmlearn
https://github.com/lindermanlab/ssm
https://github.com/lindermanlab/ssm
https://zenodo.org/records/11232524
https://zenodo.org/records/11232524

Neurosymbolic World Models for Sequential Decision Making

Tran, K., Bisk, Y., Vaswani, A., Marcu, D., and Knight,
K. Unsupervised neural hidden Markov models. arXiv
preprint arXiv:1609.09007, 2016.

Vakanski, A., Mantegh, I., Irish, A., and Janabi-Sharifi, F.
Trajectory learning for robot programming by demon-
stration using hidden Markov model and dynamic time
warping. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B (Cybernetics), 42(4), 2012.

Wu, H., Guan, Y., and Rojas, J. A latent state-based mul-
timodal execution monitor with anomaly detection and
classification for robot introspection. Applied Sciences, 9
(6), 2019.

Xu, D. and Fekri, F. Interpretable Model-based Hierarchical
Reinforcement Learning using Inductive Logic Program-
ming, 2021.

12

Neurosymbolic World Models for Sequential Decision Making

A. Notation

Table 1. Notation Table
Symbol Description

M Markov Decision Process (MDP)
S ∈ Rk Set of observations
A Set of actions
T : S ×A→ S Transition function
S0 Distribution of initial states
R : S ×A× S → R Reward function
πθ : S → A Policy parametrized by θ
Vπθ

(s) Value function for state s under policy πθ

st Source state at time t
at Action at time t
st+1 Next state after taking action
F Finite State Machine World Model (FSMWM)
f Set of environment models
δ Set of mode-transition predicates
st+1 = fi(st, ut) Predicted next observation
δ(st, ut, i) Mode transition function

B. Partition prunning

Algorithm 4 greedyPrune

Require: Partition D = {D1, . . . , Dm} of trajectory dataset D, error tolerance factor ϵ,
1: D0 = copy(D).
2: for t ∈ D do
3: while exists ϵ-prunnable (relative to D0) mode transition in t do
4: Prune the first ϵ-prunable (relative to D0) mode transition in D, updating D.
5: end while
6: end for
7: return D

13

Neurosymbolic World Models for Sequential Decision Making

C. Hyperparameters

Table 2. Parameters for Point Mass.
Parameter Value
hidden sizes 32 32 32
learning rate 0.0001
partition size 2
batch size 1000
min island size 4
autoencoder latent size 8
prunning error tolerance 0.04
model mode iter n 1024
cluster dimensionality reduce 0
information content regularization scale 1e-05
mutual information regularization scale 0.00001
mutual information mini batch size 32
predicate hyperparameters.max depth 8
local model hyperparameters.hidden layer sizes [32, 32]
local model hyperparameters.max iter 500

Table 3. Parameters for Autonomous Driving.
Parameter Value
hidden sizes 32 32 32
learning rate 0.01
partition size 2
batch size 1024
min island size 4
autoencoder latent size 8
prunning error tolerance 0.04
model mode iter n 1000
cluster dimensionality reduce 0
information content regularization scale 1e-05
mutual information regularization scale 0.00001
mutual information mini batch size 32
predicate hyperparameters.max depth 8
local model hyperparameters.hidden layer sizes [32, 32]
local model hyperparameters.max iter 500

14

Neurosymbolic World Models for Sequential Decision Making

Table 4. Parameters for Salamander.
Parameter Value
hidden sizes 32 32 32
learning rate 0.001
partition size 2
batch size 1024
min island size 4
autoencoder latent size 8
prunning error tolerance 0.04
model mode iter n 1000
cluster dimensionality reduce 0
information content regularization scale 1e-05
mutual information regularization scale 0.00001
mutual information mini batch size 32
predicate hyperparameters.max depth 8
local model hyperparameters.hidden layer sizes [32, 32]
local model hyperparameters.max iter 500

Table 5. Parameters for Bipedal Walker.
Parameter Value
machine hidden sizes 32 32 32
machine learning rate 0.001
machine partition size 2
machine batch size 1024
machine min island size 4
machine autoencoder latent size 8
machine prunning error tolerance 0.04
machine model mode iter n 1000
machine cluster dimensionality reduce 0
machine information content regularization scale 1e-05
machine mutual information regularization scale 0.00001
machine mutual information mini batch size 32
machine predicate hyperparameters.max depth 8
machine local model hyperparameters.hidden layer sizes [32, 32]
machine local model hyperparameters.max iter 500

D. Complexity
Let n be the number of experiences (ot, at, ot+1), each of dimension d, and let m the number of modes.

The computational complexity of training is driven by these steps:

• Solving Eq. 1: To solve Eq. 1 we use SGD, which is O(G1ndK1), where G is the number of SGD steps, and K1

accounts for the architecture of the model (see work by Goodfellow et al. (2016) for further discussion). The variables
corresponding to the amount of data, the number of iterations and the model complexity needed for training, are not
independent. E.g., a system with a high number of modes might need more data. However, a monolithic model would
also require more data because it too must implicitly learn the same complex dynamics. Thus, we do not expect this
step to present significant more overhead than a monolithic approach.

• Training the neural primitives: We assume datasets will have in expectation O(n
m) elements. If models are trained

sequentially, this is O
(
mG2

n
mdK2

)
, where G2 and K2 account for the number of SGD steps and the architecture of

the primitives. The caveats in 1. regarding the non-independence of features apply, but each step is at most as expensive
as training a monolithic model. Primitives can be trained in parallel if wall-clock performance is critical.

15

Neurosymbolic World Models for Sequential Decision Making

• Transition Predicate Synthesis: This step trains 2m2 decision trees with CART (Breiman et al., 1984; Klusowski et al.,
2024). For the average case, we assume each dataset will be of size O(n

m) . Therefore, the overall cost in expectation
is O

(
m3d n

m log2
(
n
m

))
.

Applying dimensionality reduction techniques may help with high-dimensional spaces. In some high-dimensional domains
(e.g., visual domains, which are not the focus of our work), we would expect a different class of models (e.g., CNNs) to be
more effective.

Simplifying, the average complexity of training a SWMPO model is

O
(
GnmdK + nmd+ nmd log2

(n

m

))
where G = max(G1, G2) and K = max(K1,K2). Thus, the expected overhead of training in SWMPO compared to a
monolithic model is only a linear factor on m.

Then, during each model-based RL step, SWMPO evaluates the predicates of the current mode, which are small functions
that could be evaluated in parallel, and the active mode’s neural network. Thus, the expected run time is only an added small
constant factor slower than a traditional monolithic world model.

16

