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Abstract

We present state-of-the-art results on mor-001
phosyntactic tagging across different varieties002
of Arabic using fine-tuned pre-trained trans-003
former language models. Our models consis-004
tently outperform existing systems in Modern005
Standard Arabic and all the Arabic dialects we006
study, achieving 2.6% absolute improvement007
over the previous state-of-the-art in Modern008
Standard Arabic, 2.8% in Gulf, 1.6% in Egyp-009
tian, and 8.3% in Levantine. We explore differ-010
ent training setups for fine-tuning pre-trained011
transformer language models, including train-012
ing data size, the use of external linguistic re-013
sources, and the use of annotated data from014
other dialects in a low-resource scenario. Our015
results show that strategic fine-tuning using016
datasets from other high-resource dialects is017
beneficial for a low-resource dialect. Addition-018
ally, we show that high-quality morphological019
analyzers as external linguistic resources are020
beneficial especially in low-resource settings.021

1 Introduction022

Fine-tuning pre-trained language models like023

BERT (Devlin et al., 2019) have achieved great suc-024

cess in a wide variety of natural language process-025

ing (NLP) tasks, e.g. sentiment analysis (Abu Farha026

et al., 2021), question answering (Antoun et al.,027

2020), and named entity recognition (Lan et al.,028

2020). Pre-trained LMs have also been used for en-029

abling technologies such as part-of-speech (POS)030

tagging (Lan et al., 2020; Khalifa et al., 2021; Inoue031

et al., 2021), to produce features for downstream032

processes. Previous POS tagging results using pre-033

trained LMs focused on core POS tagsets; however,034

it is still not clear how these models perform on035

the full morphosyntactic tagging task of very mor-036

phologically rich languages, where the size of the037

full tagset can be in the thousands. One such lan-038

guage is Arabic, where lemmas inflect to a large039

number of forms through different combinations of040

morphological features and cliticization. Addition- 041

ally, Arabic orthography omits the vast majority 042

of its optional diacritical marks which increases 043

morphosyntactic ambiguity (Habash, 2010). 044

A third challenge for Arabic is its numerous vari- 045

ants. Modern Standard Arabic (MSA) is the primar- 046

ily written variety used in formal settings. Dialectal 047

Arabic (DA), by contrast, is the primarily spoken 048

unstandardized variant. MSA and different DAs, 049

e.g., Gulf (GLF), Egyptian (EGY), and Levantine 050

(LEV), vary in terms of their grammar and lexicon 051

to the point of impeding usability cross-dialectally, 052

e.g., Habash et al. (2012) shows that a MSA an- 053

alyzer has only 63.7% coverage of EGY. Further- 054

more, these variants differ in the degree of data 055

availability: MSA is the highest resourced variant, 056

followed by GLF and EGY, and then LEV. 057

In this paper, we explore different training setups 058

for fine-tuning state-of-the-art (SOTA) pre-trained 059

language models in the complex morphosyntactic 060

tagging task. We work with four variants of Arabic 061

(MSA, GLF, EGY, and LEV) that differ in terms of 062

linguistic properties and resource availability. 063

We aim to answer the following questions: 064

• How does the size of the fine-tuning data af- 065

fect the performance? 066

• What kind of tagset scheme is suitable for 067

modeling morphosyntactic features? 068

• Is there any additional value of using external 069

linguistic resources? 070

• How can we make use of annotated data in 071

other dialects to improve performance in a 072

low-resourced dialect? 073

Our system1 achieves SOTA performance in full 074

morphosyntactic tagging accuracy in all the vari- 075

ants we study, resulting in 2.6% absolute improve- 076

ment over previous SOTA in MSA, 2.8% in GLF, 077

1.6% in EGY, and 8.3% in LEV. 078

1We will make our models and data publicly available.
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877 26 39 74 29 51 75 39 38 38 38 38 30 31 38 30 31 37 24 28 70 73
diac lex gloss pos prc3 prc2 prc1 prc0 per gen num asp vox mod stt cas enc0 Variant

(a) حَفیِدَكَ Hafiydaka حَفیِد Hafiyd grandchild noun - - - - - m s - - - c a 2ms_poss MSA
(b) حَفیِدَكِ Hafiydaki حَفیِد Hafiyd grandchild noun - - - - - m s - - - c a 2fs_poss MSA
(c) حَفیِدُكَ Hafiyduka حَفیِد Hafiyd grandchild noun - - - - - m s - - - c n 2ms_poss MSA
(d) حَفیِدُكِ Hafiyduki حَفیِد Hafiyd grandchild noun - - - - - m s - - - c n 2fs_poss MSA
(e) حَفیِدِكَ Hafiydika حَفیِد Hafiyd grandchild noun - - - - - m s - - - c g 2ms_poss MSA
(f) حَفیِدِكِ Hafiydiki حَفیِد Hafiyd grandchild noun - - - - - m s - - - c g 2fs_poss MSA
(g) حَفیِدِك Hafiydik حَفیِد Hafiyd grandchild noun - - - - - m s - - - c - 2ms_poss GLF
(h) حَفیِدَك Hafiydak حَفیِد Hafiyd grandchild noun - - - - - m s - - - c - 2ms_poss EGY,LEV
(i) حَفیِدِك Hafiydik حَفیِد Hafiyd grandchild noun - - - - - m s - - - c - 2fs_poss EGY,LEV
(j) حَفیِدَك Hafiydak فاد fAd benefit verb - - - fut 1 - s i - - - - 2ms_dobj EGY,LEV
(k) حَفیِدِك Hafiydik فاد fAd benefit verb - - - fut 1 - s i - - - - 2fs_dobj EGY,LEV

Table 1: This is an example of multiple readings of the word ¼YJ

	
®k Hfydk in the different variants of Arabic. The

table also shows the full range of morphological features: part-of-speech (pos), aspect (asp), mood (mod), voice
(vox), person (per), gender (gen), number (num), case (cas), state (stt) and clitics: proclitics (prc3, prc2, prc1,
prc0) and enclitic (enc0). In addition to the lemma (lex), fully diacritized form (diac), and English gloss (gloss).

2 Arabic Language and Resources079

In this section, we present some background infor-080

mation on Arabic linguistic facts and resources.081

2.1 Arabic and its Dialects082

MSA is the official language for all member coun-083

tries of the Arab League. It is the primarily written084

form of Arabic used in official media communica-085

tions, official documents, news, and education. In086

contrast, the primarily spoken varieties of Arabic087

are its dialects. Arabic dialects vary among them-088

selves and can be categorized at different levels089

of regional classifications (Salameh et al., 2018).090

They are also different from MSA in most linguis-091

tic aspects (namely phonology, morphology, and092

syntax). Moreover, dialects have no official status093

despite being widely used in different means of094

daily communication – spoken as well as increas-095

ingly written on social media. However, both MSA096

and DA coexist in a sate of diglossia whether in spo-097

ken or written form (Ferguson, 1959). In this work098

we focus on MSA, Gulf Arabic (GLF), Egyptian099

Arabic (EGY), and Levantine Arabic (LEV).100

2.2 Orthography101

Arabic script is the official script used for MSA102

and is widely used for DA, in addition to Roman-103

izations such as Arabizi (Darwish, 2014). In this104

paper, we focus on Arabic script for MSA and DA.105

An important feature of Arabic orthography is106

the omission of diacritical marks which are mostly107

used to indicate short vowels and consonantal dou-108

bling. This omission introduces ambiguity to the109

text, e.g., the word I.
�
J» ktb2 could mean ‘to write’110

2Arabic transliteration is presented in the HSB scheme

(I.
��
J
�
» katab) or ‘books’ (I.

��
J
�
» kutub) among other 111

readings. 112

Unlike MSA, Arabic dialects have no official 113

standard orthography. Depending on the writer, 114

words are sometimes spelled phonetically or closer 115

to an MSA spelling through cognates or a mix of 116

both. It has been found that in extreme cases a word 117

can have more than 20 different spellings (Habash 118

et al., 2018). This results in highly inconsistent and 119

sparse datasets and models. The Conventional Or- 120

thography for Dialectal Arabic (CODA) (Habash 121

et al., 2018) has been proposed and used in man- 122

ual annotations of many datasets including some 123

of those used in this paper. Ideally, the process of 124

morphological disambiguation should take raw text 125

as input, as this is more authentic than convention- 126

alized spelling. We follow this principle for EGY 127

and LEV where analyses are paired with the raw 128

text. However, the GLF dataset analyses are linked 129

to the CODA version only, since orthographic con- 130

ventionalization was applied as an independent step 131

during manual data annotations and there are no 132

simple direct mappings between the raw text and 133

the analyses (Khalifa et al., 2018). 134

2.3 Morphology 135

Arabic is a morphologically rich language where 136

a single lemma inflects to a large number of forms 137

through different combinations of morphological 138

features (gender, number, person, case, state, mood, 139

voice, aspect) and cliticization (prepositions, con- 140

junctions, determiners, pronominal objects, and 141

possessives). As some of the morphological fea- 142

tures are primarily expressed with optional dia- 143

(Habash et al., 2007).

2



Variant Resource Size Orthography Analyzer
MSA PATB 629k Standard Manual
GLF Gumar 202k CODA Automatic
EGY ARZTB 175k Spontaneous Manual
LEV Curras 57k Spontaneous Automatic

Table 2: An overview of the current status of the data
and morphological analyzers used in this work.

critical marks, orthographic ambiguity results in144

different morphological analyses, e.g., MSA can145

have up to 12 analyses per word (out-of-context) on146

average (Pasha et al., 2014). MSA and DA differ147

in the degree of morphological complexity, for ex-148

ample, MSA retains nominal case and verbal mood149

features; but these are absent in DA. On the other150

hand, many dialects take more clitics than MSA to151

represent morphosyntactic structures that are not152

seen in MSA, e.g., the �
�+ + AÓ mA+ +š negation153

circumclitic structure found in EGY (Habash et al.,154

2012).155

Table 1 shows different possible readings for the156

word ¼YJ

	
®k Hfydk among MSA, EGY, GLF, and157

LEV. Rows (a) to (i) are different inflections for158

case or possessive pronouns or both of the lemma159

YJ

	
®�
�
k Hafiyd ‘grandchild’ for all variants. Rows (j)160

and (k) show different readings that are inflections161

of the verb lemma XA
�	
¯ fAd ‘to benefit’, the inflec-162

tions are for different object pronouns. Note that163

even between the different POS inflections words164

can sound and look exactly the same, this shows the165

degree of morphological complexity and ambiguity166

in Arabic and its dialects.167

2.4 Resources168

In this work, we use datasets that have been169

fully annotated for morphological features and170

cliticization among other lexical features such as171

lemmas. We use the Penn Arabic Treebank for172

MSA (Maamouri et al., 2004), ARZTB (Maamouri173

et al., 2012) for EGY, the Gumar corpus (Khalifa174

et al., 2018) for GLF, and the Curras corpus (Jarrar175

et al., 2014) for LEV. We also use morphological176

analyzers that provides out-of-context analyses for177

a given word, those analyzers provide the same178

set of features that are seen in the annotated data.179

For MSA we use the SAMA database (Graff et al.,180

2009), and for EGY we use CALIMA (Habash181

et al., 2012). Both GLF and LEV do not have mor-182

phological analyzers, instead we use automatically183

generated analyzers from their training data using184

paradigm completion as described in Eskander et al.185

(2013, 2016) and Khalifa et al. (2020). The qual- 186

ity and coverage of analyzers in general can differ 187

depending on how they were created. Manually 188

created analyzers (MSA and EGY in this work) 189

tend to have a better quality and lexical coverage 190

over automatically created ones (GLF and LEV in 191

this work). The quality of automatically generated 192

analyzers are also highly dependent on the quality 193

and size of the training data used to create them. 194

Table 2 shows the overall state of the resources 195

for each dialect studied in this work. In terms of 196

the size of fully annotated corpora in tokens, MSA 197

is approximately three times larger than GLF and 198

EGY and 11 times larger than LEV. Both MSA and 199

GLF have consistent orthography whereas EGY 200

and LEV are more noisy. When it comes to exter- 201

nal morphological analyzers, only MSA and EGY 202

have manually created and checked morphological 203

analyzers, while both GLF and LEV have analyz- 204

ers created automatically. This contrast of resource 205

availability allows us to study how challenging the 206

morphosyntactic tagging task can be in different 207

real world situations. 208

3 Related Work 209

Arabic morphological modeling proved to be use- 210

ful in a number of downstream NLP tasks such 211

as machine translation (Sadat and Habash, 2006; 212

El Kholy and Habash, 2012) speech synthesis (Ha- 213

labi, 2016), dependency parsing (Marton et al., 214

2013), sentiment analysis (Baly et al., 2017), and 215

gender reinflection (Alhafni et al., 2020). We ex- 216

pect all of these applications and others to benefit 217

from any improvements in morphosyntactic tag- 218

ging. 219

There have been multiple approaches to morpho- 220

logical modeling for Arabic. Those approaches dif- 221

fer depending on the target tagset (POS vs full mor- 222

phology) and the availability of linguistic resources. 223

When it comes to MSA and DA full morphological 224

tagging, MADAMIRA (Pasha et al., 2014) and its 225

predecessor MADA (Habash and Rambow, 2005; 226

Habash et al., 2013) trained separate SVM taggers 227

for each morphological feature (including cliticiza- 228

tion) and selected the most probable answer pro- 229

vided by an external morphological analyzer all in 230

one step for both MSA and EGY. AMIRA (Diab 231

et al., 2004) on the other hand used a cascading 232

approach where it performed POS tagging after 233

automatically segmenting the text. 234

A more recent similar approach to MADAMIRA 235
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was introduced by Zalmout and Habash (2017) but236

using a neural architecture instead. Inoue et al.237

(2017) presented a multitask neural architecture238

that jointly models individual morphological fea-239

tures for MSA. Zalmout and Habash (2019) ex-240

tended Zalmout and Habash (2017)’s work using241

multitask learning and adversarial training for full242

morphological tagging in MSA and EGY. Simi-243

larly, Zalmout and Habash (2020) proposed an244

approach where they jointly model lemmas, dia-245

critized forms, and morphosyntactic features, pro-246

viding the current state-of-the-art in MSA. The247

same approach was used in Khalifa et al. (2020),248

where they specifically wanted to study the effect249

of the size of the data and the available linguis-250

tic resources and the impact on the overall perfor-251

mance on morphosyntactic tagging for GLF. Zal-252

mout (2020) provides the current state-of-the-art253

performance in LEV by extending Khalifa et al.254

(2020)’s work to LEV. Another line of research255

that works with DA includes Darwish et al. (2018),256

where they presented a multi-dialectal CRF POS257

tagger, using a small set of 350 manually annotated258

tweets for MSA, GLF, EGY, and LEV.259

Pre-trained LM-based efforts in Arabic mor-260

phosyntactic tagging are relatively limited and ei-261

ther assume gold segmentation or only produce262

core POS tags. Kondratyuk (2019) leveraged the263

multilingual BERT model with additional word-264

level and character-level LSTM layers for lemmati-265

zation and morphological tagging, assuming gold266

segmentation. They reported the results for the SIG-267

MORPHON 2019 Shared Task (McCarthy et al.,268

2019), which includes MSA. Inoue et al. (2021) re-269

ported POS tagging results in MSA, GLF, and EGY270

using BERT models pre-trained on Arabic text with271

various pre-training configurations. They do not272

assume pre-segmentation of the text, however, they273

only consider the core POS tag, rather than the fully274

specified morphosyntactic tag. Khalifa et al. (2021)275

proposed a self-training approach for core POS276

tagging where they iteratively improve the model277

by incorporating the predicted examples into the278

training set used for fine-tuning.279

In this paper, we work with full morphosyntactic280

modeling on unsegmented text in four different281

variants of Arabic: MSA, GLF, EGY, and LEV.282

Furthermore, we explore the behavior of the pre-283

trained LM with respect to fine-tuning data size284

under different training setups.285

4 Methodology 286

In this section, we describe our methodology for 287

morphosyntactic tagging with pre-trained LMs 288

through different training setups. 289

4.1 Morphosyntactic Tagging with 290

Pre-trained LMs 291

To obtain a fully specified morphosyntactic tag 292

sequence, we build a classifier for each mor- 293

phosyntactic feature independently, inspired by 294

MADAMIRA. Unlike MADAMIRA where they 295

use an SVM classifier, we use a pre-trained LM 296

based classifier using CAMeLBERT (Inoue et al., 297

2021). Following the work of Devlin et al. (2019), 298

fine-tuning CAMeLBERT is done by appending a 299

linear layer on top of its architecture. We use the 300

representation of the first sub-token as an input to 301

the linear layer. 302

4.2 Factored and Unfactored Tagset 303

One of the challenges of morphosyntactic tagging 304

is the large size of the full tagset due to morpholog- 305

ical complexity of the language, where a complete 306

single tag is a concatenation of all the morphosyn- 307

tactic features. For example, MSA and EGY data 308

have approximately 2,000 unique complete tags 309

in the training data, whereas GLF and LEV have 310

around 1,400 and 1,000 tags, respectively. These 311

are not the full tagsets as there are many feature 312

combinations that are not seen in the data. 313

A basic approach (e.g., MADA’s and 314

MADAMIRA’s) is to use a factored feature 315

tagset that comprises multiple tags, each repre- 316

senting a corresponding morphosyntactic category. 317

This approach remedies the issue of the large tagset 318

size by dividing it into multiple sub-tagsets of 319

small sizes, however, it may produce inconsistent 320

tag combinations. 321

Alternatively, one can combine the individual 322

tags into a single tag. This approach has the advan- 323

tage of guaranteeing consistency of morphosyntac- 324

tic feature combination. However, it may not be 325

optimal in terms of tag coverage due to the large 326

number of unseen tags in the test data in addition 327

to the large space of classes. 328

To determine which approach is most suitable 329

for modeling, we build morphosyntactic taggers 330

with both the factored tagset and the unfactored 331

tagset for each variant. Additionally, we explore 332

the effect of the training data size for both settings. 333
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4.3 Retagging via Morphological Analyzers334

In previous efforts (Zalmout and Habash, 2017;335

Khalifa et al., 2020), it has been shown that lexi-336

cal resources such as morphological analyzers can337

boost the performance of morphosyntactic tagging338

through in-context ranking of out-of-context an-339

swers provided by the analyzer.340

In this work, we follow their approach, where we
use the morphological analyzers as a later step after
tagging with the fine-tuned pre-trained model. We
use the analyzers described in Section 2.4 to pro-
vide out-of-context analyses. For each word, the
analyzer may provide more than one answer.3 The
analyses are then ranked based on the unweighted
sum of successful matches between the values of
the predictions from the individual taggers and
those provided by the analyzer. To break ties during
the ranking, we take the sum of the probability of
the unfactored feature tag and the probability of all
the individual tags happening together as follows:

1

2
P (tunfactored) +

1

2

∏
m∈M

P (tm) (1)

where t is the tag for the feature m and M is the341

set of morphosyntactic features. The probabilities342

are obtained through unigram models based on the343

respective training data split.344

4.4 Merged and Continued Training345

Morphosyntactic modeling for DA is especially346

challenging because of data scarcity. Among the347

datasets that we use, LEV is the least resourced348

variant, having 11 times less training data than349

MSA. Therefore, we want to investigate an opti-350

mal approach to utilize data from other variants to351

improve upon the performance of morphosyntactic352

tagging for LEV.353

In this work, we experiment with the following354

two settings:355

(a) We merge all the datasets together and fine-356

tune a pre-trained LM on the merged datasets357

in a single step.358

(b) Similar to Zalmout (2020), we start fine-359

tuning a pre-trained LM on a mix of high-360

resource datasets (MSA, GLF, and EGY), and361

then continue fine-tuning on a low-resource362

dataset (LEV).363

3Both the MSA and EGY analyzers provide backoff modes.
We use the recommended setting by Zalmout and Habash
(2017). For GLF and LEV analyzers we keep the original
predictions if no answer is returned.

Split MSA GLF EGY LEV
TRAIN 478k 154k 127k 43k
TUNE 26k 8k 7k 2k
DEV 63k 20k 21k 6k
TEST 63k 20k 20k 6k
ALL 629k 202k 175k 57k

Table 3: Statistics on TRAIN, TUNE, DEV, and TEST
for each variant in terms of number of words.

5 Experiments 364

In this section, we describe experimental settings, 365

results, and error analysis of our best models. 366

5.1 Experimental Settings 367

Data To be able to compare with previous SOTA 368

(Zalmout and Habash, 2020, 2019; Khalifa et al., 369

2020; Zalmout, 2020), we follow the same con- 370

ventions they used for data splits: MSA and EGY 371

(Diab et al., 2013), GLF (Khalifa et al., 2018), and 372

LEV (Eskander et al., 2016). In Table 3, we show 373

the statistics of our datasets. 374

Fine-tuning We fine-tuned CAMeLBERT (In- 375

oue et al., 2021) on each morphosyntactic tagging 376

task. Following their recommendation, we used 377

CAMeLBERT-MSA for MSA and CAMeLBERT- 378

Mix for the dialects. We used Hugging Face’s 379

transformers (Wolf et al., 2020) for implementa- 380

tion. We trained our models for 10 epochs with 381

a learning rate of 5e-5, a batch size of 32, and a 382

maximum sequence length of 512. We pick the 383

best checkpoint based on TUNE and report results 384

on DEV and TEST. 385

Learning Curve To investigate the effect of fine- 386

tuning data sizes, we randomly sample training 387

examples on a scale of 5k, 10k, 20k, 40k, 80k, 388

120k, and 150k tokens. We use 150k, 120k, and 389

40k since they are comparable to the number of 390

tokens in GLF, EGY, and LEV datasets, respec- 391

tively. This allows us to measure the performance 392

difference across different dialects in a controlled 393

manner. This also gives us insight into the amount 394

of annotated data required to achieve a certain per- 395

formance, which is useful when creating annotated 396

resources for new dialects. We use this setup in all 397

the experimental setups. 398

Pre-processing for Merged and Continued 399

Training Although the different datasets provide 400

the same set of the morphosyntactic features, there 401
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29 85 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 44 44 842

ALL TAGS POS Ortho
M

orph5k 10k 20k 40k 80k 120k 150k 480k 5k 10k 20k 40k 80k 120k 150k 480k

M
SA

Unfactored 43.2 65.5 79.2 88.1 91.6 93.3 93.9 95.5 80.1 90.5 94.1 96.9 97.7 98.0 98.1 98.5 C
onsistent

M
anual

 +Morph 63.4 77.6 85.4 91.3 93.3 94.4 94.8 95.9 81.6 91.6 95.1 97.4 98.1 98.3 98.5 98.7
Factored 75.3 86.1 90.8 93.0 94.1 94.7 94.9 95.5 93.0 96.4 97.6 98.1 98.3 98.3 98.4 98.6

 +Morph 86.5 91.3 93.6 94.7 95.2 95.5 95.7 96.1 95.1 97.1 98.0 98.5 98.6 98.6 98.7 98.8

G
L

F

Unfactored 75.1 81.0 89.6 93.3 94.8 95.3 95.8 90.3 92.6 95.6 96.8 97.2 97.7 97.8 C
onsistent

A
uto

 +Morph 86.4 87.1 90.7 92.3 93.1 93.4 93.8 93.9 94.1 95.5 96.1 96.4 96.7 96.6
Factored 87.1 89.8 92.4 94.0 94.7 95.1 95.5 94.6 95.5 96.6 97.1 97.5 97.9 98.0

 +Morph 90.8 90.6 92.1 92.9 93.4 93.8 93.9 95.4 95.5 96.0 96.3 96.6 96.8 96.8

E
G

Y

Unfactored 64.6 77.3 83.0 86.1 87.7 88.8 84.0 87.8 90.5 92.0 92.7 93.0

Spontaneous

M
anual

 +Morph 76.4 83.8 87.4 89.2 89.9 90.5 81.9 87.9 91.5 93.1 93.7 94.0
Factored 77.1 82.0 84.1 85.7 86.8 87.4 89.9 91.0 92.0 92.6 92.9 93.2

 +Morph 86.3 88.3 89.2 89.8 90.3 90.6 90.9 92.6 93.4 93.7 94.0 94.1

L
E

V

Unfactored 73.6 80.8 85.0 88.1 86.7 91.0 93.1 94.5

Spontaneous

A
uto

 +Morph 77.0 80.6 83.2 85.4 87.8 90.2 92.0 93.1
Factored 80.6 84.6 86.6 88.9 91.4 93.2 94.1 94.7

 +Morph 81.2 83.4 84.7 86.2 90.5 91.7 92.7 93.4

Table 4: DEV results on a learning curve of the training data size. Morph refers to the model with an additional step
of retagging using a morphological analyzer. We bold the best score for each variant. Underlined scores denote
that the differences between those scores and the best scores are statistically insignificant with McNemar’s test
(p < 0.05).

exist some inconsistencies between them. The402

datasets were annotated by different groups using403

slightly different annotation guidelines, therefore,404

we need to bring all the feature values into a com-405

mon space with LEV. We performed the following406

steps to address those inconsistencies: (a) We drop407

the state, case, mood, and voice features; (b) We408

remove the diactization from the lexical parts of the409

proclitic features, e.g. the conjunction w realized410

as wa_conj in MSA and wi_conj in EGY both maps411

to w_conj in LEV; and (c) For certain POS classes412

some features have default values in case they are413

not present, those default values were different for414

different datasets. Thus, we mapped those default415

values to match whatever was specified as default416

in LEV. We only performed these modifications for417

the experiments on merged and continued training.418

Evaluation Metrics We compute the accuracy419

in terms of the core POS and the combined mor-420

phosyntactic features (ALL TAGS).421

5.2 Results422

Factored vs Unfactored Models Table 4 shows423

the DEV results for the models trained with the fac-424

tored and unfactored tagset (henceforth, factored425

and unfactored models, respectively) on a learning426

curve of the training data size. In the extremely low-427

resource setting of 5k tokens in the ALL TAGS428

metric, we observe that factored models consis-429

tently outperform unfactored models across all the 430

variants (15.9% absolute increase on average). In 431

particular, MSA benefited most with 32.1% ab- 432

solute increase, followed by EGY (12.5%), GLF 433

(12.0%), and LEV (7.1%). 434

However, this gap shrinks as the data size in- 435

creases. For instance in MSA, the differences be- 436

tween the scores of the factored model and the un- 437

factored model become statistically insignificant by 438

McNemar’s test (McNemar, 1947) with p < 0.05 439

when trained on the full data. This is presumably 440

due to the decrease in the number of unseen unfac- 441

tored tags in DEV. In fact, 3.9% of the unfactored 442

tags in DEV are not seen in TRAIN in the 5k set- 443

ting, whereas only 0.1% of tags are unseen in DEV 444

when we use the full data. 445

The factored model performs better than the un- 446

factored model across all the data sizes in MSA and 447

LEV. The EGY and GLF models follow a similar 448

pattern in the low resourced settings, however, the 449

unfactored models begin to perform better than the 450

factored ones from 20k for EGY and 40k for GLF. 451

Our results suggest that the factored tagset is opti- 452

mal compared to the unfactored tagset, especially 453

in low-resource settings. 454

Retagging with Morphological Analyzer We 455

observe that the use of a morphological analyzer 456

consistently improves performance of both unfac- 457

tored and factored models across all the differ- 458
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ALL TAGS POS BASE CLITICS
5k 10k 20k 40k 5k 10k 20k 40k 5k 10k 20k 40k 5k 10k 20k 40k

SINGLE 81.5 85.4 87.4 89.2 91.4 93.2 94.1 94.7 84.8 88.1 89.6 91.1 93.0 94.6 95.3 96.0
MERGED 77.9 80.6 82.7 85.0 87.3 89.4 90.9 92.3 81.2 83.7 85.5 87.8 90.8 91.6 92.7 93.4

CONTINUED 85.1 86.9 88.2 89.5 92.0 93.3 94.2 94.8 87.5 89.1 90.5 91.4 94.4 95.1 95.4 96.2

697 105 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37Table 5: DEV results on LEV for the merged train-
ing setup (MERGED) and the continued training setup
(CONTINUED). SINGLE refers to the model trained
only on LEV.

ent training data sizes in MSA and EGY in ALL459

TAGS. The value of a morphological analyzer is es-460

pecially apparent in the very low resourced setting461

(5k), with an increase of 20.2% (MSA) and 11.8%462

(EGY) in the unfactored model and 11.2% (MSA)463

and 9.2% (EGY) in the factored model. However,464

the effect of retagging with a morphological an-465

alyzer diminishes as the data size increases, yet466

providing a performance gain of and 0.4% in the467

unfactored model with the analyzer and 0.5% in its468

factored counterpart in the high resourced setting469

in MSA.470

Similarly, we observe an increase in performance471

when we include a morphological analyzer in the472

very low resourced settings in GLF and LEV. How-473

ever, as we increase the training data size, the use474

of a morphological analyzer starts to hurt the per-475

formance at 40k in GLF and 10k in LEV in the476

unfactored model and 20k in GLF and 10k in LEV477

in the factored model. We observe here that the478

quality of the analyzer has direct implications on479

the performance. The analyzers used for MSA and480

EGY are of high quality since they were manu-481

ally created and checked, whereas GLF and LEV482

analyzers are impacted by the quality and size of483

the annotated data used to create them. This is also484

consistent with the findings of Khalifa et al. (2020).485

Comparison with Previous SOTA Systems Ta-486

ble 6 shows DEV and TEST results for our mod-487

els and a number of previously published state-of-488

the-art morphosyntactic tagging systems. For our489

models, we use the best systems in terms of ALL490

TAGS metric, namely, the factored model with a491

morphological analyzer for MSA and EGY, the un-492

factored model for GLF, and the factored model493

for LEV. For existing models, we report the best494

results from Zalmout and Habash (2020) (ZH’20)495

for MSA, Khalifa et al. (2020) (K’20) for GLF,496

Zalmout and Habash (2019) (ZH’19) for EGY, and497

Zalmout (2020) (Z’20) for LEV.498

Since some of these systems do not report on499

all of the features that we report on, but rather on 500

different subsets of them, we include in the table 501

our results when matched with their features (ALL 502

TAGS* in Table 6). There is no difference for 503

MSA; however the ALL TAGS* setting for EGY 504

and LEV excludes enc1 and enc2. As for GLF, 505

ALL TAGS* consists of only 10 features: pos, 506

asp, per, gen, num, prc0, prc1, prc2, prc3, enc0. 507

We observe that our models consistently out- 508

perform the existing systems in all variants. Our 509

model achieves 2.6% absolute improvement over 510

the state-of-the-art system in MSA, 2.8% in GLF, 511

1.6% in EGY, and 8.3% in LEV. 512

Merged and Continued Training Table 5 shows 513

the results on LEV for the merged and the contin- 514

ued training setups. The results for merged training 515

are consistently below those for the baseline across 516

different data sizes, even though they have access 517

to more data. This is most likely a result of the 518

disproportionately small size of the LEV dataset 519

when compared to the other variants. 520

In contrast, the results for continued training 521

show consistent improvements over the baseline 522

model that is trained only on LEV. Continued train- 523

ing provides a substantial increase in performance, 524

especially in the very low resourced setting with 525

only 5k tokens, giving 3.6% absolute improvement 526

over the baseline. Our results show that continued 527

training from the model trained on high resourced 528

dialects is very beneficial with lower amounts of 529

training data. 530

5.3 Error Analysis 531

OOV To better understand the effect of differ- 532

ent training setups, we look at the performance of 533

our models in terms of out-of-vocabulary (OOV) 534

tokens alone. We observe a stronger and a more 535

consistent pattern when evaluated on OOV tokens. 536

In fact, the average difference between the best 537

model and the weakest model across variants is 538

larger in OOV tokens (6.7% in ALL TAGS) than 539

in all tokens (2.3%). On OOV tokens, the factored 540

model with a morphological analyzer consistently 541

performs best in all the data sizes for all the variants 542

except for LEV. In LEV, however, the same model 543

without the morphological analyzer outperforms 544

the one with the analyzer. This is presumably due 545

to the orthographic inconsistency in the data along 546

with the quality of the morphological analyzer as 547

discussed in Section 2.4. 548
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DEV TEST
MSA GLF EGY LEV MSA GLF EGY LEV

Ours ZH'20 Ours K'20 Ours ZH'19 Ours Z'20 Ours Ours K'20 Ours ZH'19 Ours
POS 98.8 98.1 97.8 96.8 94.2 93.3 94.7 89.4 98.9 97.9 96.9 94.6 93.8 94.0

ALL TAGS 96.1 93.5 95.8 - 90.6 - 88.9 - 96.3 95.7 - 91.0 - 87.6
ALL TAGS* 96.1 93.5 95.8 93.3 90.7 89.3 89.1 80.8 96.3 95.7 92.9 91.0 89.4 87.8

2.6 2.5 1.4 8.3 2.8 1.6

DEV TEST
MSA GLF EGY LEV MSA GLF EGY LEV

Ours ZH'20 Ours K'20 Ours ZH'19 Ours Ours Ours K'20 Ours ZH'19 Ours Z'20
POS 98.8 98.1 97.8 96.8 94.2 93.3 94.7 98.9 97.9 96.9 94.5 93.8 94.0 89.4

ALL TAGS* 96.1 93.5 95.8 93.3 90.6 89.3 89.1 96.3 95.7 92.9 90.9 89.4 87.8 80.8
ALL TAGS 96.1 93.5 95.8 - 90.6 - 88.9 96.3 95.7 - 90.9 - 87.6 -

14 10 14 14 14 10 14 14

729 85 46 46 46 46 46 46 46 46 46 46 46 46 46 46

ours: MSAfactored+morph
GLF unfactored
EGYfactoerd+morph
LEV factored

EGY0.909988272190.99882721
GLF0.955472636895.54726368

Table 6: DEV and TEST results of our systems and previously published systems on the same datasets.
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Table 7: The number and percentage of specific feature errors among the ALL TAGS errors in the best systems on
the DEV set.

Error Statistics Table 7 presents the number and549

percentage of specific feature errors among the550

ALL TAGS errors in the best systems on the DEV551

set. On average, there are two feature prediction552

failures within an unfactored tag across the differ-553

ent variants. We observe that MSA and DA exhibit554

different error patterns: In MSA, case is the largest555

contributor among other features, which is consis-556

tent with the previous findings along the line (Zal-557

mout and Habash, 2020), whereas in dialects, POS558

is the largest contributor.559

Among the POS errors, the most common error560

type is mislabeling a nominal tag with a different561

nominal tag, at 44.2% of the errors in GLF, 67.3%562

in EGY, and 57.8% in LEV, while this type of error563

is more dominant in MSA (80.8%). Mislabeling564

nominals with verbs is more common in DA at565

23.1% in GLF, 13.0% in EGY, and 20.1% in LEV,566

compared to MSA (7.7%).567

The core morphological features such as per, gen,568

num, and asp have a higher percentage of errors in569

DA. Another noticeable difference is enc0 feature570

(MSA ∼2% vs DA on average ∼17%). This is571

likely due to label distribution difference: MSA has572

a highly skewed distribution with 90%, 1%, and573

9% ration for 3rd, 2nd and 1st persons as expected574

in MSA news genre. In comparison, DA has less575

skew with 50%, 17%, and 32% respectively, which576

increase the likelihood of error.577

Among the three dialects, we observe similar578

patterns in terms of feature error contribution, es-579

pecially for GLF and LEV with a correlation co-580

efficient of 0.93. However, in EGY specifically,581

we observe a high percentage of errors in mod,582

vox, stt, and cas, partly due to the difference and 583

inconsistency in annotation schemes. 584

We also found some gold errors which affect all 585

of the systems we compared (previous SOTA and 586

ours). As the results on Arabic morphosyntactic 587

disambiguation are reaching new heights, it may 588

be useful for the community using these resources 589

to revisit their annotations. 590

6 Conclusion and Future Work 591

In this paper, we presented the state-of-the-art re- 592

sults in the morphosyntactic tagging task for Mod- 593

ern Standard Arabic and three Arabic dialects that 594

differ in terms of linguistic properties and resource 595

availability. We conducted different experiments to 596

examine the performance of pre-trained LMs under 597

different fine-tuning setups. We showed that the 598

factored model outperforms the unfactored model 599

in low-resource settings. Additionally, high quality 600

morphological analyzers proved to be helpful. Our 601

results also show that fine-tuning using datasets 602

from other dialects followed by fine-tuning using 603

the target dialect is beneficial for low-resource set- 604

tings. Our systems outperform previously pub- 605

lished SOTA on this task. 606

In the future, we plan to investigate continued 607

training further and find other ways where we can 608

utilize resources and datasets for low-resourced 609

dialects. We also intend to explore other architec- 610

tures for morphosyntactic tagging using multi-task 611

learning in the context of pre-trained LMs, as well 612

as work on the task of automatic lemmatization. 613
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