
ProofNet: Autoformalizing and Formally Proving
Undergraduate-Level Mathematics

Zhangir Azerbayev
Yale University∗

zhangir.azerbayev@yale.edu

Bartosz Piotrowski
University of Warsaw∗

bartoszpiotrowski@post.pl

Hailey Schoelkopf
EleutherAI, Yale University

hailey.schoelkopf@yale.edu

Edward W. Ayers
Carnegie Mellon University

contact@edayers.com

Dragomir Radev
Yale University

dragomir.radev@yale.edu

Jeremy Avigad
Carnegie Mellon University

avigad@cmu.edu

Abstract

We introduce ProofNet, a benchmark for autoformalization and formal proving1

of undergraduate-level mathematics. The ProofNet benchmarks consists of 3712

examples, each consisting of a formal theorem statement in Lean 3, a natural3

language theorem statement, and a natural language proof. The problems are pri-4

marily drawn from popular undergraduate pure mathematics textbooks and cover5

topics such as real and complex analysis, linear algebra, abstract algebra, and6

topology. We intend for ProofNet to be a challenging benchmark that will drive7

progress in autoformalization and automatic theorem proving. We report base-8

line results on statement autoformalization via in-context learning. Moreover we9

demonstrate improvements over our baselines by applying prompt retrieval and10

distilled backtranslation.11

1 Introduction12

The creation of an automatic mathematician, that is, a system capable of autonomously posing con-13

jectures and proving theorems, is a longstanding challenge in mathematics and artificial intelligence14

[Gelernter, 1959]. In recent years, neural generative language modeling has emerged as a promising15

approach to automating aspects of mathematics [Rabe and Szegedy, 2021].16

One approach to applying language models to mathematics has been to treat mathematical reasoning17

in natural language as a sequence learning task [Welleck et al., 2021a, 2022, Lewkowycz et al., 2022].18

A key advantage of mathematical reasoning in natural language is the abundance of natural language19

mathematics data on the internet [Lewkowycz et al., 2022].20

An alternative approach is to use language models to guide formal proof-search in an interactive21

theorem prover (ITP) [Whalen, 2016, Yang and Deng, 2019, Wang and Deng, 2020, Polu et al., 2022,22

Jiang et al., 2022a, Lample et al., 2022, First et al., 2023]. A salient advantage of this method is that23

∗Work completed while at Carnegie Mellon University

Submitted to the 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets
and Benchmarks. Do not distribute.

Lean mathlib

Formal theorem statement:
theorem
exists_subgroup_card_pow_prime

[fintype G] (p : N) {n : N}
[fact p.prime]
(hdvd: p ˆ n | card G) :
∃ K : subgroup G,
fintype.card K = pˆn

ProofNet dataset (ours)
Formal theorem statement:
theorem exercise_4_5_14 {G : Type*}

[group G] [fintype G]
(hG : card G = 312) :
∃ (p : N) (P : sylow p G),
P.normal

Natural language theorem statement:
Prove that a group of order 312 has a normal
Sylow p-subgroup for some prime p dividing its
order.

Natural language proof:

Proof. Let n13 be the number of Sylow 13-
subgroups of G. Then by Sylow’s Theorem,
n13 ≡ 1(mod13) and n13 divides 23 · 3 = 24.
This implies n13 = 1, so that there is only one
Sylow 13 -subgroup, which is consequently nor-
mal. The last assertion follows from the fact con-
jugation preserves the order of a subgroup. So if
there is only one subgroup H of order 13 , then
for any g ∈ G, we have

∣∣gHg−1
∣∣ = |H| = 13, so

gHg−1 = H , i.e. H is normal.

Figure 1: A sample theorem statement from mathlib, show on the left, and a sample theorem state-
ment from ProofNet, shown on the right. mathlib emphasizes including the most abstract and
general formulations of mathematical results, whereas ProofNet predominantly tests the ability of
models to apply those results to concrete problems.

the ITP acts as a verifier for the language model’s reasoning, enabling the natural implementation of24

bootstrapping techniques such as expert iteration [Silver et al., 2017, Polu et al., 2022, Lample et al.,25

2022].26

Autoformalization, the task of automatically formalizing mathematics, seeks to build a bridge be-27

tween informal and formal mathematical reasoning [Wang et al., 2018, Szegedy, 2020, Wu et al.,28

2022a, Jiang et al., 2023], with the potential of extracting a training signal from vast corpora of nat-29

ural language mathematics data while still grounding a system’s reasoning in verified formal logic.30

However, the small amount and low diversity of parallel data between informal and formal mathe-31

matics means that autoformalization suffers from a lack of standard benchmarks to guide progress32

in the field.33

To remedy this gap, we propose ProofNet,2 a benchmark consisting of parallel natural language34

and formal mathematics that can be used to evaluate autoformalization and theorem proving. The35

ProofNet benchmark consists of 371 parallel formal theorem statements, natural language theo-36

rem statements, and natural language proofs sourced from the exercises of popular undergraduate-37

level pure mathematics textbooks. Formal statements are expressed in the Lean 3 theorem prover38

[de Moura et al., 2015], and depend on Lean’s mathlib [mathlib Community, 2020].39

Language-model-based theorem provers and autoformalization systems have typically been evalu-40

ated on benchmarks consisting of competition and olympiad-style problems [Zheng et al., 2022, Wu41

et al., 2022a]. While such problems require complex reasoning, their solutions only depend on a42

relatively small set of elementary facts about integers, real numbers, counting, and geometry. In43

contrast, modern research mathematics requires the mastery of a massive body of theory made up of44

thousands of definitions, lemmas, and theorems. The Lean 3 formalization of perfectoid spaces, an45

important definition in research-level arithmetic geometry, depends on over 3000 distinct theorems46

2Full dataset are available at https://huggingface.co/datasets/hoskinson-center/proofnet.
Code to replicate experiments available at https://github.com/zhangir-azerbayev/ProofNet

2

https://huggingface.co/datasets/hoskinson-center/proofnet
https://github.com/zhangir-azerbayev/ProofNet

Models

Pretrained:

Training Data

Code

Proof-Pile

Mathlib

Code-davinci-002

proofGPT

Finetuned
proofGPT

Finetuned:

Distilled
backtranslation

ProofNet Benchmark

Causal LM

Causal LM

Formal Statement NL ProofNL Statement

Evaluated Tasks:

In-context
learning

Mathlib

Retrieval (optional)

NL Statement Formal Statement

In-context
learning

Formal Statement NL Statement

Statement Autoformalization

Statement informalization

Other supported tasks:

NL Proof Formal Proof

Formal Statement Formal Proof

Proof autoformalization

Formal proof

Key

 Training data

 Models

 Test data

(, ,)

Figure 2: Left: We focus our evaluation on three language models. The first is the Code-davinci-002
endpoint of the OpenAI API [Chen et al., 2021], which is pre-trained on a (proprietary) code dataset.
The second is the PROOFGPT suite, which are pre-trained on the proof-pile dataset. Finally, we
also finetune a PROOFGPT model using the distilled backtranslation methodology (see subsubsec-
tion 4.1.3). Right: Each example in the ProofNet benchmark consists of a natural language (NL)
statement, a formal statement, and an NL proof. In this work, we focus our evaluation on statement
autoformalization and informalization. The tasks of proof autoformalization and formal theorem
proving are also supported by ProofNet.

and definitions [Buzzard et al., 2020]. How to effectively reason over such a large repository of47

knowledge is an important unsolved problem in applying language models to mathematics [Irving48

et al., 2016, Wu et al., 2022b, Tworkowski et al., 2022] .49

ProofNet falls short of requiring mastery of all of modern mathematics, but poses the still ambitious50

goal of reasoning over the core of an undergraduate mathematics, including basic analysis, algebra,51

number theory, and topology. We hope that this benchmark will spur the development of language52

models that are able to reason effectively over large knowledge bases.53

In order to obtain stronger baselines on ProofNet, we train and open-source the PROOFGPT lan-54

guage models at scales of 1.3 billion and 6.7 billion parameters. These models are trained on the55

proof-pile, an 8.3 billion token dataset of mathematical text. To our knowledge, these are the only56

open-source language models fine-tuned for general mathematics.57

We establish baselines for ProofNet theorem autoformalization using in-context learning [Brown58

et al., 2020]. Moreover, we introduce two novel theorem autoformalization methods that outper-59

form our few-shot baselines. Prompt retrieval uses nearest-neighbor search against an embedding60

database to create a prompt consisting of the mathlib declarations most relevant to a particular nat-61

ural language theorem. Distilled backtranslation is a method inspired by work in unsupervised62

machine translation [Lample et al., 2017, Han et al., 2021a] that finetunes a language model for63

autoformalization at a large scale without the need for parallel data.64

2 The ProofNet Benchmark65

Dataset collection Problems in the ProofNet benchmark are primarily drawn from exercises in66

popular undergraduate mathematics textbooks. For a complete list of sources, see Appendix B. For67

a comparison of ProofNet to other mathematical reasoning evaluations, see Appendix C68

3

Source Size (GB) Tokens

arXiv.math 13.6 8.0B
Stack Exchanges 0.96 0.3B
Formal math libraries 0.14 59M
ProofWiki + Wikipedia math articles 0.02 6.6M
Open source books 0.015 6.5M
MATH 0.002 0.9M

Table 1: Composition of the proof-pile.

Not all textbook exercises lend themselves naturally to formalization. In particular, we only consider69

for inclusion in ProofNet problems meeting the following criteria:70

• Self-containment. Problems should only depend on the results commonly taught in an71

undergraduate curriculum. In particular, this rules out problems that are split into multiple72

sequentially dependent parts, or those using nonstandard notations.73

• Naturality of formalization. Not all kinds of mathematical problems can be naturally for-74

malized, such as word problems, and such problems are excluded. We do not include exer-75

cises that require computing an unknown quantity. We do not include problems that depend76

on parts of Lean’s mathlib that are relatively less mature, such as Euclidean geometry or77

combinatorics.78

• Low risk of train-test overlap. Because language models are often pre-trained on large79

corpora mined from the internet that include mathlib, we refrain from including statements80

that are in mathlib or are likely to be added to mathlib in the future. In practice, this81

means we avoid the abstract “theory-building” style of theorems that constitute mathlib,82

and instead choose problems that involve applying general results to specific cases. For83

more insight into the stylistic differences between mathlib and ProofNet problems, see84

Figure 1.85

Beyond the above criteria, problems were selected for broad coverage of the undergraduate curricu-86

lum and to range in difficulty from straightforward applications of the definitions to those requiring87

tremendous creativity. Problems statements are transcribed into LATEX and formalized by human88

annotators proficient in Lean. Natural language proofs are adapted from online solutions manuals,89

or in a few cases, written by the annotators.90

Supported Tasks As ProofNet includes parallel natural language statements, natural language91

proofs, and formal statements, the dataset supports the evaluation of the following distinct tasks:92

• Formal theorem proving. Given a formal statement of a theorem, produce a formal proof.93

• Informal theorem proving. Given an informal statement, produce an informal proof. This94

facilitates direct comparison between formal and informal theorem proving approaches.95

• Autoformalization and informalization of statements. Given an informal (formal) statement,96

produce a corresponding formal (informal) statement.97

• Autoformalization of proofs. Given an informal theorem statement, its informal proof, and98

its formal statement, produce a formal proof.99

3 The PROOFGPT models and the proof-pile dataset100

In order to obtain stronger baselines on the ProofNet benchmark, we introduce the PROOFGPT101

language models and a text dataset named the proof-pile that these models are trained on. Many102

approaches to quantitative reasoning with language models depend on pre-training or fine-tuning a103

4

Model arXiv.math perplexity proof-pile perplexity

1B parameters:
Pythia 1.4B 3.82 4.12
PROOFGPT 1.3B 3.17 3.47

6B parameters:
Pythia 6.9B 3.36 3.62
PROOFGPT 6.7B 3.12 3.43

Table 2: Comparison of model perplexities on the test set of the arXiv subset of the proof-pile
and the entire proof-pile. Documents were joined using two newline characters and perplexity was
calculated with a stride equal to the model’s context length, which is 2048 for all models shown.

model on large corpora of mathematical text, which significantly boosts downstream performance104

[Hendrycks et al., 2021b, Polu and Sutskever, 2020, Lample et al., 2022, Lewkowycz et al., 2022].105

Motivated by these results, we train and open-source the PROOFGPT models at sizes of 1.3 billion106

and 6.7 billion parameters.3 The PROOFGPT models are decoder-only causual language models107

initialized with Pythia weights [Biderman et al., 2023],4 and then fine-tuned on the proof-pile,5 a108

corpus of unstructured mathematical text gathered from internet sources whose composition is de-109

tailed in Table 1. The proof-pile contains roughly 8.3 billion GPT-NeoX [Andonian et al., 2021]110

tokens. Fine-tuning was performed using the GPT-NeoX library [Andonian et al., 2021]. For train-111

ing hyperparameters, see Appendix A. In Table 2, we show that the PROOFGPT models outperform112

Pythia base models at standard mathematical reasoning tasks.113

We regard the PROOFGPT model suite as inferior to the Minerva models [Lewkowycz et al., 2022]114

due to the fact that the PROOFGPT models are fine-tuned on an order of magnitude less mathematical115

text and span a smaller parameter range. However, we hope that the research community will benefit116

from PROOFGPT’s open-source weights and dataset.117

4 Methodology and Experiments118

In this work, we evaluate the capabilities of pre-trained language models on autoformalizing and in-119

formalizing theorem statements. Due to the engineering challenges of implementing neural theorem120

proving systems in Lean, we leave an investigation of formal theorem proving and proof autoformal-121

ization to future work.122

4.1 Autoformalization methods123

We employ in-context learning with large language models as a strong baseline for the autoformal-124

ization of theorem statements [Wu et al., 2022a]. Moreover, we introduce two novel methods for125

boosting autoformalization performance above the few-shot baseline: prompt retrieval and distilled126

backtranslation.127

4.1.1 Few-shot autoformalization and informalization128

In-context learning is a simple and powerful method for adapting language models to sequence-to-129

sequence tasks [Brown et al., 2020].130

3https://huggingface.co/hoskinson-center/proofGPT-v0.1
https://huggingface.co/hoskinson-center/proofGPT-v0.1-6.7B

4The PROOFGPT models were not initialized from the open-sourced weights of the Pythia models, but
from a development version of the suite with slightly different architecture and training hyperparameters. This
is the cause of the small parameter discrepancy between a PROOFGPT and the similarly sized Pythia model.
Performance of the development versions of Pythia and the open-source versions are near-identical.

5We open-source both the proof-pile and the code for scraping the it at https://huggingface.co/
datasets/hoskinson-center/proof-pile

5

https://huggingface.co/hoskinson-center/proofGPT-v0.1
https://huggingface.co/hoskinson-center/proofGPT-v0.1-6.7B
https://huggingface.co/datasets/hoskinson-center/proof-pile
https://huggingface.co/datasets/hoskinson-center/proof-pile

For our in-context baselines, we perform inference using the OpenAI API’s Code-davinci-002 end-131

point [Chen et al., 2021] and the PROOFGPT 1.3B and 6.7B models. Prompts are listed are given in132

Appendix D.133

Because there may be multiple ways to formalize the same statement in Lean and no general way134

to automatically verify whether two statements that are not definitionally equal have the same math-135

ematical content, autoformalizations should be evaluated for correctness by a human expert. For136

similar reasons, informalizations should also be judged by human experts. In this work, model out-137

puts are scored by the authors. Our open-source repository contains raw model outputs so that the138

author’s judgements of correctness can be independently verified.139

4.1.2 Prompt retrieval140

A blessing and a curse of current language models is that few-shot learning performance is highly141

sensitive to the exact prompt that is used [Kojima et al., 2022]. In particular, it is plausible that142

greater few-shot learning performance can be achieved by retrieving the few-shot examples that are143

most relevant to a particular question.144

Following Liu et al. [2021], we implement a prompt retrieval procedure for statement autoformaliza-145

tion based on nearest neighbors search. Suppose we have a knowledge-base K of formal statements.146

First, we generate an autoformalization ŷ of a statement x using our standard in-context procedure.147

Then we produce dense vector representations of ŷ and the formal statements in K. We retrieve the148

k-nearest-neighbors of ŷ in K, and include them in the few-shot prompt. For the precise format of149

the prompt, see Appendix D.150

We opt to retrieve against ŷ instead of against x because this method was significantly more perfor-151

mant in our preliminary experiments.152

In our experiments, we create a knowledge-base K by taking our ys to be 90,530 statements from153

Lean mathlib and use k = 4. We use the OpenAI API’s embedding-ada-002 endpoint Neelakantan154

et al. [2022] to generate text embeddings.155

4.1.3 Distilled backtranslation156

Due to the amount of domain expert time required to collect parallel corpora of natural language and157

formal mathematics, scaling up parallel datasets to the point where they are useful for supervised158

finetuning is impractical. In the face of this limitation, to finetune models on autoformalization159

we draw on prior work leveraging generative models for unsupervised translation between natural160

languages. In particular, we use distilled backtranslation, a methodology inspired by Han et al.161

[2021a].162

Distilled backtranslation proceeds as follows. Suppose we have a large language model PLLM (·)163

pre-trained on monolingual data in both the source and target language, a monolingual corpus {Yi}164

in the target language. We wish to fine-tune a “student” model Pθ(Y |X) to translate a sequence X165

in the source language to a corresponding sequence Y in the target language. First, we manually166

construct a few-shot prompt C consisting of X|Y pairs. Then, we sample synthetic backtranslations167

Xi ∼ PLLM (X|C, Yi). Finally, we fine-tune Pθ(·) on the synthetic pairs to predict P (Y |X).168

In our experiments, we fine-tune PROOFGPT-1.3B using distilled backtranslation with informal169

mathematics as the source language and Lean 3 theorems as the target language. We use the the-170

orems in Lean’s mathlib as the target language’s monolingual corpus. We use Code-davinci-002171

as our teacher LM and proofGPT-1.3B as our student model. Fine-tuning hyperparameters are de-172

scribed in Appendix E173

6

Formalization Informalization

Model Typecheck rate BLEU Accuracy Compile rate BLEU Accuracy

Few-shot.
PROOFGPT-1.3B 5.9 8.1 0 77 5.1 4.3
PROOFGPT-6.7B 4.3 4.7 0 70 6.0 6.5
Code-davinci-002 23.7 25.1 12.9 100 13.2 62.3

Prompt retrieval:
Code-davinci-002 45.2 14.8 15.6 - - -

Dist. backtrans.
PROOFGPT-1.3B 19.4 10.7 3.2 - - -

Table 3: Results of few-shot learning with LLMs on formalization and informalization of ProofNet
statements; all cells are percentages. In addition to reporting autoformalization accuracy, we also
report typecheck rate, which is the proportion of a model’s samples that are well-formed statements
in Lean’s dependent type theory. If a model simply copies a formal statement from its prompt, we do
not consider that a positive sample when calculating typecheck rate. For the informalization task, we
also report compile rate, i.e., what proportion of the model’s samples produce LATEX that compiles.
The most common reason why informal generations fail to compile is that they contain Unicode
characters frequently used in Lean’s mathlib but not accepted by the pdflatex compiler. To calculate
BLEU scores, we split on whitespace and use BLEU-4 with smoothing. Note that formalization
BLEU scores being higher than informalization BLEU scores is likely because natural language
contains more lexically distinct but semantically equivalent statements.

5 Results and Discussion174

5.1 In-context learning175

In Table 3, we present our experimental results for autoformalization and informalization of176

ProofNet theorem statements. Although conceptually simple and easy to implement, our Code-177

davinci-002 in-context learning baseline achieves highly nontrivial performance, correctly formaliz-178

ing 12.9% of theorems. The PROOFGPT models do not formalize any statements correctly, likely179

owing to their smaller parameter count. However, they demonstrate some signal on the typecheck180

rate and BLEU metrics. Note that even generating statements that typecheck in Lean 3’s strict type181

system is a nontrivial feat.182

Informalization accuracy is much higher than formalization accuracy for all models, supporting the183

intuitive claim that informalization is an easier task than formalization. This result also suggests that184

large pre-trained language models have a strong grasp of the semantics of formal mathematics, and185

primarily struggle with generating lexically correct and type-correct Lean code.186

We further observe that among Code-davinci-002’s generations that typecheck, roughly half are187

correct formalizations. This is consistent with our hypothesis that Code-davinci-002 has a strong188

grasp of the semantics of mathematics, since the model displays high accuracy conditional on having189

generated valid Lean.190

5.2 Prompt Retrieval and Distilled Backtranslation191

In Table 3, we additionally include autoformalization scores for the prompt retrieval and distilled192

backtranslation models. Applying prompt retrieval to the Code-davinci-002 model significantly193

boosts performance, increasing accuracy by 2.7 points and, notably, increasing typecheck rate by194

21.5 points.195

Distilled backtranslation improves the autoformalization performance of the PROOFGPT 1.3B196

model not merely above the in-context performance of PROOFGPT 1.3B, but also above the in-197

context learning performance of PROOFGPT 6.7B.198

7

Automatic metrics Typecheck rate correlates strongly with formalization accuracy, and we recom-199

mend that typecheck rate be used as a predictor of autoformalization performance when evaluating200

accuracy is too costly. The BLEU metric correlates well with performance on many NLP tasks201

[Papineni et al., 2002], but correlates poorly with performance code tasks [Chen et al., 2021]. Our202

findings illustrate that just as with code, BLEU is a poor guide to formalization performance, as203

prompt retrieval increases Code-davinci-002 formalization accuracy but decreases BLEU by over204

10 points.205

5.3 Qualitative Analysis206

We ground our remaining analysis in four case studies: two that demonstrate successful formaliza-207

tions produced by Code-davinci-002, and two that are representative of our methods’ most common208

failure cases.209

Case study 1. The following is a Lean formalization of exercise 4.21a in Walter Rudin’s Principles210

of Mathematical Analysis produced by Code-davinci-002:211

NL: Suppose K and F are disjoint sets in a metric space X,K is compact, F is closed.
Prove that there exists δ > 0 such that d(p, q) > δ if p ∈ K, q ∈ F .

Code-davinci-002 output:
theorem exercise_4_21a {X : Type*} [metric_space X] {K F : set X}
(hK : compact_space K) (hF : is_closed F) (hKF : disjoint K F) :
∃ (δ : R), δ > 0 ∧ ∀ (p q : X), p ∈ K → q ∈ F → dist p q ≥ δ

212

In this example, Code-davinci-002 demonstrates strong knowledge of mathlib and some reason-213

ing capability. For example, the model correctly identifies that metric scapes are denoted using214

a typeclass metric_space X, but closed sets are expressed using a predicate is_closed. More-215

over, the model correctly renders a consequent that contains nested quantifiers. Finally, the model216

recognizes the equivalence between “if p ∈ K and q ∈ F ” and “p ∈ K → q ∈ F →”, which217

demonstrates some logical reasoning ability. However, note that the formalization is not completely218

idiomatic, as [compact_space K] or (hK : is_compact K) would be preferred to the model’s219

(hK : compact_space K).220

Case study 2. The following problem, exercise 6.4.2 from Michael Artin’s Algebra, is an example221

of vanilla Code-davinci-002 making a mistake that is rectified by prompt retrieval.222

NL: Prove that no group of order pq, where p and q are prime, is simple.

Code-davinci-002 output:
theorem exercise_6_4_2 {G : Type*} [group G] [fintype G] {p q : N}
(hp : nat.prime p) (hq : nat.prime q) (h : fintype.card G = p * q) :
¬ simple_group G

Code-davinci-002 + retrieval output:
theorem exercise_6_4_2 {G : Type*} [group G] [fintype G] {p q : N}
[hp : fact(nat.prime p)] [hq : fact(nat.prime q)]
(h : fintype.card G = p * q) :
¬ is_simple_group G

223

Vanilla Code-davinci-002 makes a single lexical error: the model has correctly formalized the hy-224

potheses of the problem, but has tried to use a nonexistent predicate simple_group instead of the225

correct is_simple_group. The retrieval-augmented model uses the correct declaration because226

one of the retrieved mathlib statements explicitly uses is_simple_group.227

Case study 3. The following is an incorrect formalization of exercise 6.16 from Sheldon Axler’s228

Linear Algebra produced by Code-davinci-002. The retrieval-augmented Code-davinci-002 autofor-229

malization, not shown here, is also incorrect.230

8

NL: Suppose U is a subspace of V . Prove that U⊥ = {0} if and only if U = V

Code-davinci-002 output:
theorem exercise_6_16 {K : Type*} [field K]
{V : Type*} [add_comm_group V] [vector_space K V] {U : subspace V} :
U.orthogonal = {0} ↔ U = ⊤

ProofNet label:
theorem exercise_6_16 {K : Type*} [is_R_or_C K] [inner_product_space K V]
(U : submodule K V) :
U.orthogonal = ⊥ ↔ U = ⊤

231

Here, Code-davinci-002 makes three straightforward lexical mistakes: in mathlib, vector spaces232

over a field K are denoted by module K V rather than vector_space K V, subspaces of a vector233

space by submodule K V rather than subspace V, and the trivial subspace is denoted by ⊥ rather234

than {0}. However, the model also makes a much more significant logical error. In order for the235

orthogonal complement U⊥ of a subspace to make sense, the space must be endowed with a inner236

product space structure rather than merely a vector space structure, which is expressed in mathlib as237

inner_product_space K V. Furthermore, inner product spaces are only defined over the real and238

complex fields, so one must also declare [is_R_or_C K]. Reliably inferring these kinds of implicit239

hypotheses is a major challenge for autoformalization systems.240

Case Study 4: Looping. When generating formal and natural language theorem statements with241

PROOFGPTs, the model will often repeatedly generate the same short phrase instead of producing242

a plausible theorem. For example, consider the attempted formalization of exercise 10.1.13 from243

Michael Artin’s Algebra generated by PROOFGPT 6.7B via in-context learning.244

NL: An element x of a ring R is called nilpotent if some power of x is zero.
Prove that if x is nilpotent, then 1 + x is a unit in R.

PROOFGPT-6.7b output:
theorem nilpotent_of_nilpotent_of_nilpotent_of_nilpotent_of_nilpotent
nilpotent_of_nilpotent_of_nilpotent_of_nilpotent_of_nilpotent_of. . .

245

Prior work on decoding methods has shown that the likelihood of a repeated phrase increases with246

each repetition, and that greedy decoding generates text with higher likelihood than natural text247

[Holtzman et al., 2019]. These two findings constitute a plausible explanation for repetitive looping248

if the correct autoformalization is assigned low likelihood by the model. We observe that repetitive249

looping does not occur with Code-davinci-002, suggesting that the problem may disappear with250

scale (although there are many other differences between our small-scale models and Code-davinci-251

002).252

6 Related Work253

Language modeling for theorem proving Language models have found success in theorem prov-254

ing both in the natural language setting [Lewkowycz et al., 2022, Welleck et al., 2021a], and within255

many major ITPs such as Metamath [Polu and Sutskever, 2020], Isabelle [Jiang et al., 2022a, First256

et al., 2023], and Lean [Han et al., 2021b, Polu et al., 2022]. Popular benchmarks for evaluating257

language model-based provers are Hendrycks et al. [2021b] and Welleck et al. [2021a] for natural258

language, and Zheng et al. [2022] for formal.259

Autoformalization Recent work in autoformalization with language models was sparked by Wu260

et al. [2022a], which demonstrated that models can autoformalize Isabelle theorem statements via261

in-context learning. In Jiang et al. [2022b], the authors demonstrate a method for autoformalizing262

proofs in Isabelle. However, their method depends on the availibility of a performant black-box263

automated theorem prover, which is not available for Lean at the time of writing.264

9

Interactive Theorem Proving Work in formal theorem proving and autoformalization depends on265

libraries of formalized mathematics. This work directly depends on Lean’s mathlib, but indirectly266

benefits from lessons learned from other proofs systems such as Coq [Bertot and Castéran, 2004],267

Mizar [Grabowski et al., 2010], and Isabelle [Nipkow et al., 2002].268

Unsupervised Machine Translation Because the amount of parallel formal and natural language269

text is negligible, autoformalization faces many of the same challenges as unsupervised machine270

translation [Lample et al., 2017, Conneau et al., 2018, Lample et al., 2018, Han et al., 2021a, Garcia271

et al., 2023]. Our distilled backtranslation method is inspired by the distilled and iterated backtrans-272

lation algorithm of Han et al. [2021a]. However, the authors of this work regard backtranslation as273

a temporary workaround and foresee that in-context learning will be enough to elicit maximal per-274

formance from a sufficiently good language model, as is now the case for unsupervised translation275

[Garcia et al., 2023].276

7 Conclusion277

We introduced ProofNet, a benchmarking consisting of parallel natural language theorem state-278

ments, natural language proofs, and formal theorem statements in Lean 3. We have shown that279

pre-trained large language models achieve non-trivial but far from consistent performance via in-280

context learning on the autoformalization of ProofNet statements. Moreover, we have proposed281

prompt retrieval and distilled backtranslation, two methods that improve autoformalization perfor-282

mance above baseline.283

Acknowledgments284

The authors would like to thank the Hoskinson Center for Formal Mathematics at Carnegie Mellon285

University for its generous funding and for providing a stimulating work environment. We addi-286

tionally thank EleutherAI for providing compute to train the PROOFGPT models. Piotrowski was287

supported also by the grant of National Science Center, Poland, no. 2018/29/N/ST6/02903, and by288

the Kosciuszko Fundation. Finally, we would like to thank Eric Wieser, Kaiyu Yang, and Junyan Xu289

for spotting errors in the dataset.290

References291

The Isabelle Archive of Formal Proofs. https://www.isa-afp.org/.292

Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali, Leo Gao, Eric Hal-293

lahan, Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip Parker, Michael Pieler, Shivanshu294

Purohit, Tri Songz, Wang Phil, and Samuel Weinbach. GPT-NeoX: Large Scale Autoregres-295

sive Language Modeling in PyTorch, 8 2021. URL https://www.github.com/eleutherai/296

gpt-neox.297

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development - Coq’Art:298

The Calculus of Inductive Constructions. Springer, 2004.299

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Halla-300

han, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Aviya Skowron, Lin-301

tang Sutawika, and Oskar van der Wal. Pythia: a scaling suite for language model interpretabil-302

ity research. Computing Research Repository, 2023. doi: 10.48550/arXiv.2201.07311. URL303

https://arxiv.org/abs/2304.01373. version 1.304

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-305

wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,306

Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.307

Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz308

10

https://www.isa-afp.org/
https://www.github.com/eleutherai/gpt-neox
https://www.github.com/eleutherai/gpt-neox
https://www.github.com/eleutherai/gpt-neox
https://arxiv.org/abs/2304.01373

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec309

Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL310

https://arxiv.org/abs/2005.14165.311

Kevin Buzzard, Johan Commelin, and Patrick Massot. Formalising perfectoid spaces. In Jas-312

min Blanchette and Catalin Hritcu, editors, Proceedings of the 9th ACM SIGPLAN Interna-313

tional Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, Jan-314

uary 20-21, 2020, pages 299–312. ACM, 2020. doi: 10.1145/3372885.3373830. URL https:315

//doi.org/10.1145/3372885.3373830.316

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared317

Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,318

Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,319

Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,320

Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-321

tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex322

Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,323

Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,324

Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob325

McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating326

large language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.327

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou.328

Word translation without parallel data. In International Conference on Learning Representations,329

2018.330

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von331

Raumer. The Lean theorem prover (system description). In Amy P. Felty and Aart Middeldorp,332

editors, Conference on Automated Deduction (CADE) 2015, pages 378–388. Springer, 2015.333

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and334

repair with large language models, 2023.335

Simon Frieder, Luca Pinchetti, Alexis Chevalier, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas336

Lukasiewicz, Philipp Christian Petersen, and Julius Berner. Mathematical capabilities of chatgpt,337

2023.338

Xavier Garcia, Yamini Bansal, Colin Cherry, George Foster, Maxim Krikun, Fangxiaoyu Feng,339

Melvin Johnson, and Orhan Firat. The unreasonable effectiveness of few-shot learning for ma-340

chine translation, 2023. URL https://arxiv.org/abs/2302.01398.341

Herbert L. Gelernter. Realization of a geometry theorem proving machine. In IFIP Congress, 1959.342

Adam Grabowski, Artur Kornilowicz, and Adam Naumowicz. Mizar in a nutshell. J. Formalized343

Reasoning, 3(2):153–245, 2010.344

Jesse Michael Han, Igor Babuschkin, Harrison Edwards, Arvind Neelakantan, Tao Xu, Stanislas345

Polu, Alex Ray, Pranav Shyam, Aditya Ramesh, Alec Radford, and Ilya Sutskever. Unsupervised346

neural machine translation with generative language models only, 2021a. URL https://arxiv.347

org/abs/2110.05448.348

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W. Ayers, and Stanislas Polu. Proof artifact349

co-training for theorem proving with language models, 2021b. URL https://arxiv.org/abs/350

2102.06203.351

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob352

Steinhardt. Measuring massive multitask language understanding. In International Conference on353

Learning Representations, 2021a. URL https://openreview.net/forum?id=d7KBjmI3GmQ.354

11

https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3372885.3373830
https://doi.org/10.1145/3372885.3373830
https://doi.org/10.1145/3372885.3373830
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2302.01398
https://arxiv.org/abs/2110.05448
https://arxiv.org/abs/2110.05448
https://arxiv.org/abs/2110.05448
https://arxiv.org/abs/2102.06203
https://arxiv.org/abs/2102.06203
https://arxiv.org/abs/2102.06203
https://openreview.net/forum?id=d7KBjmI3GmQ

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,355

and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021b.356

URL https://arxiv.org/abs/2103.03874.357

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text358

degeneration, 2019. URL https://arxiv.org/abs/1904.09751.359

Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Een, Francois Chollet, and Josef360

Urban. Deepmath - deep sequence models for premise selection. In D. Lee, M. Sugiyama,361

U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Sys-362

tems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/363

paper/2016/file/f197002b9a0853eca5e046d9ca4663d5-Paper.pdf.364

Albert Q. Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygód, Piotr365

Mio, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to integrate language models and366

automated theorem provers, 2022a. URL https://arxiv.org/abs/2205.10893.367

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée368

Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem369

provers with informal proofs, 2022b. URL https://arxiv.org/abs/2210.12283.370

Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. Lisa: Language models of371

isabelle proofs. In 6th Conference on Artificial Intelligence and Theorem Proving, pages 378–392,372

2021.373

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,374

Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal375

theorem provers with informal proofs. In The Eleventh International Conference on Learning376

Representations, 2023. URL https://openreview.net/forum?id=SMa9EAovKMC.377

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large378

language models are zero-shot reasoners, 2022. URL https://arxiv.org/abs/2205.11916.379

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. Unsupervised380

machine translation using monolingual corpora only, 2017. URL https://arxiv.org/abs/381

1711.00043.382

Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato.383

Phrase-based & neural unsupervised machine translation. In Proceedings of the 2018 Conference384

on Empirical Methods in Natural Language Processing, 2018.385

Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat, Gabriel386

Ebner, Aurélien Rodriguez, and Timothée Lacroix. Hypertree proof search for neural theorem387

proving, 2022. URL https://arxiv.org/abs/2205.11491.388

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-389

masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam390

Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-391

guage models, 2022. URL https://arxiv.org/abs/2206.14858.392

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What393

makes good in-context examples for gpt-3?, 2021.394

The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIG-395

PLAN International Conference on Certified Programs and Proofs. ACM, jan 2020. doi:396

10.1145/3372885.3373824. URL https://doi.org/10.1145%2F3372885.3373824.397

12

https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/1904.09751
https://proceedings.neurips.cc/paper/2016/file/f197002b9a0853eca5e046d9ca4663d5-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/f197002b9a0853eca5e046d9ca4663d5-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/f197002b9a0853eca5e046d9ca4663d5-Paper.pdf
https://arxiv.org/abs/2205.10893
https://arxiv.org/abs/2210.12283
https://openreview.net/forum?id=SMa9EAovKMC
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/1711.00043
https://arxiv.org/abs/1711.00043
https://arxiv.org/abs/1711.00043
https://arxiv.org/abs/2205.11491
https://arxiv.org/abs/2206.14858
https://doi.org/10.1145%2F3372885.3373824

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qiming398

Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, Johannes Heidecke, Pranav Shyam, Boris399

Power, Tyna Eloundou Nekoul, Girish Sastry, Gretchen Krueger, David Schnurr, Felipe Petroski400

Such, Kenny Hsu, Madeleine Thompson, Tabarak Khan, Toki Sherbakov, Joanne Jang, Peter401

Welinder, and Lilian Weng. Text and code embeddings by contrastive pre-training, 2022.402

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant for403

Higher-Order Logic. Springer, 2002.404

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic405

evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association406

for Computational Linguistics, pages 311–318, 2002.407

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving,408

2020. URL https://arxiv.org/abs/2009.03393.409

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya410

Sutskever. Formal mathematics statement curriculum learning, 2022. URL https://arxiv.411

org/abs/2202.01344.412

Markus N. Rabe and Christian Szegedy. Towards the automatic mathematician. In André Platzer and413

Geoff Sutcliffe, editors, Automated Deduction – CADE 28, pages 25–37, Cham, 2021. Springer414

International Publishing. ISBN 978-3-030-79876-5.415

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,416

Marc Lanctot, L. Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen Si-417

monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-418

ment learning algorithm. ArXiv, abs/1712.01815, 2017.419

Christian Szegedy. A promising path towards autoformalization and general artificial intelligence. In420

Christoph Benzmüller and Bruce Miller, editors, Intelligent Computer Mathematics, pages 3–20,421

Cham, 2020. Springer International Publishing. ISBN 978-3-030-53518-6.422

Szymon Tworkowski, Maciej Mikua, Tomasz Odrzygód, Konrad Czechowski, Szymon Antoniak,423

Albert Jiang, Christian Szegedy, ukasz Kuciski, Piotr Mio, and Yuhuai Wu. Formal premise se-424

lection with language models, 2022. URL http://aitp-conference.org/2022/abstract/425

AITP_2022_paper_32.pdf.426

Mingzhe Wang and Jia Deng. Learning to prove theorems by learning to generate theorems, 2020.427

Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural translation428

of informal to formal mathematics. In Florian Rabe, William M. Farmer, Grant O. Passmore,429

and Abdou Youssef, editors, Intelligent Computer Mathematics, pages 255–270, Cham, 2018.430

Springer International Publishing. ISBN 978-3-319-96812-4.431

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, and Kyunghyun432

Cho. Naturalproofs: Mathematical theorem proving in natural language, 2021a. URL https:433

//arxiv.org/abs/2104.01112.434

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, and Kyunghyun Cho.435

Naturalproofs: Mathematical theorem proving in natural language. In Thirty-fifth Conference on436

Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021b. URL437

https://openreview.net/forum?id=Jvxa8adr3iY.438

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Naturalprover:439

Grounded mathematical proof generation with language models, 2022. URL https://arxiv.440

org/abs/2205.12910.441

Daniel Whalen. Holophrasm: a neural automated theorem prover for higher-order logic, 2016.442

13

https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2202.01344
https://arxiv.org/abs/2202.01344
https://arxiv.org/abs/2202.01344
http://aitp-conference.org/2022/abstract/AITP_2022_paper_32.pdf
http://aitp-conference.org/2022/abstract/AITP_2022_paper_32.pdf
http://aitp-conference.org/2022/abstract/AITP_2022_paper_32.pdf
https://arxiv.org/abs/2104.01112
https://arxiv.org/abs/2104.01112
https://arxiv.org/abs/2104.01112
https://openreview.net/forum?id=Jvxa8adr3iY
https://arxiv.org/abs/2205.12910
https://arxiv.org/abs/2205.12910
https://arxiv.org/abs/2205.12910

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and Chris-443

tian Szegedy. Autoformalization with large language models, 2022a. URL https://arxiv.444

org/abs/2205.12615.445

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing446

transformers. In International Conference on Learning Representations, 2022b. URL https:447

//openreview.net/forum?id=TrjbxzRcnf-.448

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants, 2019.449

URL https://arxiv.org/abs/1905.09381.450

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark451

for formal olympiad-level mathematics. In The Tenth International Conference on Learning452

Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL453

https://openreview.net/forum?id=9ZPegFuFTFv.454

A PROOFGPT training455

Table 5 displays hyperparameters for PROOFGPT training on the proof-pile.456

B Problem Sources457

The following is a complete list of sources ProofNet draws from:458

• Analysis: Walter Rudin’s Principles of Mathematical Analysis 3rd ed, Charles C. Pugh’s459

Real Mathematical Analysis 1st ed, Elias M. Stein and Rami Shakarchi’s Complex Analysis460

1st ed.461

• Linear Algebra: Sheldon Axler’s Linear Algebra Done Right 2nd ed.462

• Abstract Algebra: David S. Dummit and Richard M. Foote’s Abstract Algebra 3rd ed, I.N.463

Herstein’s Abstract Algebra 3rd ed, and Michael Artin’s Algebra 1st ed.464

• Topology: James Munkres’ Topology 2nd ed.465

• Examinations: Putnam Competition.466

C Comparison to Existing Benchmarks467

For a comparison of ProofNet to existing mathematical reasoning benchmarks, see Table 4468

D Prompts469

Prompts are viewable in the open-source repository6. The retrieval knowledge base and the code470

for generating it is also available in the repository7. We use a 12-shot prompt for Code-davinci-002471

autoformalization and informalization, and a 6-shot prompt for PROOFGPT autoformalization and472

informalization. We give PROOFGPT models fewer examples because of its shorter context (2048473

tokens compared to 8192), we only use the last six examples when prompting PROOFGPT.474

For retrieval augmented models, we use a 3-shot prompt, where each example consists of 4 reference475

formal statements and one NL-formal pair.476

6https://github.com/zhangir-azerbayev/ProofNet/tree/main/eval/prompts
7https://github.com/zhangir-azerbayev/ProofNet/blob/main/train_backtranslation/

make_data/docgen_export_with_nl/docgen_export_with_nl.jsonl

14

https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2205.12615
https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=TrjbxzRcnf-
https://arxiv.org/abs/1905.09381
https://openreview.net/forum?id=9ZPegFuFTFv
https://github.com/zhangir-azerbayev/ProofNet/tree/main/eval/prompts
https://github.com/zhangir-azerbayev/ProofNet/blob/main/train_backtranslation/make_data/docgen_export_with_nl/docgen_export_with_nl.jsonl
https://github.com/zhangir-azerbayev/ProofNet/blob/main/train_backtranslation/make_data/docgen_export_with_nl/docgen_export_with_nl.jsonl

MATH∗ MMLU-STEM∗∗ PISA∗∗∗ MiniF2F† NaturalProofs†† GHOSTS ††† ProofNet
(ours)

Contains formal? 7 7 3 3 7 7 3
Contains natural language? 3 3 7 3 3 3 3

Problem Levela HS HS+UG Unrestricted HS UG+G HS+UG+G UG
Problem diversityb Low High High Low High High High
Answer format Numerical Multi-choice Text Text Text Text Text
Multi-task 7 7 7 3 7 3 3
Proof-based task available? 7 7 3 3 3 3 3

Training set? 3 3 3 7 3 7 7
Validation + test size 5000 3364 4000 488 3825 733 371

Table 4: A comparison of ProofNet to standard benchmarks for evaluating the mathematical capa-
bilities of language models. ∗ Hendrycks et al. [2021b]. ∗∗ Hendrycks et al. [2021a]. ∗∗∗ Jiang
et al. [2021]. † Zheng et al. [2022], Jiang et al. [2023]. †† Welleck et al. [2021b]. ††† Frieder et al.
[2023]. a: HS refers to “high school” UG refers to “undergraduate”, and G refers to “graduate”.
The problem level of PISA is referred to as “unrestricted” because PISA is based on the Archive
of Formal Proofs (AFP) [Isa], which is a library of formalized mathematics containing theorems at
a wide variety of levels. b: MATH and MiniF2F are labelled as low diversity because they only
contain high-school level Olympiad problems. MMLU-STEM, PISA, and ProofNet are labelled as
high diversity because they covers multiple parts of the mathematics curriculum.

Setting

Parameter 1.3B 6.7B
Tokens 10.5 billion
Epochs 1.3
Training Steps 40,000
Learning Rate Max 2 · 10−4 1.2 · 10−4

Learning Rate Min 2 · 10−5 1.2 · 10−5

Optimizer Adam
Adam Betas (0.9, 0.95)
Adam Eps 1 · 10−8

Weight Decay 0.1
LR Scheduler Cosine w/ warm-up
LR Warm-up Steps 400
Effective Batch Size 128
Precision FP16
Gradient Clipping 1.0

Table 5: PROOFGPT training hyperparameters.

E Finetuning477

Our fine-tuning dataset of backtranslations consists of 90,530 NL-formal pairs. Both the Pythia-1.4b478

and PROOFGPT-1.3B model are finetuned according to the hyperparameters above. The models479

evaluated in Table 3 are the minimum validation loss checkpoint, which occurs at 15,000 training480

steps.481

15

Parameter Setting

Training Steps 20,000
Learning Rate (LR) 5 · 10−5

Optimizer AdamW
Adam Betas (0.9, 0.999)
Adam Eps 1 · 10−8

Weight Decay 0.1
LR Scheduler Cosine w/ warm-up

LR Warm-up Steps 2000
Effective Batch Size 24

Precision FP16
Gradient Clipping 1.0

Table 6: Student training hyperparameters.

16

	Introduction
	The ProofNet Benchmark
	The proofGPT models and the proof-pile dataset
	Methodology and Experiments
	Autoformalization methods
	Few-shot autoformalization and informalization
	Prompt retrieval
	Distilled backtranslation

	Results and Discussion
	In-context learning
	Prompt Retrieval and Distilled Backtranslation
	Qualitative Analysis

	Related Work
	Conclusion
	proofGPT training
	Problem Sources
	Comparison to Existing Benchmarks
	Prompts
	Finetuning

