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Abstract

Large Language Models (LLMs) have demonstrated remarkable success in both tex-
tual and multimodal domains. However, this success often comes with substantial
computational costs, particularly when handling lengthy sequences of multimodal
inputs. This has sparked many efforts focusing on enhancing efficiency during
training and inference. In this study, we investigate the computation redundancy
in Multimodal Large Language Models (MLLMs) during inference. We propose
different methods to skip computations, such as skipping entire blocks, FFN or
self-attention (SA) layers. Additionally, we explore parallelizing certain layers,
such as FFN and SA layers. Our findings validate that (1) significant amount
of computations can be avoided at inference time, especially for tasks such as
Visual Question Answering (VQA). (2) Skipping computations during training can
recover 97% of the original performance, even when skipping half of the blocks
or removing 70% of the weights. Alternatively, (3) properly training with smaller
LLMs can yield comparable performance to LLMs 2 or 3 times larger. To conclude,
we extend our investigation to recent MLLMs, such as LLaVA-1.5, showing similar
observations. Our work show that there is redundant computations inside MLLMs
and thus the potential for significantly improving inference costs without sacrificing
performance. The code is available here: https://github.com/mshukor/ima-lmms.

1 Introduction

Large Language Models (LLMs) [26, 82, 10, 52, 70] have been a major step towards human level
intelligence. These models are capable of achieving reasonable scores on almost any textual task that
can be done by humans.

Beyond the textual realm, LLMs are now the main building block for large multimodal models
(LMMs) or multimodal LLMs (MLLMs) [2, 7, 14, 52]. However, training LLMs on more modalities
requires significantly more computation resources due to the complexity of mulitmodal inputs.
Multimodal inputs incur longer sequence length, additional encoders to tokenize different modalities
and additional latency to preprocess each example.

Recent approaches have tried to overcome this burden by freezing all pretrained model parameters
and training only the mapping module [48, 63, 47, 40, 11, 78, 71]. These models only train a modest
number of parameters (few millions) and are able to attain reasonable performance on a wide range
multimodal tasks. Besides the trainable parameters, complementary works tackle also data-efficiency
and avoid costly multimodal pretraining [63, 47, 71]. When parameter and data-efficiency are
combined, the training cost is reduced significantly, and becomes affordable by consumer grade
GPUs.

However, reducing the inference cost of MLLMs is a problem that gather little of attention. These
models, bottelnecked with an LLM, are significantly slow at inference and consume large amount of
RAM and storage memory, hindering their deployment in the real world.
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Figure 1: Illustration of the proposed techniques to skip and parrallelize computations in multimodal
LLMs. From left to right: Skipping entire blocks (Skip Block), skipping only the FFN layers (Skip FFN),
skipping the self-attention layers (Skip SA), parrallelizing the FFN and SA, parrellizing entire blocks. These are
applied each interval I of layers, starting at a specific layer (sl).

In this work, we hypothesize that LLMs are highly overparametrized for general multimodal tasks,
and contain redundant parameters, layers and blocks that can be bypassed.

Our work is also inspired by the recent study [61] that highlights the slowly changing embeddings for
both textual and perceptual tokens, a phenomenon that has been observed with LLMs [67, 25, 41].

We investigate the computation redundancy at different granularity levels. We focus on skipping
computations for both visual and textual tokens during autoregressive generation. Specifically, we
start our study with pretrained models and test if we can skip entire blocks, FFN or SA layers and
individual neurons, without any additional training. In addition, we also experiment with parrallizing
the SA and FFN layers, or 2 entire blocks.

We continue our investigation focusing on skipping entire blocks, but during training. This helps
to reduce both the training and inference cost. We show that we can retain more than 97% of the
performance when training the mapping module with highly sparse LLMs; such as skipping half
of the layers or removing more than 70% of the parameters. Finally, we show that almost the same
original performance can be retained by properly training multimodel models with smaller LLMs.

In a nutshell, we propose a framework to study and compare different task-agnostic compression
methods, for image, video and audio language tasks. Our study led to the following findings:

• Skipping computations for the generated textual tokens leads only to slight performance
degradation, especially for VQA tasks.

• Training the mapping module while skipping computations can retain almost the original
performance, even when 70% of the parameters are removed or 50% of the blocks are
skipped.

• Properly training with smaller LLMs (e.g. OPT-2.7B) can achieve the same performance as
larger ones (e.g. OPT-6.7B).

• Similar observations holds for the larger-scale MLLMs such as LLaVA-1.5.

2 Related work

LLMs and LMMs. Large Language Models (LLMs) [5, 26, 10, 56, 82, 70, 52] serve as the
foundational components for contemporary Large Multimodal Models (LMMs). Most of these LMMs
either utilize frozen LLMs [2, 3, 31] or fine-tune LLMs post-initialization [8, 7, 14]. Beyond scale,
LLMs have facilitated the development of unified models capable of addressing multiple multimodal
tasks [64, 49, 42, 72, 43, 12] in a unified framework. Efficient adaptation of unimodal models
[48, 63, 78, 47, 81, 29, 84, 11, 51] represents a vital research avenue aiming to circumvent costly
training by maintaining LLMs frozen and training a handful of adaptation parameters. Despite being
significantly more efficient, they also compete with end-to-end trained models [35, 62, 13, 34, 65]
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across image/video/audio and language tasks [63, 73, 75, 53]. However, despite their training
efficiency, these models still incur significant costs at inference.

Compression for LLMs. Model compression has long been a research focus, particularly with the
rise of large models. Approaches have been developed to effectively and scalably compress LLMs
with hundreds of billions of parameters [5, 82, 56]. Post-training pruning methods aim to sparsify the
model using a limited number of examples without additional model training. These methods employ
layer-wise optimization [17, 18, 30, 19] or achieve efficiency with just a few model inferences [68].
While most pruning approaches target unstructured pruning, structured pruning results in actual wall
clock time reduction [45, 41]. Post-training quantization [6, 58, 20, 15, 80] reduces the precision of
model parameters to 8 bits, 4 bits, or lower, leading to increased efficiency and support across a wide
range of hardware architectures. Early exiting methods directly generate the output from intermediate
layers without using the last LLM layers [57, 9]. While conditional computations approaches, skip
computations based on the input sample [1, 59, 55], our approach is static and input-agnostic.

Compression for multimodal models. While numerous approaches focus on compressing LLMs,
fewer methods have been proposed for multimodal models. Existing approaches include knowledge
distillation from powerful models [16, 74], unstructured pruning based on the Lottery Ticket Hypoth-
esis (LTH) [22, 69], or structured pruning [60]. However, most of these methods require a significant
amount of additional cost when applied to very large models such as MLLMs.

3 Framework for compressing preceptually augmented LLMs

3.1 General MLLMs framework

We investigate a general architecture comprising a frozen LLM, a trainable mapping module (C), and
frozen perceptual encoders (EM ) for various modalities (M), such as image (I), video (V), and audio
(A). The input to the LLM, denoted as X, is a concatenation of textual tokens (T = [t1, ..., tnT

])
and multimodal or perceptual tokens, referred to as the prompt (P = [p1, ..., pnP

]). The prompt
is generated by encoding the modality-specific input (XM) with the corresponding encoder and
projecting it to the LLM input space using the mapping module. This can be expressed as follows:

O = LLM (X)

X = [P ;T ] P = C(EM (XM)) T = ET (XT ) (1)

The LLM consists of N blocks Bl
l∈{0,...,N−1}, where each block slightly refine the input tokens X l:

XN =
N−1∑
l=0

Bl(X l), (2)

And each block B can be expressed as:

X l+1 = X1 + FC2(g(FC1(LN2(X1))))

X1 = X l + SA(LN1(X l)), (3)

We mainly focus on the parameter/data-efficient setup, where both the LLMs and the perceptual
encoders are kept frozen and only a light-weight mapping module (few millions parameters) is
trained.

3.2 Efficient MLLMs baselines

We follow the same setup of previous works [63, 47, 37, 71], where we finetune one mapping module
for each multimodal task. We train multiple models on image, video, and audio-text datasets. We
adopt the baselines proposed in [61], that adopt a lightweight transformer with learnable queries
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and self-attention mechanisms to attend to perceptual tokens. This transformer operates in a low-
dimensional space, facilitated by down/up projection layers, and limits the number of learnable
queries. Our baselines are similar to [71], however, we use significantly less number of learnable
query (e.g., 10) and prioritize a deeper architecture consisting of 5 blocks with hidden dimension of
256 over a wider one with a hidden dimension. We found this deeper architecture to work better in
practice with reduced number of parameters. These baselines are trained with OPT-6.7B [82], and
our study is complemented with Vicuna-v1.5-7B [83]. We utilize different powerful encoders for
images (CLIP [54]), videos (X-CLIP [46]), and audios (AST [23]).

3.3 Implementation details

We adopt the implementation details outlined in [61]. Specifically, we employ the AdamW optimizer
with a learning rate of 2e-4, which decreases using a cosine annealing scheduler to a minimum of
1e-5. During training, we use a total batch size of 16 for captioning and 64 for VQA datasets. We set
the number of epochs to 20 to ensure convergence, although many models converge within just a
couple of epochs. The best checkpoint is selected for evaluation; for instance, the image captioning
model typically converges after approximately 4 epochs. Training is conducted on 8 V100 GPUs,
and the duration varies depending on the task; for instance, each epoch takes about 30 minutes for
the large VQAv2 dataset, while smaller datasets like Audiocaps and MSVD-QA require around 10
minutes per epoch.

3.4 Datasets and metrics

Following prior works, we select several public multimodal datasets that encompass two representative
tasks: captioning and question-answering (QA) across various modalities, including image (VQAv2
[24], COCO caption [38]), video (MSVD [76], MSRVTT [77]), and audio (Audiocaps [28]). For
QA datasets, we report accuracy in an open-ended generation setup with exact match, while for
captioning, we report the CIDEr metric.

4 Skipping computations for MLLMs

4.1 Skipping computations

Method. We propose to skip entire layers in an input and task-agnostic manner. LLMs consists
of many repetitive blocks which we argue that they are redundant and can be bypassed. In addition,
previous works have demonstrated the slowly changing embeddings in LLMs [67, 25, 41] or MLLMs
[61]. Specifically, when skipping entire blocks, Equation (2) can be written as:

XN−1 =
∑

l≥sl; l % I=0; l∈{0,...,N−1}

Bl(X l), (4)

Which means that the skipping happens starting from layer sl and each interval I (e.g., sl = 0 and
I = 2 skip half the blocks). Inside the block, we also investigate if we can skip FFN or SA layers. To
skip FFNs, each interval (I) of layers, Equation (3) can be written as:

X l+1 = X l + SA(LN1(X l)), (5)

And similarly when skipping SA layers:

X l+1 = X l + FC2(g(FC1(LN2(LN1(X l)))) (6)

Experimental results. Fig. 2 presents a comparison of skipping blocks, feed-forward networks
(FFNs), or self-attention (SA) layers across various multimodal datasets. For question-answering
(QA) tasks, we observe that we can skip up to 33% of the blocks while retaining over 90% of the
original performance. However, captioning tasks pose greater challenges due to the larger number of
generated textual tokens, with the ability to skip between 15% and 25% of the blocks depending on
the dataset. In general, skipping entire blocks yields the best results, whereas skipping SA layers
results in the lowest performance, underscoring the significance of SA layers for these models.
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Figure 2: Skipping computations inside MLLMs. We skip entire blocks (Skip Block), FFN (Skip
FFN) or SA layers (Skip SA). The skipping start at layer 4 and happen each couple of layers (Layer
Interval). The gray line indicate 90% of original performance (shown in yellow).

Figure 3: Which tokens to skip? We compare between skipping layers, only for the generated
textual tokens (T), and all tokens including the prompts (P+T).

Which tokens to skip? In this comparison, we examine the impact of skipping only the generated
textual tokens, as done in the previous section, versus skipping all tokens, including the prompt (P)
containing perceptual tokens, the BOS token, and the textual tokens corresponding to questions in
QA tasks. As illustrated in Fig. 3, for QA tasks, we observe that skipping up to 25% of the blocks for
all tokens maintains 90% of the performance. Generally, skipping layers for the generated tokens
yields higher scores.

Figure 4: Where to start skipping layers? Skipping early layers leads to further decrease in scores.
Starting at layer 8 (sl=8) leads to the best performance, especially when skipping many blocks.

Where to start skipping layers? Prior studies [61] have highlighted a significant change in
both textual and perceptual embeddings at early layers, highlighting their importance, compared to
later ones. To further investigate this phenomenon, we compare different starting layers for block
skipping. As depicted in Fig. 4, we observe that avoiding skipping early layers leads to improvements,
particularly when skipping a large number of layers (50%). This effect is more pronounced when
skipping perceptual tokens as well.

4.2 Parrallelizing computations

Method. In this section, we propose to parrallelize different layers, this theoretically helps to reduce
the inference time on GPUs by avoiding sequential computations. Specifically, we parrallelize entire
blocks by replacing Equation (2) as follows:

XN−1 =
∑

l≥sl; l % I=0; l∈{0,...,N−2}

Bl(X l) +Bl+1(X l+1), (7)
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Inside the block, we also parrallelize the FFN and SA each interval (I) of layers by expressing
Equation (3) as follows:

X l+1 = X l + FC2(g(FC1(LN2(X l)))) + SA(LN1(X l)) (8)

Figure 5: Parrellelizing computations inside MLLMs. FFN and SA layers can be cast in parrallel
instead of sequential without sacrificing performance. This is less the case for 2 entire blocks.

Experimental results. Fig. 5 compares two approaches to parallelize computations: FFN and
SA layers inside each block and parallelizing two entire blocks. The results demonstrate that
both approaches perform well for QA tasks. However, parallelizing FFN and SA layers leads to
significantly better results on all datasets.

Table 1: Training with highly sparse LLMs. We train the mapping module from scratch but with
compressed LLM.

Method Tr Time #Param #Tr Param Sparsity COCO ↑ VQAv2 ↑
Reduction CIDEr (test) Acc (Val)

Baseline ×1 (31 min) 6.7B 7M 0.00 132.83 63.49

Wanda (task-specific) ×1 6.7B 7M 0.50 126.81 55.28

Random mask ×1 6.7B 7M 0.47 0.00 0.00
Magnitude (per-out) ×1 6.7B 7M 0.50 19.73 2.28
α-SubNet ×1 6.7B 7M 0.5 106.77 51.77

Random + Tr – 6.7B 7M 0.70 111.43 33.58
Magnitude (per-out) + Tr – 6.7B 7M 0.70 131.37 57.67
Wanda + Tr – 6.7B 7M 0.50 131.15 64.49
Wanda + Tr – 6.7B 7M 0.70 131.81 58.62
α-SubNet + Tr – 6.7B 7M 0.70 132.07 56.75

Skip Block (T) ×1 6.7B 7M 0.5∗ 66.26 61.56
Skip Block (P+T) ×1 6.7B 7M 0.5∗ 20.21 0.13
Skip Block (P+T) + Tr ×1.5 6.7B 7M 0.5∗ 131.53 59.13

4.3 Training with highly sparse LLMs

Training the mapping module from scratch as a remedy for skipping computations. As seen
in previous sections, to preserve the original model performance, the amount of parameters to skip
should be limited. In this context, we propose a remedy: training the mapping module from scratch
with a compressed LLM. We maintain all hyperparameters and training details as the baseline models,
with the only change being the LLM itself, where we either remove weights using Wanda [68] or
α-SubNet [61], or skip entire blocks, applicable to all tokens.

Table 1 presents interesting results. Training with a compressed LLM achieves nearly the same
performance for captioning and over 90% for VQAv2. This holds true when pruning 70% of the
weights or skipping half the blocks (I=2). Moreover, in the case of the latter, besides enhancing
inference efficiency, the training time is reduced by a factor of 1.5. For pruning methods, actual
efficiency gains necessitate specialized hardware.

Comparison with other uncompressed models. To provide context for our findings, Table 2 offers
a comparison with previous methods utilizing uncompressed LLMs. When training with a sparse
LLM, more than 97% of the overall performance can be retained. Interestingly, despite having almost
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Table 2: Comparison between our compressed MLLMs and previous uncompressed ones. Our
models are competitive with previous SoTA despite skipping computations and having smaller
number of trainable parameters.

Method #P/#TP/Sparsity Avg COCO ↑ VQAv2 ↑ MSR-VTT ↑ MSVD-QA ↑ Audiocaps ↑
CIDEr (test) Acc (Val) CIDEr (test) Acc (test) CIDEr (test)

ClipCAP [50] 7B/3.4M/0.00 – 113.08 – – – –
MAPL [47] 7B/3.4M/0.00 – 125.2 43.5 – – –
eP-ALM [63] 6.7B/4M/0.00 63.11 111.6 54.9 48.79 38.40 61.86
DePALM [71] 7B/18.1M/0.00 – 131.29 70.11 49.88 – 69.70

Baseline 6.7B/7M/0.00 72.32 132.83 63.49 58.23 38.83 68.24

α-SubNet [61] 6.7B/7M/0.47 50.25 (69.48%) 106.77 51.77 38.37 31.19 23.15
α-SubNet + Tr 6.7B/7M/0.70 70.33 (97.24%) 132.07 56.75 57.56 38.77 66.52

Skip Block (P+T) 6.7B/7M/0.5∗ 6.28 (8.6%) 20.21 0.13 8.98 0.09 2.000
Skip Block (P+T) + Tr 6.7B/7M/0.5∗ 71.31 (98.6%) 131.53 59.13 58.31 39.08 68.52

half the trainable parameters and removing over 50% of model weights or blocks, our models are
competitive with the current state-of-the-art approach (DePALM [71]) on nearly all tasks except
VQAv2, where we underperform, and MSR-VTT, where we outperform. These results suggest that
LLMs are significantly overparametrized for general multimodal tasks.

Figure 6: Training with smaller LLMs. Training with smaller versions of OPT models leads to
comparable performance to larger ones.

4.4 Training with smaller LLMs

In previous sections, we explored the feasibility of significantly compressing LLMs for general
multimodal tasks. Here, we delve into the possibility of training models with smaller LLMs.

Experimental results. Our models are trained with smaller versions of the OPT model family. We
maintain the same training details as the baseline model, with the exception of the smallest OPT-350M
model (where a smaller learning rate yields better results). Figure 6 presents a comparison between
different LLM sizes. Interestingly, models up to 1.3B parameters exhibit the same performance
for captioning. Similarly, for VQAv2, we can downscale the model to 2.7B parameters without
sacrificing points. However, there is a notable gap, especially for VQAv2, between OPT-350M
and other models. Additionally, compared to OPT-350M, larger models are more computationally
efficient, as evidenced by the high scores after the first epoch. Table 3 further illustrates similar results
across additional multimodal tasks. Particularly, the models with OPT-2.7B parameters compete with
the baseline and previous approaches using larger LLMs. This suggests the feasibility of training with
smaller LLMs, avoiding the high cost associated with larger ones. It is worth noting that previous
works [63] have shown increasing performance with LLM size, but they trained with less powerful
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visual encoders and for fewer epochs. We argue that proper training of the mapping module (e.g.,
better encoders, sufficient training) can diminish the improvement coming from larger LLMs.

Table 3: Comparison with previous SoTA when training with smaller LLMs. Training with
OPT-2.7B leads to competitive performance compared to previous SoTA on diverse multimodal tasks.

Method #P/#TP Avg COCO ↑ VQAv2 ↑ MSR-VTT ↑ MSVD-QA ↑ Audiocaps ↑
CIDEr (test) Acc (Val) CIDEr (test) Acc (test) CIDEr (test)

ClipCAP [50] 7B/3.4M/0.00 – 113.08 – – – –
MAPL [47] 7B/3.4M 125.2 43.5 – – –
eP-ALM [63] 6.7B/4M 111.6 54.9 48.79 38.40 61.86
DePALM [71] 7B/18.1M 131.29 70.11 49.88 – 69.70

Baseline (OPT-6.7B) 6.7B/7M 132.83 63.49 58.23 38.83 68.24

Baseline (OPT-2.7B) 2.7B/7M 132.83 64.18 57.33 40.29 65.47

4.5 Case study for larger scale multitask MLLMs.

In this section, we investigate the generalization of the proposed approaches to the larger scale
multitask setup. We focus on the LLaVA-1.5 [39] model which consists of CLIP-ViT-L, Vicuna-v1.5
connected with an MLP and trained on a collection of public datasets. This model is evaluated on
more recent multimodal benchmarks such as SEED [33], MME [21], POPE [36] ScienceQA (SQA)
and [44], but also on traditional benchmarks such as VQAv2 [24], GQA [27] and TextVQA [66].

Experimental results. Table 4 shows that we can remove 50% of the parameters and maintain more
than 90% of the original performance across several datasets. Computing the pruning score based on
all tokens gives the best results, followed by the prompt (the contains the visual tokens) and then the
textual tokens. We also propose to skip entire blocks (Fig. 7). Similar to previous section, skipping
only the generated textual tokens leads to the best results where we can retain more than 90% of
the original performance. In general, we notice larger degradation in performance compared to the
single task setup (Sec. 4). However that results also suggests the possibility of removing redundant
computations for large scale models.

Table 4: Skipping computations for LLaVA-1.5. Left: Post-training pruning with Wanda by keeping
the weights that are mostly activated by the: prompt (P), textual (T) or all (P+T) tokens.

Method Sparsity GQA ↑ VQAv2 ↑ TextVQA ↑ SQA-IMG ↑ COCO ↑ POPE ↑
Acc (test-dev) Acc (test-dev) Acc (Val) Acc (test) CIDEr (test) Acc (test)

LLaVA-1.5 0.0 % 61.96 78.50 58.20 66.8 110.49 85.96

LLaVA-1.5-Wanda (P + T) 50 % 51.15 (82.58 %) 71.31 (90.82 %) 46.64 (80.06 %) 60.24 (90.23 %) 100.04 (90.52 %) 87.22 (–%)
LLaVA-1.5-Wanda (P) 50 % 48.1 (77.57 %) 68.76 (87.65 %) 41.94 (72.06 %) 54.44 (81.58 %) 76.99 (69.58 %) 85.37 (99.20 %)
LLaVA-1.5-Wanda (T) 50 % 43.93 (70.92 %) 64.11 (81.75 %) 41.74 (71.70 %) 51.86 (77.78 %) 94.09 (85.10 %) 78.28 (90.97 %)

5 Discussion

Single-task vs multi-task MLLMs. In this work, we focus on parameter and data-efficient models
in a single-task setup showing high amount of computation redundancy. We also complement our
work with preliminary results on larger-scale models such as LLaVA-1.5 that are trained in multitask
fashion and can support wider range of tasks, including conducting dialog with humans. On this
setup, we also show similar observations, however we think these baselines requires more adapted
compression techniques to limit the performance degradation.

Dynamic compute. In our study, we focus on static computation skipping techniques, where the
skipping strategy remains constant regardless of the task or input example. These static approaches
are hardware-agnostic and compatible with scaling techniques. However, an alternative direction
involves exploring more adaptive compute strategies, which ideally allocate varying amounts of
computations based on the task’s complexity. While similar approaches have been proposed for
LLMs [1, 57, 32, 4, 59, 55], we believe there is still significant room for improvement in this area.
Ultimately, we view our study as an initial step in highlighting the overparameterization of LLMs
and advocating for greater efforts to reduce their computational costs.
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Figure 7: Skipping computations for LLaVA-1.5. Skipping entire blocks for textual (T) and all
tokens (P+T), each interval of layers. The gray and light gray indicate the original performance and
90% of it.

Limitations. Our study primarily focuses on parameter-efficient MLLMs, where the LLM remains
frozen. We acknowledge that there are other architectures we did not explore, such as those involving
interaction through cross-attention mechanisms [2, 31]. Besides, we did not delve into more complex
multimodal tasks that necessitate reasoning capabilities [79]. Because the main objective of the
paper does not include proposing new SoTA model compression technique, we did not extensively
compare with more recent approaches. Extending our study to encompass these scenarios represents
an important avenue for future research. In addition, we focus on investigating the redundancy that
could lead theoretically to high efficient training and inference. However, the reduction is expected to
be smaller at actual devices as there are many other affecting factors.

6 Conclusion

This study investigates the redundancy of computations in perceptually augmented LLMs (MLLMs)
across various granularity levels. Our experiments reveal the potential for significant reduction in
computations by skipping entire blocks, FFN layers, and even individual neurons. We demonstrate
that training the mapping module with severely compressed LLMs can effectively preserve over 97%
of performance. Alternatively, training with smaller LLMs can achieve comparable performance to
models two or three times larger. We show similar findings across both single-task and multitask
multimodal settings, underscoring their broad applicability. We hope that this work will encourage
future works to focus on methods to reduce the computation cost of MLLMs at both training and
inference stages.
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