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ABSTRACT

We tackle the task of Few-Shot Counting. Given an image containing multiple
objects of a novel visual category and few exemplar bounding boxes depicting the
visual category of interest, we want to count all of the instances of the desired visual
category in the image. A key challenge in building an accurate few-shot visual
counter is the scarcity of annotated training data due to the laborious effort needed
for collecting and annotating the data. To address this challenge, we propose
Vicinal Counting Networks, which learn to augment the existing training data along
with learning to count. A Vicinal Counting Network consists of a generator and
a counting network. The generator takes as input an image along with a random
noise vector and generates an augmented version of the input image. The counting
network learns to count the objects in the original and augmented images. The
training signal for the generator comes from the counting loss of the counting
network, and the generator aims to synthesize images which result in a small
counting loss. Unlike GANs which are trained in an adversarial setting, Vicinal
Counting Networks are trained in a cooperative setting where the generator aims
to help the counting network in achieving accurate predictions on the synthesized
images. We also show that our proposed data augmentation framework can be
extended to other counting tasks like crowd counting. Our code and trained model
will be released for research usage.

1 INTRODUCTION

Visual Counting is the task of predicting the number of instances of a desired category present in
an image, and it is an important computer vision problem with a wide range of applications such
as crowd monitoring, traffic management, inventory management, and wildlife population tracking.
Most of the contemporary visual counters (Zhang et al., 2016; Ranjan et al., 2018; Li et al., 2018; Ma
et al., 2019; Wang et al., 2020a) handle a single visual category at a time, and it is challenging to
adapt these counters to new categories due to the need for training data which is expensive to obtain.
In this work, we are interested in building a general visual counter capable of counting objects of
many visual categories. Our work is inspired by the recent work of Ranjan et al. (2021) that builds
a few-shot visual counter which can generalize to novel classes using only a few examples. In this
few-shot setting, as shown in Fig. 1, the visual counter takes as input an image containing multiple
instances of a novel object category, and few bounding boxes from the same image depicting the
object category, and predicts the number of instances of the novel object category present in the
image. Such a few-shot visual counter is based on the assumption that intra-class variation within
an image is not too extreme, and it can generalize to any novel visual category using only a few
bounding box examples.

Although few-shot counting is a promising approach for counting objects from many visual categories,
the performance of a few-shot counting network is still bounded by the limited amount of training
data. Currently, the largest dataset for this task is FSC147 (Ranjan et al., 2021) with only 3,659
training images from 89 categories. To alleviate the limited size of the training set, we propose
Vicinal Counting Networks (VCNs) that jointly learn to count and augment the existing training
data. VCNs are inspired by the Vicinal Risk Minimization (Chapelle et al., 2001) (VRM) principle,
which is a risk minimization principle which defines a distribution in the vicinity of data points in the
training set, and samples virtual examples from this vicinity distribution to augment the training set.
In recent years, VRM has inspired data augmentation strategies like Mixup (Zhang et al., 2017) and
Manifold Mixup (Verma et al., 2019) which perform linear combination of training examples and their
corresponding labels to create virtual training examples. Mixup performs the linear interpolation in
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Figure 1: Few-shot Counting. Given an image containing multiple instances of a novel class and
few examples of the class to be counted (shown in red), few-shot counting requires predicting the
overall count for the novel class in the image. We present a density map estimation based approach
for few-shot counting, and the overall count for the novel class is obtained by summing all of the
values in the density map.

the input space, while Manifold Mixup performs linear interpolation of hidden layer representations of
training examples. The VRM principle also encompasses other commonly used dataset augmentation
strategies like random rotation, translation, and scaling. All these augmentation strategies rely on
some form of prior knowledge. For instance, Mixup assumes that linear combination of input samples
leads to a corresponding linear combination of associated targets, and random rotation assumes that
rotating an input image leaves the target label unchanged. Unlike these augmentation strategies which
rely on some prior knowledge, VCNs learn the augmentation strategy from the data itself, in a task
dependent fashion. A VCN consists of a generator and a counting network. The generator synthesizes
images from the vicinity of training examples, and the counting network learns to count the objects
in the original and synthesized virtual images. The generator effectively increases the training set
size for the counting network, which helps the counting network in generalizing better. The generator
takes as input an image along with a random noise vector, and generates a new image so that the
counting network achieves a low error on the generated image. The entire system is trained jointly in
a co-operative setting. Note that unlike GANs Goodfellow et al. (2014) whose training involves a
minimax optimization problem which are difficult to tackle, training VCNs involve solving a typical
minimization problem.

We show the effectiveness of the proposed VCNs for few-shot counting task by conducting exten-
sive experiments on the FSC147 dataset, and improve on the previous state-of-the-art results by a
significant margin. We further show that our data augmentation approach can also provide benefits in
other tasks like crowd counting, and lead to state-of-the-art performance on three benchmark crowd
counting datasets. Although the main focus of our work is on few-shot counting, our method can
be extended to other pixel level prediction tasks like semantic segmentation, instance segmentation
etc by replacing the task dependent counting network and the counting loss with an appropriate task
dependent network and corresponding loss.

2 RELATED WORKS

In this work, we are interested in the task of few-shot visual counting. A lot of previous works
have tackled the task of visual counting, but most of them are not developed for few-shot counting.
Instead, most of the previous works treat counting as a fully supervised regression problem, and
handle a single visual category at a time such as human crowd Zhang et al. (2016); Babu Sam et al.
(2018); Sam et al. (2017); Li et al. (2018); Liu et al. (2018); Cao et al. (2018); Ma et al. (2019);
Shi et al. (2019); Liu et al. (2019); Wang et al. (2019); Zhang et al. (2019); Wan & Chan (2019);
Abousamra et al. (2021), cars Mundhenk et al. (2016), animals Arteta et al. (2016b), and cells Arteta
et al. (2016a); Xie et al. (2018); Khan et al. (2016). Most of these approaches predict a density map
given an input image, and the value at each location in the density map corresponds to the density of
the objects of interest present at the corresponding location in the input image. The overall count
can be obtained by summing across all the locations in the density map. It is difficult to scale these
approaches to handle a large number of visual categories since these approaches require a large
number of dot annotations for each new visual category.
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There are few methods for few-shot counting. Lu et al. (2018) present Generic Matching Network
(GMN) which is a class-agnostic visual counting approach that requires relatively less labeled data to
generalize to novel categories. However, GMN still requires a few dozens to hundreds of examples to
generalize to novel categories, and does not perform well if only a few examples are provided Ranjan
et al. (2021). More related to ours is FamNet Ranjan et al. (2021), which is a few-shot visual counter
that can generalize to novel categories given only a few examples. However, the largest existing
few-shot counting dataset Ranjan et al. (2021) on which few-shot visual counters like FamNet can be
trained consists of only a few thousand training images which limits the performance of the existing
few-shot counters. Our work addresses this limited training data issue by learning to generate samples
from the vicinity of training samples.

In theory, existing few-shot detectors Kang et al. (2019); Fan et al. (2020) can be used for few-shot
counting as well. These few-shot detectors can learn to detect novel classes given a few bounding
box examples, and the count can be obtained as the number of detections for an image. However, it is
known that the detectors perform poorly for images with small objects and imagems with high levels
of object density and occlusion Ranjan et al. (2018). Density estimation based approaches Zhang
et al. (2016); Ranjan et al. (2021) are better suited for such scenarios.

Also related to our work is the task of few-shot image classification Lake et al. (2015); Koch et al.
(2015); Vinyals et al. (2016); Santoro et al. (2016); Ravi & Larochelle (2016); Finn et al. (2017)
which involves classifying novel visual categories based on only a few labeled instances of these
novel categories. Although task and model independent few-shot approach like MAML Finn et al.
(2017) can be applied for few-shot counting task Ranjan et al. (2021), most of the few-shot image
classification approaches are not suitable for our pixel level prediction task of few-shot counting.

Data augmentation has been handled by previous works Zhang et al. (2017); Verma et al. (2019), and
these strategies help in achieving better performance on image classification task. However, as will
be shown by our experiments, these strategies do not perform as well when it comes the pixel level
prediction task of few-shot counting.

3 PROPOSED APPROACH

In this section, we will describe the proposed Vicinal Counting Networks (VCNs) for few-shot
counting. VCNs consist of a generator and a task dependent regressor network suitable for the
downstream task of few-shot counting. The generator augments the set of labeled training data, and
the regressor is trained on the augmented training set. Note that the generator is used only at the
training time. At the test time, the generator is discarded and the regressor predicts the count for the
original test image. The architecture of VCN is described in Sec. 3.1, and the training objective is
discussed in Sec. 3.2. Further training details are provided in Sec. 3.3.

3.1 VCN ARCHITECTURE

VCNs are inspired by the Vicinal Risk Minimization principle Chapelle et al. (2001), and the more
recent data augmentation strategies such as Mixup Zhang et al. (2017) and Manifold Mixup Verma
et al. (2019), which aim to draw samples from the vicinity of the training samples to augment the
training set. VCNs, as shown in Fig. 2, consist of two key components: the generator and the task
dependent regressor, which are described next.

3.1.1 THE GENERATOR NETWORK

The goal of the generator is to augment the training data by drawing virtual samples from the vicinity
of a training sample so that the virtual samples adhere to the labels of the training sample. The inputs
to the generator are an input image X ∈ <H×W×3 and an m-dimensional noise vector z ∈ <m, and
the output is an augmented version Xz of the input image.

The generator consists of a mapping network, an encoder, an adaptive instance normalization layer,
and a decoder. The mapping network consists of an 8 layer MLP, similar to the style mapping network
used in Style GAN Karras et al. (2019), and maps the random noise vector z to an intermediate
latent code h(z) = w = (ws, wb). The encoder transforms the input image X into an intermediate
feature representation Q by passing X through a set of convolution layers. The latent code w
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Figure 2: Vicinal Counting Net consists of a generator which augments the training data, and a
regressor which learns to predict the density map. The count can be obtained by summing all the
values in the density map. The regressor is trained on the original and synthesized images. The
generator is used only during training.

is used to transform the first and second order statistics of Q by means of an Adaptive Instance
Normalization (AdaIN) operation Huang & Belongie (2017). Suppose Q contains K feature maps,
Q = (q1, q2, . . . qi, . . . qK), where qi denotes the ith feature map. AdaIN is defined as

AdaIN(qi, w) = ws
i

qi − µ(qi)
σ(qi)

+ wb
i . (1)

where the feature map qi is first normalized using the mean µ(qi) and standard deviation σ(qi) of the
feature map, and then scaled and translated using the i-th components of latent vectors ws

i and wb
i .

Borrowing from the style-transfer literature Huang & Belongie (2017), one can think of the AdaIN
operation here as performing style transfer on the input features Q using the latent vector w. AdaIN
preserves the content of input features, and changes its style based on the latent vector w. This results
in feature map Qw, which is mapped back into the image space by the decoder. The decoder consists
of 4 residual blocks followed by 4 transposed convolution layers. The transposed convolution layers
upsample the feature map. Finally a convolutional layer with 3 channels maps the upsampled feature
map back into the image space. To the best of our knowledge, we are the first to present a randomized
style transfer based generator for augmenting the set of labeled training data.

3.1.2 THE REGRESSOR NETWORK

The regressor network f takes as input the image X and a set of bounding box locations B within X
depicting the exemplar objects, and predicts the density map F , i.e., F = f(X,B). Each location in
the density map contains the estimated density of the objects of interest present at the corresponding
location in the image, and the overall count for the objects of interest can be obtained by summing
across all the locations in F . For all of our experiments, we use three exemplars per image and B
contains the top-right and bottom-left coordinates of these exemplars.

The regressor network consists of three key modules: a feature representation module, a feature
correlation module, and a density prediction module. The feature representation module extracts
features for both the input image and the exemplars. The feature correlation module correlates the
features of the exemplars with the image features. Finally, the density prediction module uses the
correlation maps between the exemplars and the image features to predict the density map F . The
regressor network is similar to the FamNet architecture Ranjan et al. (2021) with a few necessary
changes in the density prediction module to facilitate the training of the generator. Next we describe
each of the three modules in details.

The Feature Representation module extracts a multi-scale convolutional feature representation
of the input image and the exemplars. We use the first four convolutional blocks of the Resnet-
50 architecture for the feature representation, and use the features from the third and the fourth
convolutional blocks for obtaining the multi-scale representation. The multi-scale features for the
exemplars are obtained by performing ROI pooling using the set of bounding boxes B as the regions
of interest.

The Feature Correlation module correlates the features for each exemplar with the image features,
yielding a separate correlation map for each exemplar. To handle intra-image scale variations, the
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exemplar features are scaled to scales of 0.9 and 1.1, and the scaled exemplar features are correlated
with the image features. All the correlation maps (2 conv blocks× 3 exemplars× 3 scales), including
the one obtained at the original exemplar size, are concatenated, and passed along to the Density
Prediction module. The correlation maps obtained from the conv4 block are smaller in size than the
conv3 block, and we use bilinear interpolation to upsample them.

The Density Prediction module uses the correlation maps computed by the feature correlation
module for predicting the density map F . The density prediction module consists of five convolutional
blocks and three upsampling layers placed after the first, second, and third convolution layers. The
last layer is a 1×1 convolution layer, which predicts the density map F . The size of F is the same as
the size of the input image. We use LeakyReLU activation function and instance normalization after
each of the intermediate convolution layer. LeakyReLU activation is used here so as to avoid zero
gradients which could potentially affect the training of the generator, since the training signal for the
generator comes from the counting network. We use ReLu activation after the last 1×1 convolution
layer. Note that using the correlation maps as the input makes the density prediction module agnostic
to the visual category and helps in generalizing to novel categories Ranjan et al. (2021).

3.2 TRAINING OBJECTIVE

A VCN is trained end-to-end by minimizing an objective function that is the combination of the three
losses: counting loss, reconstruction loss, and diversity loss.

Counting loss. The counting loss is the Mean Squared Error (MSE) between the density map
f(X,B) predicted by regressor network and the Gaussian-smoothed image of the ground truth dot
map Y . The ground truth dot map Y is a binary map where each object of interest is annotated with a
dot. However, it is difficult to train counting networks directly on the 2D dot annotation map due to its
sparsity and binary nature. Hence, most of the previous works first convolve the dot annotation map
with a Gaussian kernel and train the counting network on the resulting density map. Since the size of
the objects can vary a lot across the images of a few-shot counting dataset, we follow Ranjan et al.
(2021) and use an adaptive window size for the Gaussian kernel across different images. The size of
the window is determined based on the average object size within an image, and we use the average
distance between adjacent pairs of objects as a proxy for the average object size. Let F = f(X,B) be
the output density map and Ŷ be the Gaussian-smoothed version of Y . The counting loss is formally
defined as:

Lcnt(X,B, Y ) =
1

HW

H∑
i=1

W∑
j=1

(F (i, j)− Ŷ (i, j))2. (2)

However, using this MSE loss by itself does not force the generator to learn from the vicinity of
the training samples. We will now describe two losses that force the generator to generate diverse
samples from the vicinity of the training samples.

Reconstruction loss. This loss is designed to force the generator to generate samples which are
close to the input training sample. For an image X , a noise vector z and a generated sample Xz , the
reconstruction loss imposes a L1 penalty between Xz and X .

Lrec(X,Xz) =
1

HW

H∑
i=1

W∑
j=1

|X(i, j)−Xz(i, j)|. (3)

where H,W are the height and width of the input image.

Diversity Loss. The generator may output the input X to minimize the reconstruction loss described
above. However, the identify mapping from X to itself would imply zero augmentation, and this
would not help the counting network in achieving better performance. To prevent the generator
from replicating X , we pass two separate latent vectors z1 and z2 through the generator, resulting
in samples Xz1 and Xz2 from the vicinity of X , and force the features of Xz1 and Xz2 to be
different from one another. We pass Xz1 and Xz2 through the Feature Representation module, and
obtain the convolutional features from the conv4 block of the Resnet-50 backbone. Let the feature
maps be denoted by three-dimensional tensors G1 = g(Xz1) and G2 = g(Xz2). We subtract the
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corresponding mean vectors from the features, resulting normalized features G̃1 and G̃2. Finally, we
define the diversity loss as the dot product between the features in the two feature maps as

Ldiv(Xz1 , Xz2) =
1

HW

H∑
i=1

W∑
j=1

〈G̃1(i, j)), G̃2(i, j)〉. (4)

G̃1(i, j)) is the feature vector at spatial location i, j in the normalized feature G̃1. The diversity
loss LDiversity loss imposes a large penalty if the two feature maps g(Xz1) and g(Xz1) are similar.
Hence, the diversity loss encourages the generator to make the two samples Xz1 and Xz2 different
from one another.

Overall training objective. The combined objective for training VCNs is:

λ1Lcnt(X,B, Y ) + λ2Lcnt(Xz1 , B, Y ) + λ3Lrec(X,Xz1) + λ4Ldiv(Xz1 , Xz2), (5)

where λ1, λ2, λ3, λ4 are scalar weights associated with the different loss functions. We tune these
scalar weights on the validation set of FSC-147 dataset Ranjan et al. (2021).

3.3 IMPLEMENTATION DETAILS

Now we describe the details for reproducing our results. For training, we use Adam optimizer with
a learning rate of 10−5, batch size of 14, and random crops of size 384×384. The weights of the
density prediction branch are initialized from a zero mean univariate Gaussian with standard deviation
of 10−3. The latent vectors z are 128 dimensional, and they are sampled from a univariate Gaussian
with zero mean and unity variance. The number of hidden layer and output layer neurons in the
mapping network h are 128 and 512 respectively. The values for λ1, λ2, λ3 and λ4 are 103, 102,
10−4, 10−3 respectively. Note that the large values for λ1, λ2 does not mean that the other losses are
ignored during the optimization. The ranges of the four losses are different, and these scalar weights
scale these losses to make the average magnitude of the first loss term in the Eq. (5) to be an order of
magnitude greater than the latter three loss terms. For training, we use three GPUs in parallel. The
training is done for 1000 epochs.

4 EXPERIMENTS

4.1 FEW-SHOT COUNTING EXPERIMENTS

4.1.1 DATASET AND EVALUATION METRICS

We perform experiments on the FSC147 dataset, which is the only dataset suitable for the few-shot
counting task. This is a medium-scale dataset consisting of 6135 images from 147 visual categories.
The dataset is divided into disjoint train, val, test sets with 3659, 1286, and 1190 images respectively.
Note that there are no common categories between the train, val and test sets, so the counting methods
would need to generalize to completely unseen classes at test time. Each image comes with three
bounding box annotations for the exemplar, and dot annotations for all objects of interest in the image.
The minimum, average, and maximum counts for the dataset are 7, 56, and 3701 respectively.

We use Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to measure the accuracy
of a counting method. MAE and RMSE are commonly used metrics for counting task Zhang
et al. (2016); Ma et al. (2019); Ranjan et al. (2018), and they are defined as follows. MAE =
1
n

∑n
i=1|ci − ĉi|;RMSE =

√
1
n

∑n
i=1(ci − ĉi)2, where n is the number of test images, and ci and

ĉi are the ground truth and predicted counts.

4.1.2 COMPARISON WITH FEW-SHOT DETECTION AND COUNTING APPROACHES

We compare VCN with several state-of-the-art few-shot detection and counting approaches on the
Val and Test splits of FSC147. The few-shot object detectors Kang et al. (2019); Fan et al. (2020)
follow the detect then count approach rather than our density map prediction approach. The few-shot
counting methods Ranjan et al. (2021); Lu et al. (2018); Finn et al. (2017) follow a density map
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Val Set Test Set

Method MAE RMSE MAE RMSE

FR few-shot detector Kang et al. (2019) 45.45 112.53 41.64 141.04
FSOD few-shot detector Fan et al. (2020) 36.36 115.00 32.53 140.65
GMN Lu et al. (2018) 29.66 89.81 26.52 124.57
MAML Finn et al. (2017) 25.54 79.44 24.90 112.68
FamNet Ranjan et al. (2021) 23.75 69.07 22.08 99.54
VCN (Proposed) 20.24 62.99 19.30 99.08
VCN∗ (Proposed) 19.38 60.15 18.17 95.60

Table 1: Comparing VCN to previous state-of-the-art few-shot approaches on FSC147 dataset,
including few-shot detectorsFan et al. (2020); Kang et al. (2019) and few-shot counting methods Ran-
jan et al. (2021); Lu et al. (2018); Finn et al. (2017). Note that both FamNet and VCN∗ use the test
time adaptation strategy proposed by Ranjan et al. (2021). VCN does not use any test time adaptation.
Both VCN and VCN∗ outperform all of the approaches on both Val and Test splits.

FSC147-Val-COCO FSC147-Test-COCO

Method MAE RMSE MAE RMSE

Faster R-CNN 52.79 172.46 36.20 79.59
RetinaNet 63.57 174.36 52.67 85.86
Mask R-CNN 52.51 172.21 35.56 80.00
FamNet 39.82 108.13 22.76 45.92
VCN (proposed) 34.15 97.78 21.81 45.85

Table 2: Comparing Vicinal Counting Nets with pre-trained object detectors, on FSC147-Val-
COCO and FSC147-Test-COCO splits of FSC147 which contain images from COCO classes. VCN
outperforms all the object detectors and FamNet Ranjan et al. (2021) on the COCO classes.

prediction approach, similar to ours. Table 1 shows the comparison results. VCN is our proposed
approach, where we discard the generator and pass the test image directly through the regressor.
VCN∗ employs the test time adaptation strategy proposed in Ranjan et al. (2021), where the exemplars
from the test image are used to adapt the regressor to the novel test class. Note that FamNet also
follows the same test time adaptation strategy. As can be seen from the table, both VCN and VCN∗

outperform all of the previous approaches on both the Val and Test splits. Furthermore, the few-shot
detection based methods Kang et al. (2019); Fan et al. (2020) perform worse than the density map
based approaches. VCN and VCN∗ outperform FamNet Ranjan et al. (2021) by a large margin, even
though the architecture of FamNet is same as that of our few-shot regressor. This performance gain
suggests the usefulness of our proposed data augmentation strategy.

4.1.3 COMPARISON WITH PRE-TRAINED OBJECT DETECTORS

Object detectors can be used for visual counting by simply counting the number of detections in
an image. However, object detectors can only be used for a limited set of categories on which they
are trained. This makes it harder for object detectors to count a large number of visual categories.
Furthermore, even for the categories that the object detectors are trained on, the results of the detectors
might still be far from perfect, and this lead to poor counting results. We compare VCN with several
object detectors on FSC147-Val-COCO and FSC147-Test-COCO sets, which are subsets of images
from FSC147 Val and Test set which share categories with MSCOCO dataset Lin et al. (2014). The
results are reported in Table 2. We compare VCN with object detectors Ren et al. (2015); He et al.
(2017); Lin et al. (2017) trained on MSCOCO dataset and aslo the state-of-the-art fewshot counting
network FamNet Ranjan et al. (2021). The detectors are implemented in the Detectron2 Wu et al.
(2019) library. Even though the detectors are trained on a large number of training images from
the MSCOCO dataset, VCN outperforms the detectors on both of the data splits, as can be seen in
Table 2.
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Augmentation strategy MAE RMSE

No Augmentation 21.14 69.88
Gaussian Noise 24.65 79.91
Colour Jittering 21.18 70.26
PCA lighting variation 20.95 66.58
Auto Augment Cubuk et al. (2019) 21.37 78.43
Mixup Zhang et al. (2017) 22.28 78.38
Manifold Mixup Verma et al. (2019) 21.66 73.92
VCN (Proposed) 20.24 62.99

Table 3: Comparing different augmentation strategies on the Val set of FSC147. For fair com-
parison, we do not use test time adaptation for any of the methods. VCN outperforms the other
strategies on both MAE and RMSE metrics.

Loss Combinations

Count Loss X X X
Reconstruction Loss 7 X X
Diversity Loss 7 7 X

MAE 21.14 20.51 20.24
RMSE 69.88 66.07 62.99

Table 4: Analyzing the training losses on the Val Set of FSC147. Each of the loss terms lead to
improved results.

4.1.4 COMPARISON WITH COMPETING AUGMENTATION STRATEGIES

In this section, we compare VCN with six data augmentation strategies: simple augmentation
strategy of adding Gaussian noise to the input image, random colour jittering, PCA lighting variation,
AutoAugment Cubuk et al. (2019), Mixup Zhang et al. (2017), and Manifold Mixup Verma et al.
(2019). AutoAugment uses a Reinforcement Learning based search over a large search space
consisting of around 1034 augmentation policies for learning an optimal data augmentation policy,
and requires thousands of GPU hours for the search. We use the publicly available Imagenet policy,
since the Imagenet policy was shown to generalize well to other tasks and datasets Cubuk et al.
(2019). Other than the style transfer perspective described earlier, another way of looking at the VCN
generator is that it combines a random noise vector with an image. The first competing approach of
Gaussian noise addition is to check if simply adding noise to the input image can lead to performance
gains. Mixup and Manifold Mixup are popular augmentation strategies which have been shown to
useful for tasks such as image classification.

The results are presented in Table 3. Addition of Gaussian Noise performs the worst, which shows
that simply adding noise to an input image does not capture well the vicinity distribution around
training samples. We also see that Mixup, Manifold Mixup and AutoAugment perform worse
than No Augmentation. This shows that the these three strategies which have shown significant
improvements on image classification task may not be suitable for the pixel level prediction task of
few-shot counting.

4.1.5 ABLATION STUDY ON THE TRAINING OBJECTIVE

Recall that the overall training objective of VCN consists of count loss, reconstruction loss and
diversity loss. In Table 4, we analyze the usefulness of each of these loss terms. As can be seen from
the table, adding each of the loss term leads to improvement in performance. Please see the Appendix
for an ablation study on the number of exemplars.

4.1.6 QUALITATIVE RESULTS

In Fig. 3, few images and the corresponding generated images are shown. The generator leaves the
location of the objects unchanged, and changes the color of the object and the background. Please
see Appendix for more qualitative results.
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Real Image Augmented Image Real Image Augmented Image

Figure 3: Few images and augmented pairs.

Shanghaitech Part A UCF QNRF NWPU

MAE RMSE MAE RMSE MAE RMSE

MCNN Zhang et al. (2016) 110.2 173.2 277 426 218.5 700.6
Switching CNN Sam et al. (2017) 90.4 135.0 228 445 - -
CP-CNN Sindagi & Patel (2017) 73.6 106.4 132 191 - -
IG-CNN Babu Sam et al. (2018) 72.5 118.2 - - - -
ic-CNN Ranjan et al. (2018) 68.5 116.2 - - - -
SANet Cao et al. (2018) 67.0 104.5 - - - -
CSR Net Li et al. (2018) 68.2 115.0 - - 104.8 433.4
CAN Liu et al. (2019) 62.3 100.0 107 183 93.5 489.9
SFCN Wang et al. (2019) 64.8 107.5 102 171 95.4 608.3
ANF Zhang et al. (2019) 63.9 99.4 110 174 - -
Bayesian Loss Ma et al. (2019) 62.8 101.8 89 155 93 470
TopoCount Abousamra et al. (2021) 61.2 104.6 89 159 - -
DM-Count Wang et al. (2020a) 59.7 95.7 85.6 148.3 70.5 357.6
VCN (Proposed) 57.1 95.4 85.2 148.8 62.0 207.7

Table 5: Count errors of different methods on the Shanghaitech Part A, UCF QNRF and
NWPU datasets. We report both MAE and RMSE metrics.

4.2 CROWD-COUNTING EXPERIMENTS

Although the main focus of our work is on few-shot counting, VCN can prove to be useful for other
pixel level prediction tasks like crowd counting. We conduct experiments on the Shanghitech Part A
Zhang et al. (2016), UCF QNRF Idrees et al. (2018) and NWPU Wang et al. (2020b) datasets, which
are popular crowd counting datasets. Shanghaitech Part A, UCF QNRF and NWPU datasets consist
of 482, 1535 and 5109 images respectively. Since the regressor network of VCNs are designed for
few shot counting task, we replace the regressor with that of DM-Count Wang et al. (2020a) and
simply add the reconstruction and diversity loss on top all of the counting losses used in DM-Count.
We report the results in Table 5. On Shanghaitech Part A and NWPU datasets, VCN outperforms
all of the previous methods in terms of both the MAE and RMSE metrics. On UCF QNRF, VCN
outperforms all of the methods in terms of MAE metric. This shows the usefulness of our data
augentation strategy for tasks other than few-shot counting.

5 CONCLUSION

In this paper, we considered the task of few-shot counting, and we tackled the issue of limited
training set size of the existing few-shot counting datasets. We presented Vicinal Counting Network,
a novel architecture for jointly learning to count and augment the training samples. Using the
proposed architecture, we advanced the state-of-the-art performance for few-shot counting. We also
demonstrated the applicability and benefits of our method to crowd counting.
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A APPENDIX

A.1 ABLATION STUDY ON THE NUMBER OF EXEMPLARS

In Table 6, we present an ablation study on the number of exemplars. We report the performance of
the VCN few-shot counter on the Val set of FSC147 as the number of exemplars is varied from 1-3.
We see that even with a single exemplar, VCN regressor provides a reasonable count estimate. And
the performance of the regressor improves as we increase the number of exemplars.

Number of Exemplars MAE RMSE

1 23.75 68.57
2 21.52 66.94
3 20.24 62.99

Table 6: Performance of VCN regressor on the validation data as the number of exemplars increases.
Our proposed approach provides a reasonable count estimate even with a single exemplar. We also
see that the performance gets better as the number of exemplars is increased.

A.2 QUALITATIVE RESULTS

In Fig. 4, we show few qualitative results for the few-shot counting task on FSC-147 dataset Ranjan
et al. (2021). We show the input image along with the exemplars, the groundtruth density map and
the density map predicted by the VCN regressor. VCN performs well on the first three images, while
fails on the last two. The fourth image is a challenging test case since the image is dense, and the
objects of interest are small in size.

In Fig. 5, we present several images and their augmented versions synthesized by the VCN generator.
Note that unlike GANs, the goal of the VCN generator isn’t to generate images which look real by
fooling some discriminator, but only to generate images for which the regressor network achieves
low counting error.
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Image GT Prediction

GT Count: 298 Pred Count: 326

GT Count: 65 Pred Count: 59

GT Count: 119 Pred Count: 110

GT Count: 2092 Pred Count: 1148

GT Count: 320 Pred Count: 98

Figure 4: Some representative success and failure cases of VCN. VCN performs well on first three
test cases, but fails on the last two cases.
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Real Image Generated Image

Figure 5: Shown are Few images and corresponding augmented image synthesized by the Gen-
erator.
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