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ABSTRACT

Large Language Models (LLMs) are good at reasoning in math and coding but
underperform smaller, supervised models on structured Scientific Information Ex-
traction (ScilE) tasks. This gap rises from a limited domain data and ScilE requires
a combination of knowledge memorization and complex reasoning. To bridge this
gap, we propose ReasonlE, a novel two-stage training framework. First, we use
LLM-driven data augmentation to generate additional domain-specific training data,
mitigating data limitation. We then introduce MimicSFT, a supervised fine-tuning
method that uses structured reasoning templates to teach logical patterns without
human-annotated chains-of-thought, followed by R2GRPO, an RLVR algorithm
optimized with a composite reward function that jointly scores factual relevance
and logical consistency. Evaluated on ScilE benchmarks, our approach enables
a general-purpose Qwen2.5-7B model to become competitive with specialized
supervised baselines with less training data, demonstrating that RLVR and LLM-
based data augmentation can successfully enhance both the knowledge retention
and structured reasoning capacities of LLMs. The implementation is available at:
https://anonymous.4open.science/r/R2GRPO-48B5

1 INTRODUCTION

Reasoning Large Language Models (LLMs) |Guo et al.| (2025); Jaech et al.| (2024); |[El-Kishky et al.
(2025)), trained with advanced post-training methods like Reinforcement Learning from Verifiable
Rewards (RLVR), have achieved remarkable success in mathematical reasoning and code generation.
However, a significant performance gap remains in structured prediction tasks like Information
Extraction (IE), particularly in scientific domains (ScilE). Even state-of-the-art LLMs underperform
smaller, supervised BERT-based models |Devlin et al.|(2019); Beltagy et al.| (2019); Yan et al.| (2023));
Ye et al.| (2021));/Zhong & Chen|(2020) on benchmarks like SciER [Zhang et al.| (2024)).

This gap stems from a fundamental data limitation. Supervised baselines like SciBERT Beltagy et al.
(2019) are pretrained on massive, in-domain scientific corpora (e.g., 1.14M papers, 3.1B tokens) and
fine-tuned on annotated IE datasets, giving them a strong advantage in domain-specific knowledge
memorization. In contrast, general-purpose LLMs are typically applied to ScilE in a low-data regime,
with access to only limited training examples (e.g., SK sentences). ScilE itself demands a hybrid of
knowledge memorization for precise entity recognition and contextual rule reasoning for inferring
implicit relations.

However, LLMs’ strong reasoning and general natural language procssing ability might help to
mitigate the issue of limited domain data in information extraction. Recent studies suggest that
RLVR may not impart new reasoning capacities but merely optimize existing output distributions
Yue et al.[(2025). We posit that ScilE provides an ideal testbed to challenge this view, particularly
when combined with data augmentation strategies. LLMs’ generative capabilities make them ideal
for creating additional training samples for domain-specific IE, helping overcome data scarcity.
Furthermore, the current reasoning model are trained for math or coding but these reasoning ability is
not good for the information extraction.

Based on this, we propose ReasonlE, a two-stage training framework designed to enhance LLMs
for IE in data-scarce settings. ReasonlE combines data augmentation with advanced training tech-
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Figure 1: Our two-stage ReasonlE framework for scientific IE on the left and the sample output of
the model. The *plan’ part is for the Pseudo CoT and ’think’ part is for the reasoning.

niques: 1) Data augmentation: We first leverage LLMs’ generative capabilities to create additional
domain-specific IE training samples, addressing the data scarcity problem. 2) MimicSFT uses
structured reasoning templates as prompting strategies during supervised fine-tuning, providing a
strong foundation without needing human-annotated chain-of-thought data. 3) RZGRPO applies
reinforcement learning with a composite reward function combining relevance (for factual grounding)
and rule-induced rewards (for logical consistency).

Our experiments on ScilE benchmarks demonstrate that the ReasonlE framework significantly closes
the performance gap with specialized supervised models. A general-purpose Qwen2.5-7B model
trained with ReasonlE surpasses other reasoning LLMs and becomes competitive with supervised
benchmarks, despite using only the limited ScilE training data. This indicates that RLVR can indeed
enhance both the knowledge retention and reasoning capacities of LLMs for complex IE tasks. Our
key contributions are:

* We identify and analyze the data disparity challenge in adapting LLMs to ScilE, and propose using
LLM-driven data augmentation to generate additional training samples for domain-specific IE.

* We introduce MimicSFT, a method using structured reasoning templates as prompting strategies
for effective SFT without high-quality human CoT data.

» We propose R2GRPO, an RLVR method with a novel reward function that jointly optimizes for
relevance and rule-based reasoning.

2 RELATED WORK

Post-training Adaptation of LLMs. Large Language Models (LLMs) Achiam et al.|(2023)); Kaplan
et al.| (2020) require post-training to align with specific tasks. Common approaches include Supervised
Fine-Tuning (SFT) Radford et al.| (2018)); Brown et al.[(2020); Wei et al.[(2021); Chung et al.| (2024));
Zhou et al|(2023) and Reinforcement Learning (RL) Ziegler et al.| (2019); |Ouyang et al.| (2022);
Guo et al.[|(2025). While SFT excels at memorization |(Chu et al.| (2025), RL methods like GRPO
Shao et al.| (2024) enhance reasoning through self-generated chains |Wei et al.[(2022)). Recent debates
question whether RLVR primarily optimizes existing reasoning paths [Yue et al.|(2025)) or learns new
patterns |Li et al., with effectiveness varying by task type|[Sprague et al.[(2024). Our work examines
this SFT-RL distinction in Information Extraction, where both knowledge and reasoning matter.

Scientific Information Extraction (ScilE) aims to extract structured information from unstructured
text. Traditional approaches often rely on supervised learning withTransformer-based models (e.g.,
BERT) trained on domain-specific annotated datasets [Devlin et al.[(2019). Recently, LLMs have
been explored for IE tasks, leveraging their zero-shot [Wei et al.| (2023); [Li et al.| (2023)); [Lu et al.
(2023); |Xie et al.|(2023);|Yuan et al.| (2023)) or in-context learning capabilities B et al.| (2024);|Zhang
& Soh| (2024); [Zhu et al.[(2024)) or undergoing supervised fine-tuning |Wang et al.|(2023); [Dagdelen
et al.| (2024); Ning & Liu| (2024). While LLMs offer flexibility, they often under-perform specialized
supervised models Zhong & Chen! (2020); Yan et al.|(2023);|Ye et al.|(2021), Beltagy et al.[(2019);
Zhang et al|[(2024); Dagdelen et al.|(2024])). Since the training data for these domain is usually limited.
Few studies have study how to adapt the reasoning ability of LLMs through post-training in the
limited data scenario to improve the performance on ScilE.
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3 METHODOLOGY

3.1 PROBLEM FORMULATION

We focus on two fundamental information extraction tasks: Named Entity Recognition (NER) and
Relation Extraction (RE).

Named Entity Recognition (NER): Given an input text x = {x1, 2, . .., Z, }, NER identifies entity
spans e; = {z;,..., 2} and assigns each a type t; € T, where T is a predefined set of entity types
(e.g., Task, Method, Dataset in scientific literature).

Relation Extraction (RE): For a pair of entities (e;, e;) identified in text, RE determines whether
a relation exists and, if so, classifies it into a relation type r;; € R, where R is the set of possible
relation types (e.g., Used-For, Compare-With).

End-to-End IE: This combines both tasks, requiring models to first identify entities and then
determine relations between them, making it particularly challenging as errors in entity recognition
propagate to relation extraction.

Constrained Generation View: We can view IE as a constrained generation problem where the

model must generate outputs y that satisfy both:

* Schema constraints: Answers must conform to predefined entity and relation types and follow the
required structure (e.g. valid json format).

* Factual constraints: Answers must come from the original content.

Formally, we can define the constrained generation problem as finding:

y* = arg 151633}5 P(y|33, 0) s.t., Oschema(y) =1A Cfactual(yax) =1, ()

where Cychema and Chyeria are binary constraint functions. This formulation is challenging for standard
LLMs as they must simultaneously satisfy structural constraints while maintaining factual accuracy.
All fine-tuning is performed using Low-Rank Adaptation (LoRA) (Hu et al., 2022) for computational
efficiency.

3.2 SUPERVISED FINE-TUNING AND MIMICSFT

Standard SFT adapts a pre-trained LLM by maximizing the conditional probability of target outputs
given inputs:

Lor(0) =— > log P(yl;0), ©)
(x,y) E€Dspr

where Dgpr is the supervised fine-tuning dataset. In terms of Equation 0 =1y, D = Dggr, and
GC(z,y,t, mer) = 1 for all tokens.

To improve generalization, we decompose IE into distinct sub-tasks (NER only, RE with Gold
Entities, RE only, End-to-End IE) and employ a multi-task learning approach:

K
Lurser(0) ==Y Y log P(yla, Ty; 6) 3)

k=1 (z,y)€Dsrr, 1),
where T}, indicates the task type in the prompt.

MimicSFT: Structured Reasoning Without CoT Data. We introduce MimicSFT to encourage
structured reasoning without requiring high-quality CoT annotations. The model is trained to

produce a templated reasoning block z (enclosed in <reasoning>...</reasoning> tags)
before generating the final output y:
Lyimicser(0) = — Y log P(y/|z;0), )

(2,Y") € DMimicsFT

where y' = (z,y) is the concatenation of reasoning steps and final output. The reasoning template
follows a general IE process (e.g., 1. Identify entities, 2. Consider relations, 3. Formulate extraction).
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3.3 R2GRPO: REINFORCEMENT LEARNING WITH RELEVANCE AND RULE-INDUCTION
3.3.1 GRPO FRAMEWORK

R2GRPO builds on Group Relative Policy Optimization (GRPO) (Shao et al.,2024), a PPO variant
that normalizes rewards based on group performance. The GRPO objective is:

[oi]

G
1 1 "
Jarpo(0) = Equp (0,38, ~ray, (Ola) [5 ) Torl > Adipl0i.12, Ai )
i=1 "t =1
~ BDxw(mo (g, 04,<0) It (-la, 01.<0)) |, 5)

where: , ¢ is an input prompt from the IE dataset , {0; }%_, is a group of G outputs sampled from policy

Tous » Acip(04,: ¢ Aie) = min(ry (6) Ay, clip(re(6), 1 — e, 1+ €)Ai) . 7o(0) = e paltnsls s
R;—mean(R)

the probability ratio , flw = T dm)
penalty from reference policy .

is the normalized advantage , controls the KL divergence

3.3.2 COMPOSITE REWARD FUNCTION

R2GRPO’s composite reward function combines four components:
R(Oi; z, ygold) = wlRFl + w2Rspan + w3Rrelevancy + w4Rru167 (6)
where w; are tunable weights. The components are:

F1 Score R (0;, Ygola) = F1-score(0;, Ygoid) Measures extraction accuracy.

Entity Span R (0i, Yeol)) = 7 ol

- > ;= Jaccard(span(€pred,; ), SPan(egola,;)) evaluates boundary
precision Niwattanakul et al.| (2013).

Rule-pattern R .(0;, ) = >, wy, - I(pattern,, satisfied) encourages logical reasoning patterns.

lci]

2
Relevancy Ricievancy (05, ) = Map(c;, evidencegoia) — Apenalty - (‘—> - I(|¢;| >threshold) promotes
evidence-based extraction with length penalty.

The system prompt for RZGRPO training:

Respond in the following format:

<reasoning>

Provide step-by-step reasoning to solve the task based on the given instructions and sentence.
</reasoning>

<thinking>

Cite the specific sentence part (e.g., phrase, verb, or structure) supporting the relation. Ar-
ticulate a symbolic pattern you discovered (e.g., “The verb ’achieves’ suggests a Method
is applied to a Task, implying a relation”). Explain how this pattern leads to the predicted
relation, referencing the relationship definition. Use concise, logical chains (e.g., X performs
Y — relation Z because of definition™).

</thinking>

<answer>

Provide the final answer in JSON format as specified in the instruction.

</answer>

3.4 TRAINING STRATEGY
Our training methodology employs a dual-phase approach combining data augmentation with struc-

tured reinforcement learning. First, we generate augmented training data by prompting the base LLM
to produce both in-domain examples matching the original schema and cross-domain samples from
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related scientific fields. Each generated instance undergoes rigorous validation for factual accuracy,
structural conformity, and diversity, ensuring D,,, maintains the original data distribution while
expanding coverage.

The simplified prompt for data generation:

You are an expert in scientific data annotation. Your task is to generate new training samples
for Named Entity Recognition (NER) and Relation Extraction (RE) tasks in science domain
with given entity and relation types.

## Diversity Requirements:

## Output Format:
Generate exactly num_to_generate samples in the following JSON format: “doc_id”:
”UniquelD”, ”sentence”: ’Generated sentence text”, “ner”: [["Entity1”, "Type”], [’Entity2”,

“Type”]], ’rel”: [["Subject”, “Relation”, ”Object”]]]

For the full version, you can refer to theA.3] By encouraging the model to generate both in-domain
and diverse samples, it could improve the domain adaptation and generalization ability a lot. Different
from the math or coding, information extraction data generation is a relatively straightforward tasks
for current LLMs.

Our training methodology employs a progressive reinforcement learning approach that systematically
increases task complexity. The RL stage begins with low-difficulty samples containing minimal
entities and simple relations, allowing the model to establish fundamental extraction patterns. We
define difficulty through the relation complexity metric d(xz) = an. + fn,, where n. counts entities
and n,. counts relations per instance. As training progresses, we gradually introduce more challenging
samples through an automated curriculum scheduler. Throughout all stages, we maintain distributional
alignment with the original task requirements through constrained sampling that preserves the original
entity and relation type frequencies.

3.5 WHY STRUCTURED REASONING WORKS

Constraint Satisfaction Through Decomposition. The hierarchical reasoning approach transforms
the constrained generation problem into a more tractable form by decomposing it into stages. For
MimicSFT with a single reasoning level 2 :

P(ylz;0) ~ > P(ylz1,x;0)P (a3 6), )

z1€21

where Z; is the space of valid reasoning templates. This decomposition allows the model to first
focus on generating valid reasoning (z7) that satisfies intermediate constraints before producing the
final output (/). For R2GRPO with two reasoning levels:

P(y|z;0) Z Z P(y|za, 21, 2;0) P (22|21, x;0) P21 |x; 0), (8)

21€21 220€25(21)

where Z5(z1) is the space of valid second-level reasoning conditioned on z;. This further decompo-
sition allows for more refined constraint satisfaction: z; (<reasoning>...</reasoning>)
establishes the general reasoning framework, addressing schema constraints, 25
(<think>...</think>) refines the reasoning with task-specific details, addressing fac-
tual constraints ,y produces the final structured output based on both reasoning levels

3.5.1 MULTI-LEVEL REASONING IN RZGRPO

R2GRPO extends MimicSFT by adding a second level of reasoning optimization. If z; is the fixed
reasoning template (from MimicSFT) and z; is the RL-optimized reasoning, the full generation
becomes y' = (21, 22, y), creating a hierarchical structure:

Improved Constraint Satisfaction. We can show that this hierarchical approach improves constraint
satisfaction probability. Let C = {y : Cschema(¥) = 1 A Chacrnat(y, ) = 1} be the set of outputs
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satisfying all constraints. The probability of generating a valid output is:

P(y € Cla;0) =Y P(yla;6). ©)

yeC

For the hierarchical model with reasoning steps z1 and z5, we assume that:

P(y € C|$7 ehier) 2 P(y € C‘l‘, Gdirecl)v (10)

when the reasoning steps are optimized to guide the model toward constraint satisfaction. We will
verify this later through experiments as shown in Figure[2]

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Settings Base Model All our fine-tuning experiments are conducted by adapting the
Qwen2.5-7B-Instruct model |Yang et al.| (2024). SFT (Supervised Fine-Tuning): Standard fine-tuning
on the target IE tasks. MimicSFT (Multi-Task): An SFT approach that encourages pseudo-reasoning
steps and leverages multi-task learning across different IE sub-tasks (e.g., NER only, RE with Gold
Entities, End-to-End IE) as described in Section[3.2]and 3.2l GRPO-only: Reinforcement learning
using Group Relative Policy Optimization [Shao et al.| (2024) with a basic F1 score as the reward
signal. R2?GRPO: Our proposed Reinforcement Learning framework, R2GRPO (Relevance and
Rule-Induction Group Relative Policy Optimization), incorporating a composite reward function as
detailed in Section[3.3] The overall prompt can be seen in the appendix [A.3]

Implementation Details All models are fine-tuned using the LoRA approach with a rank of 16 and
alpha of 32 for SFT and a rank of 64 and alpha of 128 for RGRPO, applied to all linear layers in the
transformer blocks. For SFT and MimicSFT, we train for 3 epochs with a learning rate of 2 x 107>
and a batch size of 32 (accumulated over gradient accumulation steps). For RZGRPO, the learning
rate for the policy updates is set to 1 x 107, More detail can be found in the appendix.

Evaluation Metrics For Named Entity Recognition (NER) and Relation Extraction (Rel and Rel+),
we report the standard micro Fl-score. NER: An entity is correct if its span and type match a gold
entity. Rel: A relation is correct if the types and spans of both entities and the relation type match a
gold relation. Rel+: It further requires the entity type is correct in the triples.

To understand the upperbound and average performance characteristics, especially for RL-finetuned
models, we employ metrics analogous to pass@K used in mathematical reasoning. We report: Best
F1@K: The best F1 score among K generated outputs for a given input. This helps assess the model’s
capability to produce a correct extraction within its top K hypotheses. Avg@K: The average F1 score
over K generated outputs, providing insight into the general quality and consistency of the model’s
generations. Unless otherwise specified, K is set to 1 for Best F1 @K in main result tables. For the
detailed Best F1 @K analysis in Section we explore a wider range of K values.

For the main results of our models, we set temperature at 0. For the baseline models we use there
default setting in their documents. For the Best@K performance to allow better exploration, we
set temperature 1.0 for all the compared models. We show more analysis about temperature in the
experiment part.

Baseline Models We compare with:

Proprietary or large (>72B) LLMs: regular LLMs like Gemini2.0-flash, DeepSeekV3 and reasoning
LLMs like DeepSeek R1,Gemini2.0-flash-thinking;

Small regular LLMs(<=72B): Qwen2.5-7B-Instruct (our base model), Qwen2.5-32B-Instruct, Small
reasoning LLMs through distillation(<=72B): deepseek-r1-distill-Qwen2.5-7B, 32B.

Supervised BERT-based models: PURE Zhong & Chen|(2020), PL-Marker|Ye et al.[(2021), HGERE
Yan et al.| (2023). General-purpose LLMs are evaluated using zero-shot.

Dataset We conduct our experiments primarily on the SciER dataset and OOD datasets [Zhang et al.
(2024). SciER is a benchmark for information extraction in the scientific domain. It contains 24k
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Table 1: Test F1 scores of different baselines on SciER and OOD setting. “Rel” and “Rel+” represent
the relation extraction under boundaries and strict evaluation, respectively. ReasonlE is our method
with data augmentation and ReasonIE* refer to using test time compute. Our training is based on
Qwen2.5-7B-Instruct.

SciER OO0D
Methods NER  Rel R+ NER Rel  Rels
Supervised Baselines
PURE 81.60 53.27 52.67 71.99 50.44 49.46
PL-Marker 83.31 60.06 59.24 73.93 59.02 56.68
HGERE 86.85 62.32 61.10 81.32 61.31 58.32
Zero-Shot LLMs-based Baselines
DeepSeek-V3 42.45 18.76 18.76 57.40 22.66 22.02
DeepSeek-R1 60.27 27.98 27.16 65.95 32.82 32.25
Gemini2.0 69.85 38.38 38.12 58.53 27.74 26.93
Gemini2.0 thinking 61.43 32.30 31.44 64.75 30.62 30.33
Qwen2.5-32B 56.67 17.10 17.10 36.85 8.72 8.72
DeepSeek-R1-Distill-Qwen-32B 57.63 17.62 17.11 49.00 10.79 9.98
Qwen2.5-7B 41.24 7.09 7.09 44.88 4.20 4.20

DeepSeek-R1-Distill-Qwen-7B 32.01 4.60 4.60 30.25 2.88 2.88
Fine-tuned LLMs

SFT 80.76 42.22 41.01 70.13 19.45 18.12
GRPO 76.18 48.84 48.02 68.93 42.34 41.76
Ours
Mimic-SFT 81.70 56.02 55.34 73.71 50.74 49.95
R2GRPO 77.55 54.59 53.65 70.05 45.72 44.67
ReasonlE(w/o aug) 84.36 66.81 65.95 77.84 55.08 54.29
ReasonlE 85.18 67.68 66.82 83.24 63.87 61.90
ReasonlE* 89.72 75.48 74.83 85.02 69.94 67.51

entities and 12k relations over 106 scientific publications. It features diverse entity types (e.g., Task,
Method, Datasets) and relation types (e.g., Used-For, Compare-with, Feature-Of, Evaluate-with, ...).
We use the standard splits for training. The detail dataset statistics can is shown in Table 3]

We generate 2K data as data augmentation with the same backbone model.

4.2 MAIN RESULTS

We present the overall performance for Named Entity Recognition (NER) and End-to-End Relation
Extraction (Rel) on the SciER test set and OOD dataset in Table

The results in Table [I|show that our ReasonIE boosts the performance of Qwen2.5-7B-Instruct on
SciER and OOD for both NER and RE tasks significantly. Especially on Relation extraction in
SciER, it outperforms all the supervised baselines. Mimic-SFT achieve higher relation extraction
score than SFT one show the pseudo CoT can activate model’s 'reasoning’ ability or constrained
generation refine the reasoning path. Not we use 0 temperature for our models and default setting for
the baseline models. For the results for supervised baselines, we use the reported results from the
original paper Zhang et al. (2024). Similarly, RZGRPO outperform GRPO is this case. MimicSFT
also shows strong performance, often outperforming standard SFT, highlighting the benefit of the
proposed structured pseudo-reasoning. For test-time-compute enhancement, we select the best of 5
results with temperature 1.

4.3 WHAT DO REASONING MODELS LEARN? ANALYSIS OF BEST F1 @K

To delve deeper into what reasoning models learn, particularly through Reinforcement Learning with
Verifiable Rewards (RLVR) like R2GRPO, we analyze the Best F1@K performance. We selected a
subset of 50 challenging samples from the SciER test set and evaluated model outputs with K values
ranging from 1, 4, 16, 32, 64, 128, 512, up to 1024. This analysis aims to understand the upper-bound
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Figure 2: Best F1 @K scores representing the reasoning capacity and Avg@K scores representing
the reasoning ability for NER and RE on SciER (small). R2ZGRPO* is the ReaonlE without data
augmentation.

capabilities of the models and how SFT and RLVR shape their knowledge and reasoning. The results
for NER and RE are visualized in Figure

RLVR and SFT both Enhance Reasoning Capacity: From Figure 2] both RLVR-based (GRPO,
R2GRPO) and SFT-based models (SFT, MimicSFT) significantly outperform the base Qwen2.5-7B-
Instruct model across all K values. This contradicts the hypothesis that RLVR merely optimizes path
selection without improving underlying capabilities |Yue et al.|(2025). Instead, our results demonstrate
that both SFT and RLVR enable models to acquire domain-specific knowledge and enhance reasoning
capabilities relevant to IE tasks. The consistent improvement in Best F1 @K scores, even at large K
values, indicates a genuine expansion of the model’s knowledge boundaries rather than just better
prioritization of existing knowledge.

Hierarchical Reasoning Improves Knowledge Integration: MimicSFT consistently outperforms
standard SFT, and similarly, R2GRPO outperforms basic GRPO across both in-domain and OOD
settings. This validates our theoretical analysis in Section 3.5]that structured decomposition of reason-
ing facilitates better constraint satisfaction. The templated reasoning approach creates intermediate
representations that guide the model toward valid outputs, effectively narrowing the search space
while maintaining exploration capabilities. This verify our assumption in Eq.[T0]

Complementary Effects of SFT and RLVR: While SFT-based models (particularly MimicSFT)
achieve slightly higher Best F1 @K at very large K values, RLVR models demonstrate superior
Avg@K and Best F1@1 scores. This reveals a fundamental trade-off: SFT expands the model’s
knowledge boundaries, while RLVR optimizes the probability distribution to prioritize high-quality
outputs. The combination in RZGRPO* achieves the best of both worlds—maintaining high Best
F1@K (knowledge breadth) while significantly improving Best F1@1 (practical performance).
Structured Reasoning Enhances Generalization: The performance gap between our methods and
baselines widens in OOD settings, demonstrating that hierarchical reasoning improves generalization.
This aligns with our theoretical framework—by decomposing complex extraction tasks into structured
sub-problems, models learn more generalizable patterns rather than memorizing specific input-output
mappings. The structured attention allocation mechanism described in Section [3.5] enables more
effective feature extraction across different domains.

Exploration-Exploitation Balance: The slightly lower Best F1@K of R2GRPO compared to
MimicSFT at very large K values reflects an intentional trade-off. R?GRPO optimizes for high-reward
trajectories within a practical exploration budget, focusing computational resources on promising
reasoning paths. This is particularly valuable in real-world applications where generating hundreds
of candidates is impractical. The higher Avg@K scores of R2GRPO indicate more consistent
performance across generations, making it more reliable in production environments.

4.3.1 ABLATION STUDIES AND PARAMETER SENSITIVITY

Impact of Data Augmentation:Table [I| reveals the significant benefits of our data aug-
mentation strategy, particularly for out-of-domain (OOD) generalization. The perfor-
mance improvement can be attributed to two key factors: Domain Diversity: Our
cross-domain augmentation generates samples covering broader scientific disciplines (biol-
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ogy, chemistry, physics) compared to the original computer science-focused training sets.
Structural Variation: The augmented data contains varied sentences for similar entities.

(a) NER Micro F1 (b) RE Micro F1
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higher temperatures suggests that excessive ex- R2GRPO* is the ReaonlE without data augmen-
ploration introduces more noise in the structured tation.

extraction process. We also found that the comple-

tion length increases with higher temperature in

Figure[6a] This suggests the thinking length increase with the noise that leads to unstable thinking
content can harm the performance.
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Response Length Analysis: In Figure|5| as training goes, the response length first increase than
decrease. This differs from the results of |Shao et al.| (2024) where response length increase. Figure
reveals an interesting relationship between response length and performance. The performance does
not generally benefit from longer response. The long response length at high temperature(1.5) leads to
bad performance. This suggest for tasks like ScilE, the constrained reasoning process is better than the
long but noisy think content. This supports our assumption—effective IE requires concise, targeted
reasoning that focuses on relevant constraints rather than exhaustive exploration. The hierarchical
reasoning approach in RZ2GRPO guides the model to generate more efficient reasoning paths, avoiding
unnecessary elaboration while maintaining extraction accuracy. More training detail is in Figure [6]
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Figure 5: Response length(a) and Reward(b) v.s.
training steps for R2GRPO Figure 4: Response token length. The deeper the

color, the higher the temperature. RZGRPO* is the

4.4 EFFICIENCY COMPARISON ReaonlE without data augmentation.

While ReasonlE is based on a 7B parameter model, our approach

demonstrates superior efficiency, processing sentences more than 2 x Table 2: Efficiency
faster than HGERE (a 0.4B model) on the SciER dataset as shown

in Table 2] HGERE’s processing time per entity becomes particularly Model Speed (sent/s)
time-consuming for long sentences with multiple entities, as noted in
their original paper|Yan et al|(2023). In contrast, our method simply =~ ReasonlE 13.6
prompts the trained LLM, maintaining consistent processing speed HGERE 52
as long as the input remains within the token length limit.

5 LIMITATION AND FUTURE WORK

Our study mainly focuses on the ScilE. The effectiveness of MimicSFT’s pseudo-reasoning templates
and R2GRPO might vary across different types of information extraction tasks or languages. In
the future, we would explore the adaptability of R2GRPO to broader domains and investigate more
automated methods for generating or refining reasoning templates. Moreover, further research can
also focus on how structured reasoning influences knowledge acquisition and path selection in diverse
LLM architectures and explore the scalability of our approach to even larger models or datasets of
different domains.
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A APPENDIX

A.1 DATASET STATISTICS

We show here the detail statistic of the datasets used. For the Best@K evaluation, we select 50
samples from both the SciER and OOD test set. And for the rest evaluation we use the full datasets.

A.2 RZGRPO TRAINING

Unified Gradient Framework Both SFT and RL update model parameters 6 by following a gradient.
Following Shao et al.|(2024), we conceptualize these post-training algorithms under a unified gradient
expression:

lol

1
VoJ(0) = E(z,0)~D ?| Z GC(x,0,t,Ter) Vo log mg (ot 2, 0<4) | (11)

ol =

where (z, 0) is an input-output pair from distribution D, 7y (0¢|x, 0<¢) is the probability of generating
token o; given input  and previous tokens o.;, GC(x, 0, t, mer) is the gradient coefficient determin-
ing update magnitude and direction, and D represents the data source (human-annotated for SFT,
model-generated for RL).
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Table 3: Detail Distribution of Datasets

Entity/Relation Type Train Dev SciER Test OOD Test Total
Entity Types
Method 11424 1549 1890 1018 15881
DATASET 3220 269 370 83 3942
TASK 3397 416 688 194 4695
Total 18041 2234 2948 1295 24518
Relation Types
PART-OF 1865 214 304 111 2494
USED-FOR 2398 343 546 167 3454
EVALUATED-WITH 863 78 131 49 1121
SYNONYM-OF 880 76 170 89 1215
COMPARE-WITH 875 175 114 54 1218
SUBCLASS-0OF 697 114 176 73 1060
BENCHMARK-FOR 551 64 85 28 728
SUBTASK-OF 210 31 65 9 315
TRAINED-WITH 404 37 35 2 478
Total 8743 1132 1626 582 12083
(a) Completion Length (b) Ner reward (c) Rel reward
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Figure 6: R2GRPO training detail v.s. steps

For SFT, GC = 1 for all tokens in the target sequence, while for RL methods like GRPO, GC is
derived from reward signals and advantage estimates. Based on this, both SFT and GRPO can update
the model parameter based on the data. Since GRPO is can refine the reasoning path and SFT(with
distillation) can improve the reasoning capacity. SFT should also be able to refine the reasoning
process in a simple way. And GRPO should also be able to improve the reasoning capacity and

memorize knowledge from the input data. Our method is one step towards this.

We trained the model on a sub set of the SciER with 1K sample for RL. The selection is based on the
balanced distribution of the entity and relation of different types and samples with different length

total number of entities and relation triples. The training detail is shown in Fig.[6]
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Training can be done within 24GB vram with the lora adapter. However, larger group size require
larger vram We train for 3 epochs on the full SciER datasets and 10 epochs for the RL on the 1K
subset.

A.3 PROMPT

We adapt the instruction from SciER |Zhang et al.| (2024).

Extract specific entities from the following sentence. The entities to be identified are:
’Dataset’, Task’, and "Method’.

### Entity Definitions:

- "Task’: A task in machine learning refers to the specific problem or type of problem that a
ML/AI model/method is designed to solve. Tasks can be broad, like classification, regression,
or clustering, or they can be very specific, such as Pedestrian Detection, Autonomous Driving,
Sentiment Analysis, Named Entity Recognition, and Relation Extraction.

- "Method’: A method entity refers to the approach, algorithm, or technique used to solve a
specific task/problem. Methods encompass the computational algorithms, model architectures,
and the training procedures that are employed to make predictions or decisions based on data.
For example, Convolutional Neural Networks, Dropout, data augmentation, recurrent neural
networks.

- ’Dataset’: A realistic collection of data that is used for training, validating, or testing the
algorithms. These datasets can consist of various forms of data such as text, images, videos,
or structured data. For example, MNIST, COCO, AGNews, IMDb.

### Other Notes: - Generics cannot be used independently to refer to any specific entities,
e.g., "This task’, ’the dataset’, and "a public corpus’ are not entities.

- The determiners should not be part of an entity span. For example, given span 'the SQuAD
v1.1 dataset’, where the determiner "the’ should be excluded from the entity span.

- If both the full name and the abbreviation are present in the sentence, annotate the abbrevia-
tion and its corresponding full name separately. For instance, *20-newsgroup (20NG)’.

- Only annotate “factual, content-bearing” entities. Task, dataset, and method entities normally
have specific names and their meanings are consistent across different papers. For example,
”CoNLLO03”, ”SNLI” are factual entities. Annotators should annotate only the minimum
necessary to represent the original meaning of task/dataset/metric (e.g., "The”, ’dataset”,
“public”, "'method’, ’technique’ are often omitted).

Based on the given sentence and the entities with their types, determine the relationship
between each pair. The potential relations are: [’Part-Of’, *SubClass-Of’, *SubTask-Of’,
’Benchmark-For’, *Trained-With’, *Evaluated-With’, ’Synonym-Of’, *Used-For’, ’Compare-
With’]. If no relationship exists between a pair, do not include it in the output.
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Rel Background

#i## Relationship Definitions:

- "Part-Of”: This relationship denotes that one entity (e.g., a Method) is a component or a part
of another entity (e.g., another Method).

- ’SubClass-Of’: Specifies that one entity is a subclass or a specialized version of another
entity.

- ’SubTask-Of’: Indicates that one Task is a subset or a specific aspect of another broader
Task.

- ’Benchmark-For’: Shows that a Dataset serves as a standard or benchmark for evaluating
the performance of a Method on a Task.

- "Trained-With’: Indicates that a Method is trained using a Dataset.

- ’Evaluated-With’: This relationship denotes that a Method is evaluated using a Dataset to
test its performance or conduct experiments.

- ’Synonym-Of’: Indicates that two entities are considered to have the same or very similar
meaning, such as abbreviations.

- "Used-For’: Shows that one entity (e.g., a Method) is utilized for achieving or performing
another entity (e.g., a Task). This relationship is highly flexible.

- ’Compare-With’: This relationship is used when one entity is compared with another to
highlight differences, similarities, or both.

### Notes:

- Determine the ’Relationship’ that best describes how the subject and object are related,
based on the sentence context.

- Please do not annotate negative relations (e.g., X is not used in Y).

- Annotate a relationship only if there is direct evidence or clear implication in the text. Avoid
inferring relationships that are not explicitly mentioned or clearly implied.

Given the sentence: ’sentence”

Extract entities and their relations.

### Instruction:

- Think step-by-step to identify entities ('Dataset’, *Task’, "Method’) and their relationships.
- Return the results in JSON format with:

- ”ner”: a list of [entity, type] pairs.

- 7rel”: a list of [subject, relation, object] triples.

In general, the prompt consists of the background definition of the entity, relation and the instruction
on the tasks.

Data generation prompt:
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You are an expert in scientific data annotation. Your task is to generate new training samples
for Named Entity Recognition (NER) and Relation Extraction (RE) tasks in science domain.
## Entity Definitions:

- "Task’: A task refers to the specific problem or type of problem that a scientific model/method
is designed to solve.

- ’Method’: A method entity refers to the approach, algorithm, or technique used to solve a
specific task/problem.

- ’Dataset’: A realistic collection of data that is used for training, validating, or testing the
algorithms/method.

## Relationship Definitions:

- "Part-Of’: One entity is a component or part of another entity.

- ’SubClass-Of’: One entity is a subclass or specialized version of another.

- ’SubTask-Of’: One Task is a subset or specific aspect of another broader Task.

- ’Benchmark-For’: A Dataset serves as a standard for evaluating a Method on a Task.
- "Trained-With’: A Method is trained using a Dataset.

- ’Evaluated-With’: A Method is evaluated using a Dataset.

- ’Synonym-Of’: Two entities have the same or very similar meaning.

- "Used-For’: One entity is utilized for performing another entity.

- ’Compare-With’: One entity is compared with another.

## Annotation Guidelines:

- Only annotate factual, content-bearing entities with specific names
- Exclude determiners from entity spans

- Annotate both full names and abbreviations separately

- Only annotate relationships with direct evidence in the text

## Diversity Requirements:

- Use varied sentence structures (simple, compound, complex)

- Cover different scientific domains

- Include different types of entities (acronyms, full names, combinations)
- Vary the position of entities in sentences

- Use different verb tenses and voices (active/passive)

- Use COMPLETELY DIFFERENT entity names from the examples

- Vary sentence structures significantly

- Include different combinations of entity types

## Output Format:
Generate exactly num_to_generate samples in the following JSON format: “doc_id”:
”UniquelD”, ’sentence”: ”Generated sentence text”, “ner’: [["Entity1”, "Type”], [’Entity2”,
“Type”]], “rel”: [[’Subject”, “Relation”, ”Object”]]]

A.4 LLM USAGE

We use LLM to aid writing including polishing and grammar check.
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