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Abstract

Generalization is perhaps the most salient property of biological intelligence. In the context
of artificial neural networks (ANNs), generalization has been studied through investigating
the recently-discovered phenomenon of “grokking” whereby small transformers generalize
on modular arithmetic tasks. We extend this line of work to continuous time recurrent
neural networks (CT-RNNs) to investigate generalization in neural systems. Inspired by
the card game SET, we reformulated previous modular arithmetic tasks as a binary classi-
fication task to elicit interpretable CT-RNN dynamics. We found that CT-RNNs learned
one of two dynamical mechanisms characterized by either attractive or oscillatory dynam-
ics. Notably, both of these mechanisms displayed strong parallels to deterministic finite
automata (DFA). In our grokking experiments, we found that attractive dynamics gener-
alize more frequently in training regimes with few withheld data points while oscillatory
dynamics generalize more frequently in training regimes with many withheld data points.
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1. Introduction

Generalization is essential for biological intelligence, enabling animals and humans to ex-
trapolate learned knowledge to new situations, thereby enhancing adaptability and survival.
Given the numerous ecologically-relevant tasks biological agents perform, it comes as no
surprise that the mechanisms through which neural systems generalize remain elusive. In
artificial neural networks (ANN), “grokking” has emerged as a compelling phenomenon to
study generalization (Power et al., 2022). This term refers to the ability of ANNs, partic-
ularly small transformers, to generalize learning from a limited input space to the entire
input space in algorithmic tasks such as modular arithmetic.

To advance our understanding of generalization in biological agents, we sought to inves-
tigate the grokking phenomenon in continuous time recurrent neural networks (CT-RNNs).
Our choice to investigate CT-RNNs was motivated by their utility in modeling neural sys-
tems (Sussillo, 2014; Barak, 2017). CT-RNNs have not only been experimentally validated
to reproduce neural dynamics observed in primates (Mante et al., 2013; Chaisangmongkon
et al., 2017; Sohn et al., 2019), but have also suggested a series of curious links between
neural, dynamical, and computational systems (Sussillo and Barak, 2013; Yang et al., 2019;
Vyas et al., 2020; Driscoll et al., 2022).

In this work, we show that CT-RNNs trained on our novel modular arithmetic task can
learn two distinct dynamical mechanisms. The first mechanism is characterized by attrac-
tive dynamics and represents inputs as vectors. The second mechanism is characterized by
oscillatory dynamics and represents inputs as angles. Intriguingly, both mechanisms are in
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differing ways analogous to deterministic finite automata (DFA). In our grokking experi-
ments, we found that both mechanisms achieved comparable rates of generalization, with
attractive dynamics exhibiting a significant advantage in low-generalization data regimes,
and oscillatory dynamics exhibiting a slight advantage in high-generalization data regimes.

2. Modular Arithmetic Task

The original modular arithmetic task used to elicit the grokking phenomena took the fol-
lowing form (Power et al., 2022):

a + b ≡ c (mod p) (1)

Here, p is a preset prime number and a, b, c ∈ {0, 1, . . . , p−1}. The task consists of summing
inputs a and b and computing the residue c (mod p). To elicit grokking, ANNs were trained
on 30% of possible a, b pairs and generalized to compute the 70% of a, b pairs held-out.

Inspired by the card game SET (McMahon et al., 2017), we formulated the modular
arithmetic task as follows to elicit interpretable CT-RNN dynamics:

a + b + c ≡ 0 (mod 3) (2)

Here, a, b, c ∈ {0, 1, 2} and the task now consists of classifying if the congruence relation is
valid (e.g. 0+1+2 ≡ 0 (mod 3) and 0+1+1 ̸≡ 0 (mod 3)). Notice how this task essentially
asks if a, b, c are all the same or all different. This is the primary rule in the card game SET,
and in this work, we will refer to a, b, c ∈ {0, 1, 2} with colors: a, b, c ∈ {green, purple, red}.
Task implementation details are described in Appendix A.

3. Dynamical Mechanisms

We observed that a CT-RNN can learn two distinct mechanisms when trained on our mod-
ular arithmetic task: one characterized by attractive dynamics and the other characterized
by oscillatory dynamics. CT-RNN implementation details are described in Appendix B.

3.1. Attractive Dynamics

In a CT-RNN employing attractive dynamics, inputs are represented as vectors. As these
vectors are injected into the network, they drive the network activity between various fixed-
point attractors within the network’s phase space (Figure 1 Top Row). Crucially, the vector
representation of each input maintains a consistent direction throughout the phase space.

This mechanism draws parallels to a DFA, where symbols are sequentially processed,
influencing the current state within a graph based on the specific symbol read. Here, fixed-
point attractors in CT-RNNs parallel states in DFA, residue inputs parallel input symbols,
and the ensuing vector shifts parallel state transitions.

This mechanism’s emergence is conditioned on setting the time constant, τ , to 100ms,
aligning with previous CT-RNN works (Chaisangmongkon et al., 2017; Yang et al., 2019).
The configuration of τ is critical, impacting the representation and processing of inputs,
and hence, the overall behavior of CT-RNNs.

2



Extended Abstract Track
Grokking in recurrent networks

Figure 1: (Top Row) Example outputs, PCA embedding, and DFA for the attractive
mechanism. (Bottom Row) Example outputs, PCA embedding, and DFA for
the oscillatory mechanism.

3.2. Oscillatory Dynamics

In a CT-RNN employing oscillatory dynamics, inputs are represented as angles, and the
intrinsic dynamics are characterized by a limit cycle (Strogatz, 1994). In essence, these
inputted angles shift the phase angle of the intrinsic limit cycle (Figure 1 Bottom Row).
Further mechanistic details are described in Appendix C and in Murray (2023).

Strikingly, this mechanism preserves the previously outlined analogy to DFA, where DFA
states are now parallel to unique oscillation phases of the limit cycle. Given that a more
compact DFA can arise from the networks’ representing inputs as angles instead of as vec-
tors, we hypothesized that the oscillatory mechanism would be more apt for generalization
on our modular arithmetic task compared to the attractive mechanism.

The emergence of this oscillatory mechanism is conditioned on setting τ to 10ms. Pre-
vious CT-RNN works have noted the emergence of oscillatory dynamics; however, the as-
sociated time constants were considerably greater than 10ms (Kay et al., 2022; Pals et al.,
2023). Remarkably, this mechanism bears a resemblance to oscillatory models of grid cells
hypothesized to exist at the cellular level (Burgess et al., 2007), potentially mirrored more
closely by setting τ to 10ms.

4. Grokking Experiment

To assess each dynamical mechanism’s ability to generalize, we trained CT-RNNs with var-
ious congruence relations excluded from the training set. We found that both mechanisms
are capable of generalizing to a range of excluded congruence relations; however, not all CT-
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RNNs fully generalized, an issue we speculate arose from exploding and vanishing gradients
(Pascanu et al., 2012; Park et al., 2023). To determine the probability of each dynamical
mechanism successfully generalizing, we trained approximately 20,000 CT-RNNs under a
variety of experimental conditions. Experimental details are described in Appendix D.

Figure 2: Rates of generalization under a variety of experimental conditions.

We initially expected that oscillatory dynamics would achieve higher rates of general-
ization due to the compact nature of its DFA representation; however, results were mixed.
While attractive dynamics tended to outperform oscillatory dynamics with few congruence
relations excluded, oscillatory dynamics were able to achieve non-zero generalization rates
with many congruence relations excluded (Figure 2).

5. Discussion

In this work, we took inspiration from the card game SET to reformulate previous mod-
ular arithmetic tasks and showed that CT-RNNs can learn two distinct dynamical mech-
anisms: one characterized by attractive dynamics and the other characterized by oscilla-
tory dynamics. We further showed how attractive dynamics generalize more frequently in
low-generalization data regimes while oscillatory dynamics generalize more frequently in
high-generalization data regimes.

The design of our novel modular arithmetic task not only drew inspiration from previous
grokking tasks (Power et al., 2022) but also from the “3-bit flip-flop task” (Sussillo and
Barak, 2013; Kim et al., 2023). We hope that our task will inspire the design of future tasks
that seek to elucidate the dynamical, geometric, and computational properties of CT-RNNs.

While the analogy between RNNs and DFA has been previously investigated (Cleere-
mans et al., 1989), we speculate that developing this analogy further could enhance the
interpretability of RNNs. Furthermore, this analogy echos work on understanding the in-
ternal reasoning mechanisms of shallow transformers as being comprised of semiautomata
(Liu et al., 2022).

Future research could benefit from examining how different initializations of recurrent
weights influence the speed and extent of generalization in CT-RNNs implementing either
dynamical mechanism. Previous observations suggest that certain initialization strategies
may improve performance in RNNs characterized by oscillatory dynamics (Park et al., 2023),
indicating that optimized initializations could enhance generalization rates.
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Additionally, investigating the rate at which CT-RNNs generalize during training is
another avenue for future research. While Power et al. (2022) found that transformers
continued to generalize on modular arithmetic tasks well past the point of overfitting, our
work did not investigate if CT-RNNs display similar training behavior.
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Appendix A. Modular Arithmetic Task Details

For our modular arithmetic task, the inputs, which can be denoted as a, b, c ∈ {0, 1, 2}, were
embedded within a 100-dimensional vector. Each entry of this vector was sampled from
a normal distribution, N (0, 1). Within a given training instance, the embedding vectors
remained consistent; however, they varied across different training instances.

A single instance of our task, referred to as a trial, consisted of 50 time steps. During
this trial, three embedded inputs were presented. Each input lasted for a span of two time
steps, followed by a gap where no inputs would be presented for three consecutive time
steps. In the absence of any input, a 100-dimensional zero vector was presented to the
network. Notably, the initial three time steps and the final 10 time steps of the trial did not
feature any input presentation. The time steps eligible for input presentation were selected
uniformly at random.

Appendix B. CT-RNN Details

Our CT-RNN implementation took the following form:

τ ẋi(t) = −xi(t) +
N∑
k=1

Jikrk(t) +
N in∑
k=1

Bikuk(t) + bi + ηi(t) (3)

ri(t) = tanh(xi(t)) (4)

z(t) =
N∑
k=1

Wkrk(t) + bout (5)

Equation 3 was discretized using Euler’s method and took the following form:

7



Extended Abstract Track
Murray

xi(t + 1) = (1 − ∆t

τ
)xi(t) +

∆t

τ
(

N∑
k=1

Jikrk(t) +
N in∑
k=1

Bikuk(t) + bi + ηi(t)) (6)

Given that the task was a binary classification task, we used a mean squared error
(MSE) loss function to evaluate a CT-RNNs performance on our task. We added an L2
regularization onto the rates of the CT-RNN (equation 4) which has been shown to increase
interpretability (Sussillo et al., 2015; Cueva and Wei, 2018). The loss function took the
following form:

L(ẑ, z, r) =
1

5

T∑
t=T−5

(ẑ − z(t))2 +
λ

TN

T,N∑
t,i=1

r2i (t)∆t (7)

All trainable parameters (J ,B, b,W , bout) were updated using the AdamW learning
algorithm (Loshchilov and Hutter, 2017). The learning rate was set to 10−3 and the weight
decay was set to 10−4. Trainable parameters J ,B,W were initialized using the Glorot
uniform initializer with the scale set to 1.0 and the distribution as uniform (Glorot and
Bengio, 2010). Trainable parameters b, bout were initialized as zero vectors.

Table 1: Model parameters, values, and descriptions

Parameter Value Description

τ 10ms or 100ms Time constant
∆t 10ms Step size used for Euler’s method
N 100 Number of CT-RNN neurons
N in 100 Input dimension
ηi(t) N (0, 0.10) ith-neuron noise at time t
ẑ −1 or 1 Congruence relation label
T 50 Number of time steps per trial
λ 10−4 L2 regularization

All code was implemented using the Jax ecosystem (Bradbury et al., 2018) and Flax
library (Heek et al., 2023). All code was executed using the MIT Supercloud HPC (Reuther
et al., 2018).

Appendix C. Oscillatory Mechanism Details

The oscillatory mechanism in a CT-RNN translates the incoming input into phase shifts that
alter the network’s oscillatory behavior. Consider a standard cosine function representing
the network’s intrinsic dynamics:

g(t) = cos(wt) (8)

The oscillatory mechanism modifies equation 8 to:

f(t) = cos

(
wt +

∫ t

0
ϕ(t′)dt′

)
(9)
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ϕ(t′) denotes the phase shift at time t′, derived from the external input:

ϕ(t) =


+2π

3 if green at t

−2π
3 if purple at t

0 if red at t

Equations 8 and 9 are plotted in Figure 3.

Figure 3: (Top Row) Oscillatory mechanism for a valid congruence relation. (Bottom
Row) Oscillatory mechanism for an invalid congruence relation.

Appendix D. Grokking Experiment Details

Our grokking experiments were structured around three different subsets of congruence
relations removed from the training set: (1) both valid and invalid congruence relations
were excluded, (2) only valid congruence relations were excluded, and (3) only invalid
congruence relations were excluded. Within each group, congruence relations were removed
uniformly and without replacement to ensure unbiased sampling.

Each CT-RNN was trained for 5000 epochs and with mini-batches of 256 trails. For
each congruence relation, there were at least 50 trials included. For each training dataset,
both types of congruence relations had approximately the same number of trials. For each
instance of excluded congruence relations, we trained a total of 384 CT-RNNs. These were
equally divided based on their time constants: half (192 CT-RNNs) had τ = 10ms and the
remaining half had τ = 100ms.

To estimate the probability of generalizing, we calculated the proportion of networks
that achieved a high performance on held-out congruence relations. For each experimental
condition and τ value, we determined the number of CT-RNNs achieving a validation accu-
racy of 95% or higher and divided it by 192, the total number of CT-RNNs for that specific
experimental condition.
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