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 Lighting prompt: “Sunset lighting by the beach”
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Figure 1: Applications of coupled diffusion sampling. Our approach enables lifting off-the-shelf
2D editing models into multi-view by combining the sampling process of 2D diffusion models with
multi-view diffusion models to produce view-consistent edits. Here we showcase example view-
consistent results using a 2D spatial editing model, stylization, and text-based relighting.

ABSTRACT

We present an inference-time diffusion sampling method to perform multi-view
consistent image editing using pre-trained 2D image editing models. These mod-
els can independently produce high-quality edits for each image in a set of multi-
view images of a 3D scene or object, but they do not maintain consistency across
views. Existing approaches typically address this by optimizing over explicit 3D
representations, but they suffer from a lengthy optimization process and instability
under sparse view settings. We propose an implicit 3D regularization approach by
constraining the generated 2D image sequences to adhere to a pre-trained multi-
view image distribution. This is achieved through coupled diffusion sampling,
a simple diffusion sampling technique that concurrently samples two trajectories
from both a multi-view image distribution and a 2D edited image distribution, us-
ing a coupling term to enforce the multi-view consistency among the generated
images. We validate the effectiveness and generality of this framework on three
distinct multi-view image editing tasks, demonstrating its applicability across var-
ious model architectures and highlighting its potential as a general solution for
multi-view consistent editing.

1 INTRODUCTION

Diffusion-based image editing models have demonstrated unprecedented realism across diverse
tasks via end-to-end training. These include object relighting (Jin et al., 2024; Magar et al., 2025;
Zhang et al., 2025a), spatial structure editing (Wu et al., 2024b; Mu et al., 2024; Alzayer et al.,
2025b; Vavilala et al., 2025), and stylization (Zhang et al., 2023). However, collecting and curating
3D data is significantly more costly than working with 2D data. As a result, recent research has
explored test-time optimization methods for multi-view editing that leverage pre-trained 2D image
diffusion models (Poole et al., 2023; Haque et al., 2023).

Lifting 2D image editing models directly to the 3D multi-view domain is non-trivial, primarily due to
the difficulty in ensuring 3D consistency across different viewpoints. To address this, most existing
methods (Haque et al., 2023; Jin et al., 2024) rely on explicit 3D representations, i.e., NeRF (Milden-
hall et al., 2020) or 3D Gaussian Splatting (Kerbl et al., 2023). Despite achieving promising results
in certain scenarios, these methods typically require time-consuming optimization and dense input
view coverage. This significantly limits their applicability to real-time, real-world scenarios.
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Can we directly extend the capabilities of 2D image editing models to the multi-view domain with-
out relying on explicit 3D representations or incurring additional training overhead? We answer
this question affirmatively by introducing a novel diffusion sampling method — “coupled diffusion
sampling”. As shown in Fig. 1, our approach enables multi-view consistent image editing across
diverse applications, including multi-view spatial editing, stylization, and relighting.

Figure 2: Limitations of baselines. Using a pre-
trained image-to-multiview model conditioned on
an edited image, can only be faithful to that sin-
gle image but not the rest of the input views. On
the other hand, editing each image individually
with the 2D model produces highly inconsistent re-
sults. While prior work (Liu et al., 2022) proposes
a method to compose diffusion models within the
same domain, we find that their approach produces
flickering results and cannot guarantee being faith-
ful to the input views.

As shown in Fig. 2, sampling from two dif-
fusion models independently yields samples
that are inconsistent across views. Condi-
tioning a multi-view model using a single
edited image, however, fails to preserve iden-
tity and align with the editing objective across
all views. While prior work (Liu et al., 2022;
Du et al., 2023) explored combining diffu-
sion models within a modality, we observe
that such approaches do not maintain multi-
view consistency and can stray from the edit-
ing objective. Our approach is motivated by
the observation that, any sequence of images
generated by a pre-trained multi-view image
diffusion model inherently exhibit multi-view
consistency. To this end, we embrace an im-
plicit 3D regularization paradigm by lever-
aging scores estimated from multi-view dif-
fusion models during the diffusion sampling
process. Specifically, for any multi-view im-
age editing task with a pre-trained 2D model,
we couple it with a foundation multi-view
diffusion model and perform sampling under
dual guidance from both models. This pro-

cess ensures that the resulting samples satisfy both the editing objective and multi-view 3D consis-
tency, yet without any additional explicit 3D regularization or training overhead.

We propose a practical sampling framework to achieve the above-mentioned goal by steering the
standard diffusion sampling trajectory with an energy term coupling two sampling trajectories. This
method ensures that each sample from one diffusion model remains within its own distribution while
being guided by the other. In particular, samples from the multi-view diffusion model maintain
multi-view consistency while being steered by the content edits from the 2D model. Conversely,
the 2D model is steered so that its edits remain faithful to the inputs while being consistent across
independently edited frames.

Our solution is conceptually simple, broadly applicable, and adaptable to a variety of settings. We
showcase its effectiveness across three distinct multi-view image editing tasks: multi-view spatial
editing, stylization, and relighting. Through comprehensive experiments on each task, we demon-
strate the advantages of our method over the state-of-the-art. We further validate the generalizability
of our approach by applying it to diverse diffusion backbones and latent spaces, underscoring its
promise as a general multi-view image editing engine.

2 RELATED WORK

Test-time diffusion guidance. Test-time guidance approaches for diffusion models have been pro-
posed to steer diffusion models toward external objectives. Test-time scaling methods (Ma et al.,
2025; Li et al., 2024), such as rejection sampling or verifier-based search over large latent spaces,
passively filter generated samples. In contrast, optimization-based guidance actively steers diffusion
trajectories, offering a more efficient alternative. A widely used technique is classifier guidance,
where a discriminative classifier steers the diffusion trajectory toward a target label (Dhariwal &
Nichol, 2021). When the objective is differentiable, gradient-based guidance can be directly applied
during sampling (Bansal et al., 2024) In other cases, prior work has explored diffusion guidance
using degradation operators, which require additional assumptions in the forward process, e.g., as
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in linear inverse problems (Kawar et al., 2022; Wang et al., 2023a; Chung et al., 2023). However,
in more general scenarios, such constraints are often intractable, making the proposed framework
particularly suitable for these settings.

3D and multiview editing. With the advent of diffusion models capable of producing high-quality
2D image edits (Cao et al., 2023; Mokady et al., 2023), a natural question has been how to leverage
those capabilities for 3D editing. One common approach is to optimize a 3D representation, such as
Neural Radiance Fields (NeRF) (Mildenhall et al., 2020), so that its multiview renderings satisfy the
editing goal. Bridging diffusion and NeRF can be achieved either by modifying the training dataset
during the optimization loop (Haque et al., 2023; Wu et al., 2024a) or through score distillation
sampling (Poole et al., 2023; Wang et al., 2023b; McAllister et al., 2024; Yan et al., 2025). However,
both approaches are prone to visual artifacts, which is fundamentally caused by the fact that 2D
diffusion models lack 3D consistency awareness. To address this fundamental challenge, prior work
has directly trained multiview diffusion models (Litman et al., 2025; Alzayer et al., 2025a) for
consistent editing. However, training a multiview diffusion model for each individual editing task is
computationally expensive, and suitable training datasets are scarce. In our approach, we propose
reusing existing multiview generation models (Gao et al., 2024; Zhou et al., 2025) for multiview
editing by combining them with a 2D editing model, thereby incurring no additional training cost.
In contrast to NeRF-based approaches, our method does not require a costly optimization process,
as it relies solely on feed-forward sampling.

Compositional diffusion sampling. Compositional sampling methods for diffusion models have
been proposed to combine the priors of multiple models. Examples include product-of-experts sam-
pling (Hinton, 2002; Zhang et al., 2025b), which samples from the product distribution of individual
models. However, this approach imposes a strict requirement that valid samples lie in the intersection
of the support of each model and fails when no such joint support exists. MultiDiffusion (Bar-Tal
et al., 2023) and SyncTweedies (Kim et al., 2024) apply score composition for stitching panoramas
or large images. However, their primary focus is on handling out-of-distribution scenarios, such as
oversized images, whereas our work emphasizes remaining within each model’s prior distribution
while steering generation toward satisfying cross-model constraints. Prior works Liu et al. (2022);
Du et al. (2023) address inference-time composition for diffusion models, but these works focus on
the same data modality. In contrast, our work bridges 2D and 3D modalities to tackle the practical
challenge of 3D data sparsity.

3 METHOD

3.1 BACKGROUND

Diffusion Models. Let x0 ∼ pdata(x0) be a data sample and consider the forward noising process:

q(xt | xt−1) = N (xt |
√
1− σtxt−1, σtI), (1)

with a variance schedule {σt}Tt=1. (Ho et al., 2020) proposes to train a neural network ϵθ(xt, t),
where θ denotes network parameters, such that when starting with an initial noise xT ∼ N (0, I), it
allows one to gradually denoise the sample to x0 ∼ pdata(x0) via

x̂0 =
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt)) (2)

xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1ϵθ(xt) + σtz, (3)

where αt = 1 − σt, ᾱt :=
∏t

s=1 αs. The next-step prediction xt−1 is obtained by computing the
clean image estimate x̂0 and re-injecting a decreasing amount of random noise z ∼ N (0, I).

3.2 COUPLED DDPM SAMPLING

Problem. Given two diffusion models ϵθA and ϵθB for a shared data domain Rd and with a shared
DDPM schedule, our goal is to obtain two samples xA, xB ∈ Rd such that they follow the data
distribution prescribed by the pre-trained models pAdata(x) and pBdata(x), respectively, while staying
close to each other. This objective can be interpreted as tilting the distribution pAdata(x) to be close to
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2D Image Distribution

Source Distribution

(a) Standard DDPM Sampling (b) Coupled DDPM Sampling (c) Samples from Two Methods

Multi-view Distribution 2D Image Distribution Multi-view Distribution

Source Distribution

Samples from standard DDPM sampling

Samples from coupled DDPM sampling

DDPM Denoising

Prior Sampling
Omitted Sample Steps

Coupling Term

Figure 3: Overview of the proposed coupled sampling method. Given two target statistical dis-
tributions modeled with diffusion models: (a) standard DDPM sampling generates two instances
independently, using scores from each distribution, which leads to samples without spatial align-
ment; (b) in contrast, the proposed coupled DDPM sampling introduces coupling terms ∇U that
pull the two sample paths together, producing spatially and semantically aligned outputs; and (c) as
illustrated, yellow-bordered images are drawn from the 2D image distribution, while pink-bordered
images are drawn from the multi-view distribution.

Algorithm 1 Coupled DDPM Sampling
1: θ2D: Text2Image diffusion model
2: θMV : Text2MultiView diffusion model
3: xT,2D, xT,M ∼ N (0, I): initial latents
4: xT,2D, xT,M shapes: N ×H ×W × C where N is # of views
5: for t ∈ T, ..., 0 do
6: x̂t−1,2D, x̂2D,0 ← Denoise(θ2D, t, xt,2D) ▷ Diffusion model call to estimate x0
7: x̂t−1,MV , x̂MV,0 ← Denoise(θMV , t, xt,MV )
8: xt−1,2D ← xt,2D − λ(x̂2D,0 − x̂MV,0)
9: xt−1,MV ← xt,MV − λ(x̂MV,0 − x̂2d,0)

10: end for

a sample xB(x) ∼ pBdata(x), and vice versa. We introduce a coupling function U : Rd × Rd → R
that measures the closeness of two samples. A natural choice is the Euclidean Distance and in this
work, we use U(x, x′) = −λ

2 ∥x − x′∥22 with a constant coefficient λ ∈ R. Formally, our objective
is written as

min
xA,xB

J A(xA, xB) + J B(xA, xB), where (4)

J A(x;x′) := pAdata(x) expU(x, sg(x′)), (5)

J B(x;x′) := pBdata(x) expU(sg(x), x′), (6)

where sg denotes the stop gradient operation. Taking the gradients:

∇xJ i(x, x′) = ∇x log p
i(x) +∇xU(x, x′), i ∈ {A,B}. (7)

Here, the additional term ∇xU(x, x′) biases the sample trajectory {xi
t}t from the standard diffusion

trajectory following pi(x) to satisfy the goal. Tilting diffusion model sampling towards inference-
time reward functions or constraints has been widely studied for preference alignment (Wu et al.,
2023) and inverse problems (Chung et al., 2023; 2022), with gradient likelihood of a form similar
to Eq. (7), although typically under a fixed target. In contrast, in this work, the optimization target
depends on another variable.

Algorithm. Let xA
t , x

B
t ∈ Rd be two data samples.

xA
t−1 =

√
ᾱt−1x̂

A
0 +

√
1− ᾱt−1(ϵθA(xA

t ) +∇x̂A
0
U(x̂A

0 , x̂
B
0 )) + σtz

A, zA ∼ N (0, I), (8)

xB
t−1 =

√
ᾱt−1x̂

B
0 +

√
1− ᾱt−1(ϵθB (xB

t ) +∇x̂B
0
U(x̂B

0 , x̂
A
0 )) + σtz

B , zB ∼ N (0, I). (9)

Let fA(xA
t ; t) := expU(x̂A

0 , x̂
B
0 ) ∝ exp− 1

2
∥x̂A

0 −x̂B
0 ∥2

2

1/λ = N (x̂B
0 , 1/

√
λI), providing the interpre-

tation that fA(xA
t ; t) assigns low energy to x̂A

0 close to x̂B
0 in during the sampling process, and

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 4: Multi-view stylization. We show three examples of multi-view stylization of our method
against the baselines. Prior work on combining diffusion models (Liu et al., 2022; Du et al., 2023)
suffer from inconsistencies across frames. SDS based methods (Richardson et al., 2023) suffer from
severe artifacts. Hunyuan 3D’s results follow the prompt loosely when doing retexturing.

similarly for xB
t . This term effectively serves as a soft regularization that encourages two sam-

ples to stay close. The gradient term ∇xU(x, x′) = −λ(x − x′) is easy to compute with minimal
computation overhead. The sampling algorithm is summarized in Algorithm 1.

4 EXPERIMENTS

We refer the readers to the supplementary webpage for video results.
To demonstrate the versatility of our method, we select tasks that highlight various editing aspects.
1) Spatial editing: We use Magic Fixup (Alzayer et al., 2025b) to highlight the ability of making
geometric changes in a scene. 2) Stylization: We perform stylization using Control-Net (Zhang et al.,
2023) with edge control, demonstrating how we can alter the general appearance of the input while
preserving its overall shape. 3) Relighting: We perform relighting using two different models: 1)
Neural-Gaffer (Jin et al., 2024), which takes an explicit environment map as input, and 2) IC-Light
(Zhang et al., 2025a), which is text-conditioned, producing more diverse edits.
For each of these tasks, we begin with a collection of input images and additional task-specific
conditioning. The 2D model is capable of editing each image individually, but this often leads to
inconsistencies across the set. In contrast, the multi-view model (Zhou et al., 2025) is a novel view
synthesis model that takes a set of consistent images and generates novel views. Our pipeline first
edits a single image using the 2D model and then uses it as a reference for the multi-view model.
However, editing only a single image is insufficient to fully preserve the identity of the input, as
illustrated in Figure 2. To address this, we couple the two models, enabling the multi-view model to
maintain identity while ensuring consistency across multiple views. We perform the coupling in the
latent space, and in all these experiments, both the image editing models and the multi-view model
operate in the latent space of Stable Diffusion 2.1 (Rombach et al., 2022).

For each task, we adopt Liu et al. (2022) and Du et al. (2023) as general-purpose baselines for com-
bining our two diffusion models. We also include task-specific baselines tailored to each scenario.
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Table 1: Quantitative comparison on spatial edit-
ing. We evaluate against GT renders of the target
edit, and use MEt3r for geometric consistency.

Per-image metrics MV metric

Method PSNR ↑ SSIM ↑ LPIPS ↓ MEt3r ↓ Users ↑
Per-image 16.5 0.550 0.253 0.353 -
Image-to-MV 12.84 0.400 0.556 0.417 -

Liu et al. (2022) 16.5 0.530 0.354 0.368 9%
Du et al. (2023) 16.7 0.548 0.411 0.344 1%
SDEdit 15.4 0.458 0.468 0.393 11%
Ours 17.0 0.550 0.421 0.335 80%

Table 2: Quantitative comparison on relight-
ing. We evaluate against GT relighting results in
terms of per-image metrics, and evaluate multi-
view consistency with MEt3r.

Per-image metrics MV metric

Method PSNR ↑ SSIM ↑ LPIPS ↓ MEt3r ↓ Users ↑
Per-image 22.7 0.862 0.159 0.243 -
Image-to-MV 19.3 0.815 0.193 0.229 -

Liu et al. (2022) 23.2 0.871 0.152 0.220 10%
Du et al. (2023) 22.1 0.863 0.158 0.217 19%
NeRF + NG 22.4 0.865 0.162 0.217 25%
Ours 23.2 0.868 0.157 0.217 46%

GTSDEdit (Meng 2022)Du et al. 2023Liu et al. 2022OursCoarse editInput

Figure 5: Qualitative comparison on multi-view spatial editing. The baselines struggle in pre-
serving the identity of the input, and produce flickering artifacts across edited frames, while our
results achieve both editing targets and multi-view consistency.
To provide a comprehensive evaluation, we conduct user studies with 25 participants for all tasks,
comparing our approach to all baselines using best-of-n preference questions.

4.1 MULTI-VIEW SPATIAL EDITING

Spatial editing is challenging because it requires accurately harmonizing the scene, including object
interactions and changes in shadows and reflections resulting from edits. There are no large-scale
datasets available for training spatial editing models. As a result, previous work on 2D spatial editing
has relied on large-scale video datasets (Wu et al., 2024b; Cheng et al., 2025; Alzayer et al., 2025b)
to learn natural object motion. However, such data sources do not exist for multi-view datasets, as
dynamic multi-view or 4D datasets are extremely scarce and are typically created only for evaluation
purposes. Our coupled sampling paradigm addresses this gap.

We use Magic Fixup (Alzayer et al., 2025b) for the 2D editing model. This model takes the orig-
inal image and a coarse edit that specifies the desired spatial changes. For multi-view editing, it
is necessary to apply the edit consistently across all views. In our experiments, we unproject the
target object in each image using a depth map. We then apply a 3D transformation to the object and
reproject it into the image. As a baseline, we also use SDEdit (Meng et al., 2022), which similarly
accepts a coarse edit. Figure 5 presents three different coarse edits, with two frames from each edit

6
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Table 3: Quantitative comparison on stylization. We evaluate the temporal and subject consistency,
and MEt3r score for geometric consistency. CLIP score is computed against the edit prompt.

Per-img metric MV metrics

Method CLIP score ↑ Temp. consis. ↑ Subject consist. ↑ MEt3r ↓ User pref. ↑ Mesh-free

Per-image (Zhang et al., 2023) 30.0 0.922 0.740 0.546 - ✓
Image-to-MV (Zhou et al., 2025) 29.5 0.927 0.787 0.382 - ✓

TEXTure (Richardson et al., 2023) 28.4 0.967 0.748 0.426 14% X
Hunyuan3D (Team, 2025) 29.9 0.952 0.754 0.391 8% X

Liu et al. (2022) 30.1 0.934 0.759 0.461 19% ✓
Du et al. (2023) 30.2 0.926 0.762 0.461 12% ✓
Coupled Sampling (Ours) 29.68 0.946 0.807 0.392 47% ✓

shown to illustrate consistency. In the first example, we find that our method correctly translated
and rotated the car, while preserving the identity of the input. By contrast, the baselines struggle to
maintain the back view of the scene. In the final edit, our method produces smooth shadows that
match the ground truth, whereas the baseline results in highly irregular shadows.
To quantitatively evaluate performance, we render the ground truth 3D transformation for each edit
using Blender. We use standard reconstruction metrics, and MEt3r (Asim et al., 2025), which mea-
sures the 3D consistency of multi-view outputs. Table 1 demonstrates that our method achieves
higher PSNR and SSIM scores, along with superior multi-view consistency.

4.2 MULTI-VIEW STYLIZATION

Stylization is a common application of diffusion models, where an input sequence, the spatial struc-
ture of the desired output, and a text prompt specifying the style are provided. Control-Net (Zhang
et al., 2023) enables this type of stylization by incorporating geometry-related conditioning, such as
the Canny edges of an image. Because ControlNet is trained on a large dataset, it achieves higher
text fidelity than text-to-MV models. A closely related task is 3D re-texturing, in which a 3D mesh
is given and a new texture is generated using a generative model. To assess our method, we rendered
ten different scenes and applied stylization to each using user-defined prompts. For a comprehen-
sive comparison, we also include baselines that operate directly on the 3D mesh, such as TEXTure
(Richardson et al., 2023), which synthesizes new textures using SDS (Poole et al., 2023), and Hun-
yuan3D (Team, 2025), which employs a feed-forward multi-view model to generate textures. We
omit InstructNeRF2NeRF as it fails on our inputs. In Fig. 4, we present results from three represen-
tative examples. In the first example, score averaging methods have difficulty preserving the identity
of the edited subject, resulting in color changes or the changing identity across frames. In contrast,
TEXTure exhibits severe artifacts due to its SDS-based approach. Hunyuan3D produces very simple
edits that often do not align with the text prompt.
Although the quantitative evaluation of stylization remains challenging, we assess both temporal
and subject consistency in our generated videos using VBench Zhang et al. (2024) and measure
geometric consistency with MEt3r (Asim et al., 2025). Our results show that our method achieves
superior temporal and subject consistency compared to previous approaches for combining diffusion
models. For reference, we also report results from mesh-based methods on rendered videos, which
are inherently temporally consistent due to the underlying mesh representation.

4.3 MULTI-VIEW RELIGHTING

Environment map conditioned relighting. When the variance of the 2D diffusion results is low,
meaning the sampling distribution is narrow, radiance fields can effectively regularize inconsis-
tencies. However, this requires obtaining a consistent geometry beforehand. As an alternative,
we demonstrate that a multi-view diffusion model can regularize inconsistencies in 2D relighting
through coupled sampling. Figure 6 presents two relighting examples to illustrate this. We observe
that prior methods for combining diffusion models (Liu et al., 2022; Du et al., 2023) can introduce
flickering artifacts, as evidenced by abrupt color changes in the top two rows. In contrast, NeRF-
based approaches may incorrectly attribute lighting variance to view-dependent effects, as illustrated
in the bottom two rows of the backpack example. To quantitatively compare these methods, we use
the 3D objects from Neural-Gaffer (Jin et al., 2024), and add both a diffuse and a glossy object,
resulting in a total of seven objects with five relightings each. We compute per-image reconstruction
metrics and geometric consistency using MEt3r, as shown in Table 2. Although these metrics do
not capture subtle lighting flicker, our method achieves competitive results in both reconstruction
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GTInput Ours NeRF + Neural Gaffer

(Jin et al. 2024)

Liu et al. 2022 Du et al. 2023

Figure 6: Qualitative comparison on environment map based relighting. Other methods tend to
produce flickering artifcats (notice the change in color in the first two rows for Liu et al. (2022);
Du et al. (2023)). The usage of NeRF will make the lighting changes to be baked into the view
dependent effects. Our method achieves the best overall result.

Sample inputs Sample inputs

“snowy lighting” “snowy lighting”“glowing neon” “glowing neon”“studio lighting” “beach sunset”

Relighting outputs Relighting outputs

Figure 7: Text based relighting. We combine IC-Light (Zhang et al., 2025a), which enables text-
based relighting with stable virtual camera to obtain multi-view results.

and consistency. Importantly, we also report metrics for relighting each image individually, which
serves as a coarse upper bound, and observe no degradation in performance.

Text conditioned relighting. To show more drastic relighting outputs, we use IC-Light (Zhang
et al., 2025a), which operates by relighting the object and adding a suitable background. While
Stable-Virtual-Camera (Zhou et al., 2025) may have a weak prior for regularizing backgrounds due
to its training data, we find that it still ensures the object is consistently lit across frames. In Fig. 7
we show diverse multi-view relighting results using our method.

5 ANALYSIS EXPERIMENTS

In this section, we demonstrate that the benefits of coupled sampling extend to various models, and
analyze how varying the guidance strength in our approach influence the results.

Backbone variations. In Section 4, we presented multi-view editing results using Stable Virtual
Camera (Zhou et al., 2025). Here, we further examine the impact of coupling on text-to-multi-view
models, specifically MVDream (Shi et al., 2024), which extends Stable Diffusion 1.5 to produce
four consistent views, and MV-Adapter (Huang et al., 2024), which leverages the more advanced
SDXL backbone and operates in the SDXL latent space. For coupling, we use SD1.5 and SDXL
as the respective text-to-image models. As shown in Figure 8, text-to-multi-view models often gen-
erate objects with a CGI-like appearance, likely due to their training on datasets such as Objaverse
(Deitke et al., 2023). Introducing our coupling approach encourages the multi-view samples to better
resemble real images, as modeled by the 2D diffusion models.
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Stable Diffusion 2.1 backbone

Coupled samples (ours)

Multiview samples

prompt: “steampunk scuba diver” prompt: “a jade statue of a necromancer”2D samples

Stable Diffusion XL backbone

Figure 8: Coupling in different mutli-view models. We implement coupling on T2I and T2MV
models with two different backbones. We couple SD2.1 with MVDream (Shi et al., 2024), and
SDXL with MVAdapter (Huang et al., 2024) which operates in SDXL latent space. In both cases,
the coupled multiview samples show an increase in realism and decrease in “objaverse” appearance.
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Golden retriever A digital paintingA cat playing with a yarn ball

Figure 9: Image space coupling. Using Flux, we perform coupled sampling on different prompts.
We show that the coupled samples are spatially aligned while being faithful to the prompt.

Coupling Text-to-image flow models. Coupled diffusion sampling can be applied to both 2D
and multi-view settings. To illustrate the effects of coupled sampling, we implement our method
using the text-to-image model Flux (Labs, 2024). Although Flux is a flow-based model (Lipman
et al., 2023; Liu et al., 2023), we show that our coupling approach remains effective. We test cou-
pled sampling by generating two samples from the same model, each conditioned on a different
prompt. As shown in Fig. 9, without coupling, the outputs are typically very distinct. With the cou-
pled sampling, the outputs become spatially aligned while still reflecting their respective prompts.

Figure 10: Guidance strength anal-
ysis. As we increase the guidance
strength, the reconstruction improves
but the consistency drops.

Guidance strength analysis. We quantitatively evalu-

ate the effects of guidance strength λ on spatial editing
performance. When λ is very small, the model output
resembles image-to-MV sampling, resulting in low re-
construction performance. As λ increases, reconstruction
performance improves. However, with further increases
in λ, consistency across frames degrades as the outputs
become more similar to 2D model samples and eventu-
ally collapse.

6 DISCUSSION AND CONCLUSIONS

We introduce a simple and effective approach for cou-
pling diffusion models, enabling 2D diffusion models
to generate consistent multi-view edits when used with
multi-view diffusion models. Our method is efficient, ver-
satile, and achieves high-quality results. By guiding the
diffusion sampling process, our approach produces out-
puts that retain the strengths of the underlying models, while also inheriting their limitations.
We believe this coupling strategy has potential applications beyond multi-view editing. In the future,
our paradigm could extend the capabilities of image-editing models to video editing by integrating
with video diffusion models, without incurring additional computational overhead.

9
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Reproducibility statement. A key advantage of our approach is its simplicity: it requires only
a straightforward modification to the standard DDPM sampling procedure, which can be readily
implemented based on the details provided in this paper. To promote reproducibility and facilitate
further research, we will publicly release our coupled sampling code upon acceptance.
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A ADDITIONAL DISCUSSION OF LIMITATIONS

While the proposed method offers a simple and efficient framework for multi-view consistent image
editing, several notable limitations remain. First, running both the 2D editing model and the multi-
view diffusion model in parallel increases memory and computational requirements. This limitation
could be addressed in future work by exploring adaptive guidance strength or applying guidance
during only a subset of sampling steps. Second, the edited outputs are not perfectly 3D consistent
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compared to test-time optimization-based methods. This residual inconsistency can be further re-
duced by robustly fitting a NeRF or 3D Gaussian Splatting model to the generated views, as shown
in prior work Haque et al. (2023); Weber et al. (2024), while still maintaining much faster inference
than optimization-based approaches.

B IMPLEMENTATION DETAILS

As our primary multi-view generation base model, we use Stable-Virtual-Camera (SVC) which is
trained to process 21 frames at once, and use one or several consistent images for novel view syn-
thesis. As we would like to edit a collection of views, we do not have access to more than one
consistent edited photos, since we can only edit one image at a time with the 2D editing model. In
our experiments, we edit a reference image, and then use it as the conditioning view. Note that this
conditioning view has great influence on the outcome, as it dictates the distribution of acceptable 3D
scenes that SVC would synthesize.
We transform stable-virtual-camera into DDPM by converting the EDM based sampler into a DDPM
scheduled by computing converting the noise levels into the appropriate alphas. Afterwards, since
SVC was trained with a shifted noise schedule compared to SD2.1 image models, we re-align SVC’s
schedule with the 2D model’s schedule for the coupled sampling to be effective.
We conduct our experiments using NVIDIA A6000 GPUs. As our approach only requires a feed for-
ward pass, the memory requirement is equivalent to the combined memory of the two models used.
A better memory utilization can be further achieved by loading and off-loading the models from the
GPU, as we can run them sequentially and then compute the coupling term. We use 50 denoising
steps for spatial editing and stylization, and 100 denoising steps with Neural Gaffer relighting. The
runtime of the sampling process is 130 seconds using our GPU resources for generating the full 21
frames sequence.
In the experiments with Neural-Gaffer, one challenge is that Neural-Gaffer is trained on 256x256
images. On the other hand, SVC was trained on 576x576 images. We found that SVC performs very
poorly on images of that size, and neural-gaffer does not generalize to 512x512 images or larger.
After experimenting with the models, we found that at resolution size of 384x384, both models
perform reasonably well and adopt that for the neural-gaffer experiments.

C COUPLED DIFFUSION SAMPLING WITH FLOW MODELS

Note that Flux (Labs, 2024), the text-to-image model used in Sec. 5 is a flow model. To sample
from Flux using our proposed sampling method, first we transform the velocity vθ(xt) to the score
function sθ(xt), as it can be linearly transformed into score functions via sθ(xt) = −−tvθ(xt)+xt

1−t .
Then transform the inference schedule to be DDPM via time reparameterization (Lipman et al.,
2024) by computing the appropriate alpha values that match the noise levels associated with each
time step.

C.1 EFFECTS OF GUIDANCE STRENGTH

As an additional illustration, in Fig. 11 we show how the samples change as we increase the coupling
strength, while using the same initial random noise and randomness seed.

D USER STUDY ON IC-LIGHT

For completion, we include the results of our user study on IC-Light in Tab. 4. We show that our
outputs are preferred by users over either of prior work on combinign diffusion models, as they tend
to produce high flickering artifacts in the relit outputs.

E EFFECTS OF STOCHASTICITY

One observation one would make is that our coupling term resembles linearly combining the inter-
mediate samples of the two models, so one may wonder why we do not simply get images that are
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Coupling Strength 0.0

Prompt: Japanese Samurai

Prompt: Astronaut on Mars

Coupling Strength 0.0025 Coupling Strength 0.005 Coupling Strength 0.01

Figure 11: Effects of coupling strength. We illustrate the effects of coupling strength on the spatial
alignment between samples as we vary the coupling strength while keeping the initial noise and
random seed.

Table 4: User study results on text-based relighting.

Method User pref. ↑
Liu et al. (2022) 24%
Du et al. (2023) 26.5%
Coupled Sampling (Ours) 49.5%

a linear average of the two outputs. Indeed, when we use a deterministic sampler, like Euler Dis-
crete Sampler that’s commonly used, this is the outcome that we encounter as we show in Fig. 12.
However, when using a stochastic sampler like DDPM where noise is injected at every timestep, the
model needs to correct for the added noise. When we include our coupling term in the stochastic
step, the model can naturally correct or reject parts of the guidance that steers it away from its train-
ing distribution. This is also the reason we make our coupling term to be correlated with the noise
level, by scaling it with

√
1− αt, since at step t, the model has the ability to correct for noise at that

level, but steering the sample by a larger magnitude risks pulling the intermediate latents outside
of the training distribution. Additionally, as intuitively understood about diffusion sampling, at the
later time steps the structure of the outputs is already determined, so shifting the intermediate latents
in a large direction can disrupt the sampling process.

F ADDITIONAL T2MV RESULTS

In Fig. 13 and Fig. 14, we highlight additional results from coupling text-to-multi-view models along
with text-to-image models.

G APPLICATIONS WITH MV-ADAPTER

One of the limitations of MV-Adapter is that it can only generate fixed set of camera views, making
its utility for editing limited. Nonetheless, we show that we can still use it by editing the outputs it
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DDPM  sampler

(Stochastic)

Husky playing 
with a ball

Husky sleeping

No Coupling With Coupling No Coupling With Coupling

Euler Discrete Sampler

(Deterministic)

Figure 12: Sampler comparison. When using a stochastic sampler, the coupling can lead to natural
guidance pulling the outputs towards each other. On the other hand, a deterministic sampler would
simply output the average of both samples, as ODE based sampling does cannot recover from noisy
guidance.

produces by performing coupling with single-image editing models. In Fig. 15, we show an example
of using MV-Adapter for stylization, and relighting.

H OUTPUTS OF INSTRUCTNERF2NERF

When running InstructNeRF2NeRF on our input sequences used for stylization with the same num-
ber of frames as our method and other baselines (21 frames), we find that the radiance field com-
pletely collapses. This is likely due to NeRF’s inability to gradually handle inconsistency with less
dense camera coverage.
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Figure 13: Additional MVDream T2MV coupling results. Here we show additional results on the
output of Text-to-Multiview MVDream when coupled with Text-to-Image SD2.1.
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Figure 14: Additional MV-Adapter T2MV coupling results. Here we show additional results on
the output of Text-to-Multiview MV-Adapter when coupled with Text-to-Image SDXL.
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Figure 15: Multiview editing with MV-Adapter. Here we show editing results with MV-Adapter
to achieve stylization by combining it with Control-Net (Zhang et al., 2023) and relighting using
IC-Light (Zhang et al., 2025a).

Sample input frame

+


Prompt: “make it a golden lamborghini”

InstructNeRF2NeRF renders

Figure 16: InstructNeRF2NeRF outputs. When running InstructNeRF2NeRF (Haque et al., 2023)
on our input views, we find that the editing training loop with InstructPix2Pix completely collapses.
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