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Abstract
We consider the problem of performing Bayesian
inference in probabilistic models where observa-
tions are accompanied by uncertainty, referred
to as “uncertain evidence.” We explore how to
interpret uncertain evidence, and by extension
the importance of proper interpretation as it per-
tains to inference about latent variables. We con-
sider a recently-proposed method “distributional
evidence” as well as revisit two older methods:
Jeffrey’s rule and virtual evidence. We devise
guidelines on how to account for uncertain evi-
dence and we provide new insights, particularly
regarding consistency. To showcase the impact
of different interpretations of the same uncertain
evidence, we carry out experiments in which one
interpretation is defined as “correct.” We then
compare inference results from each different in-
terpretation illustrating the importance of careful
consideration of uncertain evidence.

1. Introduction
In classical Bayesian inference, the task is to infer the
posterior density p(x|y) ∝ p(y, x) over the latent vari-
able x given (observed) y. The joint density (or model),
p(y, x), is assumed known, and typically factorizes as
p(y, x) = p(y|x)p(x) where p(y|x) and p(x) are the likeli-
hood and prior respectively. This paper deals with the case
where y is not observed exactly; rather it is associated with
uncertainty1 which we refer to as “uncertain evidence.” This
is a common scenario as these uncertainties may stem from:
observational errors; distrust in the source providing y; or
when y is derived (stochastically) from some other data.

As an example, consider the experiment of recording the
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1Ideally one would remodel the system to account for such
uncertainties, but this is rarely easy to do.

time t it takes for a ball to drop to the ground in order to de-
termine the acceleration due to gravity, g. Taking some prior
belief about the value of g, we may solve this problem using
Bayesian inference. That is, we infer p(g|t) ∝ p(g)p(t|g),
where p(g) is the prior density of g and p(t|g) is the like-
lihood representing the physical model (or simulation) of
the time t given g. In this setup, the uncertainty about t
given g would be due to neglecting air resistance or ignor-
ing variations in the distance the ball drops as a result of
vibrations etc. Assume next that the observations (or data)
is given as in Table 1. It is not immediately obvious how
the uncertainty relates to t. There are arguably at least two
valid interpretations of the information in Table 1: (1) it de-
scribes a distribution of the real time t. For example, the real
time is normally distributed with mean 0.5s and standard
deviation 0.05s. (2) It describes additional uncertainty on
the predicted time and the observed value is, indeed, 0.5s.
For example, given the predicted time t the observed time t̂
is normally distributed with mean t and standard deviation
0.05s. Importantly, in either case the uncertainty can be
represented with a given external2 density q(·|·) which de-
scribes a stochastic relationship between t and an auxiliary
variable ζ . We consider in case (1) and (2) the density q(t|ζ)
and q(ζ|t). In the former case ζ is left implicit (something
gave rise to the uncertainty). In the latter ζ = t̂ and the
observation is t̂ = 0.5s. These two approaches are funda-
mentally different operations that may lead to profoundly
different inference results.

The topic of observations associated with uncertainty has
been studied since at least 1965 (Jeffrey, 1965). Of partic-
ular relevance are the work of Jeffrey (1965) and Shafer
(1981); and Pearl (1988), giving rise to Jeffrey’s rule (Jef-
frey, 1965; Shafer, 1981) and virtual evidence (Pearl, 1988).
In the example above, inference using approach (1) or (2)
corresponds to Jeffrey’s rule or virtual evidence respectively.
Since thenm other approaches, closely related to Jeffrey’s
rule and virtual evidence, has been proposed (e.g., Valtorta
et al., 2002; Tolpin et al., 2021; Yao, 2022). While each
approach has its own merits and is applicable under (almost)
the same circumstances, the original literature and most
prior work comparing these methods, (e.g., Pearl, 2001; Val-
torta et al., 2002; Chan & Darwiche, 2005; Ben Mrad et al.,

2In this context, external refers to a distribution provided from
some external source.
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Table 1. Uncertain observation associated with the time t in the
drop of a ball example.

VALUE [s] ±[s]

t 0.5 0.05

2013; Tolpin et al., 2021), are reluctant to take a concrete
stand on when each is more appropriate.

This paints an obfuscated picture of what to do, practically,
when presented with uncertain evidence. This obfuscation
becomes problematic when practitioners outside the field
of statistics deal with uncertain evidence and look to the
literature for ways to address it. Especially now, consider-
ing the increased use of Bayesian inference in high-fidelity
simulators and probabilistic models (e.g., Papamakarios
et al., 2019; Baydin et al., 2019; Lavin et al., 2021; Liang
et al., 2021; van de Schoot et al., 2021; Wood et al., 2022;
Mishra-Sharma & Cranmer, 2022; Munk et al., 2022). For
example, in physics it is not uncommon that likelihoods
are given relatively ad-hoc forms where some notion of
“measurement error” is attached to uncertain observations.
However, the underlying (stochastic) physical model is usu-
ally taken to be understood perfectly. This is the case,
for instance, when inferring; the Hubble parameter via su-
pernovae brightness (e.g., Riess et al., 2022); pre-merger
parameters of black-hole/neutron star binaries via gravi-
tational waves (e.g., Thrane & Talbot, 2019; Dax et al.,
2021); neutron star orbital/spin-down/post-Newtonian pa-
rameters via pulsar timings (e.g., Vigeland & Vallisneri,
2014; Lentati et al., 2014); planetary orbital parameters
via radial velocity/transit-time observations (e.g., Schulze-
Hartung et al., 2012; Feroz & Hobson, 2014; Liang et al.,
2021). In most cases a Gaussian likelihood is assumed
for the data, but exactly how the error relates to the data
generation process is not specified. If uncertainties about
simulator/model observations arise given external data, then
usually Jeffrey’s rule would apply, but it appears that virtual
evidence is more often employed.

It is the purpose of this paper to provide novel insights, the-
oretical contributions and guidance as to how to deal with
observations with associated uncertainty as it pertains to
Bayesian inference. We show, experimentally, how misinter-
pretations of uncertain evidence can lead to vastly different
inference results; emphasizing the importance of carefully
accounting for uncertain evidence.

2. Background
Bayesian inference aims to characterize the posterior distri-
bution of the latent random vector x given the observed
random vector y. When observing y with certainty the
inference problem is “straightforward” in the sense that

p(x|y) = p(y, x)/p(y). However, exact inference is often in-
feasible as p(y) is usually intractable, but if the joint p(y, x)
is calculable then inference is achievable via approximate
methods such as importance sampling (e.g., Hammersley
& Handscomb, 1964), Metropolis-Hastings (Metropolis &
Ulam, 1949; Metropolis et al., 1953; Hastings, 1970), and
Hamiltonian Monte Carlo (Duane et al., 1987; Neal, 1994).
Unfortunately, standard Bayesian inference is incompati-
ble with uncertain evidence where exact values of y are
unavailable.

Before discussing ways to treat uncertain evidence, we first
introduce the highest level abstraction representing uncer-
tain evidence. Specifically, we consider ϵ ∈ E , where E is a
set of “statements” specifying the uncertainty about y. For
example, in the drop of a ball example ϵ would be a state-
ment represented as Table 1. In contrast, ζ is a lower level
abstraction which is encoded in ϵ. Dealing with uncertain
evidence is a matter of decoding or interpreting ϵ, possi-
bly identifying ζ and relating it to p(y, x). The canonical
example of interpreting uncertain evidence, as introduced
by Jeffrey (1965, p. 165), is “observation by candlelight,”
which motivated Jeffrey’s rule:

Definition 2.1 (Jeffrey’s Rule (Jeffrey, 1965)). Given
p(y, x), let the interpretation of a given ϵ ∈ E lead to y
being associated with uncertainty, conditioned on auxiliary
evidence ζ—where ζ may be unknown—and denote the de-
coded uncertainty by q(y|ζ). Then the updated (posterior)
density p(x|ζ) is:

p(x|ζ) =
∫

p(x|y)q(y|ζ) dy. (1)

In particular, one considers the updated joint p(y, x|ζ) =
p(x|y)q(y|ζ), such that q(y|ζ) is a marginal of p(y, x|ζ).

Jeffrey envisioned the existence of the auxiliary variable (or
vector), ζ; however, Jeffrey’s rule is often defined without
it (e.g., Chan & Darwiche, 2005). Nonetheless, we argue
that reasoning about an auxiliary variable (or vector) ζ is
the more intuitive perspective as some evidence must have
given rise to q. Further, accompanying the introduction
of Jeffrey’s rule is the preservation of the conditional dis-
tribution of x upon applying Jeffrey’s rule (e.g., Jeffrey,
1965; Diaconis & Zabell, 1982; Valtorta et al., 2002; Chan
& Darwiche, 2005). That is, the evidence ζ giving rise to
q(y|ζ) must not also alter the conditional distribution of x
given y (and ζ). Mathematically, Jeffrey’s rule requires that,
p(x|y, ζ) = p(x|y). This, for instance, relates to the com-
mutativity of Jeffrey’s rule—also referred to as the issue
of iterated revision (Chan & Darwiche, 2005). This topic
is treated in full detail by Diaconis & Zabell (1982) and
further discussed by Wagner (2002). For completeness a
brief discussion in Appendix A.

In contrast to Jeffrey’s rule is virtual evidence, as proposed
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x y ζ

q(y|ζ)p(x|y)
Jeffrey’s rule

p(y|x) q(ζ|y)
Virtual evidence

Figure 1. Jeffrey’s rule compared to virtual evidence in terms of
the auxiliary evidence ζ. Both virtual evidence and Jeffrey’s rule
are defined in terms of the base model p(y, x).

by Pearl (1988). Virtual evidence also includes an auxiliary
virtual variable (or vector), but does so via the likelihood
q(ζ|y, x) := q(ζ|y), with the only parents of ζ being y:

Definition 2.2 (Virtual evidence (Pearl, 1988)). Given
p(y, x) and suppose a given ϵ ∈ E leads to the interpretation
that we extend p(y, x) with an auxiliary virtual variable (or
vector) ζ such that: (1) in the discrete case, y ∈ {yk}Kk=1,
the uncertain evidence is decoded as likelihood ratios3

{λk}Kk=1:

λ1 : · · · : λK = q(ζ|y1) : · · · : q(ζ|yK). (2)

The posterior over x given uncertain evidence is (Chan &
Darwiche 2005; a result we also prove in Appendix B):

p(x|ζ) =
∑K

k=1 λkp(yk, x)∑K
j=1 λjp(yj)

. (3)

(2) If y is continuous, decoding ϵ leads to the virtual likeli-
hood q(ζ|y) such that the posterior is proportional to the
(virtual) joint

p(x|ζ) ∝
∫

p(ζ, y, x) dy =

∫
q(ζ|y)p(y, x) dy. (4)

In practice, in the continuous case one can approximate the
posterior using standard approximate inference algorithms
requiring only the evaluation of the joint. In the discrete
case, Eq. 3, the posterior inference is exact assuming a
known p(yi) for all i ∈ {1, . . . ,K}. When comparing Jef-
frey’s rule and virtual evidence (e.g., Pearl, 1988; Valtorta
et al., 2002; Jacobs, 2019) we can do so in terms of ζ and the
corresponding graphical model, see Figure 1. This figure is
a graphical representation of how Jeffrey’s rule and virtual
evidence relate ζ to the existing probabilistic model, p(y, x).
Particularly, Jeffrey’s rule and virtual evidence affect the
model in opposite directions. Jeffrey’s rule pertains to uncer-
tainty about y given some evidence, while virtual evidence
requires reasoning about q(ζ|y).

3The notation for ratios containing several terms, for example
A, B, and C, is written as x : y : z. This is understood as: “for
every x part of A there is y part B and z part C.”

It is (perhaps) not surprising that one may apply Jeffrey’s
rule, yet implement it as a special case of virtual evidence,
by choosing a particular form of likelihood ratios, Equa-
tion (2), and vice versa (Pearl, 1988; Chan & Darwiche,
2005). However, this is of purely algorithmic significance
as the two approaches remain fundamentally different.

A third approach to uncertain evidence, recently introduced
by Tolpin et al. (2021), treats the uncertain evidence on y
as an event. This approach, which here is referred to as
distributional evidence, defines a likelihood on the event
{Y ∼ Q} (reads as “the event that the distribution of Y is
Q with density q(y)”) and considers the auxiliary variable
ζ = {Y ∼ Q}:

Definition 2.3 (Distributional evidence (Tolpin et al., 2021)).
Let p(y, x) = p(y|x)p(x) be the joint density with a known
factorization. Assume the interpretation of a given ϵ ∈
E yields a density q(y), with distribution Q. Define the
likelihood p(Y ∼ Q|x) as:

p(Y ∼ Q|x) = exp
∫
(ln p(y|x)) q(y) dy

Z(x)
(5)

where Z(x) is a normalization constant that generally de-
pends on x. See (Tolpin et al., 2021) for sufficient conditions
for which Z(x) < ∞.

3. Which Approach?
The lack of general consensus on how best to approach
uncertain evidence means that it is difficult to know what
to do, in practical terms, when faced with uncertain evi-
dence. In isolation, each approach discussed in the previous
section appears well supported, even when applied to the
same model (e.g., Ben Mrad et al., 2013). However, the un-
derlying arguments remain somewhat circumstantial. Prior
work tends to create contexts tailored for each approach and
it is unclear how relatable or generalizable those contexts
are. As such, much prior work is not particularly instructive
when deducing which approach to adopt for new applica-
tions that do not fit those prior context. We argue that the
apparent philosophical discourse fundamentally stem from
a disagreement about the model M ∈ M in which we seek
to do inference given uncertain evidence ϵ ∈ E . This can be
framed as an inference problem where we seek to find (or di-
rectly define) p(M |ϵ). The significance of this perspective is
that reasoning about the triplet M ∈ M, ϵ ∈ E , and p(M |ϵ)
makes for a better foundation that encourages discussions
about and makes clear the underlying assumptions.

How then should we define p(M |ϵ)? In the general case,
reaching consensus is close to impossible as it requires fully
specifying M and E (all possible models and conceivable
evidences). However, while universal consensus is arguably
unattainable; “local” consensus might be. Here locality
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refers to defining p(M |ϵ) on constrained and application de-
pendent subsets Ẽ ⊂ E and M̃ ⊂ M. This perspective was
considered by (Grove & Halpern, 1997), yet does not seem
to have resurfaced in this context since. Grove & Halpern
(1997) define M̃ in terms of a prior p(M) and implicitly
defines Ẽ as a set of trusted statements pertaining to (con-
ditional) probabilities. They further define the likelihood
p(ϵ|M) which evaluates to one if the model M is consistent
with the evidence ϵ and zero otherwise. From this they are
able to compute p(M |ϵ) ∝ p(ϵ|M)p(M).

3.1. Uncertain Evidence Interpretation

We propose to limit the consideration of Ẽ and M̃ to con-
strained, but widely applicable (and application dependent)
subsets set in the context of inference. To construct Ẽ and
M̃, begin with the assumption that a base model p(y, x) is
always available. Further, assume that Ẽ contains evidence
in the form of statements which is interpreted in a literal
sense. To ensure inference with exact evidence is possible,
it is required that Ẽ contain evidences that encode exact
evidence about Y. For example ϵ = “the value of Y is y.” Fi-
nally, constrain the form of uncertain evidence by requiring
ϵ to encode uncertainty in one of three ways: (I) ϵ encodes
a density q over y, for example ϵ = “The density of y is
q(y|ζ)”. (II) ϵ encodes a conditional density about y given
X = x (or a subset of the latent variables). For example
ϵ = “iff X = x then the density of y is q(y|x).” (III) Uncer-
tain evidence is explicitly expressed in terms of a likelihood
of y, for example let y ∈ {0, 1} and consider ϵ = “y = 1 is
twice as likely to explain the evidence compared to y = 0.”
Define M̃ implicitly by requiring that the random variable
ϵ partitions M̃ such that the posterior p(x|ϵ) takes a certain
form:

Definition 3.1. Given ϵ ∈ Ẽ , define p(M̃|ϵ) and M̃ implic-
itly through the partitions of M̃ as generated by ϵ, such that
inference given ϵ becomes,

p(x|ϵ) = Ep(M |ϵ)[p(x|M)]

=



p(x|y), if ϵ is exact,∫
p(x|y)q(y|ζ) dy, if ϵ is type (I) ,

p(x)p(Y∼Q|x)
p(Y∼Q) , if ϵ is type (II) ,∫
p(x)p(y|x)q(ζ|y) dy

p(ζ) , if ϵ is type (III) ,

(6)

where type (I-III) leads to Jeffrey’s rule, distributional evi-
dence, and virtual evidence respectively. It should be em-
phasize, that the definitions of Ẽ , M̃, and p(M̃|ϵ) are not
fundamental truths. Rather, they are proposed beliefs about
how one ought to approach uncertain evidence in a form
found in Ẽ . In particular, notice that type (I) and (II) evi-
dences are similar in that they describe a distribution of y.
The crucial difference lies in the conditional relationship

giving rise to said probability. In type (I) uncertainty is as-
sumed due to external (unknown) evidence, represented by
ζ not found in x or y. On the other hand, in type (II) ζ is x (or
a subset thereof). Even though Jeffrey’s rule is proposed to
be preferable given type (I) uncertain evidence, it turns out
there are cases where Jeffrey’s rule is, in fact, inconsistent
with p(y, x). This is shown shown in the following section.
Nonetheless, from a mathematical perspective, Jeffrey’s rule
can still be applied. This is justified, in part, as Jeffrey’s rule
leads to a “new” model p(y, x|ζ) which is closest to p(y, x)
as measured by the KL divergence DKL(p(y, x|ζ)||p(y, x))
constrained such that

∫
p(y, x|ζ)dx = q(y|ζ) (Peng et al.,

2010, and citations therein). Despite this, if Jeffrey’s rule is
inconsistent with p(y, x) it may be preferable to either: (1)
update the model p(y, x) to be compatible with the given
uncertain evidence or (2) acquire compatible data—be it
exact observations or “better” uncertain evidence.

3.2. Consistency

We define consistency in terms of whether or not one can
extend the joint distribution with auxiliary variables (or
vectors) such as to contain the uncertainty encoded in ϵ ∈ Ẽ ,

Definition 3.2 (Consistency). Consider an auxiliary vari-
able (or vector) ζ and the associated density q derived
from ϵ, where q can take the form of either q(ζ|·) or
q(·|ζ). We then say that Jeffrey’s rule, virtual evidence,
and distributional evidence are consistent with p(y, x) if a
joint exists, p(ζ, y, x) = p(ζ|y, x)p(y, x), such that either
p(ζ|·) = q(ζ|·) or p(·|ζ) = q(·|ζ) depending on the form of
q.

Both virtual evidence and distributional evidence are, by
their definition, always consistent. Virtual evidence is de-
fined as an extension of the graphical model p(y, x) through
the auxiliary variable (or vector) ζ and its likelihood q(ζ|y).
That is we can always consider p(ζ|y) := q(ζ|y) such
that p(ζ, y, x) := p(ζ|y)p(y, x). Similarly, in the case
of distributional evidence, we can consider p(ζ, y, x) :=
p(ζ|x)p(y|x)p(x). However, despite distributional evidence
being consistent, notice that it introduces ζ as independent
of y. As such, distributional evidence introduces an en-
tirely new likelihood with respect to x and we can consider
p(ζ|x)p(x) as a new model. This results in the loss of the
physical interpretation of the relationship between y and
x as defined through p(y|x) even though p(ζ|x) is derived
from p(y|x). On the other hand, in the case of Jeffrey’s rule,
we cannot guarantee consistency, and so one needs to be
mindful of the potential mismatch between the base model
and q(y|ζ). While (Diaconis & Zabell, 1982) provide an
extensive and theoretical examination of Jeffrey’s rule they
leave out important points concerning necessary conditions
for Jeffrey’s rule to satisfy consistency that we present here
and prove in Appendix B.1:
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Theorem 3.3 (Consistency of Jeffrey’s rule). Suppose x and
y are random vectors and ζ is the auxiliary random variable
tied to uncertain evidence. Then the necessary and sufficient
conditions for Jeffrey’s rule to be consistent with respect to
p(y, x) given q(y|ζ) (i.e. there exists a joint p(ζ, y, x) such
that p(y|ζ) = q(y|ζ)) are as follows:

1. (Necessary and sufficient) There exists p(ζ|y) such that
for all ζ and y,

q(y|ζ) = p(ζ|y)p(y)∫
p(ζ|y)p(y) dy

2. (Necessary) If q(y|ζ) =
∏D

i=1 q(yi|ζ) then it must
hold that: (1) ζ is a random vector ζ = (ζ1, . . . , ζD)
where each ζi uniquely links to yi such that q(yi|ζ) =
q(yi|ζi). (2) x is likewise multivariate and each xi

uniquely links to yi such that p(yi|x) = p(yi|xi).

3. (Necessary) Let p(ζ) =
∫
p(ζ|y) dy, then it must

hold that: (1) Cov [Y] ⪰ E [Cov [Y|ζ]], where ⪰
denotes determinant inequality. (2) For each Yi

(the constituent random variables of Y) it holds that
Var [Yi] ≥ E [Var [Yi|ζ]]. In particular, if the variance
Var [Yi|ζ] = σ2 is constant and independent of ζ if
follows that Var [Yi] ≥ σ2 with equality if and only if
E [Yi|ζ] = µ is constant.

Unfortunately, validating consistency of Jeffrey’s rule is in
general infeasible as Theorem 3.3 (1) is usually intractable
to assess. One can only reliably conclude if Jeffrey’s rule is
inconsistent in special cases via Theorem 3.3 (2) and (3).

3.3. Distributional Evidence: Exact or Implied
Inference?

While we generally prefer Jeffrey’s rule over distributional
evidence and although Jeffrey’s rule is technically appli-
cable given type (II) uncertain evidence, why then do we
prefer distributional evidence preferred given type (II)? If
Jeffrey’s rule were to be used in this case its interpretation
becomes unclear if q is of the form q(y|g(x)) where g(·) is
a selector function which selects a subset of the variables
in x. As the task is to ultimately infer a posterior over the
latent variables given ζ = g(x), it violates the intuition that
ζ should be an auxiliary variable (or vector) not found in
x, which is required by Jeffrey’s rule. Specifically, con-
sider two kinds of uncertain evidence of this form: (1) a
functional q(y|g(x)) specified for all x and y and (2) a con-
ditional form such that q is a density specified for only a
specific value of g(x) = g(x̂). In case (1) one arguably
ought to replace the model p(y, x) → q(y|g(x))p(x) such
that q(y|g(x)) becomes the new likelihood. However, in
case (2) the model cannot simply be replaced as the form

of q is unknown for any other value of g(x) than g(x̂). In
particular, one can think of case (2) as the limiting case of
observing D = {yi}Ni=1 for N → ∞, where each yi is i.i.d.
with probability density p(y|g(x̂)). In the limit, the empir-
ical distribution of D will represent p(y|g(x̂)). As pointed
out also by Tolpin et al. (2021) there is a similarity between
observing D for large N and instead condition on q(y) as-
sociated with the empirical distribution represented by D.
From this perspective, distributional evidence provides for
inferring p(x|Y ∼ Q) as opposed to p(x|D). This view is
useful, particularly when D is unavailable yet its distributive
representation q is. For example, if provided a q in terms
of summary statistics or quantiles it seems reasonable to
condition on the event {Y ∼ Q} via Equation (5); an ex-
ample that Tolpin et al. (2021) also showcase. Arguably,
if q(y) = p(y|g(x)) one may be better off by simply sam-
pling the dataset D from Q and perform standard inference.
However, if q ≈ p(y|g(x)), then distributional evidence and
thereby conditioning on q may be more appropriate.

One caveat to distributional evidence, that Tolpin et al.
(2021) do not discuss, is whether or not Z(x) in Equation (5)
is calculable. In particular, Tolpin et al. (2021) appears to
leave it as a normalization constant that is never calculated.
That is, they compute the function f(Y ∼ Q|x) = p(Y ∼
Q|x)Z(x) when performing inference, where f is the numer-
ator in Equation (5)—a “pseudo-likelihood.” The difference
between computing p(Y ∼ Q|x) and f(Y ∼ Q|x) in the
context of inference is:

p(x|Y ∼ Q) ∝
{
p(Y ∼ Q|x)p(x) if known Z(x),
f(Y ∼ Q|x)p(x) otherwise.

While the first expression above leads to posterior infer-
ence as expected, the second expression leads to an implied
posterior via the implied joint:

f(Y ∼ Q|x)p(x) = p(Y ∼ Q|x)p(x)Z(x)
= p(Y ∼ Q|x)p̂a(x), (7)

where p̂a(x) = p(x)Z(x) is a distributional evidence ad-
justed un-normalized prior on x. As such, regardless of
whether or not a known Z(x) is available, it leads to the
same likelihood on the event {Y ∼ Q}. However, the knowl-
edge of Z(x) leads to different priors on x. To ensure that
the use of Equation (7) leads to a valid posterior, it is enough
to show that the adjusted prior pa(x) ∝ p̂a(x) normalizes in
x:

Theorem 3.4 (Distributional evidence normalizes). Un-
der the same assumptions as in Theorem 1 in the pa-
per of (Tolpin et al., 2021), the adjusted prior pa(x) =
p(x)Z(x)/C normalizes. That is C < ∞.

Proof. Assume, as done by (Tolpin et al., 2021), that the set
of distributions Q is implicitly defined through the set of
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parameters Θ where θ ∈ Θ parameterizes qθ such that Q =
{qθ|θ ∈ Θ}. Assume further that supy

∫
Θ
qθ(y) dθ < ∞.

Then the bound on Z(x), as derived by (Tolpin et al., 2021),
is independent of x. It then follows that Z(x) ≤ Z̃ < ∞ for
all x such that:

C =

∫
p̂a(x) dx =

∫
p(x)Z(x) dx

≤
∫

p(x)Z̃ dx = Z̃ < ∞.

This implies that pa(x) = p(x)Z(x)/C is a valid marginal
as it normalizes in x, which concludes the proof.

3.4. Complexity

The primary consideration when comparing Jeffrey’s rule,
virtual evidence, and distributional evidence, is their appli-
cability given a certain type of uncertain evidence. In a prac-
tical setting, it is unclear by how much each approach differs
in their posteriors over x given the same uncertain evidence.
As we illustrate in Section 4.1, this difference may range
from significant to negligible and is a function of the base
model as well as the uncertain evidence. Therefore, when
inference is time-sensitive, it may be beneficial to initially
perform inference using an approach of low computational
complexity and then subsequently follow up with the appro-
priate approach to verify inference results. Our complexity
analysis assumes no analytical solution is feasible, and that
approximate inference is employed; that is, sampling-based
inference methods as well as Monte Carlo estimations of
expectations is used. The computational complexity for
achieving adequate approximate posterior inference is de-
noted ci. Likewise, ne is used to denote the number of
required samples for adequate Monte Carlo estimations of
expectations. Note that this relies on the additional assump-
tion that inferring p(x|y) has the same complexity as infer-
ring p(x|ζ) =

∫
p(x, y|ζ) dy. From this it follows that the

complexity of Jeffrey’s rule, Equation (1), requires estimat-
ing the expected posterior leading to a complexity of cine,
while virtual evidence is ci as it only involves inferring the
posterior under the joint given by Equation (4). As for dis-
tributional evidence, Equation (5), if the new likelihood is
analytically tractable the complexity is ci, since it requires
only inferring a posterior distribution. If the likelihood is
approximated using Monte Carlo estimation the complexity
increases to cine.4 Therefore, virtual evidence is, in general,
more efficient than both Jeffrey’s rule and distributional
evidence.

Finally, we note that a reduction of the complexity gap be-
tween Jeffrey’s rule and virtual evidence is achievable using

4Although, due to recent advances for inference in models with
tall data the effective number required to estimate the likelihood
might be much smaller, ke < ne (Tolpin et al., 2021, Section 4.).
In this case the complexity is cike < cine.

0 10

x

p
(x
|ζ

)

0 10
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Figure 2. Analytical posterior results given uncertain evidence
q(y|ζ) using Jeffrey’s rule (JR), virtual evidence (VE), and dis-
tributional evidence (DE). (Left) µx = −10, σx = 2, σy|x = 1,
σq = 2, and ζ = 2 from which the remaining means and (condi-
tional) variances are derived as described in Section 4.1. (Right)
same as (left) except with µx = 0, σx = 5, σy|x = 2, σq = 0.5,
and ζ = 2.

amortized inference (Gershman & Goodman, 2014). Amor-
tized inference reduces the cost of inference in exchange
for an upfront computational cost. Therefore, estimating an
expected posterior, which is the case for Jeffrey’s rule, can
be significantly sped up.

4. Experiments
In this section the importance of making the appropriate
interpretation and treatment of uncertain evidence is illus-
trated. It contains three experiments constructed such that in
experiment one and three, the appropriate treatment of the
given uncertain evidence is to use Jeffrey’s rule. In the sec-
ond experiment the appropriate treatment is virtual evidence.
Comparisons are made against making a misinterpretation.
It is demonstrated how such misinterpretations can lead to
inference results that range from being significantly differ-
ent to almost indistinguishable. Most prior work (e.g., Chan
& Darwiche, 2005; Ben Mrad et al., 2013; Mrad et al., 2015;
Jacobs, 2019) compares only Jeffrey’s rule and virtual evi-
dence for discrete problems, whereas the focus here is on
the continuous case.

4.1. Uncertain Evidence and the Multivariate Gaussian

Consider a multivariate Gaussian model where the base
model factorizes as p(x, y) = p(x)p(y|x) with p(x) =
N (µx, σ

2
x) and p(y|x) = N (x, σ2

y|x). The aim is to infer
the posterior distribution of x, ideally given an exact obser-
vation of y. However, assume this is unavailable and what
is instead given is uncertain evidence ϵ of type (I); that is,
the density q(y|ζ) = N (ζ, σ2

q ). The aim then is to infer
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g

Unif
(
8m s−2, 12m s−2

)
t

N
(√

2m
g , (0.005 s)

2
) t̂

q(t|t̂)

Figure 3. Graphical model of the drop of a ball experiment in
Section 4.2. A brown dashed edge is used to specify the unknown
true conditional density for which Jeffrey’s rule is inappropriately
used. The blue dashed edge emphasizes that the true p(t̂|t), which
is also recovered using virtual evidence. That is, the brown edge
represent interpreting uncertain evidence of type (III) as type (I)
leading to Jeffrey’s rule.

p(x|ζ). Using Equation (6) implies performing inference
using Jeffrey’s rule. To ensure Jeffrey’s rule is consistent,
Theorem 3.3, take on the perspective of an “oracle” and
impose the restriction that all marginal and conditionals
are Gaussians. This leads to the joint also being Gaus-
sian (e.g., Bishop, 2006, ch. 2.3). Theorem 3.3 (II) is triv-
ially satisfied as x = x, y = y, and ζ are one-dimensional.
Further, one finds a p(ζ|y) that satisfies Theorem 3.3 (I)
by choosing p(ζ|y) = N (µζ|y, σ2

ζ|y) such that µζ|y =

(yσ2
ζ + µxσ

2
q )/(σ

2
ζ + σ2

q ) and σ2
ζ|y = σ2

ζσ
2
q/(σ

2
ζ + σ2

q )

where σ2
ζ = σ2

x + σ2
y|x − σ2

q . Specifically, the variance
constraint σ2

ζ ≥ 0 ensures that Theorem 3.3 (III) is satisfied
since σ2

ζ ≥ 0 ⇒ σ2
y = σ2

x + σ2
y|x ≥ σ2

q = E [Var [y|ζ]].
See Figure 2 for the values used in the experiment.

When comparing Jeffrey’s rule to virtual and distributional
evidence, fix the base model p(x, y) and the density q(y|ζ)
but vary the interpretation of the distributional evidence.
In particular, since q(y|ζ) is symmetric in y and ζ, take
for virtual evidence qV(ζ|y) = N (y, σ2

qζ
). In the case of

distributional evidence, analytically solve for p(Y ∼ Q|x)
as well as the adjusted prior pa(x). This is achieved by
assuming that the density p(Y ∼ Q|x) normalizes w.r.t. the
mean of q(y) being the density of a normal distribution with
constant standard deviation σqζ , see Appendix C.1. In all
cases, the posteriors p(x|ζ) are Gaussian, with the different
posteriors shown in Figure 2. Note how in Figure 2, in the
left panel the three methods result in vastly different poste-
riors, whereas those in the right panel are indistinguishable.
This emphasizes the importance of carefully choosing the
approach in dealing with uncertain evidence.

4.2. The Drop of a Ball

Consider the classic “high school” experiment in which a
student attempts to measure gravitational acceleration, g, by
timing, t, how long it takes for a ball to fall a distance, x.
Armed with the formula x = gt2/2 the student can convert
measurements of t into estimates of g if x is known. In this

8 9 10 11 12

g [m s−2]

p
(g
|ζ

)

JR

VE

DE

Figure 4. Posterior distributions over the gravitational acceleration,
g, on the surface of Earth inferred by an experiment in which
the time taken, t̂ = 0.43 s, for a ball to fall 1m is measured.
Given the uncertain evidence q(t̂|t) = N (t, (0.025 s)2), notice
that g ≃ 9.81m s−2 is well covered by the posteriors of Jeffrey’s
rule and virtual evidence but is excluded by distributional evidence.
Recall, however, that both Jeffrey’s rule and distributional evidence
are inappropriate in this case and serve to illustrate what happens
when the uncertain evidence is misinterpreted.

setup x = 1m and is measured a priori, a “model” error
of 0.005 s is assumed to account for physics ignored by the
formula (e.g., air resistance). The student then attempts to
infer g from a single experiment, during which they observe
a time on the stopwatch5 of 0.43 s. Suppose it is asserted
that given the true time it took the ball to hit the ground,
the student is equally likely to be too eager or too slow in
regards to hitting the stop bottom, but that the probability
that the student is increasingly slow/eager vanishes. This
uncertain evidence is of type (III), virtual evidence, lead-
ing to6 p(t̂|t) = N (t, (0.025 s)

2
) as a measurement error

of 0.025 s is assumed. The graphical model is shown in
Figure 3.

For Jeffrey’s rule, the density is “flipped” as it is symmet-
ric in its mean and random variable, such that q(t|t̂) =

N (0.43 s, (0.025 s)
2
). For distributional evidence notice

that the form of q(Y ∼ Q|g) (Y being the time vari-
able) is the same as in Section 4.1 which allows for an
analytical likelihood. In the case of Jeffrey’s rule, The-
orem 3.3 (II) is trivially satisfied as g, t, and t̂ are one-
dimensional. Theorem 3.3 (III) is also satisfied since
Var[t] = E [Var[t|g]] + Var[E[t|g]] = 0.0052 + E[2/g] −(
E[
√
2/g ]

)2
= 0.0007 ≥ 0.0252 = E[Var[t|t̂]]. Also

note that different to the experiment in Section 4.1 pos-
teriors here are not exactly calculated. Rather, they are

5A perfect experiment would record ≃ 0.45 s for the terrestrial
g ≃ 9.81m s−2.

6Since it is assumed that virtual evidence is correct, p rather
than q is used to denote this density.
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approximated via numerical integration, as the latent space
is low dimensional. Figure 4 shows the posteriors using
the three different interpretations of the given uncertain evi-
dence. Each posterior is different with particularly distribu-
tional evidence exhibiting a (comparatively) small variance.
This results in near zero probability on the true value of the
gravitational acceleration at g ≃ 9.81m s−2.

This again exemplifies the potential error one might make
when a certain type of uncertain evidence is misinterpreted.
Particularly, distributional evidence should not be expected
to produce reasonable results in this case. Recall that both
Jeffrey’s rule and distributional evidence are inappropri-
ate by construction. To make, for example, distributional
evidence the correct interpretation, this example can be mod-
ified as follows: suppose the student’s setup is somewhat
shaky, leading to x varying slightly. The student instead
uses a very accurate time measurement device; the mea-
surements of the time are exact. The student may then
carry out repeated measurements in this single experiment
and conclude that the measured time t is distributed as
q(t|g) = N (µt, σ

2
t ). In this case the uncertain evidence

is of type (II) since the uncertainty is conditioned on the
latent variable g.

4.3. Planet Orbiting Kepler 90

The Kepler satellite (Borucki et al., 2010) measured the flux
from over half a million stars over 5 years. Dips in the
observed flux can occur when a planet transits in front of the
stellar disk, and accurate measurements of the exact transit
times allow one to infer the orbital properties of the plan-
ets. However, the received flux from distant stars varies for
other reasons (e.g., stellar pulsations, telescope temperature)
and in principle one should fit a joint orbit/stellar/telescope
model to the observed flux to infer orbital parameters. How-
ever, it is common (e.g. Liang et al., 2021) to extract this
information in two phases: first to fit a model of the star and
to extract from this the transit times and second to extract
orbital parameters from these transit times. Thus, the mea-
surements of transit times constitute uncertain evidence, in
that they are provided as estimated times with an associated
error (type (I) uncertain evidence). In the case of a single
planet, it is only possible to infer the orbital period, P , and
the anomaly angle ω +M , while the other (planar) orbital
parameters, eccentricity, e, and periapsis argument, ω, re-
main marginally unconstrained (but not in correlation with
P and ω+M ). Data is simulated based on Kepler-90g, with
P = 210 days, e = 0.05, ω = 100 deg and ω +M = 198
deg using TTVFAST (Deck et al., 2014). Approximate pos-
terior inference is carried out with PYPROB (Baydin & Le,
2018). The prior over P is taken to be normal with 210± 1
days. The prior over eccentricity is taken to be uniform
between 0 and 0.15. The angular variables have uniform
priors between 0 and 360 deg. In Figure 5 additional experi-

Figure 5. Inferred orbital parameters of an exoplanet around a Ke-
pler star. 7 transits, t, of the system is simulated, and an error
(standard deviation) on the measured transits of 20 mins (q(t|ζ)) is
assumed. Additionally, distrust in the model leads to the likelihood
error (standard deviation) on the transits of 10 mins. While the
marginal posterior distributions of e, ω and ω+M are all in agree-
ment, the posterior over P is significantly different when extracted
using Jeffrey’s rule compared to the other two methods.

mental details is provided and the figure shows the 1D and
2D marginal posterior distributions over orbital parameters
given the three different approaches to uncertain evidence.
Note that while the marginal posterior distributions of e, ω
and ω + M are all in agreement, the posterior over P is
significantly different when extracted using Jeffrey’s rule
compared to when using the other two methods.

5. Related Work
Of important related work is that by Valtorta et al. (2002)
who propose an approach for dealing with uncertain evi-
dence which is in some way an extension to Jeffrey’s rule.
Their algorithm, the soft evidential update method, is tai-
lored for Bayesian networks (BN) and they incorporate un-
certain evidence by extending the BN with evidence nodes
for each new piece of uncertain evidence. Their approach
updates the prior BN (prior to receiving uncertain evidence),
denoted MP , by solving for a new “updated” BN, MU . The
resulting MU minimizes the Kullback-Leibler divergence
between MP and MU under the constraint that the marginal
distribution of MU of each uncertain evidence variable must
equal the given distributions. Given a single piece of uncer-
tain evidence their update method reduces to Jeffrey’s rule.
Another approach is that of Yao (2022), which is similar
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to, and discussed by Tolpin et al. (2021). The difference
of this approach compared to distributional evidence lies in
the definition of the likelihood p(Y ∼ Q|x), for which Yao
(2022) proposes p(Y ∼ Q|x) ∝

∫
p(y|x)q(y) dy. However,

as discussed by Tolpin et al. (2021), this definition lacks
many (what they deem) desired properties associated with
distributional evidence, Equation (5).

Finally, this work should be compared to another popular
perspective taken when dealing with uncertain evidence.
This perspective considers the dichotomy between the con-
cepts of focusing and revision (e.g., Smets, 1993; Chan &
Darwiche, 2005). Informally, focusing can be thought of as
standard conditioning, while revision, as the name implies,
refers to revising the model altogether. In relation to this
work, one can discuss revision and focusing in regards to
the notion of consistency and the auxiliary variable ζ. In
the case of virtual evidence and Jeffrey’s Rule, consistency
leads to focusing, as inference conditioned on ζ is consis-
tent with the base model. On the other hand, inconsistency
implies either (1) the uncertainty about the observation is
erroneous and arguably should be re-evaluated. (2) The
base model is mis-specified, in which case one may update
the model from first principles. (3) Treat Jeffrey’s Rule as
the model revision mechanism. Distributional evidence is
arguably a revision by definition despite it being consistent.

6. Conclusions
We have considered the problem of Bayesian inference when
given uncertain evidence and the importance of its proper
interpretation. This involved discussing and provided new
insights into three different approaches in dealing with un-
certain evidence: Jeffrey’s rule, virtual evidence, and dis-
tributional evidence. Particularly, this lead to the definition
of four types of commonly encountered uncertain evidence.
We have discussed compatibility between a given proba-
bilistic model and uncertain evidence as defined in terms
of consistency. We have demonstrated in three different
experiments how misinterpretations of the type of uncer-
tain evidence may lead to different inference results. This
illustrates the importance of carefully making the proper
interpretation of uncertain evidence on a case-by-case basis.
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A. Commutativity of Jeffrey’s Rule
It is well known (Diaconis & Zabell, 1982) that Jeffrey’s rule does not generally commute with respect to different pieces of
uncertain evidence, ϵA, ϵB . That is, applying Jeffrey’s rule first with respect to ϵA, and then subsequently with respect to ϵB ,
is not necessarily equal to applying Jeffrey’s rule in the reverse order. This is easily seen with the following example: Let
ϵA and ϵB carry contradictory information about the same variable y. For each piece of uncertain evidence, consider the
associated auxiliary variable ζA and ζB and the densities q(y|ζA) and q(y|ζB). Then from Jeffrey’s rule the updated density
of the latent variable x is (depending on the the order of applied uncertain evidence):

p(x|ζA, ζB) =
∫

p(x|y, ζA)q(y|ζB) dy =

∫
p(x|y)q(y|ζB) dy = p(x|ζB)

p(x|ζB , ζA) =
∫

p(x|y, ζB)q(y|ζA) dy =

∫
p(x|y)q(y|ζA) dy = p(x|ζA),

By definition of applying Jeffrey’s rule

where we use p(·|ζ1, ζ2) as an overloaded denotation for applying Jeffrey’s rule first with respect to ζ1 and subsequently with
respect to ζ2. In this example, we see that the second piece of uncertain evidence dominates and “overwrites” or “forgets”
the first. This illustrates that if two pieces of “incompatible” uncertain evidence are given, care must be taken when using
Jeffrey’s rule. We leave the topic of addressing commutativity of Jeffrey’s rule for future discussion, but we briefly mention
that a potential remedy could be to define a mixture of q(y|ζA) and q(y|ζB), which would require incorporating ϵA and ϵB
jointly rather than sequentially.

As a final note, we point out the likelihood-bases approaches to uncertain evidence, such as virtual evidence, does commute
with respect to multiple pieces of uncertain evidence. In particular, given two incompatible pieces of uncertain evidence and
associated auxiliary variables ζA and ζB , the joint density would assign zero probability on that event, p(ζA, ζB , y, x) = 0,
which in turn may indicate a mis-specification of the model.

B. Proofs
Proof of Equation (3). Consider the assumptions in Definition 2.2 and let y ∈ {yk}Kk=1 be discrete. From Equation (2) it
follows that p(ζ|yk) = cλk with k = 1, . . . ,K for some c ∈ R+. This leads to,

p(x|ζ) =
∑K

k=1 p(x, yk, ζ)
p(ζ)

=

∑K
k=1 p(ζ|yk)p(x, yk)∑K

j=1 p(ζ, yj)

=

∑K
k=1 p(ζ|yk)p(x, yk)∑K
j=1 p(ζ|yj)p(yj)

=

∑K
k=1 cλkp(x, yk)∑K
j=1 cλjp(yj)

=
c

c

∑K
k=1 λkp(x, yk)∑K
j=1 λjp(yj)

=

∑K
k=1 λkp(x, yk)∑K
j=1 λjp(yj)

,

which concludes the proof.

B.1. Proofs for Theorem 3.3

Proof of Theorem 3.3 (1). (Necessary) Given p(y, x) and uncertain evidence q(y|ζ) it needs to be to be shown that if
the approach of Jeffrey’s rule is consistent, then Theorem 3.3 (1) is true. Consistency requires that there exists a joint
p(ζ, y, x) = p(ζ|y, x)p(y, x) “containing” q(y|ζ). This implies finding a p(ζ|y, x) such that for all ζ and y it holds that:

q(y|ζ) =
∫
p(ζ|y, x)p(y|x)p(x) dx∫

p(ζ|y, x)p(y|x)p(x) dx dy

=
p(ζ|y)p(y)∫
p(ζ|y)p(y) dy

,

where p(ζ|y) =
∫
p(ζ|y, x)p(y|x)p(x)/p(y) dx. That is, if no such p(ζ|y) exists then the approach of Jeffrey’s rule cannot

be consistent.
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x1 y1 ζ1

x2 y2 ζ2

...
...

...

xD yD ζD

Figure 6.

(Sufficient) Assume there exists p(ζ|y) satisfying Theorem 3.3 (1). Define p(ζ, y, x) = p(ζ|y)p(y|x)p(x) from which it
immediately follows that p(y|ζ) = q(y|ζ). Further, using d-separation (Pearl, 1988), it follows that defining p(ζ, y, x) in this
way ensures that p(x|y, ζ) = p(x|y). This shows that Jeffrey’s rule is consistent and that:

p(x|ζ) =
∫

p(x|y, ζ)p(y|ζ) dy

=

∫
p(x|y)q(y|ζ) dy,

thereby concluding the proof.

Proof of Theorem 3.3 (2). Let each {yi}di=1 be conditionally independent given ζ such that q(y|ζ) =∏d
i=1 q(yi|ζ). Further,

assume Jeffrey’s rule is consistent such that there exists a joint model p(ζ, y, x) where p(y|ζ) = q(y|ζ). Then it follows,
via d-separation, that if and only if all paths between each {yi}di=1 are conditionally blocked can they be conditionally
independent given ζ . This implies that no two or more yi can share the same auxiliary variable, latent variable, or depend on
each other. Figure 6 shows the only possible graphical model satisfying this constraint, which leads to:

p(y|ζ) =
d∏

i=1

p(yi|ζi) ⇒ p(y|x) =
d∏

i=1

p(yi|xi).

This concludes the proof.

Proof of Theorem 3.3 (3). Assume Jeffrey’s rule is consistent such that q(y|ζ) = p(y|ζ) which implies p(ζ) =∫
p(ζ|y)p(y) dy. From the law of total variance it follows that:

Cov [Y] = E [Cov [Y|ζ]] + Cov [E [Y|ζ]] , (8)

with the right-hand side being a sum of two positive semi-definite matrices. Since for two positive semi-definite matrices A
and B it holds that det(A+B) ≥ det(A) + det(B) (Paksoy et al., 2014), and as det(A),det(B) ≥ 0 this leads to:

Cov [Y] ⪰ E [Cov [Y|ζ]] .

Further, the elements in the diagonal of the left-hand side of Equation (8) are the variances of the constituent parts of
Y = (Y1, . . . , Yd). Therefore:

Var [Yi] = E [Var [Yi|ζ]] + Var [E [Yi|ζ]] (9)
≥ E [Var [Yi|ζ]] , since Var [E [Yi|ζ]] ≥ 0.

Finally it is proven that:

Var [Yi] = E [Var [Yi|ζ]] ⇔ E [Yi|ζ] = c,
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with c ∈ R being a constant. First prove “⇒”:

Var [Yi] = E [Var [Yi|ζ]] ⇒ Var [E [Yi|ζ]] = 0.

As Var [Y ] = E
[
(Y − E [Y ])

2
]

is an expectation of a non-negative variable, it follows that Var [Y ] = 0 if and only if Y is
constant. Therefore, it follows that:

Var [E [Yi|ζ]] = 0 ⇔ E [Yi|ζ] = c, (10)

where c ∈ R is some constant.

Next “⇐” is proven. This follows trivially by combining Equation (10) with Equation (9):

Var [E [Yi|ζ]] = 0 ⇒ Var [Yi] = E [Var [Yi|ζ]] .

From this it can be concluded that:

Var [Yi] = E [Var [Yi|ζ]] ⇔ E [Yi|ζ] = c,

as desired, thereby concluding the proof.

C. Other Derivations
C.1. Distributional Evidence and Normal Distributions

Consider the densities p(y|x) = N (µy|x|σ2
y|x) and q(y) = N (µq|σ2

q ) (with µq being the parameter in which q normalizes)
and the distributional evidence likelihood, Equation (5):

ln p(Y ∼ Qµq
|x) ∝

∫
ln p(y|x)q(y) dy

= − 1

2σ2
y|x

∫ [(
y − µy|x

)2
q(y) dy

]
− ln

(√
2π σy|x

)
= − 1

2σ2
y|x

[∫
y2q(y) dy − 2µqµ

2
y|x + µ2

y|x

]
− ln

(√
2π σy|x

)
= − 1

2σ2
y|x

[
µ2
q − 2µqµ

2
y|x + µ2

y|x

]
−
(
ln
(√

2π σy|x
)
+

σ2
q

2σy|x

)

= − 1

2σ2
y|x

(
µq − µy|x

)2 −(ln(√2π σy|x
)
+

σ2
q

2σy|x

)
.

Assuming the distribution Qµq
is implicitly defined via its mean µq , such that p(Y ∼ Qµq

) normalizes with respect to µq it
is identified to be a Gaussian with mean µy|x and variance σ2

y|x. Therefore, the normalization constant Z(x), generally a
function of x, is found to be:

Z(x) =

∫
p(Y ∼ Qµq

|x)(µq) dµq = e
− σ2

q
2σy|x .

Thus, when σy|x is a function of x, this leads to the following distributional evidence adjusted prior pa(x) ∝ p(x)Z(x):

pa(x) =
p(x)Z(x)∫
p(x)Z(x)dx

.

Further, and importantly, this reveals that if the variance σy|x of the model likelihood is independent of x, then so too is Z(x).
In this case Z(x) = Z, which is also the case in all experiments in Section 4, and it can be concluded that distributional
evidence adjusted prior normalizes trivially:

pa(x) =
p(x)Z∫
p(x)Zdx

= p(x).

14



Uncertain Evidence in Probabilistic Models and Stochastic Simulators

This leads to distributional evidence in this special case reducing to the usual exact evidence with respect to the given base
model p(x, y) with the observation y = µq .

These results generalize to the multivariate case where the likelihood in the base model and the distributional evidence
density are defined on an observable vector y = (y1, . . . , yK). That is, each yk is i.i.d. such that p(y|x) = ∏K

k=1 p(yk|x)
and q(y|x) =∏K

k=1 q(yk|x).
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