IS EXPLORATION OR OPTIMIZATION THE PROBLEM FOR
DEEP REINFORCEMENT LEARNING?

Anonymous authors
Paper under double-blind review

ABSTRACT

In the era of deep reinforcement learning, making progress is more complex, as the
collected experience must be compressed into a deep model for future exploitation
and sampling. Many papers have shown that training a deep learning policy under
the changing state and action distribution leads to sub-optimal performance, or even
collapse. This naturally leads to the concern that even if the community creates
improved exploration algorithms or reward objectives, will those improvements fall
on the deaf ears of optimization difficulties. This work proposes a new practical
sub-optimality estimator to determine optimization limitations of deep reinforce-
ment learning algorithms. Through experiments across environments and RL
algorithms, it is shown that the difference between the best experience generated is
2-3x better than the policies’ learned performance. This large difference indicates
that deep RL methods only exploit half of the good experience they generate.

1 INTRODUCTION

What is preventing deep reinforcement learning from solving harder tasks? Many papers have
shown that training a deep learning policy under the changing state distribution (non-IID) leads to
sub-optimal performance (Nikishin et al., 2022; Lyle et al., 2023; Dohare et al., 2024). However, at a
macro scale, it is not completely clear what causes these issues. Do the network and regularization
changes from recent work improve exploration or exploitation, and which of these two issues is the
larger concern to be addressed to advance deep RL algorithms? For example, better exploration
algorithms can be created, but will the higher value experience fall on the deaf ears of the deep
network optimization difficulties?

How can we understand if the limited deepRL performance is due to a lack of good exploration or
deep network optimization (exploitation)? Normally in RL, to understand if there is a limitation, an
oracle is needed to understand sub-optimality, how far the algorithm is from being optimal. However,
that analysis is with respect to the best policy and aliases both causes of the limitations of either
exploration or optimization. Instead, consider the example where a person is learning how to build
good houses. There are two issues that may prevent the person from consistently building a high
quality house: (1) they can’t explore well enough to discover a good design or (2) they can explore
well enough to find good designs, but they can’t properly exploit their experience to replicate those
good experience. For deep RL algorithms, which of these two issues is more prevalent?

To understand if exploration or exploitation is the larger culprit, a method is needed to estimate the
practical sub-optimality between these cases. This estimator should (1) measure the agent’s ability
to explore, (2) while also estimating the average performance for the learning policy 7. While
estimating the average policy performance is common, estimating the exploration ability for a policy
is not. Extending the house-building metaphor, the idea is to estimate how close the agent ever got to
constructing a good home. Therefore, to realize this estimator, we propose computing the exploration
value for a policy that is calculated over prior experience, called the experience optimal policy. Using
this concept, a new version of sub-optimality can be developed that can compute the difference
between the experience optimal policy and the learned policy, shown in Figure la. If there is a
large difference between these two, then the performance is limited by exploitation and optimization
(model); however, if the difference between the experience optimal policy and the learned policy is
small, then performance is limited by exploration (data).

The described estimator is used to better understand the reason deepRL algorithms do not solve
certain difficult tasks. It is found that the limitation of deepRL agents in making progress on difficult
tasks is not exploration but often exploitation. Therefore, this paper argues that to advance deep
reinforcement learning research, further work is needed on optimization for exploitation under non-iid
data. The proposed metric can serve multiple additional purposes. (1) For any RL practitioner, this
metric can be used to quickly identify if the limitation in performance is an exploitation or exploration
problem so that they can focus their efforts. (2) For the research community, this metric can be used
across environments and algorithms to understand the performance of deepRL algorithms better and
shed light on the exploration vs exploitation trade-off on a macro sense, to determine if to increase
RL progress the community should be working more on exploitation problems'. (3) Showing that
including exploration bonuses or scaling network size with RL algorithms increases the practical
sub-optimality, indicating that optimization becomes a larger issue in that setting. Section 5 provides
evidence to showcase these uses of this new view on sub-optimality, and finds for many environments
the difference between the experience optimal policy and the learned policy to be larger than the
difference between the learned policy and the initial policy. These findings suggest a significant
exploitation issue and a need for improved optimization methods in RL.

2 RELATED WORK

Since the first successes of RL and function approximation (Tesauro et al., 1995; Mnih et al., 2015;
OpenAl et al., 2019), many recent works have shown great progress on integrating the complexities
of deep learning and reinforcement learning (Hansen et al., 2022; van Hasselt et al., 2018). Many
have studied that certain model classes and loss assumptions make it easier to train more performant
deepRL policies (Schwarzer et al., 2023; Farebrother et al., 2024), deepRL is even used to fine-tune
the largest networks to create strong LLMs (OpenAl, 2022). While deepRL is now being used across
a growing number of applications, the broad limitations of current algorithms become less clear.

Deep Reinforcement Learning Training The field of methods to explain and improve on the
limitations of combining function approximation and reinforcement learning (deepRL) is expanding.
Much of the early work consisted of improving value-based methods to overcome training and non-IID
data issues in DQN (Mnih et al., 2015) and DDPG (Lillicrap et al., 2015) and stochasticity (Schulman
et al., 2015; 2017). Recent adaptations improve over the initial algorithms that struggle with
overestimation (van Hasselt et al., 2016; Bellemare et al., 2017; Hessel et al., 2018) or improving
critic estimation (Fujimoto et al., 2018; Haarnoja et al., 2018; Lan et al., 2020; Kuznetsov et al.,
2020; Chen et al., 2021). The challenges in the space of learning policy are based on an unstable
mix of function approximation, bootstrapping, and off-policy learning, called the Deadly Triad
in DRL (van Hasselt et al., 2018; Achiam et al., 2019). Many works focus on parts of the triad,
including: stabilizing effect of target network (Zhang et al., 2021b; Chen et al., 2022; Piché et al.,
2022), difficulty of experience replay (Schaul et al., 2016; Kumar et al., 2020; Ostrovski et al., 2021),
over-generalization (Ghiassian et al., 2020; Pan et al., 2021; Yang et al., 2022), representations in
DRL (Zhang et al., 2021a; Li et al., 2022; Tang et al., 2022), off-policy correction (Nachum et al.,
2019; Zhang et al., 2020a; Lee et al., 2021), interference (Cobbe et al., 2021; Raileanu and Fergus,
2021; Bengio et al., 2020) and architecture choices (Ota et al., 2020).

DeepRL Exploration Methods On top of the above training stability improvements is the desire
to improve exploration by providing the agent with better signal to encourage exploration beyond
just the extrinsic reward. These intrinsic rewards often compute some measure of state visitation or
mutual information using a separate online learnt model. Count-based methods (curiosity) are early
examples that encourage agents to cover a larger state space (Bellemare et al., 2016; Ostrovski et al.,
2017; Tang et al., 2017; Burda et al., 2018a), but they do not scale well to large state spaces. Several
works (Pathak et al., 2017; Badia et al., 2020; Zhang et al., 2020b; 2021c) have built on curiosity
frameworks to improve training and learning. However, it is not known how well RL algorithms will
be able to learn from the additional experience.

!This is not a judgement on the exploration community, in fact it is with exploration community in mind this
work started so that their amazing research gets the best analysis it can, and great exploration algorithms are not
misunderstood due to exploitation problems.

DeepRL Scaling Methods Given the significant gains of using large models on many supervised
learning problems, the RL community has been studying how to achieve similar gains from scale, but
deep RL performance often drops when larger networks are used (Schwarzer et al., 2023; Tang and
Berseth, 2024). Recent works focus on network structure changes to avoid divergence and collapse,
using normalization layers (Nauman et al., 2024; Lyle et al., 2024), regularization (Nikishin et al.,
2022; Schwarzer et al., 2023; Galashov et al., 2024) or optimization adjustments (Lyle et al., 2024).
The goal in these prior works is to understand and improve performance when larger networks are
used, but these papers are often limited to recovering prior performance, not understanding where RL
in general is missing potential.

3 BACKGROUND

In this section, a very brief review of the fundamental background of the proposed method is
provided. reinforcement learning (RL) is formulated within the framework of an Markov Decision
Processes (MDP) where at every time step ¢, the world (including the agent) exists in a state s; € S,
where the agent is able to perform actions a; € A. The action to take is determined according to
a policy 7(at|s;) which results in a new state s;11 € S and reward r; = R(s¢, a;) according to
the transition probability function P(s;y1]|s¢,a;). The policy is optimized to maximize the future

discounted reward E,, [ZtT:O vtn}, where T is the max time horizon, and ~ is the discount

factor. The formulation above generalizes to continuous states and actions. There are multiple RL
algorithms that can be used to optimize the above objective. This work uses two of the most popular
algorithms DQN (Mnih et al., 2015) and PPO (Schulman et al., 2017) to frame the challenges with
optimizing and exploration.

Policy Gradient Definitions To discuss the difference between policy performance and estimators,
it is useful to define the state visitation distribution df (s) for a policy:

dZ, (s) = (1 =) Y _ 7" Pr(s; = s]s0), 8))
t=0

where Pr” (s; = s|sg) is the probability of the policy 7 visiting the future state s; when starting from
so. The policy gradient can be written in the form

1
VoV (s0) = mEmdQ’g Eqry(1s) [Vologma(a|s)Q™ (s, a)].)

Then we can write out the performance difference lemma (Kakade and Langford, 2002) between
two policies as

’ 1 ’
V7 (50) = V7(50) = = Bamar, Eavie [A” (s,a)} . 3)

Where A™ (s, a) is the advantage of policy 7.

4 IS EXPLORATION OR EXPLOITATION THE ISSUE FOR DEEPRL?

Often, learning agents are concerned with the exploration vs exploitation trade-off. This trade-off is a
helpful lens for discussing an agent’s choices at a particular state s;, but this single state view focuses
on exploitation as either: a type of greedy action selection, sampling from a learned policy, or utilizing
a world model. However, in the age of deep learning and ever increasing model and data sizes, that
lens misses the bigger picture of the definition exploitation is making use of prior experience, in that
for each of these types of exploitation, there is a deep network 6 optimization process over some
experience D that is imperfect. However, it is not clear if the difference is from data distribution
issues (Ostrovski et al., 2021) or optimization (Lyle et al., 2024). To improve the understanding of
the limitations of RL with function approximation (deepRL), we introduce estimators to quantify the
difference between a policy’s data-generating process (exploration/data) and its ability to learn from
that data (exploitation/model).

In Figure 1 we show the conceptual version of studying this exploration vs exploitation problem,
where the typical learning graph is now split into three sections: the performance of the average

Expert Policy Return on MinAtar Space Invaders

— V™(so) (avg)
300 == V™(so) (deterministic) (A

Best Experience V(o) (best) -7

—— V7io(sp) (recent) -

200 == V7(so) (replay)

Return

VAN =S RN 2 24
g

Learned Policy

Steps Steps ' 1e7
(a) Example exploitation sub-optimality difference (b) MinAtar space invaders DQN
Figure 1: Left: Diagram of the practical sub-optimality = Best Experience - Learned Policy. On the

right are results computing this exploitation gap as the difference between V7 (o) and v (so) in
MinAtar Spacelnvaders.

policy 7 from achieved exploitation (red), which measures what that policy has learned, the potential
performance, indicated by the optimal policy 7*, and a new estimator we call the experience optimal
policy 7*. The challenge is that 7¥ can be arbitrarily bad compared to 7*, and normally it is not
clear if the performance difference (Equation (3)) is because the agent is not exploring well (Ve (so)
<< V™ (s0) and V™' (sg) << V™ (s0)) or just not exploiting well (V7° (sq) << V™" (s0)). This
analysis can be particularly useful for evaluating exploration-focused algorithms. When evaluating
the performance of a method, if only y#’ (so) is considered, the analysis can miss the fact that the
method is generating higher value experiences V7" (so), but the policy is not able to exploit them
into 6 properly. Therefore, to better understand reinforcement learning limitations, we introduce a
new estimator for 7* to measure practical sub-optimality.

How to measure practical sub-optimality The optimal policy is defined as the policy that selects
the best action at every state (Bellman, 1954). Sub-optimality measures the difference between a
policy’s value V™ () with respect to an optimal policy 7* with the value function V™ (s). However,
if the policy 7 can not explore optimally, using 7* is not very informative. Therefore, in addition to
the theoretical optimal policy, we introduce the experience optimal policy 7* to represent the best
policy the agent can achieve given the experience collected during training. If the environment is
deterministic and the agent keeps a buffer of all prior experience D, then,

T
¥ = argmax Z r(a, st) 4

<ag,...;a;>€D> {3

This policy can also be understood as deterministically replaying the highest value sequence of actions
< ag,...,a; > in the experience memory. This policy can be used to compute a new difference as

the exploitation sub-optimality of the form V7" (sq) — v’ (so0)-

Most empirical works use yr’ (so) for comparing across algorithms to understand which algorithm
performs the best on a set of tasks. While this information is helpful and enables the community to
make steps forward in terms of performance, it does not provide information on why one algorithm
is better than another. Consider the example where there are two algorithms A and B, algorithm A
generates higher-value experience, but is not able to exploit them, and B does not generate higher-
value experience, similar to its policy, but has been able to exploit that data well. Both A and B
can have the same value V™" (so) = V™" (s0). Is A or B a better RL algorithm? In this work, we
propose that B is the better algorithm, as it can properly exploit generated data. If the experience
were equal, algorithm B would see the same experience as algorithm A, then B would result in better
performance and have a smaller practical sub-optimality.

4.1 SOFTER EXPERT ESTIMATORS

While Equation (4) is a clear definition for computing an estimate of an optimal policy, it works best
when the environment is completely deterministic. For example, the sequence of actions ag, . . . , a;
can be replayed in the environment to reproduce V™ (s¢), however, this restrictive definition is less

useful for non-deterministic environments where it is impossible for a stochastic policy/trajectory to
outperform a deterministic one. Therefore, two additional methods are introduced to estimate the
potential for the policy to learn from the data.

For the analysis, two versions of V™ (sg) are introduced to approximate the performance on the
best experience. For stochastic environments, the first version the best stocastic policy from the
collected experience as top 5% of experience generated by the agent VDo (so), where D, is all the
experience collected by the agent. The second is the recent top 5% of data V7p (sp) in the replay
buffer D. To estimate the value function V'(s¢) from data, the sum of rewards the agent achieves in
the environment, or the return, is used. The true value is computed using this function:

V’”f*(so):% > Y R(as,s) (5)

TE€EDo: at,85tET

Where k is equal to % x | D] and D is sorted with the highest value trajectory starting at index 0.

The best ever and recent estimators both have their own reasoning. The best ever experience
VDo (so) is a measure of how good the agent is at exploiting the best experience it ever generated.
This notion is rather strong and difficult for any RL algorithm to match, as the agent may not
currently have access to that experience for optimization, but it is a notion of lifetime achievement
and represents a possible high-value policy and trajectory the agent could generate again. The recent
best experience V70 (sq) is a measure of the agent’s ability to learn to match the best of the recent
experience it has access to and can use for optimization. The recent notion can be more fair as it is
possible for an agent to train on that experience to improve its performance actively, but as will be
shown in Section 5.1, RL algorithms also struggle to match this performance.

4.2 FOR RL ALGORITHMS

The above estimators can be used to understand the practical sub-optimality of an algorithm on an
environment. That information is useful, but it does not speak about an algorithm holistically. For
example, we may have the question, how much does an algorithm suffer from exploitation limitations
and which algorithms are the best at exploiting their generated data? This information is paramount
for the community to understand better where there is a larger benefit from time spent on research
and development. To compute this information across environments, the estimator will need to be
aggregated and normalized across environments.

To compute this aggregate estimator the upper bound from V7" (s() can be used in place of the less
accurate and often overestimated the optimalality gap from rliable (Agarwal et al., 2021). The gap
computed using the proposed metric is also relative to the data the agent has generated, which can
provide more rich signal than comparing the performance to some potential unattainable perfect
agent. For example, when the optimal performance is not know a heuristic is often used to compute
the return for the optimal policy by taking the max possible reward 7, and multiplying this by the
inverse of the discount factor V™" (S0) & Tmax * ﬁ Instead, the proposed metric can be used to
calculate the practical sub-optimality for an RL algorithm as:

P 0

% ST VE (s0) = ViE (50)/ (Vi (s0) = V&' (50))- (6)

Where m is some task or environment. This metric is used in Section 5.4 to compare the aggregate
weaknesses across RL algorithms.

Implementation Details It is difficult to compute a general practical sub-optimality for any type
of RL algorithm. On-policy algorithms do not keep around histories of recent data for evaluation,
and off-policy algorithms don’t track returns as they often use Q-functions for learning directly from
rewards. To facilitate the tracking of these statistics, we introduce a wrapper that can be introduced
into the RL algorithm code to track every reward, return, and end of episode. This wrapper is also

used to compute the best VD (s0) and the recent V70 (sq) version.

5 EXPERIMENTAL RESULTS

In this section, the ability of practical sub-optimality for diagnosing learning issues is evaluated. This
usefulness is determined in multiple ways: (1, Section 5.1) As a metric to determine the limitations
of current RL algorithms on specific environments, (2) how recent methods for exploration or scaling
increase or reduce the practical sub-optimality, and (3) The overall limitations of RL algorithms and
if more exploration or exploitation is needed to improve performance over difficult/unsolved tasks.

Two popular RL algorithms are used for evaluation. First PPO (Schulman et al., 2017) is a common
on-policy algorithm used for various problems, known for its ease of implementation and use. The
other algorithm is DQN (Mnih et al., 2015), which is a popular RL algorithm for environments with
discrete actions. These two algorithms cover the most common use cases for RL.

A selection of evaluation environments is included to cover a diverse range of the RL landscape.
This diverse selection is important to understand better the practical sub-optimality there needs to
be a difference between the generated data and the final policy’s performance. Therefore, we focus
on including experimental results on environments that are difficult. These difficult environments
include using MinAtar (Young and Tian, 2019) and Atari (Bellemare et al., 2015; Aitchison et al.,
2022) Spacelnvaders, Asterix, LunarLander, Montezumas Revenge, Craftax, and the Atari-
Five (Aitchison et al., 2022). We also include Walker2d, HalfCheeta, Humaneoid as continuous
action environments that are easier, and as will be shown, have little practical sub-optimality.

Breakout

(a) HalfCheetah (b) MinAtar (c) MontezumaRe- (d) Atari
venge

Figure 2: Evaluation environments include examples from Mujoco, MinAtar, and Atari.

To measure performance, we will look at the practical sub-optimality discussed in the previous
section. In addition, the average return during learning is used to verify that the agents are learning,
ensuring that the reason for the lack of practical sub-optimality is not due to the agent’s inability to
learn. All experiments are conducted over 4 random seeds.

5.1 PER TASK SUB-OPTIMALITY

In this section, we can study which tasks express types of this practical sub-optimality, indicating
a need for improvements in optimization over exploration. The first question (1) is whether tasks
exhibit this type of gap, or if all tasks can be solved, or if policies can properly exploit the experience.
In Figure 3a, we can see that for HalfCheetah there is little difference between V70w (s0), V70 (s0),

and Vﬁg (s0), even though a high return is achieved; however, it is well known that HalfCheetah
is no longer a difficult task for common RL algorithms. We can also see that the deterministic 7*
poorly estimates the best performance in this non-deterministic environment and instead the softer
versions work well. Examining tasks that are well-known to be difficult exploration problems reveals
a different story. After training DQN on Montezuma’s Revenge (Figure 3b), there is a surprisingly

large gap where v’ (so) is noisy and near zero, yet the policy does generate many high-value
trajectories, indicated by both a large difference between V7P (s0) and V7D (s0), but is not able to
learn from these. These higher value trajectories are not rare. The V7D (sq) line indicates that the

policy, aside from a few spikes, is far from the best 5% of better experiences. We find similar results
for many other environments and algorithms shown in Figure 3.

The practical sub-optimality may be an overestimate of true policy performance. To address this
issue, we perform a pure analysis with a set of completely deterministic environments in Figure 1b

5000
4000

€ 3000

g
2000

1000

12000
10000
4000
2 6000
E
4000
2000

0

Return on HalfCheetah

: P e At et

=

- — V(so) (avg)

== V¥(so) (deterministic}
V7(sp) (best)

Vid(so) (recent)

00 02 04 06 08 10
e

(a) PPO HalfCheetah

Performance on NameThisGame

— V¥(s0) (avg)
== V¥(s) (deterministic)

o) (best)
Vii(so) (recent)
== V(s0) (replay)
= -_—
] e,

L P S W O o (=

Return on Montezumas Revenge
— V(so) (avg)
350 == V¥(so) (deterministic)

Vi

25
Te7

(b)

PPO Montezuma’s Revenge

Performance on BattleZone

— V™(s0) (avg)

— = V™(so) (deterministic)
VA(so) (best)
Vis(so) (recent)

== V¥(so) (replay)

40000
30000
& 20000

10000

Return on MinAtar Breakout

— V¥(so) (ava)

== V¥(so) (deterministic)

(c) MinAtar/Breakout DQN

50000

40000

30000

Return

20000

10000

Performance for Asterix

— V*(s0) (avg)

— = V™(so) (deterministic)
V(o) (best)
VAis(so) (recent)

== VF(so) (replay)

000 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200
1e7 1e7

(d) NameThisGame DQN

(e) BattleZone DQN

Figure 3: Comparisons of different measures for global optimality and the learned policy 7. For
environments with more complex exploration, such as Montezuma’s Revenge, Breakout and Spaceln-

vaders, there is a large exploitation gap between Vb (s0) and v (s0)-

(f) Asterix DQN

and Figure 3c. Because these environments are deterministic settings, it is possible to compute a true
V' (so) which is equal to the best single trajectory ever discovered. This best single trajectory is
visualized as V™ (sq), where the policy for V7 (sq) is ag, . . . , a;, which is replayed to visualize
the score and indicate that to reach this performance, the policy 6 needs to exploit this data well
enough to reach that score. As can be seen, V7 (s0) > V70w (s9) > V' (s0), which indicates that

Vb (so) may be slightly lower than the best performance, yet these trained policies struggle to
produce the behaviour, indicating that often performance is limited by a lack of exploitation.

Last, to better understand these estimators for stochastic and deterministic settings, it is important to
compare deterministic vs stochastic policy performance; in this case, the stochasticity added to the
policy is causing a larger difference when the policy has learned a high-value behaviour. For PPO
on continuous environments, this is equivalent to taking the mean of the policy, and for a discrete
policy, the arg max, Q(st, a) is used. In Figure 3a the deterministic policy does poorly, this is likely
because the agent quickly reaches states that are out of distribution, causing the agent to fail. Similar
is true for Montezuma’s Revenge with PPO. However, for MinAtar/Breakout and Spacelnvaders,
the e-greedy exploration of DQN knocks the policy off high-value paths, and the deterministic policy
does well, even approaching V7D () for MinAtar/Breakout. We also see in Figure 1b and many
other results that the difference does not decrease with additional training, indicating the gap is not the
result of needing more experience or updates, but more significant changes to improve exploitation
and optimization for deep learning.

5.2 SUB-OPTIMALITY WHEN ADDING EXPLORATION

This section asks the question does adding exploration objectives increase the difference and therefore
aggravate the optimization challenges. This is analyzed by adding common exploration bonuses
to the RL algorithms, RND (Burda et al., 2018b). RND applies additional rewards to the extrinsic
reward, encouraging the agent to explore a wider distribution of states, which should allow the agent
to discover new, higher-reward states. These higher reward states should lead to larger returns, and if
the algorithm is not effectively exploiting these rewards, a greater difference will result.

Figure 4 provides the results of the analysis of practical sub-optimality estimating Equation (3)
compared with and without using RND. As we can see, the addition of RND improves the returns for
DQN and PPO . However, the difference is also increased, indicating that as exploration is increased,
so too are the issues of exploitation of experience in deep RL. This is an undesirable situation; as the
agent improves its exploration, it actually learns less from the experience overall due to optimization
issues.

Difference with PPO on Montezumas Revenge Difference with PPO on Spacelnvaders PPO Difference on Craftax
V.(s0) = V¥(s0) (best) w RND 1000 V.(s0) = V¥(so) (best) w RND —— V(s) = V¥(s0) (best)
Vid(se) = V(sy) (recent) w RND. g 5 — Viis(s) = V¥(so) (recent)
300 —— Vo (s0) — V¥(s0) (best) 800) = V*(s0) (best) Vi (sp) = V*(sg) (best) w RND
— Viso) = V¥(so) (recent) — Vib(sg) = V¥(s0) (recent) 4 Vib(sg) = V¥(so) (recent) w RND

(a) PPO MontezumasRevenge (b) PPO Spacelnvaders (c) PPO on Craftax

Figure 4: Comparisons of practical sub-optimality for best and recent performance compared to the
average using Equation (3) with and without adding RND. These results show that with the addition
of RND, the difference increases, indicating that adding exploration objectives is a double-edged
sword, better exploration but more difficult exploitation.

5.3 SUB-OPTIMALITY WHEN SCALING NETWORKS

Many recent reinforcement learning works are discovering improved algorithms’ performance based
on scaling networks (Schwarzer et al., 2023; Lyle et al., 2023; Obando-Ceron et al., 2024; Nauman
et al., 2024; Tang and Berseth, 2024). Are the challenges from scaling just optimization issues,
or are these models also struggling to scale because the types of narrow distributions produced by
larger models limit exploration? Two experiments were performed to investigate this question with
networks of different sizes. First across Atari environments BattleZone and NameThisGame from
the Atari-5 group (Aitchison et al., 2022) that is representative of the Full Atari Benchmark, and then
across HalfCheeta. For the Atari environments, a comparison is made between training a policy that
uses the normal C-51 type network with a 3-layer CNN and using a ResNet18. For the HalfCheetah
environment, different numbers of layers are used between 4 and 256.

Difference on NameThisGame Scaling Global Optimality Gap Scaling on HalfCheetah
Global Optimality Gap on BattleZone Scaling
Vi (s9) = V¥(so) (best) w ResNet 500 — dlayers

Vid(sg) = V(so) (recent) w ResNet
10000 —— V(sg) — V(sp) (best) 400 — 64 layers
— Vib(sg) — V¥(sp) (recent)

12000

50000

40000

8000

m

30000

6000
200
20000 4000
100
10000 2000
e

Return

Rety
Optimality Gap

o o

000 025 050 075 100 125 150 175 2.00 000 025 0S0 075 100 125 150 175 200 0 1 2 3 4
Steps 1e7

Steps

(a) DQN BattleZone (b) DQN NameThisGame (c) PPO HalfCheetah

Figure 5: Comparisons of practical sub-optimality for models with different-sized networks. On
the left and middle, it is shown that using a ResNet-18 instead of the common 3-layer CNN for
BattleZone increased the difference. On the right, the difference for HalfCheetah increases as the
number of layers is added, indicating increasing exploitation issues.

In Figure 5, the results of the described experiments are given. Interestingly, the results for the Atari
environments show that the difference is much larger when the policy network is a ResNet-18 instead
of a 3-layer CNN. This indicates two items: one, the policy is generating higher value trajectories,
but it is not adequately learning from them, and two, the gap for V70w (sq) and V7 (s0) is very
close, indicating that the policy is struggling to match these higher value experiences even when they
are in the current replay buffer. With HalfCheetah, the issue of scale is studied by training a policy

over networks of 6 different sizes. In Figure 5c, the V7 De (s50) — v (so) is shown, and there is a
trend that as the number of layers increases, the practical sub-optimality increases. This is interesting
because in Figure 3a the performance with one layer is given and there is no gap. The introduction
of additional layers quickly introduces exploitation issues, keeping the policy from learning the
same performance in Figure 3a. This collective information suggests that scaling networks does not
likely cause exploration issues, but rather reinforces the commonly understood cause of exploitation
(optimization/model) issues with scale.

5.4 ALGORITHM SUB-OPTIMALITY

Is algorithm progress limited by weaknesses in exploration or exploitation? This question can be
estimated by using the practical sub-optimality to compare aggregate analysis across tasks and

RL algorithms, as described in Section 4.2. Starting with aggregate analysis across the AzariFive
environments, we can see in Figure 6a that DQN and PPO are only able to achieve a little over
30% of the performance of their best experience (lower is better). This high value indicates that
both of these algorithms struggle to produce the best possible results they have experienced. In this
case, VDo (s0) (Figure 6a) is similar to V7 (s0) (Figure 6b), indicating that the RL algorithms are
experiencing high returns regularly, with a value of 0.68, they are not sufficiently capturing.

Interestingly and conversely, the rliable optimality gap indicates that DQN is better than PPO
in Figure 6¢, because DQN does achieve higher average policy performance, but the analysis from
comparing to Vb (s0), in Figure 6b shows us that even though DQN performs better than PPO, DQN
is still generating a lot of high-value experience that it is not able to exploit. Conversely, because PPO
is performing worse according to rliable, but has a better Vb (sq) — v (so), improved exploration
would improve PPO more than it would DQN. Overall, these results suggest that both algorithms
struggle to extract the most from their experience and that rliable is not telling the full story.

QM Mean Median Global Optimality Gap
PPO I — B | | [—
DQN | | | |
0.30 0.36 0.42 0.24 0.28 0.32 0.36 0.25 0.30 0.35 0.40 0.64 0.68 0.72 0.76
Normalized Score
-) . .
(a) V™Poo (s9) — V™ (s0) across Atari-5 environments.
IQM Mean Median Local Optimality Gap
PPO I ——— | | 0 R) |
DQN | | | |
0.30 0.36 0.42 0.48 0.28 0.32 0.36 0.40 0.30 0.35 0.40 0.60 0.64 0.68 0.72
Normalized Score
- -0 . .
(b) V™0 (so) — V™ (so) across Atari-5 environments.
IQM Mean Median Optimality Gap
PPO N [i [=
DQN | | | |
0.16 0.24 0.32 0.40 0.2 0.3 0.4 02 03 04 0.6 0.7 0.8

Normalized Score

(c) Normal rliable evaluation across Atari-5 environment.

Figure 6: rliable plots for PPO and DQN over all environments in this paper. This measure gives an
aggregate view for each algorithm as each sample is normalized using the practical sub-optimality
from each run’s generated data.

6 DISCUSSION

This work has introduced a method to study the limitations of deep RL algorithms in the space of
exploration and optimization challenges. An estimator is introduced to support this position. The
estimator is used to show that common RL algorithms struggle to exploit their experience and that
adding exploration bonuses and scaling networks exacerbates these issues. This estimator can be
used to assist users in understanding if poor performance in an environment is the result of limited
exploration (data problem) or more stable optimization to make progress (model problem). Because
RL agents collect vastly different data during training, it can be difficult to compare performance
across algorithms. This estimator adjusts the comparison to show how well the algorithm did
compared to the distribution of collected data (experience). Because the estimator comparison over
generated experience measures the sub-optimality relative to the agent’s generated experience, it can
be better suited to task-independent comparisons. In the future, this metric can be used to evaluate
broadly across produced algorithms to assist researchers and practitioners in their analysis.

Reproducibility Statement. We provide implementation details in the main paper. However the
overall method is easier to reimpliment in the cleanrl codebase. We plan to openly release our code
upon the publication of our work.

REFERENCES

J. Achiam, E. Knight, and P. Abbeel. Towards characterizing divergence in deep q-learning. arXiv
preprint, arXiv:1903.08894, 2019. 2

Rishabh Agarwal, Max Schwarzer, P S Castro, Aaron C Courville, and Marc G Bellemare. Deep
reinforcement learning at the edge of the statistical precipice. Neural Inf Process Syst, 34:29304—
29320, August 2021. 5

Matthew Aitchison, Penny Sweetser, and Marcus Hautter. Atari-5: Distilling the arcade learning
environment down to five games. ICML, abs/2210.02019:421-438, October 2022. 6, 8

Adria Puigdomenech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andew Bolt, and Charles
Blundell. Never give up: Learning directed exploration strategies, 2020. 2

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, 2016. 2

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. In Proceedings of the 24th International
Conference on Artificial Intelligence, IICAT’ 15, pages 4148-4152. AAAI Press, 2015. ISBN 978-
1-57735-738-4. URL http://dl.acm.org/citation.cfm?id=2832747.2832830.
6

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In ICML, 2017. 2

Richard Bellman. The theory of dynamic programming. Bulletin of the American Mathematical
Society, 60(6):503-515, 1954. 4

Emmanuel Bengio, Joelle Pineau, and Doina Precup. Interference and generalization in temporal
difference learning. In ICML, 2020. 2

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation, 2018a. 2

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. /CLR, 2018b. 7

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double g-learning:
Learning fast without a model. In /CLR, 2021. 2

Zaiwei Chen, John-Paul Clarke, and Siva Theja Maguluri. Target network and truncation overcome
the deadly triad in g-learning. arXiv preprint, arXiv:2203.02628, 2022. 2

Karl Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. In ICML, 2021.
2

Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
mood, and Richard S Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768-774, August 2024. 1

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal.
Stop regressing: Training value functions via classification for scalable deep RL. arXiv [cs.LG],
March 2024. 2

10

http://dl.acm.org/citation.cfm?id=2832747.2832830

S. Fujimoto, H. v. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In ICML, 2018. 2

Alexandre Galashov, Michalis K Titsias, Andr’as Gyorgy, Clare Lyle, Razvan Pascanu, Y W Teh,
and M Sahani. Non-stationary learning of neural networks with automatic soft parameter reset.
Neural Inf Process Syst, abs/2411.04034:83197-83234, November 2024. 3

Sina Ghiassian, Banafsheh Rafiee, Yat Long Lo, and Adam White. Improving performance in
reinforcement learning by breaking generalization in neural networks. In AAMAS, 2020. 2

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In ICML, 2018. 2

Nicklas Hansen, Xiaolong Wang, and H Su. Temporal difference learning for model predictive
control. ICML, 162:8387-8406, March 2022. 2

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In AAAI, 2018. 2

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the nineteenth international conference on machine learning, pages 267-274, 2002.
3

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforcement
learning via distribution correction. In NeurIPS, 2020. 2

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry P. Vetrov. Controlling overesti-
mation bias with truncated mixture of continuous distributional quantile critics. In ICML, 2020.
2

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin g-learning: Controlling the
estimation bias of g-learning. In ICLR, 2020. 2

Jongmin Lee, Wonseok Jeon, Byung-Jun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
policy optimization via stationary distribution correction estimation. In /ICML, 2021. 2

Boyan Li, Hongyao Tang, Yan Zheng, Jianye Hao, Pengyi Li, Zhen Wang, Zhaopeng Meng, and
Li Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action
representation. In ICLR, 2022. 2

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. In /CLR, 2015. 2

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In ICML, 2023. 1, 8

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, James Martens, H V Hasselt, Razvan Pascanu, and Will
Dabney. Normalization and effective learning rates in reinforcement learning. Neural Inf Process
Syst, abs/2407.01800:106440-106473, July 2024. 3

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529-533, 2015. 2, 3,6

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint, arXiv:1912.02074, 2019. 2

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Milo§, and Marek Cygan. Bigger,
regularized, optimistic: scaling for compute and sample-efficient continuous control. arXiv preprint
arXiv:2405.16158, 2024. 3, 8

E. Nikishin, M. Schwarzer, P. D’Oro, P. Bacon, and A. C. Courville. The primacy bias in deep
reinforcement learning. In /ICML, Proceedings of Machine Learning Research, 2022. 1, 3

11

Johan Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob N Foerster,
G Dziugaite, D Precup, and Pablo Samuel Castro. Mixtures of experts unlock parameter scaling
for deep RL. ICML, abs/2402.08609, February 2024. 8

OpenAl. Chatgpt: Optimizing language models for dialogue, 2022. URL https://openai.
com/blog/chatgpt/. 2

OpenAl, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal J6zefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,
Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning.
arXiv [cs.LG], December 2019. 2

Georg Ostrovski, Marc G. Bellemare, Aaron van den Oord, and Remi Munos. Count-based exploration
with neural density models, 2017. 2

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
reinforcement learning. In NeurIPS, 2021. 2,3

Kei Ota, Tomoaki Oiki, Devesh K. Jha, Toshisada Mariyama, and Daniel Nikovski. Can increasing
input dimensionality improve deep reinforcement learning? In ICML, 2020. 2

Yangchen Pan, Kirby Banman, and Martha White. Fuzzy tiling activations: A simple approach to
learning sparse representations online. In /CLR, 2021. 2

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction, 2017. 2

Alexandre Piché, Valentin Thomas, Joseph Marino, Rafael Pardinas, Gian Maria Marconi, Christopher
Pal, and Mohammad Emtiyaz Khan. Bridging the gap between target networks and functional
regularization. Transactions on Machine Learning Research, 2022. 2

Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization in reinforcement
learning. In ICML, 2021. 2

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
ICLR, 2016. 2

J. Schulman, S. Levine, P. Moritz, M. 1. Jordan, and P. Abbeel. Trust region policy optimization. In
International Conference on Machine Learning (ICML), 2015. 2

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint, arXiv:1707.06347, 2017. 2, 3, 6

Max Schwarzer, Johan Samir Obando-Ceron, Aaron C. Courville, Marc G. Bellemare, Rishabh
Agarwal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level
efficiency. In ICML, 2023. 2, 3, 8

H. Tang, Z. Meng, J. Hao, C. Chen, D. Graves, D. Li, C. Yu, H. Mao, W. Liu, Y. Yang, W. Tao, and
L. Wang. What about inputting policy in value function: Policy representation and policy-extended
value function approximator. In AAAI, 2022. 2

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. #exploration: A study of count-based exploration for deep
reinforcement learning, 2017. 2

Hongyao Tang and Glen Berseth. Improving deep reinforcement learning by reducing the chain
effect of value and policy churn. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=cQoAgPBARCc.
3,8

Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of the ACM, 38
(3):58-68, 1995. 2

12

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openreview.net/forum?id=cQoAgPBARc

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. In AAAI, 2016. 2

Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Modayil.
Deep reinforcement learning and the deadly triad. arXiv preprint, arXiv:1812.02648, 2018. 2

Ge Yang, Anurag Ajay, and Pulkit Agrawal. Overcoming the spectral bias of neural value approxima-
tion. In ICLR, 2022. 2

Kenny Young and Tian Tian. MinAtar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv [cs.LG], March 2019. 6

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. In /CLR, 2021a. 2

Ruiyi Zhang, Bo Dai, Lihong Li, and Dale Schuurmans. Gendice: Generalized offline estimation of
stationary values. In ICML, 2020a. 2

Shangtong Zhang, Hengshuai Yao, and Shimon Whiteson. Breaking the deadly triad with a target
network. In /ICML, 2021b. 2

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and Yuan-
dong Tian. Bebold: Exploration beyond the boundary of explored regions. arXiv preprint
arXiv:2012.08621, 2020b. 2

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and Yuandong
Tian. Noveld: A simple yet effective exploration criterion. Advances in Neural Information
Processing Systems, 34,2021c. 2

13

	Introduction
	Related Work
	Background
	Is Exploration or Exploitation the Issue for DeepRL?
	Softer Expert Estimators
	For RL Algorithms

	Experimental Results
	Per Task Sub-optimality
	Sub-optimality when adding exploration
	Sub-optimality when Scaling Networks
	Algorithm Sub-optimality

	Discussion

