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ABSTRACT

In the era of deep reinforcement learning, making progress is more complex, as the
collected experience must be compressed into a deep model for future exploitation
and sampling. Many papers have shown that training a deep learning policy under
the changing state and action distribution leads to sub-optimal performance, or even
collapse. This naturally leads to the concern that even if the community creates
improved exploration algorithms or reward objectives, will those improvements fall
on the deaf ears of optimization difficulties. This work proposes a new practical
sub-optimality estimator to determine optimization limitations of deep reinforce-
ment learning algorithms. Through experiments across environments and RL
algorithms, it is shown that the difference between the best experience generated is
2-3× better than the policies’ learned performance. This large difference indicates
that deep RL methods only exploit half of the good experience they generate.

1 INTRODUCTION

What is preventing deep reinforcement learning from solving harder tasks? Many papers have
shown that training a deep learning policy under the changing state distribution (non-IID) leads to
sub-optimal performance (Nikishin et al., 2022; Lyle et al., 2023; Dohare et al., 2024). However, at a
macro scale, it is not completely clear what causes these issues. Do the network and regularization
changes from recent work improve exploration or exploitation, and which of these two issues is the
larger concern to be addressed to advance deep RL algorithms? For example, better exploration
algorithms can be created, but will the higher value experience fall on the deaf ears of the deep
network optimization difficulties?

How can we understand if the limited deepRL performance is due to a lack of good exploration or
deep network optimization (exploitation)? Normally in RL, to understand if there is a limitation, an
oracle is needed to understand sub-optimality, how far the algorithm is from being optimal. However,
that analysis is with respect to the best policy and aliases both causes of the limitations of either
exploration or optimization. Instead, consider the example where a person is learning how to build
good houses. There are two issues that may prevent the person from consistently building a high
quality house: (1) they can’t explore well enough to discover a good design or (2) they can explore
well enough to find good designs, but they can’t properly exploit their experience to replicate those
good experience. For deep RL algorithms, which of these two issues is more prevalent?

To understand if exploration or exploitation is the larger culprit, a method is needed to estimate the
practical sub-optimality between these cases. This estimator should (1) measure the agent’s ability
to explore, (2) while also estimating the average performance for the learning policy π̂θ. While
estimating the average policy performance is common, estimating the exploration ability for a policy
is not. Extending the house-building metaphor, the idea is to estimate how close the agent ever got to
constructing a good home. Therefore, to realize this estimator, we propose computing the exploration
value for a policy that is calculated over prior experience, called the experience optimal policy. Using
this concept, a new version of sub-optimality can be developed that can compute the difference
between the experience optimal policy and the learned policy, shown in Figure 1a. If there is a
large difference between these two, then the performance is limited by exploitation and optimization
(model); however, if the difference between the experience optimal policy and the learned policy is
small, then performance is limited by exploration (data).
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The described estimator is used to better understand the reason deepRL algorithms do not solve
certain difficult tasks. It is found that the limitation of deepRL agents in making progress on difficult
tasks is not exploration but often exploitation. Therefore, this paper argues that to advance deep
reinforcement learning research, further work is needed on optimization for exploitation under non-iid
data. The proposed metric can serve multiple additional purposes. (1) For any RL practitioner, this
metric can be used to quickly identify if the limitation in performance is an exploitation or exploration
problem so that they can focus their efforts. (2) For the research community, this metric can be used
across environments and algorithms to understand the performance of deepRL algorithms better and
shed light on the exploration vs exploitation trade-off on a macro sense, to determine if to increase
RL progress the community should be working more on exploitation problems1. (3) Showing that
including exploration bonuses or scaling network size with RL algorithms increases the practical
sub-optimality, indicating that optimization becomes a larger issue in that setting. Section 5 provides
evidence to showcase these uses of this new view on sub-optimality, and finds for many environments
the difference between the experience optimal policy and the learned policy to be larger than the
difference between the learned policy and the initial policy. These findings suggest a significant
exploitation issue and a need for improved optimization methods in RL.

2 RELATED WORK

Since the first successes of RL and function approximation (Tesauro et al., 1995; Mnih et al., 2015;
OpenAI et al., 2019), many recent works have shown great progress on integrating the complexities
of deep learning and reinforcement learning (Hansen et al., 2022; van Hasselt et al., 2018). Many
have studied that certain model classes and loss assumptions make it easier to train more performant
deepRL policies (Schwarzer et al., 2023; Farebrother et al., 2024), deepRL is even used to fine-tune
the largest networks to create strong LLMs (OpenAI, 2022). While deepRL is now being used across
a growing number of applications, the broad limitations of current algorithms become less clear.

Deep Reinforcement Learning Training The field of methods to explain and improve on the
limitations of combining function approximation and reinforcement learning (deepRL) is expanding.
Much of the early work consisted of improving value-based methods to overcome training and non-IID
data issues in DQN (Mnih et al., 2015) and DDPG (Lillicrap et al., 2015) and stochasticity (Schulman
et al., 2015; 2017). Recent adaptations improve over the initial algorithms that struggle with
overestimation (van Hasselt et al., 2016; Bellemare et al., 2017; Hessel et al., 2018) or improving
critic estimation (Fujimoto et al., 2018; ?; Lan et al., 2020; Kuznetsov et al., 2020; Chen et al.,
2021). The challenges in the space of learning policy are based on an unstable mix of function
approximation, bootstrapping, and off-policy learning, called the Deadly Triad in DRL (van Hasselt
et al., 2018; Achiam et al., 2019). Many works focus on parts of the triad, including: stabilizing effect
of target network (Zhang et al., 2021c; Chen et al., 2022; Piché et al., 2022), difficulty of experience
replay (Schaul et al., 2016; Kumar et al., 2020; Ostrovski et al., 2021), over-generalization (Ghiassian
et al., 2020; Pan et al., 2021; Yang et al., 2022), representations in DRL (Zhang et al., 2021a; Li
et al., 2022; Tang et al., 2022), off-policy correction (Nachum et al., 2019; Zhang et al., 2020a; Lee
et al., 2021), interference (Cobbe et al., 2021; Raileanu and Fergus, 2021; Bengio et al., 2020) and
architecture choices (Ota et al., 2020).

DeepRL Exploration Methods On top of the above training stability improvements is the desire
to improve exploration by providing the agent with better signal to encourage exploration beyond
just the extrinsic reward. These intrinsic rewards often compute some measure of state visitation or
mutual information using a separate online learnt model. Count-based methods (curiosity) are early
examples that encourage agents to cover a larger state space (Bellemare et al., 2016; Ostrovski et al.,
2017; Tang et al., 2017; Burda et al., 2018a), but they do not scale well to large state spaces. Several
works (Pathak et al., 2017; Badia et al., 2020; Zhang et al., 2020b; 2021d) have built on curiosity
frameworks to improve training and learning. However, it is not known how well RL algorithms will
be able to learn from the additional experience.

1This is not a judgement on the exploration community, in fact it is with exploration community in mind this
work started so that their amazing research gets the best analysis it can, and great exploration algorithms are not
misunderstood due to exploitation problems.
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DeepRL Scaling Methods Given the significant gains of using large models on many supervised
learning problems, the RL community has been studying how to achieve similar gains from scale, but
deep RL performance often drops when larger networks are used (Schwarzer et al., 2023; Tang and
Berseth, 2024). Recent works focus on network structure changes to avoid divergence and collapse,
using normalization layers (Nauman et al., 2024; Lyle et al., 2024), regularization (Nikishin et al.,
2022; Schwarzer et al., 2023; Galashov et al., 2024) or optimization adjustments (Lyle et al., 2024).
The goal in these prior works is to understand and improve performance when larger networks are
used, but these papers are often limited to recovering prior performance, not understanding where RL
in general is missing potential.

Convergence and Exploration Theory The challenges of reinforcement learning algorithms in
finding optimal policies are not a new question. Many prior works have studied the theoretical
implications on convergence rates (Bhatt et al., 2019; Agarwal et al., 2020; Zhang et al., 2021b;
Bhandari and Russo, 2024; Montenegro et al., 2025); however, these studies are limited to linear and
tabular models and can not provide a wider lens on the challenges of convergence analysis in the case
of deep RL with large function approximators and beyond just policy gradient analysis. A related
question is how optimization can be made more robust with regularizers such as entropy (Ahmed
et al., 2019; Husain et al., 2021). A recent work in this area studies how intrinsic rewards can
influence and improve policy convergence (Bolland et al., 2025). However, those results are for
simple environments with limited experimental analysis.

3 BACKGROUND

In this section, a very brief review of the fundamental background of the proposed method is
provided. reinforcement learning (RL) is formulated within the framework of an Markov Decision
Processes (MDP) where at every time step t, the world (including the agent) exists in a state st ∈ S,
where the agent is able to perform actions at ∈ A. The action to take is determined according to
a policy π(at|st) which results in a new state st+1 ∈ S and reward rt = R(st,at) according to
the transition probability function P (st+1|st,at). The policy is optimized to maximize the future
discounted reward Er0,...,rT

[∑T
t=0 γ

trt

]
, where T is the max time horizon, and γ is the discount

factor. The formulation above generalizes to continuous states and actions. There are multiple RL
algorithms that can be used to optimize the above objective. This work uses two of the most popular
algorithms DQN (Mnih et al., 2015) and PPO (Schulman et al., 2017) to frame the challenges with
optimizing and exploration.

Policy Gradient Definitions To discuss the difference between policy performance and estimators,
it is useful to define the state visitation distribution dπs0(s) for a policy:

dπs0(s) := (1− γ)

∞∑
t=0

γt Pr(st = s|s0), (1)

where Prπ(st = s|s0) is the probability of the policy π visiting the future state st when starting from
s0. The policy gradient can be written in the form

∇θV
πθ (s0) =

1

1− γ
Es∼d

πθ
s0
Ea∼πθ(·|s) [∇θ log πθ(a|s)Qπθ (s, a)] . (2)

Then we can write out the performance difference lemma (Kakade and Langford, 2002) between
two policies as

V π′
(s0)− V π(s0) =

1

1− γ
Es∼dπ

s0
Ea∼π(·|s)

[
Aπ′

(s, a)
]
. (3)

Where Aπ′
(s, a) is the advantage of policy π′.

4 IS EXPLORATION OR EXPLOITATION THE ISSUE FOR DEEPRL?

Often, learning agents are concerned with the exploration vs exploitation trade-off and its effect on
performance. This trade-off is a helpful lens for discussing an agent’s choices at a particular state st,
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but this single state view focuses on exploitation as either: a type of greedy action selection, sampling
from a learned policy, or utilizing a world model. However, in the age of deep learning and ever
increasing model and data sizes, that lens misses the broader idea that exploitation is making use
of prior experience, in that for each of the original definitions, there is an imperfect optimization
process of the network parameters θ over some experience D causing a difference in performance.
However, it is often unclear if the difference is from data distribution issues (Ostrovski et al., 2021) or
optimization (Lyle et al., 2024). To improve the understanding of the limitations of RL with function
approximation (deepRL), we introduce estimators to quantify the difference between a policy’s
data-generating process (exploration/data) and its ability to learn from that data (exploitation/model).

Expert Policy

Best Experience

Learned Policy

Sub-optimality

Practical 
Sub-optimality

Achieved Exploitation

Steps

Re
tu

rn

(a) Example exploitation sub-optimality difference
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Return on MinAtar Space Invaders

V (s0) (avg)
V (s0) (deterministic)
V *

D (s0) (best)
V *

D(s0) (recent)
V *(s0) (replay)

(b) MinAtar space invaders DQN
Figure 1: Left: Diagram of the practical sub-optimality = Best Experience - Learned Policy. On the
right are results computing this exploitation gap as the difference between V π̂∗

(s0) and V π̂θ

(s0) in
MinAtar SpaceInvaders.

In Figure 1 we show the conceptual version of studying this exploration vs exploitation problem,
where the typical learning graph is now split into three sections: the performance of the average
policy π̂θ from achieved exploitation (red), which measures what that policy has learned, the potential
performance, indicated by the optimal policy π∗ (green), and a new estimator we call the experience
optimal policy π̂∗ (blue). The challenge is that π̂θ can be arbitrarily bad compared to π∗, and normally
it is not clear if the performance difference (Equation (3)) is because the agent is not exploring
well (V π̂∗

(s0) << V π∗
(s0) and V π̂θ

(s0) << V π∗
(s0)) or just not exploiting well (V π̂θ

(s0) <<
V π∗

(s0)). Understanding if the policy is generating high value trajectories can be particularly useful
for evaluating exploration-focused algorithms. When evaluating the performance of a method, if
only V π̂θ

(s0) is considered, the analysis can miss the fact that the method is generating higher
value experiences V π̂∗

(s0), but the policy is not able to exploit them into θ properly. Therefore, to
better understand reinforcement learning limitations, we introduce a new estimator for π̂∗ to measure
practical sub-optimality, which estimates the realizable performance of the policy because the policy
has generated behavior with higher value.

How to measure practical sub-optimality The optimal policy is defined as the policy that selects
the best action at every state (Bellman, 1954). Sub-optimality measures the difference between a
policy’s value V π(s) with respect to an optimal policy π∗ with the value function V π∗

(s). However,
if the policy π struggles to learn from optimal data or explore well, measuring against π∗ does not
tell us if cause of the performance gap is due to exploration of exploitation. Therefore, in addition to
the theoretical optimal policy, we introduce the experience optimal policy π̂∗ to represent the best
policy the agent can achieve given the experience collected during training. If the environment is
deterministic and the agent keeps a buffer of all prior experience D∞, then,

π̂∗ = argmax
<a0,...,at>∈D∞

T∑
t=0

R(at, st) (4)

This policy can also be understood as deterministically replaying the highest value sequence of actions
< a0, . . . , at > in the experience memory. This policy can be used to compute a new difference as
the practical sub-optimality of the form V π̂∗

(s0) − V π̂θ

(s0).

Most empirical works use the performance of the learned policy V πθ

(s0) to comparing across
algorithms to understand which algorithm performs the best on a set of tasks. While this model works

4
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well and enables the community to make steps forward in terms of performance, the learned policy
does not provide information on why one algorithm is better than another. Consider the example
where there are two algorithms A and B, algorithm A generates higher-value experience, but is
not able to exploit them, and B does not generate higher-value experience (V π̂∗

A(s0) > V π̂∗
B (s0)),

similar to its policy, but has been able to exploit that data well. Both A and B can have the same
value V π̂θ

A(s0) = V π̂θ
B (s0). Is A or B the worse RL algorithm? In this work, we propose that A is

the worse algorithm, as it can not properly exploit its generated data. If the experience were equal,
algorithm B would see the same experience as algorithm A, then B would result in better performance
and have a smaller practical sub-optimality.

4.1 SOFTER EXPERT ESTIMATORS

While Equation (4) is a clear definition for computing an estimate of an optimal policy where, for
example, the sequence of actions a0, . . . , at can be replayed in the environment to reproduce V π̂∗

(s0),
however, this restrictive definition is subject to high variance and it is less useful for non-deterministic
environments. Therefore, two additional methods are introduced to estimate the potential for the
policy to learn from its experience to indicate that not only is there one high value trajectory, but
many higher value trajectories.

For the analysis, two versions of V π̂∗
(s0) are introduced to approximate the performance on the

best experience. For stochastic environments, the first version is the best policy from the collected
experience as the top k% of experience generated by the agent V π̂∗

D∞ (s0), where D∞ is all the
experience collected by the agent. The second is the recent top k% of data V π̂∗

D (s0) in the replay
buffer D. To estimate the value function V (s0) from data, the sum of rewards the agent achieves in
the environment, or the return, is used. The value estimate is computed using the following function:

V π̂∗
(s0) =

1

n

∑
τ∈D0:n

∑
at,st∈τ

R(at, st) (5)

Where m is equal to k× |D| and D is sorted with the highest value trajectory starting at index 0. Our
sensitivity analysis in appendix A.1 finds that a value of 5% for k is a good balance over using a
single trajectory.

The best ever and recent estimators both have their own reasoning. The best ever experience
V π̂∗

D∞ (s0) is a measure of how good the agent is at exploiting the best experience it ever generated.
This notion is rather strong and difficult for any deep RL algorithm to match, as the agent may not
currently have access to that experience for optimization, but it is a notion of lifetime achievement
and represents a possible high-value policy and trajectory the agent could generate again. The recent
best experience V π̂∗

D (s0) is a measure of the agent’s ability to learn to match the best of the recent
experience it has access to and can use for exploitation. The recent notion can be more fair as it is
possible for an agent to train on that experience to improve its performance actively, but as will be
shown in Section 5.1, RL algorithms also struggle to match this performance.

4.2 COMPARING RL ALGORITHMS

The above estimators can be used to understand the practical sub-optimality of an algorithm on an
environment. That information is useful, but it does not provide information about how an algorithm
performs holistically. For example, we may have the question, how much does an algorithm suffer
from exploitation limitations or which algorithms are the best at exploiting their generated data? The
easier we can answer the above questions the easier one can focus on making improvents to their
algorithm. This information is paramount for the community to understand better where there is a
larger benefit from time spent on research and development. To compute this information across
environments T , the estimator can to be aggregated and normalized across environments.

To compute this aggregate estimator the upper bound from V π̂∗
(s0) can be used in place of the

optimalality gap from rliable (Agarwal et al., 2021). The gap computed using the proposed metric is
relative to the experience the agent has generated, which can provide more rich signal than comparing
the performance to some current notion of a human level agent. For example, in practice when the
optimal performance V π∗

(s0) is not know a heuristic is used to compute the optimal return for the
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expert by taking the max possible reward rmax and multiplying this by the inverse of the discount
factor V π∗

(s0) ≈ rmax ∗ 1
1−γ , which can be far above the optimal policy’s performance. To provide

a more grounded upper bound on performance by using achieved experience we can instead use the
practical sub-optimality:

1

|T |
∑
m∈T

(V π̂∗

m (s0)− V πθ

m (s0))/(V
π̂∗

m (s0)− V π0

m (s0)). (6)

Where m is some task or environment. This metric is used in Section 5.4 to compare the aggregate
weaknesses across RL algorithms.

Implementation Details It is difficult to compute a general practical sub-optimality for any type
of RL algorithm. On-policy algorithms do not keep around histories of recent data for evaluation,
and off-policy algorithms don’t track returns as they often use Q-functions for learning directly from
rewards. To facilitate the tracking of these statistics, we develop a wrapper that can be introduced
into the RL algorithm code to track every reward, return, trajectory, and end of episode. This wrapper
is also used to compute the best V π̂∗

D∞ (s0) and the recent V π̂∗
D (s0) estimates during learning.

5 EXPERIMENTAL RESULTS

In this section, the ability of practical sub-optimality for diagnosing learning issues is evaluated.
This usefulness is determined in multiple ways: (1, Section 5.1) As a metric to determine the
limitations of current RL algorithms on specific environments, (2, Section 5.2) how recent methods for
exploration or scaling increase or reduce the practical sub-optimality, and (3) The overall limitations
of RL algorithms and if more exploration or exploitation is needed to improve performance over
difficult/unsolved tasks wrt to scaling in Section 5.3 or in general in Section 5.4.

Four popular RL algorithms are used for evaluation. First PPO (Schulman et al., 2017) is a common
on-policy algorithm used for various problems, known for its ease of implementation and use. The
other algorithm is DQN (Mnih et al., 2015), which is a popular RL algorithm for environments
with discrete actions. PQN (Gallici et al., 2025), which is an adapted version of DQN to learn with
increased parallelization. Last is SAC (Haarnoja et al., 2018), which is based on maximum entropy
optimization, which can be more robust at finding optimal policies. These algorithms cover the most
common use cases for RL.

A selection of evaluation environments is included to cover a diverse range of the RL landscape.
This diverse selection is important to understand better the practical sub-optimality there needs to
be a difference between the generated data and the final policy’s performance. Therefore, we focus
on including experimental results on environments that are difficult. These difficult environments
include using MinAtar (Young and Tian, 2019) and Atari (Bellemare et al., 2015; Aitchison et al.,
2022) SpaceInvaders, Asterix, LunarLander, Montezumas Revenge, Craftax, and the Atari-
Five (Aitchison et al., 2022). We also include Walker2d, HalfCheeta, Humanoid as continuous
action environments that are easier, and as will be shown, have little practical sub-optimality.

(a) HalfCheetah (b) MinAtar (c) MontezumaRe-
venge

(d) Atari

Figure 2: Evaluation environments include examples from Mujoco, MinAtar, and Atari.

To measure performance, we will look at the practical sub-optimality discussed in the previous
section. In addition, the average return during learning is used to verify that the agents are learning,
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ensuring that the reason for the lack of practical sub-optimality is not due to the agent’s inability to
learn. All experiments are conducted over 4 random seeds.

5.1 PER TASK SUB-OPTIMALITY

In this section, we can study which tasks express types of this practical sub-optimality, indicating
a need for improvements in optimization over exploration. The first question (1) is whether tasks
exhibit this type of gap, or if all tasks can be solved, or if policies can properly exploit the experience.
In Figure 3a, we can see that for HalfCheetah there is little difference between V π̂∗

D∞ (s0), V π̂∗
D (s0),

and V π̂θ

(s0), even though a high return is achieved; however, it is well known that HalfCheetah is
no longer a difficult task for common RL algorithms. Instead is we look at the Humanoid task we
can see that even SAC has a gap in performance Figure 8c. We can also see that the deterministic π̂∗

poorly estimates the best performance in this non-deterministic environment, and instead the softer
versions work well2. Examining tasks that are well-known to be difficult exploration problems reveals
a different story. After training PPO on Montezuma’s Revenge (Figure 3b), there is a surprisingly
large gap where V π̂θ

(s0) is noisy and near zero, yet the policy does generate many high-value
trajectories, indicated by both a large difference between V π̂∗

D∞ (s0) and V π̂∗
D (s0), but PPO is not

able to learn from these. These higher value trajectories are not rare. The V π̂∗
D (s0) line indicates that,

aside from a few spikes, the policy is far from the best 5% of experiences. We find similar results for
many other environments and algorithms shown in Figure 3 and for PQN in Figure 11f.
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(a) PPO HalfCheetah
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(b) PPO Montezuma’s Revenge
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(c) MinAtar/Breakout DQN
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(d) NameThisGame DQN
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(e) BattleZone DQN
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Figure 3: Comparisons of different measures for global optimality and the learned policy πθ. For
environments with more complex exploration, such as Montezuma’s Revenge, Breakout and SpaceIn-
vaders, there is a large exploitation gap between V π̂∗

D∞ (s0) and V π̂θ

(s0).

The practical sub-optimality may be an overestimate of true policy performance. To address this
issue, we perform a pure analysis with a set of completely deterministic environments in Figure 1b,
Figure 3c, Figure 8, Figure 9, and Figure 10. Because these environments are deterministic, it is
possible to compute a true V π̂∗

(s0) which is equal to the best single trajectory ever discovered. This
best single trajectory is visualized as V π̂∗

(s0), where the policy for V π̂∗
(s0) is a0, . . . , at, which

is replayed to visualize the score and indicate that to reach this performance, the policy θ needs to
exploit this data well to reach that score. As can be seen, V π̂∗

(s0) > V π̂∗
D∞ (s0) > V π̂θ

(s0), which
indicates that V π̂∗

D∞ (s0) may be slightly lower than the best performance, yet these trained policies
struggle to produce behavior close to V π̂∗

D∞ (s0), indicating that often performance is limited by a
lack of good exploitation.

Last, to better understand these estimators for stochastic and deterministic settings, it is important to
compare deterministic vs stochastic policy performance; in this case, the stochasticity added to the
policy is causing a larger difference when the policy has learned a high-value behaviour. For PPO

2In Figure 8c we instead use a deterministic environment to make the evaluation clearer
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on continuous environments, this is equivalent to taking the mean of the policy, and for a discrete
policy, the argmaxa Q(st, a) is used. In Figure 3a the deterministic policy does poorly, this is likely
because the agent quickly reaches states that are out of distribution, causing the agent to fail. Similar
is true for Montezuma’s Revenge with PPO. However, for MinAtar/Breakout and SpaceInvaders,
the ϵ-greedy exploration of DQN knocks the policy off high-value paths, and the deterministic policy
does well, even approaching V π̂∗

D∞ (s0) for MinAtar/Breakout for PPO and PQN ??. We also observe
in Figure 1b and in many other results that the difference does not decrease with additional training,
indicating that the gap is not due to needing more experience or updates, but rather to more significant
changes to improve exploitation and optimization in deep learning.

5.2 SUB-OPTIMALITY WHEN ADDING EXPLORATION

This section asks the question does adding exploration objectives increase the difference and therefore
aggravate the exploitation challenges. This is analyzed by adding common exploration bonuses to the
RL algorithms, RND (Burda et al., 2018b). RND adds an additional reward to the extrinsic reward,
encouraging the agent to explore a wider distribution of states, thereby enabling it to discover new,
higher-reward states. These higher-reward states should yield larger returns, and if the algorithm is
not effectively exploiting these rewards, the difference will be greater.

Figure 7 provides the results of the analysis of practical sub-optimality estimating Equation (3)
compared with and without using RND. As we can see, the addition of RND improves the returns for
DQN and PPO . However, the difference is also increased, indicating that as exploration is increased,
so too are the issues of exploitation of experience in deep RL. This is an undesirable situation; as the
agent improves its exploration, it actually learns less from the experience overall due to optimization
issues.
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Figure 4: Comparisons of practical sub-optimality for best and recent performance compared to the
average using Equation (3) with and without adding RND. These results show that with the addition
of RND, the difference increases, indicating that adding exploration objectives is a double-edged
sword, better exploration but more difficult exploitation.

5.3 SUB-OPTIMALITY WHEN SCALING NETWORKS

Many recent reinforcement learning works are discovering improved algorithms’ performance based
on scaling networks (Schwarzer et al., 2023; Lyle et al., 2023; Obando-Ceron et al., 2024; Nauman
et al., 2024; Tang and Berseth, 2024). Are the challenges from scaling just optimization issues,
or are these models also struggling to scale because the types of narrow distributions produced by
larger models limit exploration? Two experiments were performed to investigate this question with
networks of different sizes. First across Atari environments BattleZone and NameThisGame from
the Atari-5 group (Aitchison et al., 2022) that is representative of the Full Atari Benchmark, and then
across HalfCheeta. For the Atari environments, a comparison is made between training a policy that
uses the normal C-51 type network with a 3-layer CNN and using a ResNet18. For the HalfCheetah
environment, different numbers of layers are used between 4 and 256.

In Figure 5, the results of the described experiments are given. Interestingly, the results for the Atari
environments show that the difference is much larger when the policy network is a ResNet-18 instead
of a 3-layer CNN. This indicates two items: one, the policy is generating higher value trajectories,
but it is not adequately learning from them, and two, the gap for V π̂∗

D∞ (s0) and V π̂∗
D (s0) is very

close, indicating that the policy is struggling to match these higher value experiences even when they
are in the current replay buffer. With HalfCheetah, the issue of scale is studied by training a policy
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Figure 5: Comparisons of practical sub-optimality for models with different-sized networks. On
the left and middle, it is shown that using a ResNet-18 instead of the common 3-layer CNN for
BattleZone increased the difference. On the right, the difference for HalfCheetah increases with the
number of layers, indicating increasing exploitation issues.

over networks of 6 different sizes. In Figure 5c, the V π̂∗
D∞ (s0) − V π̂θ

(s0) is shown, and there is a
trend that as the number of layers increases, the practical sub-optimality increases. This is interesting
because in Figure 3a the performance with one layer is given and there is no gap. The introduction
of additional layers quickly introduces exploitation issues, keeping the policy from learning the
same performance in Figure 3a. This collective information suggests that scaling networks does not
likely cause exploration issues, but rather reinforces the commonly understood cause of exploitation
(optimization/model) issues with scale.

5.4 ALGORITHM SUB-OPTIMALITY

Is algorithm progress limited by weaknesses in exploration or exploitation? This question can be
estimated by using the practical sub-optimality to compare aggregate analysis across tasks and
RL algorithms, as described in Section 4.2. Starting with aggregate analysis across the AtariFive
environments, we can see in Figure 6a that DQN and PPO are only able to achieve a little over
30% of the performance of their best experience (lower is better). This high value indicates that
both of these algorithms struggle to produce the best possible results they have experienced. In this
case, V π̂∗

D∞ (s0) (Figure 6a) is similar to V π̂∗
D (s0) (Figure 6b), indicating that the RL algorithms are

experiencing high returns regularly, with a value of 0.68, they are not sufficiently capturing.

Interestingly and conversely, the rliable optimality gap indicates that DQN is better than PPO
in Figure 6c, because DQN does achieve higher average policy performance, but the analysis from
comparing to V π̂∗

D (s0), in Figure 6b shows us that even though DQN performs better than PPO, DQN
is still generating a lot of high-value experience that it is not able to exploit. Conversely, because PPO
is performing worse according to rliable, but has a better V π̂∗

D (s0) − V π̂θ

(s0), improved exploration
would improve PPO more than it would DQN. Overall, these results suggest that both algorithms
struggle to extract the most from their experience, and that more information can be used to compare
algorithms beyond rliable.

6 DISCUSSION

This work has introduced a method to study the limitations of deep RL algorithms in the space of
exploration and optimization challenges. An estimator is introduced to support this position. The
estimator is used to show that common RL algorithms struggle to exploit their experience and that
adding exploration bonuses and scaling networks exacerbates these issues. This estimator can be
used to assist users in understanding if poor performance in an environment is the result of limited
exploration (data problem) or more stable optimization to make progress (model problem). Because
RL agents collect vastly different data during training, it can be difficult to compare performance
across algorithms. This estimator adjusts the comparison to show how well the algorithm did
compared to the distribution of collected data (experience). Because the estimator comparison over
generated experience measures the sub-optimality relative to the agent’s generated experience, it can
be better suited to task-independent comparisons. In the future, this metric can be used to evaluate
broadly across produced algorithms to assist researchers and practitioners in their analysis.
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(c) Normal rliable evaluation across Atari-5 environment.
Figure 6: rliable plots for PPO and DQN over AtariFive environments. This measure gives an
aggregate view for each algorithm as each sample is normalized using the practical sub-optimality
from each run’s generated data.

Reproducibility Statement. We provide implementation details in the main paper. However the
overall method is easier to reimpliment in the cleanrl codebase. We plan to openly release our code
upon the publication of our work.
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A ABLATIONS

A.1 TOP % SENSITIVITY ANALYSIS

.
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(a) PPO SpaceInvaders
Figure 7: Comparisons of practical sub-optimality over different settings for the using the top x % to
compute V π̂∗

(s0) in comparision to the best replay trajectory. We can see that the V π∗
(s0) which is

approximiated by replaying the highest value trajectory ever is noisy and using the top 5% of recent
data produces a fair trade-off in estimation but is closer to the expert behavior.

B SAC

This section includes results on SAC (Haarnoja et al., 2018).

B.1 RESULTS ON CONTINUOUS CONTROL ENVIRONMENTS

.
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Figure 8: Comparisons of practical sub-optimality over SAC for continuous control environments
with 10 seeds.

As we see in these results, SAC has a smaller gap between the generated data. However, the
gap is increased for the humanoid environment, which is the environment with the largest action
dimensionality. As SAC is designed to be better at optimization and finding an optimal policy, the
results here correlate with our metric in that the gap is smaller for this RL algorithm that is designed
to learn from data better.

B.2 DISCRETE CONTROL ENVIRONMENTS
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Figure 9: Comparisons of practical sub-optimality over SAC for discrete control environments in
ALE with 10 seeds.
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C PQN

This section includes results on PQN (Gallici et al., 2025).
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(e)
Figure 10: Comparisons of practical sub-optimality over PQN for discrete control environments in
ALE with 10 seeds.
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Figure 11: Comparisons of practical sub-optimality over PQN for discrete control environments with
10 seeds.

In these experiments we have added V π̂∗
(s0) (top replay) which replays a collection of the trajectories

from the V π̂∗
(s0) distribution. We show these replays to indicate that for deterministic environments

not only is the average policy far from the best trajectory but it is also far the many possible trajectories
that achieve higher value than the average (avg) policy. We see this is true for Atari environments and
for some of the MinAtar environment that are deterministic (Breakout and SpaceInvaders).
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