
000 001 002 003 004 005 IS EXPLORATION OR OPTIMIZATION THE PROBLEM FOR 006 DEEP REINFORCEMENT LEARNING? 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

In the era of deep reinforcement learning, making progress is more complex, as the collected experience must be compressed into a deep model for future exploitation and sampling. Many papers have shown that training a deep learning policy under the changing state and action distribution leads to sub-optimal performance, or even collapse. This naturally leads to the concern that even if the community creates improved exploration algorithms or reward objectives, will those improvements fall on the *deaf ears* of optimization difficulties. This work proposes a new *practical* sub-optimality estimator to determine optimization limitations of deep reinforcement learning algorithms. Through experiments across environments and RL algorithms, it is shown that the difference between the best experience generated is 2-3× better than the policies' learned performance. This large difference indicates that deep RL methods only exploit half of the good experience they generate.

1 INTRODUCTION

What is preventing deep reinforcement learning from solving harder tasks? Many papers have shown that training a deep learning policy under the changing state distribution (non-IID) leads to sub-optimal performance (Nikishin et al., 2022; Lyle et al., 2023; Dohare et al., 2024). However, at a macro scale, it is not completely clear what causes these issues. Do the network and regularization changes from recent work improve exploration or exploitation, and which of these two issues is the larger concern to be addressed to advance deep RL algorithms? For example, better exploration algorithms can be created, but will the higher value experience fall on the *deaf ears* of the deep network optimization difficulties?

How can we understand if the limited deepRL performance is due to a lack of good exploration or deep network optimization (exploitation)? Normally in RL, to understand if there is a limitation, an oracle is needed to understand *sub-optimality*, how far the algorithm is from being optimal. However, that analysis is with respect to the best policy and aliases both causes of the limitations of either exploration or optimization. Instead, consider the example where a person is learning how to build good houses. There are two issues that may prevent the person from *consistently* building a high quality house: (1) they can't *explore* well enough to discover a good design or (2) they can explore well enough to find good designs, but they can't properly *exploit* their experience to replicate those good experience. For deep RL algorithms, which of these two issues is more prevalent?

To understand if exploration or exploitation is the larger culprit, a method is needed to estimate the *practical sub-optimality* between these cases. This estimator should (1) measure the agent's ability to explore, (2) while also estimating the average performance for the learning policy $\hat{\pi}^\theta$. While estimating the average policy performance is common, estimating the exploration ability for a policy is not. Extending the house-building metaphor, the idea is to estimate how close the agent ever got to constructing a good home. Therefore, to realize this estimator, we propose computing the *exploration* value for a policy that is calculated over prior experience, called the *experience optimal policy*. Using this concept, a new version of sub-optimality can be developed that can compute the difference between the *experience optimal policy* and the learned policy, shown in Figure 1a. If there is a large difference between these two, then the performance is limited by exploitation and optimization (model); however, if the difference between the *experience optimal policy* and the *learned policy* is small, then performance is limited by exploration (data).

054 The described estimator is used to better understand the reason deepRL algorithms do not solve
055 certain *difficult* tasks. It is found that the limitation of deepRL agents in making progress on difficult
056 tasks is not exploration but often exploitation. Therefore, this paper argues that to advance deep
057 reinforcement learning research, further work is needed on optimization for exploitation under non-iid
058 data. The proposed metric can serve multiple additional purposes. (1) For any RL practitioner, this
059 metric can be used to quickly identify if the limitation in performance is an exploitation or exploration
060 problem so that they can focus their efforts. (2) For the research community, this metric can be used
061 across environments and algorithms to understand the performance of deepRL algorithms better and
062 shed light on the *exploration vs exploitation* trade-off on a macro sense, to determine if to increase
063 RL progress the community should be working more on exploitation problems¹. (3) Showing that
064 including exploration bonuses or scaling network size with RL algorithms increases the practical
065 sub-optimality, indicating that optimization becomes a larger issue in that setting. Section 5 provides
066 evidence to showcase these uses of this new view on sub-optimality, and finds for many environments
067 the difference between the *experience optimal policy* and the learned policy to be larger than the
068 difference between the learned policy and the initial policy. These findings suggest a significant
069 exploitation issue and a need for improved optimization methods in RL.
070

071 2 RELATED WORK

072 Since the first successes of RL and function approximation (Tesauro et al., 1995; Mnih et al., 2015;
073 OpenAI et al., 2019), many recent works have shown great progress on integrating the complexities
074 of deep learning and reinforcement learning (Hansen et al., 2022; van Hasselt et al., 2018). Many
075 have studied that certain model classes and loss assumptions make it easier to train more performant
076 deepRL policies (Schwarzer et al., 2023; Farebrother et al., 2024), deepRL is even used to fine-tune
077 the largest networks to create strong LLMs (OpenAI, 2022). While deepRL is now being used across
078 a growing number of applications, the broad limitations of current algorithms become less clear.
079

080 **Deep Reinforcement Learning Training** The field of methods to explain and improve on the
081 limitations of combining function approximation and reinforcement learning (deepRL) is expanding.
082 Much of the early work consisted of improving value-based methods to overcome training and non-IID
083 data issues in DQN (Mnih et al., 2015) and DDPG (Lillicrap et al., 2015) and stochasticity (Schulman
084 et al., 2015; 2017). Recent adaptations improve over the initial algorithms that struggle with
085 overestimation (van Hasselt et al., 2016; Bellemare et al., 2017; Hessel et al., 2018) or improving
086 critic estimation (Fujimoto et al., 2018; ?; Lan et al., 2020; Kuznetsov et al., 2020; Chen et al.,
087 2021). The challenges in the space of learning policy are based on an unstable mix of function
088 approximation, bootstrapping, and off-policy learning, called the Deadly Triad in DRL (van Hasselt
089 et al., 2018; Achiam et al., 2019). Many works focus on parts of the triad, including: stabilizing effect
090 of target network (Zhang et al., 2021c; Chen et al., 2022; Piché et al., 2022), difficulty of experience
091 replay (Schaul et al., 2016; Kumar et al., 2020; Ostrovski et al., 2021), over-generalization (Ghassian
092 et al., 2020; Pan et al., 2021; Yang et al., 2022), representations in DRL (Zhang et al., 2021a; Li
093 et al., 2022; Tang et al., 2022), off-policy correction (Nachum et al., 2019; Zhang et al., 2020a; Lee
094 et al., 2021), interference (Cobbe et al., 2021; Raileanu and Fergus, 2021; Bengio et al., 2020) and
095 architecture choices (Ota et al., 2020).
096

097 **DeepRL Exploration Methods** On top of the above training stability improvements is the desire
098 to improve exploration by providing the agent with better signal to encourage exploration beyond
099 just the extrinsic reward. These intrinsic rewards often compute some measure of state visitation or
100 mutual information using a separate online learnt model. Count-based methods (curiosity) are early
101 examples that encourage agents to cover a larger state space (Bellemare et al., 2016; Ostrovski et al.,
102 2017; Tang et al., 2017; Burda et al., 2018a), but they do not scale well to large state spaces. Several
103 works (Pathak et al., 2017; Badia et al., 2020; Zhang et al., 2020b; 2021d) have built on curiosity
104 frameworks to improve training and learning. However, it is not known how well RL algorithms will
105 be able to learn from the additional experience.
106

107 ¹This is not a judgement on the exploration community, in fact it is with exploration community in mind this
108 work started so that their amazing research gets the best analysis it can, and great exploration algorithms are not
109 misunderstood due to exploitation problems.

108 **DeepRL Scaling Methods** Given the significant gains of using large models on many supervised
 109 learning problems, the RL community has been studying how to achieve similar gains from scale, but
 110 deep RL performance often drops when larger networks are used (Schwarzer et al., 2023; Tang and
 111 Berseth, 2024). Recent works focus on network structure changes to avoid divergence and collapse,
 112 using normalization layers (Nauman et al., 2024; Lyle et al., 2024), regularization (Nikishin et al.,
 113 2022; Schwarzer et al., 2023; Galashov et al., 2024) or optimization adjustments (Lyle et al., 2024).
 114 The goal in these prior works is to understand and improve performance when larger networks are
 115 used, but these papers are often limited to recovering prior performance, not understanding where RL
 116 in general is missing potential.

117 **Convergence and Exploration Theory** The challenges of reinforcement learning algorithms in
 118 finding optimal policies are not a new question. Many prior works have studied the theoretical
 119 implications on convergence rates (Bhatt et al., 2019; Agarwal et al., 2020; Zhang et al., 2021b;
 120 Bhandari and Russo, 2024; Montenegro et al., 2025); however, these studies are limited to linear and
 121 tabular models and can not provide a wider lens on the challenges of convergence analysis in the case
 122 of deep RL with large function approximators and beyond just policy gradient analysis. A related
 123 question is how optimization can be made more robust with regularizers such as entropy (Ahmed
 124 et al., 2019; Husain et al., 2021). A recent work in this area studies how intrinsic rewards can
 125 influence and improve policy convergence (Bolland et al., 2025). However, those results are for
 126 simple environments with limited experimental analysis.

128 3 BACKGROUND

130 In this section, a very brief review of the fundamental background of the proposed method is
 131 provided. reinforcement learning (RL) is formulated within the framework of an Markov Decision
 132 Processes (MDP) where at every time step t , the world (including the agent) exists in a state $s_t \in \mathcal{S}$,
 133 where the agent is able to perform actions $a_t \in \mathcal{A}$. The action to take is determined according to
 134 a policy $\pi(a_t|s_t)$ which results in a new state $s_{t+1} \in \mathcal{S}$ and reward $r_t = R(s_t, a_t)$ according to
 135 the transition probability function $P(s_{t+1}|s_t, a_t)$. The policy is optimized to maximize the future
 136 discounted reward $\mathbb{E}_{r_0, \dots, r_T} \left[\sum_{t=0}^T \gamma^t r_t \right]$, where T is the max time horizon, and γ is the discount
 137 factor. The formulation above generalizes to continuous states and actions. There are multiple RL
 138 algorithms that can be used to optimize the above objective. This work uses two of the most popular
 139 algorithms DQN (Mnih et al., 2015) and PPO (Schulman et al., 2017) to frame the challenges with
 140 optimizing and exploration.

142 **Policy Gradient Definitions** To discuss the difference between policy performance and estimators,
 143 it is useful to define the state visitation distribution $d_{s_0}^\pi(s)$ for a policy:

$$145 \quad d_{s_0}^\pi(s) := (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \Pr(s_t = s|s_0), \quad (1)$$

147 where $\Pr^\pi(s_t = s|s_0)$ is the probability of the policy π visiting the future state s_t when starting from
 148 s_0 . The policy gradient can be written in the form

$$150 \quad \nabla_\theta V^{\pi_\theta}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi_\theta}} \mathbb{E}_{a \sim \pi_\theta(\cdot|s)} [\nabla_\theta \log \pi_\theta(a|s) Q^{\pi_\theta}(s, a)]. \quad (2)$$

152 Then we can write out the **performance difference lemma** (Kakade and Langford, 2002) between
 153 two policies as

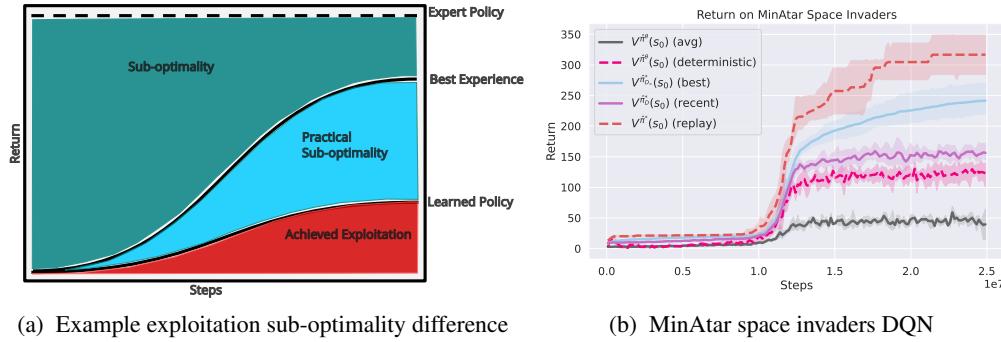
$$154 \quad V^{\pi'}(s_0) - V^\pi(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^\pi} \mathbb{E}_{a \sim \pi(\cdot|s)} [A^{\pi'}(s, a)]. \quad (3)$$

156 Where $A^{\pi'}(s, a)$ is the advantage of policy π' .

158 4 IS EXPLORATION OR EXPLOITATION THE ISSUE FOR DEEPRL?

160 Often, learning agents are concerned with the exploration vs exploitation trade-off and its effect on
 161 performance. This trade-off is a helpful lens for discussing an agent's choices at a particular state s_t ,

162 but this single state view focuses on *exploitation* as either: a type of greedy action selection, sampling
 163 from a learned policy, or utilizing a world model. However, in the age of deep learning and ever
 164 increasing model and data sizes, that lens misses the broader idea that *exploitation is making use*
 165 *of prior experience*, in that for each of the original definitions, there is an imperfect optimization
 166 process of the network parameters θ over some experience \mathcal{D} causing a difference in performance.
 167 However, it is often unclear if the difference is from data distribution issues (Ostrovski et al., 2021) or
 168 optimization (Lyle et al., 2024). To improve the understanding of the limitations of RL with function
 169 approximation (deepRL), we introduce estimators to quantify the difference between a policy’s
 170 data-generating process (exploration/data) and its ability to learn from that data (exploitation/model).



(a) Example exploitation sub-optimality difference

(b) MinAtar space invaders DQN

181 Figure 1: Left: Diagram of the practical sub-optimality = Best Experience - Learned Policy. On the
 182 right are results computing this exploitation gap as the difference between $V^{\hat{\pi}^\theta}(s_0)$ and $V^{\hat{\pi}^\theta}(s_0)$ in
 183 MinAtar SpaceInvaders.

184 In Figure 1 we show the conceptual version of studying this exploration vs exploitation problem,
 185 where the typical learning graph is now split into three sections: the performance of the average
 186 policy $\hat{\pi}^\theta$ from *achieved exploitation* (red), which measures what that policy has learned, the potential
 187 performance, indicated by the optimal policy π^* (green), and a new estimator we call the *experience*
 188 *optimal* policy $\hat{\pi}^*$ (blue). The challenge is that $\hat{\pi}^\theta$ can be arbitrarily bad compared to π^* , and normally
 189 it is not clear if the performance difference (Equation (3)) is because the agent is not exploring
 190 well ($V^{\hat{\pi}^*}(s_0) << V^{\pi^*}(s_0)$ and $V^{\hat{\pi}^\theta}(s_0) << V^{\pi^*}(s_0)$) or just not exploiting well ($V^{\hat{\pi}^\theta}(s_0) << V^{\pi^*}(s_0)$).
 191 Understanding if the policy is generating high value trajectories can be particularly useful
 192 for evaluating exploration-focused algorithms. When evaluating the performance of a method, if
 193 only $V^{\hat{\pi}^\theta}(s_0)$ is considered, the analysis can miss the fact that the method is generating higher
 194 value experiences $V^{\hat{\pi}^*}(s_0)$, but the policy is not able to exploit them into θ properly. Therefore, to
 195 better understand reinforcement learning limitations, we introduce a new estimator for $\hat{\pi}^*$ to measure
 196 practical sub-optimality, which estimates the realizable performance of the policy because the policy
 197 has generated behavior with higher value.

198
 199 **How to measure practical sub-optimality** The optimal policy is defined as the policy that selects
 200 the best action at every state (Bellman, 1954). Sub-optimality measures the difference between a
 201 policy’s value $V^\pi(s)$ with respect to an optimal policy π^* with the value function $V^{\pi^*}(s)$. However,
 202 if the policy π struggles to learn from optimal data or explore well, measuring against π^* does not
 203 tell us if cause of the performance gap is due to exploration or exploitation. Therefore, in addition to
 204 the theoretical optimal policy, we introduce the *experience optimal* policy $\hat{\pi}^*$ to represent the best
 205 policy the agent can achieve given the experience collected during training. If the environment is
 206 deterministic and the agent keeps a buffer of all prior experience D^∞ , then,

$$\hat{\pi}^* = \arg \max_{\langle a_0, \dots, a_t \rangle \in D^\infty} \sum_{t=0}^T R(a_t, s_t) \quad (4)$$

210 This policy can also be understood as deterministically replaying the highest value sequence of actions
 211 $\langle a_0, \dots, a_t \rangle$ in the experience memory. This policy can be used to compute a new difference as
 212 the *practical sub-optimality* of the form $V^{\hat{\pi}^*}(s_0) - V^{\hat{\pi}^\theta}(s_0)$.

213
 214 Most empirical works use the performance of the learned policy $V^{\hat{\pi}^\theta}(s_0)$ to comparing across
 215 algorithms to understand which algorithm performs the best on a set of tasks. While this model works

216 well and enables the community to make steps forward in terms of performance, the learned policy
 217 does not provide information on why one algorithm is better than another. Consider the example
 218 where there are two algorithms A and B, algorithm A generates higher-value experience, but is
 219 not able to exploit them, and B does not generate higher-value experience ($V^{\hat{\pi}^A}(s_0) > V^{\hat{\pi}^B}(s_0)$),
 220 similar to its policy, but has been able to exploit that data well. Both A and B can have the same
 221 value $V^{\hat{\pi}^A}(s_0) = V^{\hat{\pi}^B}(s_0)$. Is A or B the worse RL algorithm? In this work, we propose that A is
 222 the worse algorithm, as it can not properly exploit its generated data. If the experience were equal,
 223 algorithm B would see the same experience as algorithm A, then B would result in better performance
 224 and have a smaller practical sub-optimality.

225 **4.1 SOFTER EXPERT ESTIMATORS**

226 While Equation (4) is a clear definition for computing an estimate of an optimal policy where, for
 227 example, the sequence of actions a_0, \dots, a_t can be replayed in the environment to reproduce $V^{\hat{\pi}^*}(s_0)$,
 228 however, this restrictive definition is subject to high variance and it is less useful for non-deterministic
 229 environments. Therefore, two additional methods are introduced to estimate the *potential* for the
 230 policy to learn from its experience to indicate that not only is there one high value trajectory, but
 231 many higher value trajectories.

232 For the analysis, two versions of $V^{\hat{\pi}^*}(s_0)$ are introduced to approximate the performance on the
 233 *best experience*. For stochastic environments, the first version is the best policy from the collected
 234 experience as the top $k\%$ of experience generated by the agent $V^{\hat{\pi}^*}_{D_\infty}(s_0)$, where D_∞ is all the
 235 experience collected by the agent. The second is the *recent* top $k\%$ of data $V^{\hat{\pi}^*}_D(s_0)$ in the replay
 236 buffer D . To estimate the value function $V(s_0)$ from data, the sum of rewards the agent achieves in
 237 the environment, or the return, is used. The value estimate is computed using the following function:

238

$$V^{\hat{\pi}^*}(s_0) = \frac{1}{n} \sum_{\tau \in D_{0:n}} \sum_{a_t, s_t \in \tau} R(a_t, s_t) \quad (5)$$

239

240 Where m is equal to $k \times |D|$ and D is sorted with the highest value trajectory starting at index 0. Our
 241 sensitivity analysis in appendix A.1 finds that a value of 5% for k is a good balance over using a
 242 single trajectory.

243 The best *ever* and *recent* estimators both have their own reasoning. The best *ever* experience
 244 $V^{\hat{\pi}^*}_{D_\infty}(s_0)$ is a measure of how good the agent is at exploiting the best experience it ever generated.
 245 This notion is rather strong and difficult for any *deep* RL algorithm to match, as the agent may not
 246 currently have access to that experience for optimization, but it is a notion of lifetime achievement
 247 and represents a possible high-value policy and trajectory the agent could generate again. The *recent*
 248 best experience $V^{\hat{\pi}^*}_D(s_0)$ is a measure of the agent's ability to learn to match the best of the recent
 249 experience it has access to and can use for exploitation. The *recent* notion can be more fair as it is
 250 possible for an agent to train on that experience to improve its performance actively, but as will be
 251 shown in Section 5.1, RL algorithms also struggle to match this performance.

252 **4.2 COMPARING RL ALGORITHMS**

253 The above estimators can be used to understand the practical sub-optimality of an algorithm on an
 254 environment. That information is useful, but it does not provide information about how an algorithm
 255 performs holistically. For example, we may have the question, *how much does an algorithm suffer*
 256 *from exploitation limitations* or *which algorithms are the best at exploiting their generated data*? The
 257 easier we can answer the above questions the easier one can focus on making improvements to their
 258 algorithm. This information is paramount for the community to understand better where there is a
 259 larger benefit from time spent on research and development. To compute this information *across*
 260 *environments* \mathcal{T} , the estimator can be aggregated and normalized across environments.

261 To compute this aggregate estimator the upper bound from $V^{\hat{\pi}^*}(s_0)$ can be used in place of the
 262 *optimality gap* from *rliable* (Agarwal et al., 2021). The gap computed using the proposed metric is
 263 relative to the experience the agent has generated, which can provide more rich signal than comparing
 264 the performance to some current notion of a human level agent. For example, in practice when the
 265 optimal performance $V^{\pi^*}(s_0)$ is not known a heuristic is used to compute the optimal return for the

270 expert by taking the max possible reward r_{\max} and multiplying this by the inverse of the discount
 271 factor $V^{\pi^*}(s_0) \approx r_{\max} * \frac{1}{1-\gamma}$, which can be far above the optimal policy's performance. To provide
 272 a more grounded upper bound on performance by using achieved experience we can instead use the
 273 practical sub-optimality:
 274

$$275 \quad \frac{1}{|\mathcal{T}|} \sum_{m \in \mathcal{T}} (V_m^{\hat{\pi}^*}(s_0) - V_m^{\pi^0}(s_0)) / (V_m^{\hat{\pi}^*}(s_0) - V_m^{\pi^0}(s_0)). \quad (6)$$

277 Where m is some task or environment. This metric is used in Section 5.4 to compare the aggregate
 278 weaknesses across RL algorithms.
 279

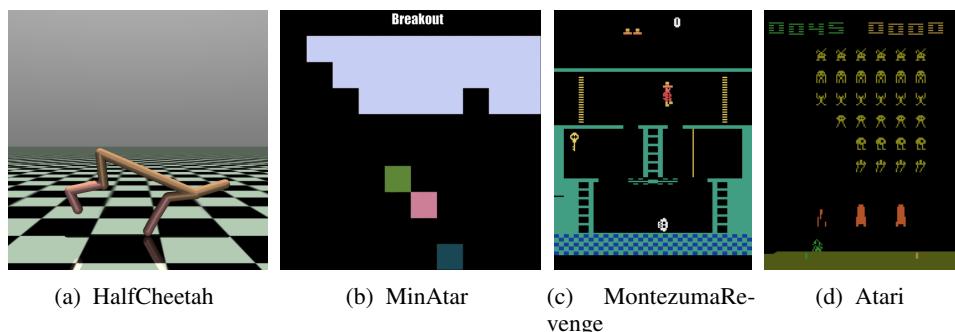
280 **Implementation Details** It is difficult to compute a general practical sub-optimality for any type
 281 of RL algorithm. On-policy algorithms do not keep around histories of recent data for evaluation,
 282 and off-policy algorithms don't track returns as they often use Q-functions for learning directly from
 283 rewards. To facilitate the tracking of these statistics, we develop a wrapper that can be introduced
 284 into the RL algorithm code to track every reward, return, trajectory, and end of episode. This wrapper
 285 is also used to compute the *best* $V^{\hat{\pi}^*}_{\infty}(s_0)$ and the *recent* $V^{\hat{\pi}^*}_D(s_0)$ estimates during learning.
 286

287 5 EXPERIMENTAL RESULTS

289 In this section, the ability of practical sub-optimality for diagnosing learning issues is evaluated.
 290 This usefulness is determined in multiple ways: (1, Section 5.1) As a metric to determine the
 291 limitations of current RL algorithms on specific environments, (2, Section 5.2) how recent methods for
 292 exploration or scaling increase or reduce the practical sub-optimality, and (3) The overall limitations
 293 of RL algorithms and if more exploration or exploitation is needed to improve performance over
 294 difficult/unsolved tasks wrt to scaling in Section 5.3 or in general in Section 5.4.
 295

296 Four popular RL algorithms are used for evaluation. First PPO (Schulman et al., 2017) is a common
 297 on-policy algorithm used for various problems, known for its ease of implementation and use. The
 298 other algorithm is DQN (Mnih et al., 2015), which is a popular RL algorithm for environments
 299 with discrete actions. PQN (Gallici et al., 2025), which is an adapted version of DQN to learn with
 300 increased parallelization. Last is SAC (Haarnoja et al., 2018), which is based on maximum entropy
 301 optimization, which can be more robust at finding optimal policies. These algorithms cover the most
 302 common use cases for RL.

303 A selection of evaluation environments is included to cover a diverse range of the RL landscape.
 304 This diverse selection is important to understand better the practical sub-optimality there needs to
 305 be a difference between the generated data and the final policy's performance. Therefore, we focus
 306 on including experimental results on environments that are *difficult*. These difficult environments
 307 include using MinAtar (Young and Tian, 2019) and Atari (Bellemare et al., 2015; Aitchison et al.,
 308 2022) **SpaceInvaders**, **Asterix**, **LunarLander**, **Montezumas Revenge**, **Craftax**, and the **Atari-Five** (Aitchison et al., 2022). We also include **Walker2d**, **HalfCheetah**, **Humanoid** as continuous
 309 action environments that are easier, and as will be shown, have little practical sub-optimality.
 310



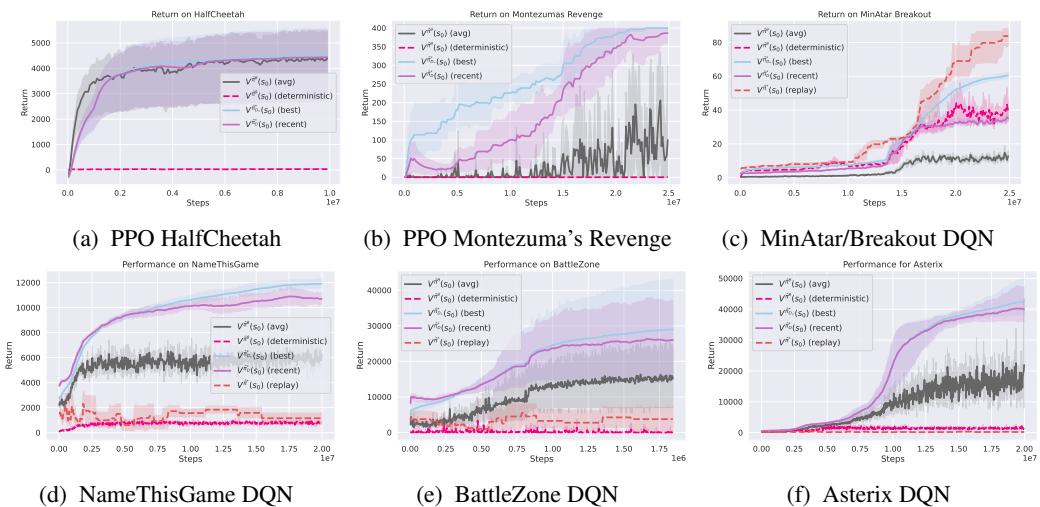
311 Figure 2: Evaluation environments include examples from Mujoco, MinAtar, and Atari.
 312

313 To measure performance, we will look at the practical sub-optimality discussed in the previous
 314 section. In addition, the average return during learning is used to verify that the agents are learning,
 315
 316

324 ensuring that the reason for the lack of practical sub-optimality is not due to the agent’s inability to
325 learn. All experiments are conducted over 4 random seeds.
326

327 5.1 PER TASK SUB-OPTIMALITY 328

329 In this section, we can study which tasks express types of this practical sub-optimality, indicating
330 a need for improvements in optimization over exploration. The first question (1) is whether tasks
331 exhibit this type of gap, or if all tasks can be solved, or if policies can properly exploit the experience.
332 In Figure 3a, we can see that for **HalfCheetah** there is little difference between $V^{\hat{\pi}_{D^\infty}^*}(s_0)$, $V^{\hat{\pi}_D^*}(s_0)$,
333 and $V^{\hat{\pi}^\theta}(s_0)$, even though a high return is achieved; however, it is well known that **HalfCheetah** is
334 no longer a difficult task for common RL algorithms. Instead if we look at the **Humanoid** task we
335 can see that even SAC has a gap in performance Figure 8c. We can also see that the deterministic $\hat{\pi}^*$
336 poorly estimates the best performance in this non-deterministic environment, and instead the softer
337 versions work well². Examining tasks that are well-known to be difficult exploration problems reveals
338 a different story. After training PPO on **Montezuma’s Revenge** (Figure 3b), there is a surprisingly
339 large gap where $V^{\hat{\pi}^\theta}(s_0)$ is noisy and near zero, yet the policy does generate many high-value
340 trajectories, indicated by both a large difference between $V^{\hat{\pi}_{D^\infty}^*}(s_0)$ and $V^{\hat{\pi}_D^*}(s_0)$, but PPO is not
341 able to learn from these. These higher value trajectories are not rare. The $V^{\hat{\pi}_D^*}(s_0)$ line indicates that,
342 aside from a few spikes, the policy is far from the best 5% of experiences. We find similar results for
343 many other environments and algorithms shown in Figure 3 and for PQN in Figure 11f.



351 Figure 3: Comparisons of different measures for global optimality and the learned policy π^θ . For
352 environments with more complex exploration, such as Montezuma’s Revenge, Breakout and SpaceIn-
353 vaders, there is a large exploitation gap between $V^{\hat{\pi}_{D^\infty}^*}(s_0)$ and $V^{\hat{\pi}^\theta}(s_0)$.
354

355 The practical sub-optimality may be an overestimate of true policy performance. To address this
356 issue, we perform a pure analysis with a set of completely deterministic environments in Figure 1b,
357 Figure 3c, Figure 8, Figure 9, and Figure 10. Because these environments are *deterministic*, it is
358 possible to compute a true $V^{\hat{\pi}^*}(s_0)$ which is equal to the best single trajectory ever discovered. This
359 best single trajectory is visualized as $V^{\hat{\pi}^*}(s_0)$, where the policy for $V^{\hat{\pi}^*}(s_0)$ is a_0, \dots, a_t , which
360 is replayed to visualize the score and indicate that to reach this performance, the policy θ needs to
361 exploit this data well to reach that score. As can be seen, $V^{\hat{\pi}^*}(s_0) > V^{\hat{\pi}_{D^\infty}^*}(s_0) > V^{\hat{\pi}^\theta}(s_0)$, which
362 indicates that $V^{\hat{\pi}_{D^\infty}^*}(s_0)$ may be slightly lower than the best performance, yet these trained policies
363 struggle to produce behavior close to $V^{\hat{\pi}_{D^\infty}^*}(s_0)$, indicating that often performance is limited by a
364 lack of good exploitation.

365 Last, to better understand these estimators for stochastic and deterministic settings, it is important to
366 compare deterministic vs stochastic policy performance; in this case, the stochasticity added to the
367 policy is causing a larger difference when the policy has learned a high-value behaviour. For PPO
368

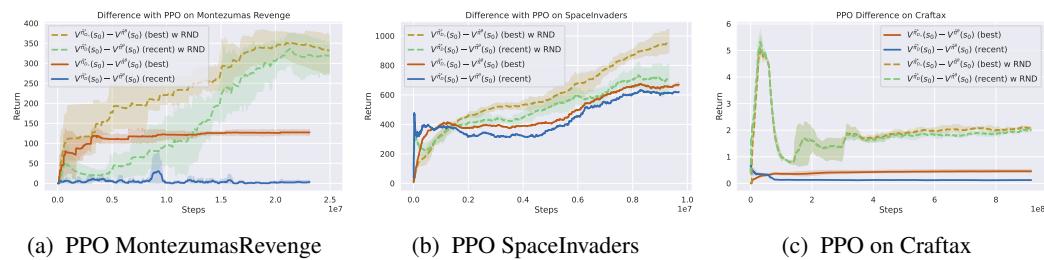
369 ²In Figure 8c we instead use a deterministic environment to make the evaluation clearer

378 on continuous environments, this is equivalent to taking the mean of the policy, and for a discrete
379 policy, the $\arg \max_a Q(s_t, a)$ is used. In Figure 3a the deterministic policy does poorly, this is likely
380 because the agent quickly reaches states that are out of distribution, causing the agent to fail. Similar
381 is true for **Montezuma’s Revenge** with PPO. However, for MinAtar/Breakout and SpaceInvaders,
382 the ϵ -greedy exploration of DQN knocks the policy off high-value paths, and the deterministic policy
383 does well, even approaching $V^{\hat{\pi}_{D^\infty}^*}(s_0)$ for MinAtar/Breakout for PPO and PQN ???. We also observe
384 in Figure 1b and in many other results that the difference does not decrease with additional training,
385 indicating that the gap is not due to needing more experience or updates, but rather to more significant
386 changes to improve exploitation and optimization in deep learning.

388 5.2 SUB-OPTIMALITY WHEN ADDING EXPLORATION

390 This section asks the question *does adding exploration objectives increase the difference and therefore
391 aggravate the exploitation challenges*. This is analyzed by adding common exploration bonuses to the
392 RL algorithms, RND (Burda et al., 2018b). RND adds an additional reward to the extrinsic reward,
393 encouraging the agent to explore a wider distribution of states, thereby enabling it to discover new,
394 higher-reward states. These higher-reward states should yield larger returns, and if the algorithm is
395 not effectively exploiting these rewards, the difference will be greater.

396 Figure 7 provides the results of the analysis of practical sub-optimality estimating Equation (3)
397 compared with and without using RND. As we can see, the addition of RND improves the returns for
398 DQN and PPO . However, the *difference* is also increased, indicating that as exploration is increased,
399 so too are the issues of exploitation of experience in deep RL. This is an undesirable situation; as the
400 agent improves its exploration, it actually learns less from the experience overall due to optimization
401 issues.

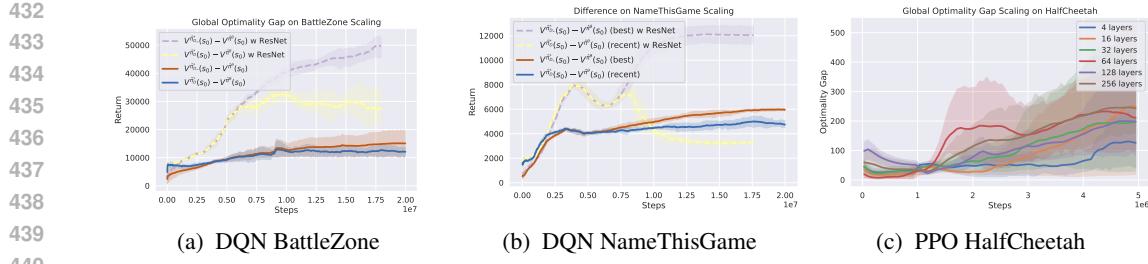


402 Figure 4: Comparisons of practical sub-optimality for best and recent performance compared to the
403 average using Equation (3) with and without adding **RND**. These results show that with the addition
404 of **RND**, the difference increases, indicating that adding exploration objectives is a double-edged
405 sword, better exploration but more difficult exploitation.

415 5.3 SUB-OPTIMALITY WHEN SCALING NETWORKS

416 Many recent reinforcement learning works are discovering improved algorithms’ performance based
417 on scaling networks (Schwarzer et al., 2023; Lyle et al., 2023; Obando-Ceron et al., 2024; Nauman
418 et al., 2024; Tang and Berseth, 2024). Are the challenges from scaling just optimization issues,
419 or are these models also struggling to scale because the types of narrow distributions produced by
420 larger models limit exploration? Two experiments were performed to investigate this question with
421 networks of different sizes. First across Atari environments **BattleZone** and **NameThisGame** from
422 the Atari-5 group (Aitchison et al., 2022) that is representative of the Full Atari Benchmark, and then
423 across **HalfCheetah**. For the Atari environments, a comparison is made between training a policy that
424 uses the normal C-51 type network with a 3-layer CNN and using a ResNet18. For the **HalfCheetah**
425 environment, different numbers of layers are used between 4 and 256.

426 In Figure 5, the results of the described experiments are given. Interestingly, the results for the Atari
427 environments show that the difference is much larger when the policy network is a ResNet-18 instead
428 of a 3-layer CNN. This indicates two items: one, the policy is generating higher value trajectories,
429 but it is not adequately learning from them, and two, the gap for $V^{\hat{\pi}_{D^\infty}^*}(s_0)$ and $V^{\hat{\pi}_D^*}(s_0)$ is very
430 close, indicating that the policy is struggling to match these higher value experiences even when they
431 are in the current replay buffer. With **HalfCheetah**, the issue of scale is studied by training a policy



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 5: Comparisons of practical sub-optimality for models with different-sized networks. On the left and middle, it is shown that using a ResNet-18 instead of the common 3-layer CNN for BattleZone increased the difference. On the right, the difference for **HalfCheetah** increases with the number of layers, indicating increasing exploitation issues.

over networks of 6 different sizes. In Figure 5c, the $V^{\hat{\pi}^*_{D_\infty}}(s_0) - V^{\hat{\pi}^*}(s_0)$ is shown, and there is a trend that as the number of layers increases, the practical sub-optimality increases. This is interesting because in Figure 3a the performance with one layer is given and there is no gap. The introduction of additional layers quickly introduces exploitation issues, keeping the policy from learning the same performance in Figure 3a. This collective information suggests that scaling networks does not likely cause exploration issues, but rather reinforces the commonly understood cause of exploitation (optimization/model) issues with scale.

5.4 ALGORITHM SUB-OPTIMALITY

Is algorithm progress limited by weaknesses in exploration or exploitation? This question can be estimated by using the practical sub-optimality to compare aggregate analysis across tasks and RL algorithms, as described in Section 4.2. Starting with aggregate analysis across the *AtariFive* environments, we can see in Figure 6a that DQN and PPO are only able to achieve a little over 30% of the performance of their best experience (lower is better). This high value indicates that both of these algorithms struggle to produce the best possible results they have experienced. In this case, $V^{\hat{\pi}^*_{D_\infty}}(s_0)$ (Figure 6a) is similar to $V^{\hat{\pi}^*_{D}}(s_0)$ (Figure 6b), indicating that the RL algorithms are experiencing high returns regularly, with a value of 0.68, they are not sufficiently capturing.

Interestingly and conversely, the *rliable* optimality gap indicates that DQN is better than PPO in Figure 6c, because DQN does achieve higher average policy performance, but the analysis from comparing to $V^{\hat{\pi}^*_{D}}(s_0)$, in Figure 6b shows us that even though DQN performs better than PPO, DQN is still generating a lot of high-value experience that it is not able to exploit. Conversely, because PPO is performing worse according to *rliable*, but has a better $V^{\hat{\pi}^*_{D}}(s_0) - V^{\hat{\pi}^*}(s_0)$, improved exploration would improve PPO more than it would DQN. Overall, these results suggest that both algorithms struggle to extract the most from their experience, and that more information can be used to compare algorithms beyond *rliable*.

6 DISCUSSION

This work has introduced a method to study the limitations of deep RL algorithms in the space of exploration and optimization challenges. An estimator is introduced to support this position. The estimator is used to show that common RL algorithms struggle to exploit their experience and that adding exploration bonuses and scaling networks exacerbates these issues. This estimator can be used to assist users in understanding if poor performance in an environment is the result of limited exploration (data problem) or more stable optimization to make progress (model problem). Because RL agents collect vastly different data during training, it can be difficult to compare performance across algorithms. This estimator adjusts the comparison to show how well the algorithm did compared to the distribution of collected data (experience). Because the estimator comparison over generated experience measures the sub-optimality relative to the agent’s generated experience, it can be better suited to task-independent comparisons. In the future, this metric can be used to evaluate broadly across produced algorithms to assist researchers and practitioners in their analysis.

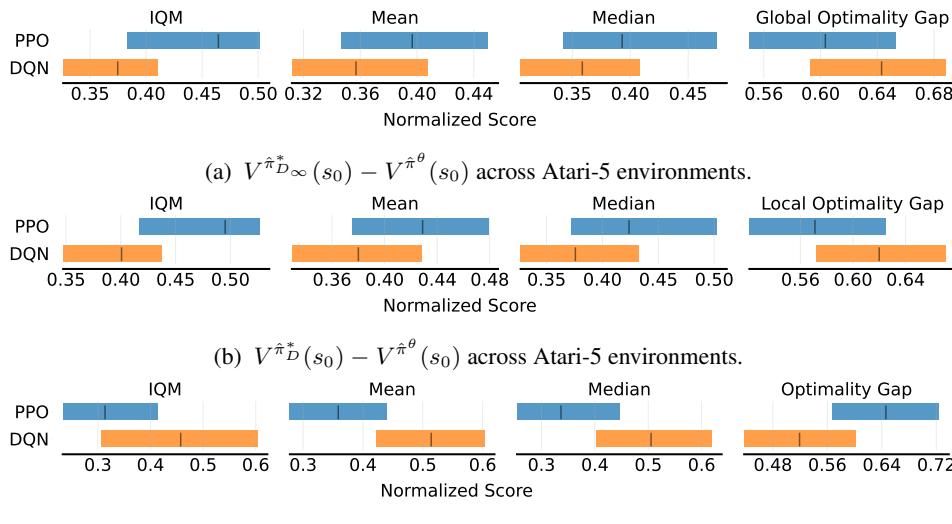


Figure 6: *rliable* plots for **PPO** and **DQN** over AtariFive environments. This measure gives an aggregate view for each algorithm as each sample is normalized using the practical sub-optimality from each run’s generated data.

Reproducibility Statement. We provide implementation details in the main paper. However the overall method is easier to reimplement in the cleanrl codebase. We plan to openly release our code upon the publication of our work.

REFERENCES

- J. Achiam, E. Knight, and P. Abbeel. Towards characterizing divergence in deep q-learning. *arXiv preprint*, arXiv:1903.08894, 2019. 2
- Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation with policy gradient methods in markov decision processes. In Jacob Abernethy and Shivani Agarwal, editors, *Proceedings of Thirty Third Conference on Learning Theory*, volume 125 of *Proceedings of Machine Learning Research*, pages 64–66. PMLR, 2020. 3
- Rishabh Agarwal, Max Schwarzer, P S Castro, Aaron C Courville, and Marc G Bellemare. Deep reinforcement learning at the edge of the statistical precipice. *Neural Inf Process Syst*, 34:29304–29320, August 2021. 5
- Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the impact of entropy on policy optimization. In *International conference on machine learning*, pages 151–160. PMLR, 2019. 3
- Matthew Aitchison, Penny Sweetser, and Marcus Hutter. Atari-5: Distilling the arcade learning environment down to five games. *ICML*, abs/2210.02019:421–438, October 2022. 6, 8
- Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andrew Bolt, and Charles Blundell. Never give up: Learning directed exploration strategies, 2020. 2
- Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Unifying count-based exploration and intrinsic motivation. In *Advances in Neural Information Processing Systems*, 2016. 2
- Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An evaluation platform for general agents. In *Proceedings of the 24th International Conference on Artificial Intelligence*, IJCAI’15, pages 4148–4152. AAAI Press, 2015. ISBN 978-1-57735-738-4. URL <http://dl.acm.org/citation.cfm?id=2832747.2832830>. 6

-
- 540 Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
541 learning. In *ICML*, 2017. [2](#)
- 542
- 543 Richard Bellman. The theory of dynamic programming. *Bulletin of the American Mathematical
544 Society*, 60(6):503–515, 1954. [4](#)
- 545
- 546 Emmanuel Bengio, Joelle Pineau, and Doina Precup. Interference and generalization in temporal
547 difference learning. In *ICML*, 2020. [2](#)
- 548
- 549 Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. *Oper.
550 Res.*, 72(5):1906–1927, September 2024. [3](#)
- 551
- 552 Sujay Bhatt, Alec Koppel, and Vikram Krishnamurthy. Policy gradient using weak derivatives for
553 reinforcement learning. In *2019 IEEE 58th Conference on Decision and Control (CDC)*, pages
5531–5537. IEEE, December 2019. [3](#)
- 554
- 555 Adrien Bolland, Gaspard Lambrechts, and Damien Ernst. Behind the myth of exploration in policy
556 gradients. *arXiv [cs.LG]*, August 2025. [3](#)
- 557
- 558 Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
559 distillation, 2018a. [2](#)
- 560
- 561 Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
562 distillation. *ICLR*, 2018b. [8](#)
- 563
- 564 Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double q-learning:
565 Learning fast without a model. In *ICLR*, 2021. [2](#)
- 566
- 567 Zaiwei Chen, John-Paul Clarke, and Siva Theja Maguluri. Target network and truncation overcome
568 the deadly triad in q-learning. *arXiv preprint*, arXiv:2203.02628, 2022. [2](#)
- 569
- 570 Karl Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. In *ICML*, 2021.
571 [2](#)
- 572
- 573 Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
574 mood, and Richard S Sutton. Loss of plasticity in deep continual learning. *Nature*, 632(8026):
575 768–774, August 2024. [1](#)
- 576
- 577 Jesse Farbrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex
578 Ipan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal.
579 Stop regressing: Training value functions via classification for scalable deep RL. *arXiv [cs.LG]*,
580 March 2024. [2](#)
- 581
- 582 S. Fujimoto, H. v. Hoof, and D. Meger. Addressing function approximation error in actor-critic
583 methods. In *ICML*, 2018. [2](#)
- 584
- 585 Alexandre Galashov, Michalis K Titsias, Andr’as Gyorgy, Clare Lyle, Razvan Pascanu, Y W Teh,
586 and M Sahani. Non-stationary learning of neural networks with automatic soft parameter reset.
587 *Neural Inf Process Syst*, abs/2411.04034:83197–83234, November 2024. [3](#)
- 588
- 589 Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
590 Foerster, and Mario Martin. Simplifying deep temporal difference learning. In *The Thirteenth
591 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=7IzeL0kflu>. [6, 16](#)
- 592
- 593 Sina Ghiassian, Banafsheh Rafiee, Yat Long Lo, and Adam White. Improving performance in
594 reinforcement learning by breaking generalization in neural networks. In *AAMAS*, 2020. [2](#)
- 595
- 596 T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
597 reinforcement learning with a stochastic actor. In *ICML*, 2018. [6, 15](#)
- 598
- 599 Nicklas Hansen, Xiaolong Wang, and H Su. Temporal difference learning for model predictive
600 control. *ICML*, 162:8387–8406, March 2022. [2](#)

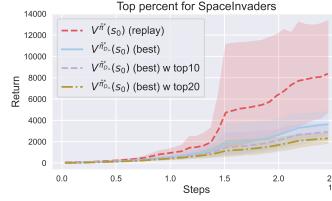
-
- 594 Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
595 Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
596 improvements in deep reinforcement learning. In *AAAI*, 2018. 2
- 597
- 598 Hisham Husain, Kamil Ciosek, and Ryota Tomioka. Regularized policies are reward robust. In
599 *International Conference on Artificial Intelligence and Statistics*, pages 64–72. PMLR, 2021. 3
- 600
- 601 Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
602 *Proceedings of the nineteenth international conference on machine learning*, pages 267–274, 2002.
603 3
- 604
- 605 Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforcement
606 learning via distribution correction. In *NeurIPS*, 2020. 2
- 607
- 608 Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry P. Vetrov. Controlling overesti-
609 mation bias with truncated mixture of continuous distributional quantile critics. In *ICML*, 2020.
610 2
- 611
- 612 Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling the
613 estimation bias of q-learning. In *ICLR*, 2020. 2
- 614
- 615 Jongmin Lee, Wonseok Jeon, Byung-Jun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
616 policy optimization via stationary distribution correction estimation. In *ICML*, 2021. 2
- 617
- 618 Boyan Li, Hongyao Tang, Yan Zheng, Jianye Hao, Pengyi Li, Zhen Wang, Zhaopeng Meng, and
619 Li Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action
620 representation. In *ICLR*, 2022. 2
- 621
- 622 T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
623 control with deep reinforcement learning. In *ICLR*, 2015. 2
- 624
- 625 Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Ávila Pires, Razvan Pascanu, and Will Dabney.
626 Understanding plasticity in neural networks. In *ICML*, 2023. 1, 8
- 627
- 628 Clare Lyle, Zeyu Zheng, Khimya Khetarpal, James Martens, H V Hasselt, Razvan Pascanu, and Will
629 Dabney. Normalization and effective learning rates in reinforcement learning. *Neural Inf Process
630 Syst*, abs/2407.01800:106440–106473, July 2024. 3, 4
- 631
- 632 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
633 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
634 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015. 2, 3, 6
- 635
- 636 Alessandro Montenegro, Leonardo Cesani, Marco Mussi, Matteo Papini, and Alberto Maria Metelli.
637 Learning deterministic policies with policy gradients in constrained markov decision processes.
638 *arXiv [cs.LG]*, June 2025. 3
- 639
- 640 Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
641 Policy gradient from arbitrary experience. *arXiv preprint*, arXiv:1912.02074, 2019. 2
- 642
- 643 Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Bigger,
644 regularized, optimistic: scaling for compute and sample-efficient continuous control. *arXiv preprint
645 arXiv:2405.16158*, 2024. 3, 8
- 646
- 647 E. Nikishin, M. Schwarzer, P. D’Oro, P. Bacon, and A. C. Courville. The primacy bias in deep
648 reinforcement learning. In *ICML*, Proceedings of Machine Learning Research, 2022. 1, 3
- 649
- 650 Johan Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob N Foerster,
651 G Dziugaite, D Precup, and Pablo Samuel Castro. Mixtures of experts unlock parameter scaling
652 for deep RL. *ICML*, abs/2402.08609, February 2024. 8
- 653
- 654 OpenAI. Chatgpt: Optimizing language models for dialogue, 2022. URL <https://openai.com/blog/chatgpt/>. 2

-
- 648 OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak,
649 Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz,
650 Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
651 Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,
652 Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning.
653 *arXiv [cs.LG]*, December 2019. [2](#)
- 654 Georg Ostrovski, Marc G. Bellemare, Aaron van den Oord, and Remi Munos. Count-based exploration
655 with neural density models, 2017. [2](#)
- 656 Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
657 reinforcement learning. In *NeurIPS*, 2021. [2](#), [4](#)
- 658 Kei Ota, Tomoaki Oiki, Devesh K. Jha, Toshisada Mariyama, and Daniel Nikovski. Can increasing
659 input dimensionality improve deep reinforcement learning? In *ICML*, 2020. [2](#)
- 660 Yangchen Pan, Kirby Banman, and Martha White. Fuzzy tiling activations: A simple approach to
661 learning sparse representations online. In *ICLR*, 2021. [2](#)
- 662 Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
663 self-supervised prediction, 2017. [2](#)
- 664 Alexandre Piché, Valentin Thomas, Joseph Marino, Rafael Pardinas, Gian Maria Marconi, Christopher
665 Pal, and Mohammad Emtiyaz Khan. Bridging the gap between target networks and functional
666 regularization. *Transactions on Machine Learning Research*, 2022. [2](#)
- 667 Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization in reinforcement
668 learning. In *ICML*, 2021. [2](#)
- 669 Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
670 *ICLR*, 2016. [2](#)
- 671 J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust region policy optimization. In
672 *International Conference on Machine Learning (ICML)*, 2015. [2](#)
- 673 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
674 optimization algorithms. *arXiv preprint*, arXiv:1707.06347, 2017. [2](#), [3](#), [6](#)
- 675 Max Schwarzer, Johan Samir Obando-Ceron, Aaron C. Courville, Marc G. Bellemare, Rishabh
676 Agarwal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level
677 efficiency. In *ICML*, 2023. [2](#), [3](#), [8](#)
- 678 H. Tang, Z. Meng, J. Hao, C. Chen, D. Graves, D. Li, C. Yu, H. Mao, W. Liu, Y. Yang, W. Tao, and
679 L. Wang. What about inputting policy in value function: Policy representation and policy-extended
680 value function approximator. In *AAAI*, 2022. [2](#)
- 681 Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
682 Filip De Turck, and Pieter Abbeel. #exploration: A study of count-based exploration for deep
683 reinforcement learning, 2017. [2](#)
- 684 Hongyao Tang and Glen Berseth. Improving deep reinforcement learning by reducing the chain
685 effect of value and policy churn. In *The Thirty-eighth Annual Conference on Neural Information
686 Processing Systems*, 2024. URL <https://openreview.net/forum?id=cQoAgPBArC>.
687 [3](#), [8](#)
- 688 Gerald Tesauro et al. Temporal difference learning and td-gammon. *Communications of the ACM*, 38
689 (3):58–68, 1995. [2](#)
- 690 Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
691 learning. In *AAAI*, 2016. [2](#)
- 692 Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Modayil.
693 Deep reinforcement learning and the deadly triad. *arXiv preprint*, arXiv:1812.02648, 2018. [2](#)

-
- 702 Ge Yang, Anurag Ajay, and Pulkit Agrawal. Overcoming the spectral bias of neural value approxima-
703 tion. In *ICLR*, 2022. [2](#)
- 704
- 705 Kenny Young and Tian Tian. MinAtar: An atari-inspired testbed for thorough and reproducible
706 reinforcement learning experiments. *arXiv [cs.LG]*, March 2019. [6](#)
- 707
- 708 Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
709 invariant representations for reinforcement learning without reconstruction. In *ICLR*, 2021a. [2](#)
- 710
- 711 Junzi Zhang, Jongho Kim, Brendan O’Donoghue, and Stephen Boyd. Sample efficient reinforcement
712 learning with REINFORCE. *Proc. Conf. AAAI Artif. Intell.*, 35(12):10887–10895, May 2021b. [3](#)
- 713
- 714 Ruiyi Zhang, Bo Dai, Lihong Li, and Dale Schuurmans. Gendice: Generalized offline estimation of
715 stationary values. In *ICML*, 2020a. [2](#)
- 716
- 717 Shangtong Zhang, Hengshuai Yao, and Shimon Whiteson. Breaking the deadly triad with a target
718 network. In *ICML*, 2021c. [2](#)
- 719
- 720 Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and Yuan-
721 dong Tian. Bebold: Exploration beyond the boundary of explored regions. *arXiv preprint
arXiv:2012.08621*, 2020b. [2](#)
- 722
- 723 Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and Yuandong
724 Tian. Noveld: A simple yet effective exploration criterion. *Advances in Neural Information
Processing Systems*, 34, 2021d. [2](#)
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755

756 A ABLATIONS

758 A.1 TOP % SENSITIVITY ANALYSIS



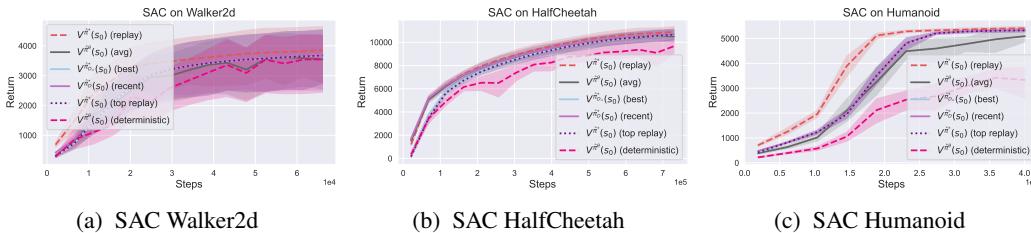
768 (a) PPO SpaceInvaders

770 Figure 7: Comparisons of practical sub-optimality over different settings for the using the top x % to
771 to compute $V^{\hat{\pi}^*}(s_0)$ in comparision to the best replay trajectory. We can see that the $V^{\hat{\pi}^*}(s_0)$ which is
772 approximated by replaying the highest value trajectory ever is noisy and using the top 5% of recent
773 data produces a fair trade-off in estimation but is closer to the expert behavior.

775 B SAC

777 This section includes results on SAC (Haarnoja et al., 2018).

779 B.1 RESULTS ON CONTINUOUS CONTROL ENVIRONMENTS



789 (a) SAC Walker2d

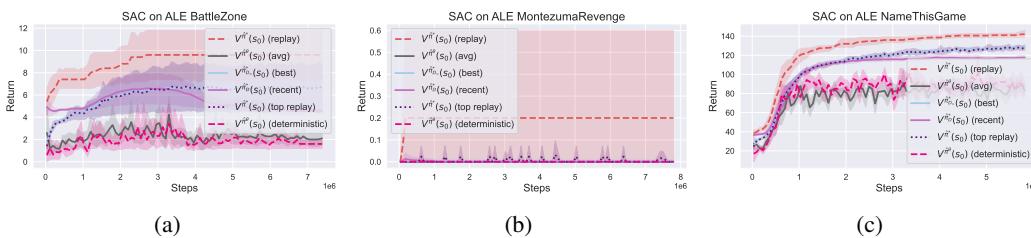
789 (b) SAC HalfCheetah

789 (c) SAC Humanoid

791 Figure 8: Comparisons of practical sub-optimality over SAC for continuous control environments
792 with 10 seeds.

793 As we see in these results, SAC has a smaller gap between the generated data. However, the
794 gap is increased for the humanoid environment, which is the environment with the largest action
795 dimensionality. As SAC is designed to be better at optimization and finding an optimal policy, the
796 results here correlate with our metric in that the gap is smaller for this RL algorithm that is designed
797 to learn from data better.

799 B.2 DISCRETE CONTROL ENVIRONMENTS



808 (a)

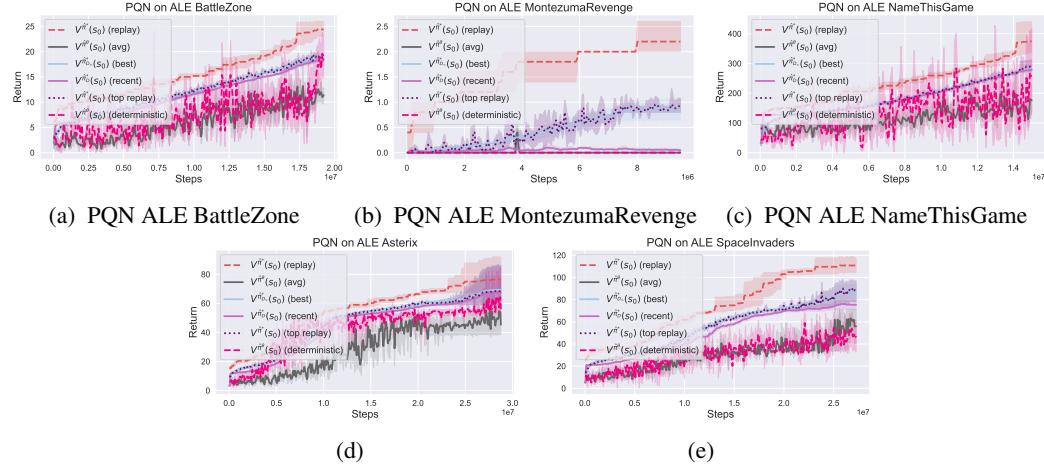
808 (b)

808 (c)

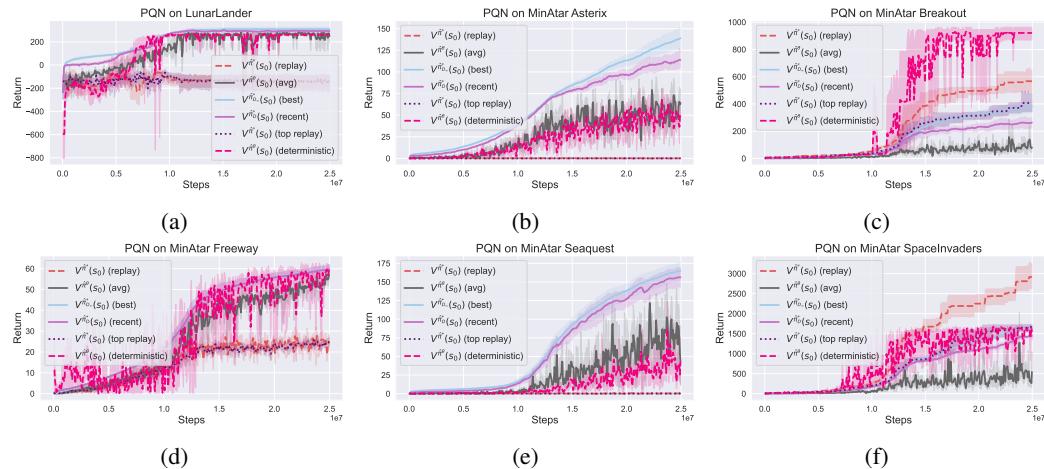
809 Figure 9: Comparisons of practical sub-optimality over SAC for discrete control environments in
810 ALE with 10 seeds.

810 C PQN

811
812 This section includes results on PQN (Gallici et al., 2025).
813



814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829 Figure 10: Comparisons of practical sub-optimality over PQN for discrete control environments in
830 ALE with 10 seeds.
831



832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848 Figure 11: Comparisons of practical sub-optimality over PQN for discrete control environments with
10 seeds.
849

850 In these experiments we have added $V^{\hat{\pi}^*}(s_0)$ (top replay) which replays a collection of the trajectories
851 from the $V^{\hat{\pi}^*}(s_0)$ distribution. We show these replays to indicate that for deterministic environments
852 not only is the average policy far from the best trajectory but it is also far from the many possible trajectories
853 that achieve higher value than the average (avg) policy. We see this is true for Atari environments and
854 for some of the MinAtar environment that are deterministic (Breakout and SpaceInvaders).
855
856
857
858
859
860
861
862
863