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Abstract001

Text embedding models are essential for vari-002
ous natural language processing tasks, enabling003
the effective encoding of semantic informa-004
tion into dense vector representations. These005
models are typically optimized using triplets006
of (query, positive, negative) data pairs for con-007
trastive learning, where the negative samples008
play a critical role in enhancing the model’s009
ability to discern subtle semantic distinctions.010
In this work, we introduce a Multi-Granularity011
Hard-negative (MGH) synthesis framework012
that leverages large language models (LLMs)013
to generate diverse negative samples with vary-014
ing levels of similarity with the query. This015
approach facilitates a coarse-to-fine curricu-016
lum learning strategy during supervised train-017
ing, allowing the embedding model to progres-018
sively learn more nuanced semantic represen-019
tations. Meanwhile, we propose an Anchor020
Token Aware (ATA) pooling method that as-021
signs higher weights to anchor tokens based022
on aggregation patterns observed in LLMs, im-023
proving text embedding accuracy without in-024
creasing model complexity. Comprehensive025
experiments on the MTEB benchmark demon-026
strate that our methods achieve state-of-the-027
art performance, surpassing existing synthesis028
strategies both with synthetic data and when029
combined with public retrieval datasets.030

1 Introduction031

Text embedding models are designed to encode the032

semantic meaning of a given sequence of natural033

language words, sentences, or larger text spans into034

dense vector representations. These vector repre-035

sentations capture not only the lexical content of036

the text but also its syntactic and semantic nuances,037

facilitating a wide range of downstream natural lan-038

guage processing (NLP) tasks such as sentiment039

analysis, text clustering, and content-based infor-040

mation retrieval.041

Previous studies havehave explored the poten-042

tial of leveraging large language models (LLMs) to043
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Figure 1: Illustration of our proposed multi-granularity
hard-negative sample generation and coarse-to-fine
learning paradigm.

generate synthetic data for text embedding training 044

tasks (Bonifacio et al., 2022; Wang et al., 2024; Lee 045

et al., 2024b). The substantial volume of synthetic 046

data contributes to increased diversity, thereby im- 047

proving the model’s robustness across various en- 048

coding tasks. However, generating high-quality 049

hard negative samples required by contrastive learn- 050

ing is a challenging task for synthetic models, as an 051

effective hard negative must maintain the right bal- 052

ance in its distinction from the positive examples. 053

If the hard negative is overly similar to the query, 054

it may confuse the model with positive samples, 055

whereas if there is a significant difference in the 056

content, the model may struggle to extract useful 057

information from hard negative samples. 058

In this light, we propose a data synthesis frame- 059

work to fully leverage the LLMs’ ability to identify 060
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the partial order of text similarity, facilitating the061

generation of multi-granularity synthetic data. By062

simultaneously generating hard negative samples063

at multiple similarity levels, the synthesized data064

not only improves overall quality but also allows065

for controlled difficulty of the negatives. In the sub-066

sequent supervised training, we use the generated067

difficulty-controllable data to implement coarse-to-068

fine curriculum learning. By progressively moving069

from simple to hard training samples, the embed-070

ding model learns increasingly complex representa-071

tions, resulting in improved stability and effective-072

ness.073

Moreover, as research increasingly focuses074

on effectively adapting large models into text075

embedding models, studies (Lee et al., 2024a;076

BehnamGhader et al., 2024) have explored con-077

verting causal attention to bidirectional attention to078

enhance embedding performance. In this context,079

two common methods to obtain embeddings from080

the hidden states of a sequence of tokens are mean081

pooling, which averages the final hidden states,082

and last token pooling, which uses the last hidden083

state of the <EOS> token as the sentence repre-084

sentation vector. However, mean pooling tends085

to dilute the critical information tokens when av-086

eraging across all tokens, which leads to a loss087

of significant features (Lee et al., 2024a). In con-088

trast, the last token pooling method is sensitive to089

noisy information within the sentence, resulting in090

instability in the encoding (Springer et al., 2024).091

Recently, NV-Embed (Lee et al., 2024a) addressed092

the insufficient pooling issue by adding a cross-093

attention layer over the tokens’ final hidden states094

in a dictionary learning method.095

However, we suggest that a simple yet effective096

pooling method can be utilized without introduc-097

ing additional parameters. Recent studies have098

revealed the aggregation pattern of large language099

models (Wang et al., 2023a; Huang et al., 2024), in-100

dicating that decoder-only models tend to aggregate101

textual information into anchor tokens at shallow102

layers and use these tokens to generate the next103

token in deeper layers.104

In this paper, we observe that the aggregation pat-105

tern still holds in models transformed from causal106

to bidirectional attention. By simply assigning107

greater weight to anchor tokens, we achieve im-108

proved accuracy in text embedding tasks compared109

to conventional pooling methods.110

Our contributions are summarized as follows:111

1. We propose a Multi-Granularity Hard-112

negative (MGH) synthesis framework that ef- 113

fectively generates diverse negative samples 114

of varying difficulty levels, fully leveraging 115

the large model’s capability to discern the par- 116

tial order of text similarity. The framework 117

allows for controlled progression in the dif- 118

ficulty of the generated negative examples, 119

enabling subsequent text embedding models 120

to learn a more accurate embedding represen- 121

tation through a coarse-to-fine manner. 122

2. We propose an Anchor Token Aware (ATA) 123

pooling method that effectively leverages the 124

aggregation pattern of LLMs to acquire a 125

more accurate sentence representation. The 126

model trained with ATA pooling outperformed 127

previous pooling methods and, when trained 128

solely on publicly available retrieval data, 129

ranked among the top models on the MTEB 130

leaderboard. 1 131

2 Method 132

2.1 Multi-granularity Synthetic Data 133

Generation 134

The overall framework of our proposed data syn- 135

thesis method is illustrated in Figure 1, which con- 136

sists of two primary stages. In accordance with the 137

setup of Wang et al. (2024), we begin by querying 138

LLMs to generate a list of potential tasks, catego- 139

rized into two types: asymmetric tasks (e.g., short- 140

long match, long-short match, long-long match 141

and short-short match), and symmetric tasks (e.g., 142

semantic textual similarity, STS). The task brain- 143

storming process in stage 1 generates a wide range 144

of embedding tasks to enrich the diversity of syn- 145

thetic data, enriching the diversity of synthetic data. 146

In stage 2, using a diverse set of tasks as seeds, 147

we query the LLM to generate (query, positive, 148

negative) samples for subsequent contrastive su- 149

pervised training, which are then used in con- 150

trastive supervised training with a standard in- 151

foNCE objective to minimize the distance between 152

query and positive samples, while maximizing the 153

separation from negative samples: 154

L = − log
ϕ(q, d+)

ϕ(q, d+) +
∑

d−∈N (ϕ(q, d−))
(1) 155

1The concurrent work by Li et al. (2024) achieved the
state-of-the-art result on the MTEB benchmark using publicly
available retrieval dataset. However, they adopt an in-context-
learning prompting method, which we believe is largely or-
thogonal to our approach.
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where ϕ denotes the similarity function, q, d+156

and d− represent the query, positive, and negative157

samples respectively. Recognizing that the qual-158

ity of negative samples significantly impacts the159

supervised training of text-embedding models, we160

aim to fully leverage the large model’s ability to161

distinguish between different granularities of neg-162

ative samples during the generation process. To163

be specific, we formulate the synthetic target as164

follows:165

SS = {(QS ,PS , {N S
k })} (2)166

where QS represents an example query, PS de-167

notes its corresponding positive sample, and {N S
k }168

refers to a set of hard negative samples with vary-169

ing levels of granularity indexed by k, which is set170

to 4 in following experiments.171

We use the template illustrated in Figure 2 to172

constrain the synthesizing format. Differing from173

Wang et al. (2024), our approach prompts LLM174

to simultaneously generate multiple hard negative175

samples {N S
k } for a single query QS . These nega-176

tive samples are ranked based on their similarity to177

the query, arranged in descending order from high-178

est to lowest. This approach allows large models179

to enforce similarity constraints when generating180

hard negative samples, effectively mitigating the181

uncontrolled variation in the hard negative sam-182

ple similarity during the synthetis process across183

different query samples. The effectiveness of this184

approach is demonstrated in Section 5.1 through a185

detailed case study.186

In addition to synthetic data, we also incorpo-187

rate public retrieval datasets when training the188

text embedding model. To integrate coarse-to-189

fine hard negative samples into the subsequent190

training process, we regenerate the negative sam-191

ples of the retrieval dataset, denoted as {NR
k }, by192

querying LLM using the same multi-granularity193

approach. The refined retrieval dataset, SR =194

{(QR,PR, {NR
k })}, is then combined with the195

synthetic dataset SS to form the complete train-196

ing dataset S .197

With the multi-granularity dataset S, we adopt198

a curriculum learning paradigm for the supervised199

training of the text embedding model. By adjust-200

ing the difficulty level k of the hard negatives, we201

can progressively train a more stable and effective202

model using a coarse-to-fine approach. Specifi-203

cally, during the supervised learning process, we204

gradually transition the negative samples fed into205

{
  "query": "QUERY_TEXT",
  "positive_example": "POSITIVE_EXAMPLE_TEXT",
  ”hard_negative_examples": [
   {
    "similarity_level": "high",
 "text": "HIGH_SIMILARITY_NEGATIVE_EXAMPLE_TEXT”

},{
 "similarity_level": "medium",
     "text": "MEDIUM_HIGH_SIMILARITY_NEGATIVE_EXAMPLE_TEXT”

},{
 "similarity_level": "medium",
     "text": "MEDIUM_LOW_SIMILARITY_NEGATIVE_EXAMPLE_TEXT”

},{
"similarity_level": "low",

     "text": "LOW_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"}
  ]
}

The output should be formatted as a JSON object with a 
field indicating the relative similarity level. Use the 
following format as a guide:

Omitted for space limitations

Omitted for space limitations

Omitted for space limitations
Please generate four negative examples for contrastive 
learning based on the generated query and positive 
example. These examples should be arranged in order of 
decreasing similarity to the query, ranging from highly 
similar to dissimilar. Ensure the similarity spans a 
broad spectrum, and every negative example should be 
different, without repeating words from previous 
examples. Be creative!

Figure 2: The core template used for prompting LLMs
to generate multi-granularity hard negatives. Due to
space constraints, the full prompts are presented in Ap-
pendix A.1.

the model from N4 to N1, with each difficulty level 206

occupying a quarter of the training data. Further 207

analysis in Section 4.1 demonstrates the effective- 208

ness of the proposed scheduling method. 209

2.2 Anchor Token Aware Pooling 210

After obtaining the hidden states of multiple to- 211

kens from the model’s final layer, an appropriate 212

approach is required to derive the sentence repre- 213

sentation vector v. In the widely adopted mean 214

pooling method, the last hidden states of all tokens 215

are averaged to form a sentence vector representa- 216

tion. This approach can result in the dilution of key 217

information in the text, as non-critical tokens are 218

averaged along with the more significant ones. 219

The proposed ATA pooling method aims to as- 220

sign greater weight to anchor tokens (Wang et al., 221

2023a), which aggregate more semantic informa- 222

tion compared to other tokens. This approach al- 223

lows the model to adaptively allocate weights to the 224

parts that are most pertinent to the task, resulting 225

in a more effective pooling operation. 226

Motivated by Huang et al. (2024), we calculate 227

the attention weight along the Key dimension of 228

the attention matrix to identify anchor tokens with 229

stronger representational capabilities. Compared to 230
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traditional mean pooling, this allows us to assign231

higher weights to anchor tokens and more effec-232

tively filter out trivial tokens that do not contribute233

to the semantic information.234

Specifically, let Ah
L denote the attention matrix235

for the attention head h in the model’s final layer,236

and let ahij represent the corresponding value of237

Ah
L[i][j], which indicates the attention score be-238

tween query i and key j. We define the anchor239

weight of each query as follows:240

Ni =
H∑

h=1

S∑
j=1

log(ahij · S + 1) (3)241

where S represents the length of the token se-242

quence, and H denotes the number of attention243

heads. We multiply ahij by S because, while the244

sum of attention weights in the query dimension245

remains constant (i.e.
∑S

i=0 a
h
ij = 1),the expected246

value of each individual element decreases to 1
S as247

the sentence length increases. Multiplying by the248

sentence length helps to ensure stability across dif-249

ferent sentence lengths by maintaining consistent250

scaling in subsequent computations.251

After obtaining the anchor weights, we normal-252

ize them by applying a linear weight adjustment253

along the Query dimension to compute the weight254

corresponding to each token, denoted as wi, such255

that the sum of all wi equals 1:256

wi =
Ni∑S
i=1Ni

(4)257

We then apply the normalized weights to258

reweight the hidden states and obtain the final sen-259

tence embedding v:260

v =

S∑
i=1

widi (5)261

where di denotes the model’s last layer hidden262

state of token i.263

3 Experiments264

3.1 Data Synthetic Details265

To ensure a fair comparison with Wang et al. (2024),266

we generated an equivalent volume of synthetic267

data, maintaining a consistent total token consump-268

tion of 180M. In order to minimize the costs asso-269

ciated with data generation, we utilized the APIs270

of GPT-4o and DeepSeek. We observed that com-271

pared to GPT-4o, DeepSeek is relatively less cre-272

ative when generating the potential tasks in stage273

Short-Long
40.4% Long-Short

28.2%

Short-Short

3.9%

Long-Long

3.9%

STS

23.5%

Figure 3: Distribution of the task categories in the syn-
thetic data

1 and tends to produce repetitive negative samples 274

during stage 2. Consequently, we relied on GPT- 275

4o to complete all stage 1 generation processes. In 276

stage 2, we initially used GPT-4o to generate a suffi- 277

cient amount of data, which was then input as seeds 278

into DeepSeek. Leveraging the data cache provided 279

by the DeepSeek API, introducing additional seeds 280

as input did not incur significant additional costs. 281

The distribution of synthetic data across different 282

task types is illustrated in Figure 3. 283

The retrieval dataset used in supervised learning 284

was curated by Springer et al. (2024), which consist 285

of approximately 1.5 million samples, covering a 286

variety of languages and retrieval scenarios. In line 287

with LLM2Vec (BehnamGhader et al., 2024), we 288

only used about one-third of the curated retrieval 289

dataset. For more details on the dataset composi- 290

tion, please refer to Appendix B.2. 291

3.2 Experimental Details 292

To validate the effectiveness of our proposed fine- 293

grained data synthesis framework and the ATA 294

pooling method, we perform experiments following 295

the open source LLM2VEC (BehnamGhader et al., 296

2024) model, while replacing the supervised train- 297

ing stage with our method. Specifically, we adopt 298

Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) as the 299

base model. We then transform the model’s atten- 300

tion pattern from causal to bidirectional and inte- 301

grate the LoRA weights trained on the masked next- 302

token prediction task introduced in LLM2VEC, en- 303

abling the model to better adapt to bidirectional 304

attention patterns. This setup serves as the starting 305

point for our model. 306

For supervised training, we adopt the standard In- 307

foNCE loss, with both in-batch negatives and hard 308
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FT. Data Class. Clust. Pair. Rerank. Retr. STS Summ. Avg.
Sample Num Acc. V-Meas. AP MAP nDCG@10 Spear. Spear.

Models trained with synthetic data only
Mistralgpt-4o (Chen et al., 2024) 230K 77.7 47.7 83.9 58.7 46.7 80.9 30.7 62.2
Geckoo1b-768 (Lee et al., 2024b) 6.6M 70.3 46.8 86.2 57.6 53.2 83.1 32.2 62.6
E5mistral-7b (Wang et al., 2024) 500K 78.2 50.5 86.0 59.0 46.9 81.2 31.9 63.1

SPEED (Chen et al., 2024) 920K 78.3 48.6 86.3 59.8 48.1 82.6 31.7 63.4
MGH(Ours) 310K 78.6 49.7 86.1 60.1 51.2 82.3 31.6 64.5

Models trained with synthetic data & public available retrieval data
GTRxxl (Ni et al., 2022) 662K 67.4 42.4 86.1 56.7 48.5 78.4 30.6 59.0
text-embedding-3large

2 - 75.5 49.0 85.7 59.2 55.4 81.7 29.9 64.6
jina-embeddings-v3 (Sturua et al., 2024) - 82.6 45.3 84.0 58.1 53.9 85.8 29.7 65.5

Geckoo1b-768 (Lee et al., 2024b) >6.6M 81.2 47.5 87.6 58.9 55.7 85.1 32.6 66.3
E5mistral-7b (Wang et al., 2024) 1.8M 78.5 50.3 88.3 60.2 56.9 84.6 31.4 66.6

SPEED (Chen et al., 2024) 2.2M 78.4 49.3 88.2 60.8 56.5 85.5 31.1 66.5
MGH(Ours) 820K 78.8 50.1 87.9 59.8 57.5 85.6 31.3 67.0

Table 1: MTEB performance comparison of different synthesis models, with training conducted on synthetic data
only and on both synthetic and public retrieval dataset. The highest performances are highlighted in bold, while
the second-highest are indicated with underlines. FT. Data Sample Num. refers to the number of (query, positive,
negative) sample pairs used for training.

negatives utilized for training. To ensure a fair com-309

parison, the prompt template follows Wang et al.310

(2024), as illustrated in Appendix B.2. Supervised311

training on the full dataset is conducted for 1600312

steps, while training on public retrieval dataset is313

performed for 1000 steps, with a batch size of 64314

and gradient accumulation of 8 in both cases. All315

training was performed on a single 80GB H100316

GPU, taking approximately 32 hours to complete317

1600 training steps. Further training hyperparame-318

ters are represented in Appendix B.1.319

For evaluation, we assess our model on the320

widely used MTEB benchmark (Muennighoff et al.,321

2023), which encompasses a wide variety of text322

embedding tasks across different scenarios and do-323

mains. The benchmark includes 56 English em-324

bedding tasks organized into 7 categories: clas-325

sification (12), clustering (11), pair classification326

(3), reranking (4), retrieval (15), semantic textual327

similarity (10), and summarization (1).328

3.3 Main Results329

Table 1 presents a comparison of the performance330

of our proposed method against existing data syn-331

thesis approaches on the MTEB dataset. The re-332

sults underscore the effectiveness of our data gen-333

eration framework, demonstrating superior perfor-334

mance in both the synthetic-only and full-data set-335

tings. In particular, on the more challenging re-336

trieval tasks, the full-data results achieved the best337

performance, underscoring the efficacy of our syn-338

thesis method.339

2https://platform.openai.com/docs/guides/embeddings

Model MTEB Score
SGPT (Muennighoff, 2022) 58.93
UDEVER-bloom-7b (Zhang et al., 2023a) 60.63
ECHO (Springer et al., 2024) 64.68
LLM2Vec (BehnamGhader et al., 2024) 64.80
NV-Embed (Lee et al., 2024a) 64.18
bge-large-en-v1.5 (Xiao et al., 2024) 64.23
bge-en-icl w/o icl (Li et al., 2024) 64.83
bge-en-icl w/ icl (Li et al., 2024) 66.08
MGH(Ours) 65.87

Table 2: Performance comparison of MTEB scores for
different models trained on publicly available retrieval
corpora. The highest performances are highlighted in
bold, while the second-highest are indicated with under-
lines.

To evaluate the effectiveness of the proposed 340

ATA pooling method, we compare the ATA pooling 341

enhanced model over previous models that lever- 342

age LLM for text embedding. However, prior re- 343

search has indicated that incorporating the training 344

split of the MTEB dataset during the supervised 345

training process introduces a significant amount of 346

MTEB-related data, thereby increasing the risk of 347

overfitting (Li et al., 2024). Therefore, we opted 348

not to include the second training phase proposed 349

by NV-Embed, which utilizes the MTEB training 350

split for a continuous training. 351

Table 2 compares the performance of our ap- 352

proach to existing models trained exclusively on 353

publicly available retrieval data. The results under 354

the MTEB training split free setting indicate that 355

our model achieved performance slightly below 356

the state-of-the-art model, exhibiting the effective- 357

ness of the ATA pooling method. Notably, the 358

5
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Figure 4: Trend of MTEB subset scores during super-
vised training across four experimental settings.

method proposed by Li et al. (2024) employed an359

in-context learning approach to enhance the text360

embedding quality, which operates orthogonally to361

our proposed method.362

4 Ablation Study363

4.1 Data Synthesis and Training Strategies364

In this section, we evaluate the effectiveness of the365

proposed MGH synthesis framework through an366

ablation study on a subset of the MTEB benchmark,367

as used in Springer et al. (2024)3. We evaluate the368

impact of data training order on supervised learn-369

ing through the following experimental settings,370

analyzing how the results evolve throughout the371

training process over 1600 steps:372

1. Curriculum Learning: Progressing from eas-373

ier to more challenging hard negatives, as374

adopted in our main approach.375

2. Reverse Curriculum Learning: Progressing376

hard negative samples from harder to easier.377

3. Random Ordering: Randomly inputting378

hard negative examples of varying difficulty.379

4. Fixed Difficulty Level: Consistently using380

hard negatives of a fixed difficulty level.381

The results in Figure 4 demonstrate that the cur-382

riculum learning strategy adopted by MGH not383

only achieves the best performance but also main-384

tains greater stability during training. In contrast,385

the random ordering strategy predictably exhibits386

3Conducting a full evaluation on the MTEB dataset is
computationally expensive, requiring over 200 hours on a
single H100 GPU. Therefore, a subset of the dataset was
selected for this study. Details of the subset composition can
be found in Appendix C.2.

fluctuations in the results, while the reverse curricu- 387

lum learning method also fails to yield satisfactory 388

training outcomes, as the model struggles to adapt 389

to the reversed difficulty progression. 390

Additionally, none of the four fixed difficulty 391

settings outperformed the curriculum learning ap- 392

proach. Among them, maintaining a difficulty level 393

of 2 or 3 yielded relatively better results, while us- 394

ing excessively low or high difficulty levels failed 395

to converge to optimal outcomes. This suggests 396

that overly simple negative examples may prevent 397

the model from learning useful knowledge, and 398

excessively difficult synthetic negatives may hin- 399

der the model’s ability to distinguish them from 400

positive examples at early training stages. 401

4.2 Pooling Methods 402

This section presents a detailed comparison of four 403

pooling methods employed in embedding tasks, 404

namely mean pooling, last token pooling, NV- 405

Embed pooling (Lee et al., 2024a), and the pro- 406

posed ATA pooling. The ablation experiments 407

leveraged publicly available retrieval datasets only, 408

adhering to the hyperparameter settings outlined in 409

Section 3.2. The evaluation is conducted using the 410

full MTEB benchmark, with Table 3 summarizing 411

their respective performances. 412

Pooling Method MTEB Score
mean pooling 65.41
last pooling 64.97
NV-Embed pooling 65.80
ATA pooling (Ours) 65.87

Table 3: Performance comparison of MTEB scores for
different pooling methods trained on publicly available
retrieval corpora. The highest performances are high-
lighted in bold, while the second-highest are indicated
with underlines.

The results suggest that conventional mean pool- 413

ing and last token pooling yield subpar perfor- 414

mance in text embedding tasks using bidirectional 415

models. On the other hand, both the NV-Embed 416

pooling and ATA pooling methods demonstrate fa- 417

vorable results, validating the necessity of adaptive 418

reweighting for the last hidden states. 419

5 Further Analysis 420

5.1 Case Study 421

How does MGH enhance hard negative sam- 422

ple quality? We illustrate this through the ex- 423

ample presented in Figure 5, which demonstrates 424
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Hard Negative 4: Sodium is often associated with salt in cooking and baking, as it is a crucial element for flavor and 
preservation. Its role in chemistry includes forming compounds such as NaCl, but it is better known for its culinary uses.

Hard Negative 3: The Latin name for Hydrogen is Hydrogenium, which corresponds to its symbol H. Hydrogen is the 
lightest element, and while not related to Sodium, it shares its essential role in chemical reactions.

Hard Negative 2: Sodium's chemical formula is Sod, derived from its Latin name Sodium. As an alkali metal, it is highly 
reactive and never found in its elemental state in nature.

Hard Negative 1: The Latin name for Sodium is Kalium, giving rise to its chemical symbol K. Sodium is an alkali metal 
with the atomic number 19 and is essential in the human body for regulating blood pressure and nerve function.

Positive: The Latin name for Sodium is Natrium, which is why its chemical symbol is Na. Sodium is a highly reactive alkali 
metal with atomic number 11, commonly found in nature as part of compounds like table salt (sodium chloride, NaCl). The 
name "Natrium" originates from the Arabic word natron, which refers to natural mineral deposits rich in sodium carbonate.

Query: What is the Latin name for the element Sodium, giving rise to its chemical formula Na?

Hard

Easy

Figure 5: An example of a multi-granularity hard negative synthesis, randomly selected for illustration.

how MGH effectively improves the quality of hard425

negative samples by leveraging multi-granularity426

similarity constraints.427

In this example, the data synthetic model is428

tasked with generate negative samples for the Latin429

name of the element Sodium. The GPT-4o model430

used in this case selects Potassium, which shares431

similar chemical properties with Sodium, as the432

most challenging hard negative example. Subse-433

quently, the model generates a fake Latin name for434

Sodium as a moderately confusable negative sam-435

ple, followed by answering element Hydrogen as436

a more distinguishable example. While the first437

three negative samples involve answering the Latin438

names of chemical elements, the last simplest neg-439

ative sample generated by the model focuses on440

Sodium but lacks any reference to its Latin name.441

As demonstrated in the example above, the442

MGH approach effectively distills world knowl-443

edge from LLMs, enabling the generation of multi-444

ple negative samples with varying granularities. As445

the examples progress from challenging to simple,446

the synthetic model’s outputs range from showing447

subtle differences in detail to being more easily448

distinguishable. In this process, the subsequent449

negative samples are adjusted based on previously450

generated ones, enabling a dynamic progression of451

negative sample difficulty, further enhancing the452

quality of negative sample generation.453

How does ATA reweight using aggregation pat-454

tern? As shown in the example from Figure 6,455

the aggregation pattern still remains the base model456

is transformed from causal to bidirectional atten-457

tion. The figure illustrates three prominent anchor 458

tokens: the initial token, the punctuation between 459

the two sentences, and the [INST] template ap- 460

pended to the end of the sentence. Accordingly, 461

these anchor tokens receive higher weight values 462

in the ATA weight calculation, contributing more 463

significantly to the subsequent computation of text 464

embeddings. 465

Through observations of numerous examples, 466

we found that most samples allocate a greater pro- 467

portion of the ATA weight to the three anchor pat- 468

terns mentioned above, with particular emphasis on 469

the [INST] token at the sentence’s end. Therefore, 470

the ATA pooling method captures the important 471

last token while also dynamically identifying key 472

positions within the preceding text. This approach 473

not only mitigates the stability issues associated 474

with relying solely on the last token but also as- 475

signs greater weight to tokens that are essential 476

for capturing the entire semantic meaning of the 477

input sequence, thereby facilitating more effective 478

embedding learning. 479

5.2 Cost of Synthetic Data 480

Although our model entails additional tokens to 481

generate multiple hard negatives per synthetic sam- 482

ple, the cost is offset by maintaining the same token 483

consumption (180M) as Wang et al. (2024), which 484

results in fewer synthetic samples being generated. 485

Under this fair comparison, the embedding model 486

trained with our MGH strategy outperforms pre- 487

vious state-of-the-art results, demonstrating that 488

our method is more effective under the same token 489

consumption. 490

7



Figure 6: The upper part illustrates the summed results
of the model’s final layer attention weights across 32
attention heads4, while the lower part shows the cor-
responding ATA weights for each token. Example is
randomly selected in STS13 evaluation split.

6 Related Work491

LLM Based Text Embedding Models In recent492

years, as decoder-only models have scaled up in493

terms of parameters and training data, researchers494

have explored the possibility of transforming next-495

token prediction models into effective text embed-496

ding models through continued training. Neelakan-497

tan et al. (2022) was the first to apply the GPT-498

3 model to text embedding tasks, leveraging the499

<EOS> token as the representation vector. Subse-500

quent work by Ma et al. (2024) employed a similar501

last-token pooling method, fine-tuning the LLaMA-502

2 model.503

However, the autoregressive training objective504

imposes an inherent limitation on the model’s per-505

formance, as the causal attention mask prevents506

earlier tokens from accessing subsequent tokens.507

SGPT (Muennighoff, 2022) addressed this limita-508

tion by linearly assigning more weight to tokens509

at later positions, a strategy subsequently adopted510

by E5mistral-7b (Wang et al., 2024). LLM2Vec511

(BehnamGhader et al., 2024) transformed the512

model from causal to bidirectional attention by em-513

ploying a masked next-token prediction approach,514

followed by mean pooling for supervised learn-515

ing. Recent work by NV-Embed (Lee et al., 2024a)516

introduced an additional cross-attention layer for517

4For space limitations, the individual attention maps from
all 32 attention heads are provided in Appendix D.2.

hidden state pooling, simultaneously removing 518

the causal mask. Additionally, Echo embeddings 519

(Springer et al., 2024) repeated a text twice and 520

used the second instance to compute the represen- 521

tation vector. In this work, we attempt to address 522

the insufficient pooling problem in LLM based em- 523

bedding models by an adaptive weighting strategy 524

using the model’s aggregation pattern. 525

Data Synthesis for Embedding Models High- 526

quality data is crucial for training effective text 527

embedding models. Previous studies (Nogueira 528

et al., 2019; Wang et al., 2023b) have explored 529

expansion-based approaches to augment document 530

and query data. With the advancements in large lan- 531

guage model (LLM) capabilities, recent research 532

has focused on leveraging LLMs to generate large 533

amounts of high-quality supervised training data 534

(Wang et al., 2024; Jeronymo et al., 2023; Sturua 535

et al., 2024). In domain-specific retrieval, studies 536

(Dai et al., 2022; Khramtsova et al., 2024) have 537

shown that LLM-generated query-document pairs 538

significantly improve embedding quality in domain- 539

specific retrieval tasks. Additionally, Gecko (Lee 540

et al., 2024b) curates web data to enable LLMs to 541

produce high-quality synthetic samples. Our work 542

focuses on how to enable large models to generate 543

multi-granularity synthetic negative examples, and 544

achieves more efficient and stable text embedding 545

model training by controlling the training difficulty. 546

7 Conclusion 547

In this work, we evaluate the importance of hard 548

negative granularity when training text embedding 549

models using contrastive learning. Through the 550

proposed MGH synthesis framework, we gener- 551

ate diverse negative samples at varying levels of 552

similarity, enabling the embedding model to learn 553

more nuanced semantic representations by coarse- 554

to-fine curriculum learning approach. Experimen- 555

tal results demonstrate that our methods achieve 556

state-of-the-art performance on the MTEB bench- 557

mark, outperforming existing synthesis strategies 558

both with synthetic-only and combined datasets. 559

Additionally, our proposed ATA pooling method 560

effectively leverages the aggregation patterns inher- 561

ent in large language models, improving sentence 562

pooling efficacy without introducing extra parame- 563

ters. Ablation studies confirm the effectiveness of 564

our MGH framework and ATA pooling method in 565

enhancing text embedding model performance and 566

training stability. 567
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8 Limitations568

Despite the effectiveness of our method, there are569

several limitations that should be acknowledged:570

(1) Due to the costs associated with API usage, we571

limited the synthetic data generation to the same572

token volume as used in previous studies (Wang573

et al., 2024). This constraint prevented us from574

exploring whether a larger synthetic dataset could575

further improve the performance of the text em-576

bedding model. We leave this exploration to future577

work, where more extensive synthetic data could be578

generated to assess the scalability and potential per-579

formance gains. (2) To facilitate comparisons with580

prior work (BehnamGhader et al., 2024; Springer581

et al., 2024), we used Mistral-7b-v0.2-Instruct as582

our base text embedding model. Given the con-583

tinuous advancements in 7b-level models, we plan584

to investigate more powerful models as our base585

embedding model in our future work.586
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A Experimental Details for Data793

Synthesis794

A.1 Prompts for Data Synthesis795

To enable large models to generate multiple hard796

negatives with varying granularities, we extend and797

refine the prompt template proposed by Wang et al.798

(2024). Specifically, we modify the original tem-799

plate to guide the model in producing negative sam-800

ples with different levels of similarity to the query,801

thereby enhancing the diversity and difficulty of802

the generated data. Table 5 illustrates the complete803

prompt template used to generate short-long match804

tasks as an example.805

B Experimental Details for Supervised806

Training807

B.1 Hyperparameters808

We present the hyperparameters involved in the su-809

pervised training in Table 4. The max sequence810

length specifies that any text sequence exceeding811

this number of tokens is truncated in our text em-812

bedding model.813

B.2 Public Retrieval Datasets814

We follow the training data setup from previous815

work (Springer et al., 2024; BehnamGhader et al.,816

2024), adopting the dataset configuration used by817

Wang et al. (2024), which includes the following818

datasets: ELI5 (Fan et al., 2019) (sample ratio 0.1)819

, HotpotQA (Yang et al., 2018), FEVER (Thorne820

et al., 2018), MIRACL (Zhang et al., 2023b), MS-821

MARCO (Bajaj et al., 2016) passage ranking (sam-822

ple ratio 0.5) and document ranking (sample ratio823

0.2), NQ (Karpukhin et al., 2020), NLI (Gao et al.,824

2021), SQuAD (Karpukhin et al., 2020), TriviaQA825

(Karpukhin et al., 2020), Quora Duplicate Ques-826

tions (DataCanary et al., 2017) (sample ratio 0.1),827

Mr-TyDi (Zhang et al., 2021), DuReader (Qiu et al.,828

2022), and T2Ranking (Xie et al., 2023) (sample829

ratio 0.5). The full supervised training data has830

approximately 1.5M training examples. The in-831

structions applied to each dataset are in line with832

BehnamGhader et al. (2024), which are listed in833

Table 6.834

Hyperparameter Value
Batch Size 64
Gradient Accumulation Steps 8
Learning Rate 2e-5
Max Sequence Length 512
LoRA rank 16
LoRA α 32
Optimizer Adam
Training Steps - Synthetic Only 600
Training Steps - Public Only 1000
Training Steps - Synthetic & Public 1600
Warmup Steps - Synthetic Only 200
Warmup Steps - Public Only 300
Warmup Steps - Synthetic & Public 300

Table 4: Hyperparameters used in the experiments

C Experimental Details for Evaluation 835

C.1 Prompts for MTEB Evaluation 836

For a fair comparison with previous work (Wang 837

et al., 2024; BehnamGhader et al., 2024; Lee et al., 838

2024a) evaluated on MTEB, we adopted the same 839

set of prompt instructions used in their evaluations 840

when assessing our model’s performance. The in- 841

structions applied to each evaluation dataset are 842

listed in Table 7. 843

C.2 Subset Used for Ablation Study 844

To speed up evaluation in the ablation study, 845

we follow Springer et al. (2024) by selecting 846

a representative subset of the MTEB evalua- 847

tion benchmark, which includes the following 848

datasets: FiQA2018, SCIDOCS, SciFact, NF- 849

Corpus, TwitterSemEval2015, TwitterURLCorpus, 850

ImdbClassification, AmazonReviewsClassification, 851

TweetSentimentExtractionClassification, MTOP- 852

DomainClassification, TwentyNewsgroupsClus- 853

tering, BiorxivClusteringS2S, MedrxivCluster- 854

ingS2S, StackOverflowDupQuestions, AskUbun- 855

tuDupQuestions, SciDocsRR, BIOSSES, STS12, 856

STS13, STS14, STS15, STS16, STS17, STS22, 857

STSBenchmark, and SICK-R. 858

D Additional Results 859

D.1 Full MTEB Results 860

In this section, we present the complete results for 861

all 56 MTEB datasets across the three experimental 862

settings of our main experiment: public retrieval 863

data only, synthetic data only, and full data. The 864

corresponding results are shown in Table 8. 865
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D.2 Full Attention Matrices866

As shown in Figure 7, after transforming the at-867

tention mask of the base model (i.e. Mistral-7B-868

Instruct-v0.2) from causal to bidirectional, the at-869

tention heads continue to exhibit distinct patterns,870

with some heads focus on tokens in their origi-871

nal positions, while others show higher attention872

scores across all query dimensions at the current873

position (e.g. Head 1, Head 6, Head 21 and Head874

22). The latter pattern reflects the characteristics875

of anchor tokens, allowing for more effective ag-876

gregation of information from the entire sentence.877

Consequently, in our ATA pooling method, these878

attention heads are assigned with greater pooling879

weight.880
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Brainstorm a list of potentially useful text retrieval tasks.

Here are a few examples for your reference:
- Retrieve relevant documents for a short keyword web search query that asks for weather information.
- Search for documents that answers a FAQ-style query on children’s nutrition.

Please adhere to the following guidelines:
- Specify what the query is, and what the desired documents are.
- Each retrieval task should cover a wide range of queries, and should not be too specific.

Your output must always be a python list of strings only, with about 20 elements, and each element corresponds to a distinct
retrieval task in one sentence. Do not explain yourself or output anything else. Be creative!
You have been assigned a retrieval task: {task}

Your mission is to write one text retrieval example for this task in the following JSON format. The JSON object must contain
the following keys:
- "user_query": a string, a random user search query specified by the retrieval task.
- "positive_document": a string, a relevant document for the user query.
- "hard_negative_document": a list of strings, hard negative documents that only appears relevant to the query.

The output should be formatted as a JSON object with a field indicating the relative similarity level of hard negative examples.
Use the following format as a guide:

{
"user_query": "QUERY_TEXT",
"positive_document": "POSITIVE_EXAMPLE_TEXT",
"hard_negative_document": [

{
"similarity_level": "high",
"text": "HIGH_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"

},{
"similarity_level": "medium",
"text": "MEDIUM_HIGH_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"

},{
"similarity_level": "medium",
"text": "MEDIUM_LOW_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"
},{

"similarity_level": "low",
"text": "LOW_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"

}
]

}

Please adhere to the following guidelines:
- The "user_query" should be {query_type}, {query_length}, {clarity}, and diverse in topic.
- All documents must be created independent of the query. Avoid copying the query verbatim. It’s acceptable if some parts of
the "positive_document" are not topically related to the query.
- All documents should be at least {num_words} words long.
- The "hard_negative_document" contains some useful information, but it should be less useful or comprehensive compared
to the "positive_document". Please generate four hard negative documents for contrastive learning based on the generated
query and positive example. These examples should be arranged in order of decreasing similarity to the query, ranging from
highly similar to dissimilar. Ensure the similarity spans a broad spectrum, and every negative example should be different,
without repeating words from previous examples.
- Both the query and documents should be in {language}.
- Do not provide any explanation in any document on why it is relevant or not relevant to the query.
- Both the query and documents require {difficulty} level education to understand.

Your output must always be a JSON object only, do not explain yourself or output anything else. Be creative!

Table 5: Prompt template for the short-long matching task. For placeholders, “{query_type}” ∈ {extremely long-tail,
long-tail, common}, “{query_length}” ∈ {less than 5 words, 5 to 15 words, at least 10 words}, “{difficulty}” ∈
{high school, college, PhD}, “{clarity}” ∈ {clear, understandable with some effort, ambiguous}, “{num_words}” ∈
{50, 100, 200, 300, 400, 500}.
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Task Name Instruction
NLI Given a premise, retrieve a hypothesis that is entailed by the premise

Retrieve semantically similar text
DuReader Given a Chinese search query, retrieve web passages that answer the question
ELI5 Provided a user question, retrieve the highest voted answers on Reddit ELI5 forum
FEVER Given a claim, retrieve documents that support or refute the claim
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question
MIRACL Given a question, retrieve Wikipedia passages that answer the question
MrTyDi Given a question, retrieve Wikipedia passages that answer the question
MSMARCO Passage Given a web search query, retrieve relevant passages that answer the query
MSMARCO Document Given a web search query, retrieve relevant documents that answer the query
NQ Given a question, retrieve Wikipedia passages that answer the question
QuoraDuplicates Given a question, retrieve questions that are semantically equivalent to the given

question
Find questions that have the same meaning as the input question

SQuAD Retrieve Wikipedia passages that answer the question
T2Ranking Given a Chinese search query, retrieve web passages that answer the question
TriviaQA Retrieve Wikipedia passages that answer the question

Table 6: The prompt instructions used for public retrieval datasets, following BehnamGhader et al. (2024)
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Task Name Instruction
AmazonCounterfactualClassification Classify a given Amazon customer review text as either counterfactual or not-

counterfactual
AmazonPolarityClassification Classify Amazon reviews into positive or negative sentiment
AmazonReviewsClassification Classify the given Amazon review into its appropriate rating category
Banking77Classification Given a online banking query, find the corresponding intents
EmotionClassification Classify the emotion expressed in the given Twitter message into one of the six

emotions: anger, fear, joy, love, sadness, and surprise
ImdbClassification Classify the sentiment expressed in the given movie review text from the IMDB

dataset
MassiveIntentClassification Given a user utterance as query, find the user intents
MassiveScenarioClassification Given a user utterance as query, find the user scenarios
MTOPDomainClassification Classify the intent domain of the given utterance in task-oriented conversation
MTOPIntentClassification Classify the intent of the given utterance in task-oriented conversation
ToxicConversationsClassif. Classify the given comments as either toxic or not toxic
TweetSentimentClassification Classify the sentiment of a given tweet as either positive, negative, or neutral
ArxivClusteringP2P Identify the main and secondary category of Arxiv papers based on the titles and

abstracts
ArxivClusteringS2S Identify the main and secondary category of Arxiv papers based on the titles
BiorxivClusteringP2P Identify the main category of Biorxiv papers based on the titles and abstracts
BiorxivClusteringS2S Identify the main category of Biorxiv papers based on the titles
MedrxivClusteringP2P Identify the main category of Medrxiv papers based on the titles and abstracts
MedrxivClusteringS2S Identify the main category of Medrxiv papers based on the titles
RedditClustering Identify the topic or theme of Reddit posts based on the titles
RedditClusteringP2P Identify the topic or theme of Reddit posts based on the titles and posts
StackExchangeClustering Identify the topic or theme of StackExchange posts based on the titles
StackExchangeClusteringP2P Identify the topic or theme of StackExchange posts based on the given paragraphs
TwentyNewsgroupsClustering Identify the topic or theme of the given news articles
SprintDuplicateQuestions Retrieve duplicate questions from Sprint forum
TwitterSemEval2015 Retrieve tweets that are semantically similar to the given tweet
TwitterURLCorpus Retrieve tweets that are semantically similar to the given tweet
AskUbuntuDupQuestions Retrieve duplicate questions from AskUbuntu forum
MindSmallReranking Retrieve relevant news articles based on user browsing history
SciDocsRR Given a title of a scientific paper, retrieve the titles of other relevant papers
StackOverflowDupQuestions Retrieve duplicate questions from StackOverflow forum
ArguAna Given a claim, find documents that refute the claim
ClimateFEVER Given a claim about climate change, retrieve documents that support or refute the

claim
CQADupstackRetrieval Given a question, retrieve detailed question descriptions from Stackexchange that

are duplicates to the given question
DBPedia Given a query, retrieve relevant entity descriptions from DBPedia
FEVER Given a claim, retrieve documents that support or refute the claim
FiQA2018 Given a financial question, retrieve user replies that best answer the question
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question
MSMARCO Given a web search query, retrieve relevant passages that answer the query
NFCorpus Given a question, retrieve relevant documents that best answer the question
NQ Given a question, retrieve Wikipedia passages that answer the question
QuoraRetrieval Given a question, retrieve questions that are semantically equivalent to the given

question
SCIDOCS Given a scientific paper title, retrieve paper abstracts that are cited by the given paper
SciFact Given a scientific claim, retrieve documents that support or refute the claim
Touche2020 Given a question, retrieve detailed and persuasive arguments that answer the question
TRECCOVID Given a query on COVID-19, retrieve documents that answer the query
STS* Retrieve semantically similar text.
SummEval Given a news summary, retrieve other semantically similar summaries

Table 7: The prompt instructions used for MTEB benchmark evaluation, following Wang et al. (2024). The "STS*"
instruction applies to all STS tasks.
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Dataset Public Retrieval Data Only Synthetic Data Only Full Dataset
AmazonCounterfactualClassification 80.1 78.7 79.2
AmazonPolarityClassification 94.0 94.4 95.9
AmazonReviewsClassification 51.8 54.1 55.8
ArguAna 60.2 51.4 61.3
ArxivClusteringP2P 48.1 50.7 50.3
ArxivClusteringS2S 46.0 47.2 46.9
AskUbuntuDupQuestions 64.2 66.3 66.1
BIOSSES 85.6 85.1 87.5
Banking77Classification 88.5 88.3 89.2
BiorxivClusteringP2P 37.7 43.8 42.7
BiorxivClusteringS2S 36.9 41.4 41.2
CQADupstackRetrieval 48.8 44.3 47.1
ClimateFEVER 35.4 26.0 37.8
DBPedia 51.5 45.8 52.3
EmotionClassification 51.2 53.4 51.9
FEVER 91.2 79.1 89.4
FiQA2018 54.1 45.8 55.8
HotpotQA 77.6 57.9 75.9
ImdbClassification 90.3 93.4 94.2
MSMARCO 43.4 29.3 42.4
MTOPDomainClassification 96.3 95.7 96.6
MTOPIntentClassification 86.5 87.4 87.0
MassiveIntentClassification 80.1 80.6 80.3
MassiveScenarioClassification 82.1 81.8 82.4
MedrxivClusteringP2P 32.2 34.8 33.6
MedrxivClusteringS2S 32.5 35.4 34.8
MindSmallReranking 32.5 33.8 33.3
NFCorpus 39.4 37.9 38.5
NQ 65.9 57.7 66.9
QuoraRetrieval 89.5 86.0 89.1
RedditClustering 63.9 61.7 64.8
RedditClusteringP2P 66.8 64.1 67.3
SCIDOCS 22.0 23.7 22.7
SICK-R 83.5 80.4 83.8
STS12 76.6 75.4 79.8
STS13 86.8 86.6 88.3
STS14 83.1 82.4 85.6
STS15 88.5 88.6 91.3
STS16 85.9 86.6 88.1
STS17 91.7 87.0 91.9
STS22 67.9 66.5 69.7
STSBenchmark 87.9 84.4 89.7
SciDocsRR 84.4 85.7 84.7
SciFact 78.6 74.1 76.4
SprintDuplicateQuestions 95.3 94.7 95.3
StackExchangeClustering 72.9 71.3 72.6
StackExchangeClusteringP2P 37.1 43.5 42.9
StackOverflowDupQuestions 54.1 54.7 55.0
SummEval 31.1 31.6 31.3
TRECCOVID 81.4 81.3 82.2
Touche2020 23.3 26.6 24.6
ToxicConversationsClassification 66.9 69.8 68.8
TweetSentimentExtractionClassification 63.7 65.3 64.8
TwentyNewsgroupsClustering 53.4 53.2 53.8
TwitterSemEval2015 81.1 77.5 81.5
TwitterURLCorpus 87.1 86.3 87.0
Average 65.9 64.5 67.0

Table 8: Complete MTEB evaluation results for each dataset. Detailed evaluation metrics and dataset information
are available in Muennighoff et al. (2023).
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Head 1 Head 2 Head 3 Head 4 Head 5

Head 6 Head 7 Head 8 Head 9 Head 10

Head 11 Head 12 Head 13 Head 14 Head 15

Head 16 Head 17 Head 18 Head 19 Head 20

Head 21 Head 22 Head 23 Head 24 Head 25

Head 26 Head 27 Head 28 Head 29 Head 30

Head 31 Head 32

Figure 7: The individual attention matrices from all 32 attention heads in the last layer of the bidirectional model,
obtained from a randomly selected example in the STS13 dataset.
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