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Abstract

Text embedding models are essential for vari-
ous natural language processing tasks, enabling
the effective encoding of semantic informa-
tion into dense vector representations. These
models are typically optimized using triplets
of (query, positive, negative) data pairs for con-
trastive learning, where the negative samples
play a critical role in enhancing the model’s
ability to discern subtle semantic distinctions.
In this work, we introduce a Multi-Granularity
Hard-negative (MGH) synthesis framework
that leverages large language models (LLMs)
to generate diverse negative samples with vary-
ing levels of similarity with the query. This
approach facilitates a coarse-to-fine curricu-
lum learning strategy during supervised train-
ing, allowing the embedding model to progres-
sively learn more nuanced semantic represen-
tations. Meanwhile, we propose an Anchor
Token Aware (ATA) pooling method that as-
signs higher weights to anchor tokens based
on aggregation patterns observed in LLMs, im-
proving text embedding accuracy without in-
creasing model complexity. Comprehensive
experiments on the MTEB benchmark demon-
strate that our methods achieve state-of-the-
art performance, surpassing existing synthesis
strategies both with synthetic data and when
combined with public retrieval datasets.

1 Introduction

Text embedding models are designed to encode the
semantic meaning of a given sequence of natural
language words, sentences, or larger text spans into
dense vector representations. These vector repre-
sentations capture not only the lexical content of
the text but also its syntactic and semantic nuances,
facilitating a wide range of downstream natural lan-
guage processing (NLP) tasks such as sentiment
analysis, text clustering, and content-based infor-
mation retrieval.

Previous studies havehave explored the poten-
tial of leveraging large language models (LLMs) to
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Figure 1: Ilustration of our proposed multi-granularity
hard-negative sample generation and coarse-to-fine
learning paradigm.

generate synthetic data for text embedding training
tasks (Bonifacio et al., 2022; Wang et al., 2024; Lee
et al., 2024b). The substantial volume of synthetic
data contributes to increased diversity, thereby im-
proving the model’s robustness across various en-
coding tasks. However, generating high-quality
hard negative samples required by contrastive learn-
ing is a challenging task for synthetic models, as an
effective hard negative must maintain the right bal-
ance in its distinction from the positive examples.
If the hard negative is overly similar to the query,
it may confuse the model with positive samples,
whereas if there is a significant difference in the
content, the model may struggle to extract useful
information from hard negative samples.

In this light, we propose a data synthesis frame-
work to fully leverage the LLMs’ ability to identify



the partial order of text similarity, facilitating the
generation of multi-granularity synthetic data. By
simultaneously generating hard negative samples
at multiple similarity levels, the synthesized data
not only improves overall quality but also allows
for controlled difficulty of the negatives. In the sub-
sequent supervised training, we use the generated
difficulty-controllable data to implement coarse-to-
fine curriculum learning. By progressively moving
from simple to hard training samples, the embed-
ding model learns increasingly complex representa-
tions, resulting in improved stability and effective-
ness.

Moreover, as research increasingly focuses
on effectively adapting large models into text
embedding models, studies (Lee et al., 2024a;
BehnamGhader et al., 2024) have explored con-
verting causal attention to bidirectional attention to
enhance embedding performance. In this context,
two common methods to obtain embeddings from
the hidden states of a sequence of tokens are mean
pooling, which averages the final hidden states,
and last token pooling, which uses the last hidden
state of the <EOS> token as the sentence repre-
sentation vector. However, mean pooling tends
to dilute the critical information tokens when av-
eraging across all tokens, which leads to a loss
of significant features (Lee et al., 2024a). In con-
trast, the last token pooling method is sensitive to
noisy information within the sentence, resulting in
instability in the encoding (Springer et al., 2024).
Recently, NV-Embed (Lee et al., 2024a) addressed
the insufficient pooling issue by adding a cross-
attention layer over the tokens’ final hidden states
in a dictionary learning method.

However, we suggest that a simple yet effective
pooling method can be utilized without introduc-
ing additional parameters. Recent studies have
revealed the aggregation pattern of large language
models (Wang et al., 2023a; Huang et al., 2024), in-
dicating that decoder-only models tend to aggregate
textual information into anchor tokens at shallow
layers and use these tokens to generate the next
token in deeper layers.

In this paper, we observe that the aggregation pat-
tern still holds in models transformed from causal
to bidirectional attention. By simply assigning
greater weight to anchor tokens, we achieve im-
proved accuracy in text embedding tasks compared
to conventional pooling methods.

Our contributions are summarized as follows:

1. We propose a Multi-Granularity Hard-

negative (MGH) synthesis framework that ef-
fectively generates diverse negative samples
of varying difficulty levels, fully leveraging
the large model’s capability to discern the par-
tial order of text similarity. The framework
allows for controlled progression in the dif-
ficulty of the generated negative examples,
enabling subsequent text embedding models
to learn a more accurate embedding represen-
tation through a coarse-to-fine manner.

2. We propose an Anchor Token Aware (ATA)
pooling method that effectively leverages the
aggregation pattern of LLMs to acquire a
more accurate sentence representation. The
model trained with ATA pooling outperformed
previous pooling methods and, when trained
solely on publicly available retrieval data,
ranked among the top models on the MTEB
leaderboard. !

2 Method

2.1 Multi-granularity Synthetic Data
Generation

The overall framework of our proposed data syn-
thesis method is illustrated in Figure 1, which con-
sists of two primary stages. In accordance with the
setup of Wang et al. (2024), we begin by querying
LLMs to generate a list of potential tasks, catego-
rized into two types: asymmetric tasks (e.g., short-
long match, long-short match, long-long match
and short-short match), and symmetric tasks (e.g.,
semantic textual similarity, STS). The task brain-
storming process in stage 1 generates a wide range
of embedding tasks to enrich the diversity of syn-
thetic data, enriching the diversity of synthetic data.

In stage 2, using a diverse set of tasks as seeds,
we query the LLM to generate (query, positive,
negative) samples for subsequent contrastive su-
pervised training, which are then used in con-
trastive supervised training with a standard in-
foNCE objective to minimize the distance between
query and positive samples, while maximizing the
separation from negative samples:
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'The concurrent work by Li et al. (2024) achieved the
state-of-the-art result on the MTEB benchmark using publicly
available retrieval dataset. However, they adopt an in-context-
learning prompting method, which we believe is largely or-
thogonal to our approach.
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where ¢ denotes the similarity function, ¢, d*
and d~ represent the query, positive, and negative
samples respectively. Recognizing that the qual-
ity of negative samples significantly impacts the
supervised training of text-embedding models, we
aim to fully leverage the large model’s ability to
distinguish between different granularities of neg-
ative samples during the generation process. To
be specific, we formulate the synthetic target as
follows:

SS:{(Qsﬂpsv{le})} (2)

where QF represents an example query, P de-
notes its corresponding positive sample, and {/V, kS }
refers to a set of hard negative samples with vary-
ing levels of granularity indexed by k, which is set
to 4 in following experiments.

We use the template illustrated in Figure 2 to
constrain the synthesizing format. Differing from
Wang et al. (2024), our approach prompts LLM
to simultaneously generate multiple hard negative
samples {N; ,f } for a single query Q°. These nega-
tive samples are ranked based on their similarity to
the query, arranged in descending order from high-
est to lowest. This approach allows large models
to enforce similarity constraints when generating
hard negative samples, effectively mitigating the
uncontrolled variation in the hard negative sam-
ple similarity during the synthetis process across
different query samples. The effectiveness of this
approach is demonstrated in Section 5.1 through a
detailed case study.

In addition to synthetic data, we also incorpo-
rate public retrieval datasets when training the
text embedding model. To integrate coarse-to-
fine hard negative samples into the subsequent
training process, we regenerate the negative sam-
ples of the retrieval dataset, denoted as {N}?}, by
querying LLM using the same multi-granularity
approach. The refined retrieval dataset, S =
{(QF, PR {NE})}, is then combined with the
synthetic dataset S° to form the complete train-
ing dataset S.

With the multi-granularity dataset S, we adopt
a curriculum learning paradigm for the supervised
training of the text embedding model. By adjust-
ing the difficulty level k of the hard negatives, we
can progressively train a more stable and effective
model using a coarse-to-fine approach. Specifi-
cally, during the supervised learning process, we
gradually transition the negative samples fed into

Omitted for space limitations

The output should be formatted as a JSON object with a
field indicating the relative similarity level. Use the
following format as a guide:

{
"query": "QUERY_TEXT",
"positive_example": "POSITIVE_EXAMPLE_TEXT",
hard_negative_examples": [
{
"similarity_level": "high",
"text": "HIGH_SIMILARITY_NEGATIVE_EXAMPLE_TEXT”
It

"similarity level": "medium",
"text": "MEDIUM_HIGH_SIMILARITY_NEGATIVE_EXAMPLE_TEXT”

It
"similarity level": "medium",
"text": "MEDIUM_LOW_SIMILARITY_NEGATIVE_EXAMPLE_TEXT”

IRt
"similarity level": "low",
"text": "LOW_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"}
1
}

Omitted for space limitations

Please generate four negative examples for contrastive
learning based on the generated query and positive
example. These examples should be arranged in order of
decreasing similarity to the query, ranging from highly
similar to dissimilar. Ensure the similarity spans a
broad spectrum, and every negative example should be
different, without repeating words from previous
examples. Be creative!

Omitted for space limitations

Figure 2: The core template used for prompting LLMs
to generate multi-granularity hard negatives. Due to
space constraints, the full prompts are presented in Ap-
pendix A.1.

the model from Ny to Ny, with each difficulty level
occupying a quarter of the training data. Further
analysis in Section 4.1 demonstrates the effective-
ness of the proposed scheduling method.

2.2 Anchor Token Aware Pooling

After obtaining the hidden states of multiple to-
kens from the model’s final layer, an appropriate
approach is required to derive the sentence repre-
sentation vector v. In the widely adopted mean
pooling method, the last hidden states of all tokens
are averaged to form a sentence vector representa-
tion. This approach can result in the dilution of key
information in the text, as non-critical tokens are
averaged along with the more significant ones.

The proposed ATA pooling method aims to as-
sign greater weight to anchor tokens (Wang et al.,
2023a), which aggregate more semantic informa-
tion compared to other tokens. This approach al-
lows the model to adaptively allocate weights to the
parts that are most pertinent to the task, resulting
in a more effective pooling operation.

Motivated by Huang et al. (2024), we calculate
the attention weight along the Key dimension of
the attention matrix to identify anchor tokens with
stronger representational capabilities. Compared to



traditional mean pooling, this allows us to assign
higher weights to anchor tokens and more effec-
tively filter out trivial tokens that do not contribute
to the semantic information.

Specifically, let AZ denote the attention matrix
for the attention head 5 in the model’s final layer,
and let a?j represent the corresponding value of
AR[i][5], which indicates the attention score be-
tween query ¢ and key j. We define the anchor
weight of each query as follows:

H S
Ni =) log(af; - S +1) (3)
h=1 j=1

where S represents the length of the token se-
quence, and H denotes the number of attention
heads. We multiply a?j by S because, while the
sum of attention weights in the query dimension
remains constant (i.e. Zf:o a?j = 1),the expected
value of each individual element decreases to % as
the sentence length increases. Multiplying by the
sentence length helps to ensure stability across dif-
ferent sentence lengths by maintaining consistent
scaling in subsequent computations.

After obtaining the anchor weights, we normal-
ize them by applying a linear weight adjustment
along the Query dimension to compute the weight
corresponding to each token, denoted as w;, such
that the sum of all w; equals 1:

N;

Zf:l Ni

We then apply the normalized weights to
reweight the hidden states and obtain the final sen-
tence embedding v:

S
v = Z w;d; )
=1

where d; denotes the model’s last layer hidden
state of token .

“)

w;

3 Experiments

3.1 Data Synthetic Details

To ensure a fair comparison with Wang et al. (2024),
we generated an equivalent volume of synthetic
data, maintaining a consistent total token consump-
tion of 180M. In order to minimize the costs asso-
ciated with data generation, we utilized the APIs
of GPT-40 and DeepSeek. We observed that com-
pared to GPT-40, DeepSeek is relatively less cre-
ative when generating the potential tasks in stage
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Figure 3: Distribution of the task categories in the syn-
thetic data

1 and tends to produce repetitive negative samples
during stage 2. Consequently, we relied on GPT-
40 to complete all stage 1 generation processes. In
stage 2, we initially used GPT-40 to generate a suffi-
cient amount of data, which was then input as seeds
into DeepSeek. Leveraging the data cache provided
by the DeepSeek API, introducing additional seeds
as input did not incur significant additional costs.
The distribution of synthetic data across different
task types is illustrated in Figure 3.

The retrieval dataset used in supervised learning
was curated by Springer et al. (2024), which consist
of approximately 1.5 million samples, covering a
variety of languages and retrieval scenarios. In line
with LLM2Vec (BehnamGhader et al., 2024), we
only used about one-third of the curated retrieval
dataset. For more details on the dataset composi-
tion, please refer to Appendix B.2.

3.2 Experimental Details

To validate the effectiveness of our proposed fine-
grained data synthesis framework and the ATA
pooling method, we perform experiments following
the open source LLM2VEC (BehnamGhader et al.,
2024) model, while replacing the supervised train-
ing stage with our method. Specifically, we adopt
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) as the
base model. We then transform the model’s atten-
tion pattern from causal to bidirectional and inte-
grate the LoORA weights trained on the masked next-
token prediction task introduced in LLM2VEC, en-
abling the model to better adapt to bidirectional
attention patterns. This setup serves as the starting
point for our model.

For supervised training, we adopt the standard In-
foNCE loss, with both in-batch negatives and hard



FT. Data Class. Clust. Pair. Rerank. Retr. STS Summ. Avg.
Sample Num  Acc. V-Meas. AP MAP nDCG@10 Spear. Spear.
Models trained with synthetic data only
Mistralgp.4o (Chen et al., 2024) 230K 71.7 47.7 83.9 58.7 46.7 80.9 307 622
Geckoo1p-768 (Lee et al., 2024b) 6.6M 70.3 46.8 86.2 57.6 53.2 83.1 322 626
ESmistral-7o (Wang et al., 2024) 500K 78.2 50.5 86.0 59.0 46.9 81.2 319  63.1
SPEED (Chen et al., 2024) 920K 78.3 48.6 86.3 59.8 48.1 82.6 317 634
MGH(Ours) 310K 78.6 49.7 86.1 60.1 512 82.3 31.6 645
Models trained with synthetic data & public available retrieval data
GTRyx (Ni et al., 2022) 662K 67.4 424 86.1 56.7 48.5 78.4 306 59.0
text-embedding-3jarge 2 - 75.5 49.0 85.7 59.2 55.4 81.7 299 646
jina-embeddings-v3 (Sturua et al., 2024) - 82.6 453 84.0 58.1 53.9 85.8 29.7 65.5
Geckoo1p-768 (Lee et al., 2024b) >6.6M 81.2 475 87.6 58.9 55.7 85.1 326 663
ESmistral-70 (Wang et al., 2024) 1.8M 78.5 50.3 88.3 60.2 56.9 84.6 314  66.6
SPEED (Chen et al., 2024) 22M 78.4 49.3 88.2 60.8 56.5 85.5 31.1 66.5
MGH(Ours) 820K 78.8 50.1 87.9 59.8 57.5 85.6 313 67.0

Table 1: MTEB performance comparison of different synthesis models, with training conducted on synthetic data
only and on both synthetic and public retrieval dataset. The highest performances are highlighted in bold, while
the second-highest are indicated with underlines. F'T. Data Sample Num. refers to the number of (query, positive,

negative) sample pairs used for training.

negatives utilized for training. To ensure a fair com-
parison, the prompt template follows Wang et al.
(2024), as illustrated in Appendix B.2. Supervised
training on the full dataset is conducted for 1600
steps, while training on public retrieval dataset is
performed for 1000 steps, with a batch size of 64
and gradient accumulation of 8 in both cases. All
training was performed on a single 80GB H100
GPU, taking approximately 32 hours to complete
1600 training steps. Further training hyperparame-
ters are represented in Appendix B.1.

For evaluation, we assess our model on the
widely used MTEB benchmark (Muennighoff et al.,
2023), which encompasses a wide variety of text
embedding tasks across different scenarios and do-
mains. The benchmark includes 56 English em-
bedding tasks organized into 7 categories: clas-
sification (12), clustering (11), pair classification
(3), reranking (4), retrieval (15), semantic textual
similarity (10), and summarization (1).

3.3 Main Results

Table 1 presents a comparison of the performance
of our proposed method against existing data syn-
thesis approaches on the MTEB dataset. The re-
sults underscore the effectiveness of our data gen-
eration framework, demonstrating superior perfor-
mance in both the synthetic-only and full-data set-
tings. In particular, on the more challenging re-
trieval tasks, the full-data results achieved the best
performance, underscoring the efficacy of our syn-
thesis method.

Zhttps://platform.openai.com/docs/guides/embeddings

Model MTEB Score
SGPT (Muennighoff, 2022) 58.93
UDEVER-bloom-7b (Zhang et al., 2023a) 60.63
ECHO (Springer et al., 2024) 64.68
LLM2Vec (BehnamGhader et al., 2024) 64.80
NV-Embed (Lee et al., 2024a) 64.18
bge-large-en-v1.5 (Xiao et al., 2024) 64.23
bge-en-icl w/o icl (Li et al., 2024) 64.83
bge-en-icl w/ icl (Li et al., 2024) 66.08
MGH(Ours) 65.87

Table 2: Performance comparison of MTEB scores for
different models trained on publicly available retrieval
corpora. The highest performances are highlighted in
bold, while the second-highest are indicated with under-
lines.

To evaluate the effectiveness of the proposed
ATA pooling method, we compare the ATA pooling
enhanced model over previous models that lever-
age LLM for text embedding. However, prior re-
search has indicated that incorporating the training
split of the MTEB dataset during the supervised
training process introduces a significant amount of
MTEB-related data, thereby increasing the risk of
overfitting (Li et al., 2024). Therefore, we opted
not to include the second training phase proposed
by NV-Embed, which utilizes the MTEB training
split for a continuous training.

Table 2 compares the performance of our ap-
proach to existing models trained exclusively on
publicly available retrieval data. The results under
the MTEB training split free setting indicate that
our model achieved performance slightly below
the state-of-the-art model, exhibiting the effective-
ness of the ATA pooling method. Notably, the
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Figure 4: Trend of MTEB subset scores during super-
vised training across four experimental settings.

method proposed by Li et al. (2024) employed an
in-context learning approach to enhance the text
embedding quality, which operates orthogonally to
our proposed method.

4 Ablation Study

4.1 Data Synthesis and Training Strategies

In this section, we evaluate the effectiveness of the
proposed MGH synthesis framework through an
ablation study on a subset of the MTEB benchmark,
as used in Springer et al. (2024)°. We evaluate the
impact of data training order on supervised learn-
ing through the following experimental settings,
analyzing how the results evolve throughout the
training process over 1600 steps:

1. Curriculum Learning: Progressing from eas-
ier to more challenging hard negatives, as
adopted in our main approach.

2. Reverse Curriculum Learning: Progressing
hard negative samples from harder to easier.

3. Random Ordering: Randomly inputting
hard negative examples of varying difficulty.

4. Fixed Difficulty Level: Consistently using
hard negatives of a fixed difficulty level.

The results in Figure 4 demonstrate that the cur-
riculum learning strategy adopted by MGH not
only achieves the best performance but also main-
tains greater stability during training. In contrast,
the random ordering strategy predictably exhibits

3Conducting a full evaluation on the MTEB dataset is
computationally expensive, requiring over 200 hours on a
single H1I00 GPU. Therefore, a subset of the dataset was
selected for this study. Details of the subset composition can
be found in Appendix C.2.

fluctuations in the results, while the reverse curricu-
lum learning method also fails to yield satisfactory
training outcomes, as the model struggles to adapt
to the reversed difficulty progression.

Additionally, none of the four fixed difficulty
settings outperformed the curriculum learning ap-
proach. Among them, maintaining a difficulty level
of 2 or 3 yielded relatively better results, while us-
ing excessively low or high difficulty levels failed
to converge to optimal outcomes. This suggests
that overly simple negative examples may prevent
the model from learning useful knowledge, and
excessively difficult synthetic negatives may hin-
der the model’s ability to distinguish them from
positive examples at early training stages.

4.2 Pooling Methods

This section presents a detailed comparison of four
pooling methods employed in embedding tasks,
namely mean pooling, last token pooling, NV-
Embed pooling (Lee et al., 2024a), and the pro-
posed ATA pooling. The ablation experiments
leveraged publicly available retrieval datasets only,
adhering to the hyperparameter settings outlined in
Section 3.2. The evaluation is conducted using the
full MTEB benchmark, with Table 3 summarizing
their respective performances.

Pooling Method MTEB Score
mean pooling 65.41
last pooling 64.97
NV-Embed pooling 65.80
ATA pooling (Ours) 65.87

Table 3: Performance comparison of MTEB scores for
different pooling methods trained on publicly available
retrieval corpora. The highest performances are high-
lighted in bold, while the second-highest are indicated
with underlines.

The results suggest that conventional mean pool-
ing and last token pooling yield subpar perfor-
mance in text embedding tasks using bidirectional
models. On the other hand, both the NV-Embed
pooling and ATA pooling methods demonstrate fa-
vorable results, validating the necessity of adaptive
reweighting for the last hidden states.

S Further Analysis
5.1 Case Study

How does MGH enhance hard negative sam-
ple quality? We illustrate this through the ex-
ample presented in Figure 5, which demonstrates



Query: What is the Latin name for the element Sodium, giving rise to its chemical formula Na?

Positive: The Latin name for Sodium is Natrium, which is why its chemical symbol is Na. Sodium is a highly reactive alkali
metal with atomic number 11, commonly found in nature as part of compounds like table salt (sodium chloride, NaCl). The
name "Natrium" originates from the Arabic word natron, which refers to natural mineral deposits rich in sodium carbonate.

Hard Negative 1: The Latin name for Sodium is Kalium, giving rise to its chemical symbol K. Sodium is an alkali metal

reactive and never found in its elemental state in nature.

lightest element, and while not related to Sodium, it shares its essential role in chemical reactions.

Hard
with the atomic number 19 and is essential in the human body for regulating blood pressure and nerve function.
Hard Negative 2: Sodium's chemical formula is Sod, derived from its Latin name Sodium. As an alkali metal, it is highly
Hard Negative 3: The Latin name for Hydrogen is Hydrogenium, which corresponds to its symbol H. Hydrogen is the
Hard Negative 4: Sodium is often associated with salt in cooking and baking, as it is a crucial element for flavor and Easy

preservation. Its role in chemistry includes forming compounds such as NaCl, but it is better known for its culinary uses.

Figure 5: An example of a multi-granularity hard negative synthesis, randomly selected for illustration.

how MGH effectively improves the quality of hard
negative samples by leveraging multi-granularity
similarity constraints.

In this example, the data synthetic model is
tasked with generate negative samples for the Latin
name of the element Sodium. The GPT-40 model
used in this case selects Potassium, which shares
similar chemical properties with Sodium, as the
most challenging hard negative example. Subse-
quently, the model generates a fake Latin name for
Sodium as a moderately confusable negative sam-
ple, followed by answering element Hydrogen as
a more distinguishable example. While the first
three negative samples involve answering the Latin
names of chemical elements, the last simplest neg-
ative sample generated by the model focuses on
Sodium but lacks any reference to its Latin name.

As demonstrated in the example above, the
MGH approach effectively distills world knowl-
edge from LLMs, enabling the generation of multi-
ple negative samples with varying granularities. As
the examples progress from challenging to simple,
the synthetic model’s outputs range from showing
subtle differences in detail to being more easily
distinguishable. In this process, the subsequent
negative samples are adjusted based on previously
generated ones, enabling a dynamic progression of
negative sample difficulty, further enhancing the
quality of negative sample generation.

How does ATA reweight using aggregation pat-
tern? As shown in the example from Figure 6,
the aggregation pattern still remains the base model
is transformed from causal to bidirectional atten-

tion. The figure illustrates three prominent anchor
tokens: the initial token, the punctuation between
the two sentences, and the [INST] template ap-
pended to the end of the sentence. Accordingly,
these anchor tokens receive higher weight values
in the ATA weight calculation, contributing more
significantly to the subsequent computation of text
embeddings.

Through observations of numerous examples,
we found that most samples allocate a greater pro-
portion of the ATA weight to the three anchor pat-
terns mentioned above, with particular emphasis on
the [INST] token at the sentence’s end. Therefore,
the ATA pooling method captures the important
last token while also dynamically identifying key
positions within the preceding text. This approach
not only mitigates the stability issues associated
with relying solely on the last token but also as-
signs greater weight to tokens that are essential
for capturing the entire semantic meaning of the
input sequence, thereby facilitating more effective
embedding learning.

5.2 Cost of Synthetic Data

Although our model entails additional tokens to
generate multiple hard negatives per synthetic sam-
ple, the cost is offset by maintaining the same token
consumption (180M) as Wang et al. (2024), which
results in fewer synthetic samples being generated.
Under this fair comparison, the embedding model
trained with our MGH strategy outperforms pre-
vious state-of-the-art results, demonstrating that
our method is more effective under the same token
consumption.



Figure 6: The upper part illustrates the summed results
of the model’s final layer attention weights across 32
attention heads®, while the lower part shows the cor-
responding ATA weights for each token. Example is
randomly selected in STS13 evaluation split.

6 Related Work

LLM Based Text Embedding Models In recent
years, as decoder-only models have scaled up in
terms of parameters and training data, researchers
have explored the possibility of transforming next-
token prediction models into effective text embed-
ding models through continued training. Neelakan-
tan et al. (2022) was the first to apply the GPT-
3 model to text embedding tasks, leveraging the
<EO0S> token as the representation vector. Subse-
quent work by Ma et al. (2024) employed a similar
last-token pooling method, fine-tuning the LLaMA-
2 model.

However, the autoregressive training objective
imposes an inherent limitation on the model’s per-
formance, as the causal attention mask prevents
earlier tokens from accessing subsequent tokens.
SGPT (Muennighoff, 2022) addressed this limita-
tion by linearly assigning more weight to tokens
at later positions, a strategy subsequently adopted
by ESmistral-7o (Wang et al., 2024). LLM2Vec
(BehnamGhader et al., 2024) transformed the
model from causal to bidirectional attention by em-
ploying a masked next-token prediction approach,
followed by mean pooling for supervised learn-
ing. Recent work by NV-Embed (Lee et al., 2024a)
introduced an additional cross-attention layer for

“For space limitations, the individual attention maps from
all 32 attention heads are provided in Appendix D.2.

hidden state pooling, simultaneously removing
the causal mask. Additionally, Echo embeddings
(Springer et al., 2024) repeated a text twice and
used the second instance to compute the represen-
tation vector. In this work, we attempt to address
the insufficient pooling problem in LLM based em-
bedding models by an adaptive weighting strategy
using the model’s aggregation pattern.

Data Synthesis for Embedding Models High-
quality data is crucial for training effective text
embedding models. Previous studies (Nogueira
et al., 2019; Wang et al., 2023b) have explored
expansion-based approaches to augment document
and query data. With the advancements in large lan-
guage model (LLM) capabilities, recent research
has focused on leveraging LLMs to generate large
amounts of high-quality supervised training data
(Wang et al., 2024; Jeronymo et al., 2023; Sturua
et al., 2024). In domain-specific retrieval, studies
(Dai et al., 2022; Khramtsova et al., 2024) have
shown that LLM-generated query-document pairs
significantly improve embedding quality in domain-
specific retrieval tasks. Additionally, Gecko (Lee
et al., 2024b) curates web data to enable LLMs to
produce high-quality synthetic samples. Our work
focuses on how to enable large models to generate
multi-granularity synthetic negative examples, and
achieves more efficient and stable text embedding
model training by controlling the training difficulty.

7 Conclusion

In this work, we evaluate the importance of hard
negative granularity when training text embedding
models using contrastive learning. Through the
proposed MGH synthesis framework, we gener-
ate diverse negative samples at varying levels of
similarity, enabling the embedding model to learn
more nuanced semantic representations by coarse-
to-fine curriculum learning approach. Experimen-
tal results demonstrate that our methods achieve
state-of-the-art performance on the MTEB bench-
mark, outperforming existing synthesis strategies
both with synthetic-only and combined datasets.
Additionally, our proposed ATA pooling method
effectively leverages the aggregation patterns inher-
ent in large language models, improving sentence
pooling efficacy without introducing extra parame-
ters. Ablation studies confirm the effectiveness of
our MGH framework and ATA pooling method in
enhancing text embedding model performance and
training stability.



8 Limitations

Despite the effectiveness of our method, there are
several limitations that should be acknowledged:
(1) Due to the costs associated with API usage, we
limited the synthetic data generation to the same
token volume as used in previous studies (Wang
et al., 2024). This constraint prevented us from
exploring whether a larger synthetic dataset could
further improve the performance of the text em-
bedding model. We leave this exploration to future
work, where more extensive synthetic data could be
generated to assess the scalability and potential per-
formance gains. (2) To facilitate comparisons with
prior work (BehnamGhader et al., 2024; Springer
et al., 2024), we used Mistral-7b-v0.2-Instruct as
our base text embedding model. Given the con-
tinuous advancements in 7b-level models, we plan
to investigate more powerful models as our base
embedding model in our future work.
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A Experimental Details for Data
Synthesis

A.1 Prompts for Data Synthesis

To enable large models to generate multiple hard
negatives with varying granularities, we extend and
refine the prompt template proposed by Wang et al.
(2024). Specifically, we modify the original tem-
plate to guide the model in producing negative sam-
ples with different levels of similarity to the query,
thereby enhancing the diversity and difficulty of
the generated data. Table 5 illustrates the complete
prompt template used to generate short-long match
tasks as an example.

B Experimental Details for Supervised
Training

B.1 Hyperparameters

We present the hyperparameters involved in the su-
pervised training in Table 4. The max sequence
length specifies that any text sequence exceeding
this number of tokens is truncated in our text em-
bedding model.

B.2 Public Retrieval Datasets

We follow the training data setup from previous
work (Springer et al., 2024; BehnamGhader et al.,
2024), adopting the dataset configuration used by
Wang et al. (2024), which includes the following
datasets: ELIS (Fan et al., 2019) (sample ratio 0.1)
, HotpotQA (Yang et al., 2018), FEVER (Thorne
et al., 2018), MIRACL (Zhang et al., 2023b), MS-
MARCO (Bajaj et al., 2016) passage ranking (sam-
ple ratio 0.5) and document ranking (sample ratio
0.2), NQ (Karpukhin et al., 2020), NLI (Gao et al.,
2021), SQuAD (Karpukhin et al., 2020), TriviaQA
(Karpukhin et al., 2020), Quora Duplicate Ques-
tions (DataCanary et al., 2017) (sample ratio 0.1),
Mr-TyDi (Zhang et al., 2021), DuReader (Qiu et al.,
2022), and T2Ranking (Xie et al., 2023) (sample
ratio 0.5). The full supervised training data has
approximately 1.5M training examples. The in-
structions applied to each dataset are in line with
BehnamGhader et al. (2024), which are listed in
Table 6.
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Hyperparameter Value
Batch Size 64
Gradient Accumulation Steps 8
Learning Rate 2e-5
Max Sequence Length 512
LoRA rank 16
LoRA « 32
Optimizer Adam
Training Steps - Synthetic Only 600
Training Steps - Public Only 1000
Training Steps - Synthetic & Public 1600
Warmup Steps - Synthetic Only 200
Warmup Steps - Public Only 300
Warmup Steps - Synthetic & Public 300

Table 4: Hyperparameters used in the experiments

C Experimental Details for Evaluation

C.1 Prompts for MTEB Evaluation

For a fair comparison with previous work (Wang
et al., 2024; BehnamGhader et al., 2024; Lee et al.,
2024a) evaluated on MTEB, we adopted the same
set of prompt instructions used in their evaluations
when assessing our model’s performance. The in-
structions applied to each evaluation dataset are
listed in Table 7.

C.2 Subset Used for Ablation Study

To speed up evaluation in the ablation study,
we follow Springer et al. (2024) by selecting
a representative subset of the MTEB evalua-
tion benchmark, which includes the following
datasets: FiQA2018, SCIDOCS, SciFact, NF-
Corpus, TwitterSemEval2015, TwitterURLCorpus,
ImdbClassification, AmazonReviewsClassification,
TweetSentimentExtractionClassification, MTOP-
DomainClassification, TwentyNewsgroupsClus-
tering, BiorxivClusteringS2S, MedrxivCluster-
ingS28S, StackOverflowDupQuestions, AskUbun-
tuDupQuestions, SciDocsRR, BIOSSES, STS12,
STS13, STS14, STS15, STS16, STS17, STS22,
STSBenchmark, and SICK-R.

D Additional Results
D.1 Full MTEB Results

In this section, we present the complete results for
all 56 MTEB datasets across the three experimental
settings of our main experiment: public retrieval
data only, synthetic data only, and full data. The
corresponding results are shown in Table 8.


https://doi.org/10.1162/tacl_a_00595
https://doi.org/10.1162/tacl_a_00595
https://doi.org/10.1162/tacl_a_00595

D.2 Full Attention Matrices

As shown in Figure 7, after transforming the at-
tention mask of the base model (i.e. Mistral-7B-
Instruct-v0.2) from causal to bidirectional, the at-
tention heads continue to exhibit distinct patterns,
with some heads focus on tokens in their origi-
nal positions, while others show higher attention
scores across all query dimensions at the current
position (e.g. Head 1, Head 6, Head 21 and Head
22). The latter pattern reflects the characteristics
of anchor tokens, allowing for more effective ag-
gregation of information from the entire sentence.
Consequently, in our ATA pooling method, these
attention heads are assigned with greater pooling
weight.
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Brainstorm a list of potentially useful text retrieval tasks.

Here are a few examples for your reference:
- Retrieve relevant documents for a short keyword web search query that asks for weather information.
- Search for documents that answers a FAQ-style query on children’s nutrition.

Please adhere to the following guidelines:
- Specify what the query is, and what the desired documents are.
- Each retrieval task should cover a wide range of queries, and should not be too specific.

Your output must always be a python list of strings only, with about 20 elements, and each element corresponds to a distinct
retrieval task in one sentence. Do not explain yourself or output anything else. Be creative!
You have been assigned a retrieval task: {task}

Your mission is to write one text retrieval example for this task in the following JSON format. The JSON object must contain
the following keys:

- "user_query": a string, a random user search query specified by the retrieval task.

- "positive_document": a string, a relevant document for the user query.

- "hard_negative_document": a list of strings, hard negative documents that only appears relevant to the query.

The output should be formatted as a JSON object with a field indicating the relative similarity level of hard negative examples.
Use the following format as a guide:

{
"user_query": "QUERY_TEXT",
"positive_document": "POSITIVE_EXAMPLE_TEXT",
"hard_negative_document": [
{
"similarity_level": "high",
"text": "HIGH_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"
1.4
"similarity_level": "medium",
"text": "MEDIUM_HIGH_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"
1.4
"similarity_level": "medium",
"text": "MEDIUM_LOW_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"
1.4
"similarity_level": "low",
"text": "LOW_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"
}
]
}

Please adhere to the following guidelines:

- The "user_query" should be {query_type}, {query_length}, {clarity}, and diverse in topic.

- All documents must be created independent of the query. Avoid copying the query verbatim. It’s acceptable if some parts of
the "positive_document" are not topically related to the query.

- All documents should be at least {num_words} words long.

- The "hard_negative_document" contains some useful information, but it should be less useful or comprehensive compared
to the "positive_document". Please generate four hard negative documents for contrastive learning based on the generated
query and positive example. These examples should be arranged in order of decreasing similarity to the query, ranging from
highly similar to dissimilar. Ensure the similarity spans a broad spectrum, and every negative example should be different,
without repeating words from previous examples.

- Both the query and documents should be in {language}.

- Do not provide any explanation in any document on why it is relevant or not relevant to the query.

- Both the query and documents require {difficulty} level education to understand.

Your output must always be a JSON object only, do not explain yourself or output anything else. Be creative!

Table 5: Prompt template for the short-long matching task. For placeholders, “{query_type}” € {extremely long-tail,
long-tail, common}, “{query_length}” € {less than 5 words, 5 to 15 words, at least 10 words}, “{difficulty}” €
{high school, college, PhD}, “{clarity}” € {clear, understandable with some effort, ambiguous}, “{num_words}” €
{50, 100, 200, 300, 400, 500}.
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Task Name

Instruction

NLI

DuReader

ELI5

FEVER

HotpotQA

MIRACL

MrTyDi

MSMARCO Passage
MSMARCO Document
NQ

QuoraDuplicates

SQuAD
T2Ranking
TriviaQA

Given a premise, retrieve a hypothesis that is entailed by the premise

Retrieve semantically similar text

Given a Chinese search query, retrieve web passages that answer the question
Provided a user question, retrieve the highest voted answers on Reddit ELI5 forum
Given a claim, retrieve documents that support or refute the claim

Given a multi-hop question, retrieve documents that can help answer the question
Given a question, retrieve Wikipedia passages that answer the question

Given a question, retrieve Wikipedia passages that answer the question

Given a web search query, retrieve relevant passages that answer the query

Given a web search query, retrieve relevant documents that answer the query
Given a question, retrieve Wikipedia passages that answer the question

Given a question, retrieve questions that are semantically equivalent to the given
question

Find questions that have the same meaning as the input question

Retrieve Wikipedia passages that answer the question

Given a Chinese search query, retrieve web passages that answer the question
Retrieve Wikipedia passages that answer the question

Table 6: The prompt instructions used for public retrieval datasets, following BehnamGhader et al. (2024)
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Task Name

Instruction

AmazonCounterfactualClassification

AmazonPolarityClassification
AmazonReviewsClassification
Banking77Classification
EmotionClassification

ImdbClassification

MassivelntentClassification
MassiveScenarioClassification
MTOPDomainClassification
MTOPIntentClassification
ToxicConversationsClassif.
TweetSentimentClassification
ArxivClusteringP2P

ArxivClusteringS2S
BiorxivClusteringP2P
BiorxivClusteringS2S
MedrxivClusteringP2P
MedrxivClusteringS2S
RedditClustering
RedditClusteringP2P
StackExchangeClustering
StackExchangeClusteringP2P
TwentyNewsgroupsClustering
SprintDuplicateQuestions
TwitterSemEval2015
TwitterURLCorpus
AskUbuntuDupQuestions
MindSmallReranking
SciDocsRR
StackOverflowDupQuestions
ArguAna

ClimateFEVER

CQADupstackRetrieval

DBPedia
FEVER
FiQA2018
HotpotQA
MSMARCO
NFCorpus
NQ

QuoraRetrieval

SCIDOCS
SciFact
Touche2020
TRECCOVID
STS*
SummEval

Classify a given Amazon customer review text as either counterfactual or not-
counterfactual

Classify Amazon reviews into positive or negative sentiment

Classify the given Amazon review into its appropriate rating category

Given a online banking query, find the corresponding intents

Classify the emotion expressed in the given Twitter message into one of the six
emotions: anger, fear, joy, love, sadness, and surprise

Classify the sentiment expressed in the given movie review text from the IMDB
dataset

Given a user utterance as query, find the user intents

Given a user utterance as query, find the user scenarios

Classify the intent domain of the given utterance in task-oriented conversation
Classify the intent of the given utterance in task-oriented conversation

Classify the given comments as either toxic or not toxic

Classify the sentiment of a given tweet as either positive, negative, or neutral
Identify the main and secondary category of Arxiv papers based on the titles and
abstracts

Identify the main and secondary category of Arxiv papers based on the titles
Identify the main category of Biorxiv papers based on the titles and abstracts
Identify the main category of Biorxiv papers based on the titles

Identify the main category of Medrxiv papers based on the titles and abstracts
Identify the main category of Medrxiv papers based on the titles

Identify the topic or theme of Reddit posts based on the titles

Identify the topic or theme of Reddit posts based on the titles and posts

Identify the topic or theme of StackExchange posts based on the titles

Identify the topic or theme of StackExchange posts based on the given paragraphs
Identify the topic or theme of the given news articles

Retrieve duplicate questions from Sprint forum

Retrieve tweets that are semantically similar to the given tweet

Retrieve tweets that are semantically similar to the given tweet

Retrieve duplicate questions from AskUbuntu forum

Retrieve relevant news articles based on user browsing history

Given a title of a scientific paper, retrieve the titles of other relevant papers
Retrieve duplicate questions from StackOverflow forum

Given a claim, find documents that refute the claim

Given a claim about climate change, retrieve documents that support or refute the
claim

Given a question, retrieve detailed question descriptions from Stackexchange that
are duplicates to the given question

Given a query, retrieve relevant entity descriptions from DBPedia

Given a claim, retrieve documents that support or refute the claim

Given a financial question, retrieve user replies that best answer the question

Given a multi-hop question, retrieve documents that can help answer the question
Given a web search query, retrieve relevant passages that answer the query

Given a question, retrieve relevant documents that best answer the question

Given a question, retrieve Wikipedia passages that answer the question

Given a question, retrieve questions that are semantically equivalent to the given
question

Given a scientific paper title, retrieve paper abstracts that are cited by the given paper
Given a scientific claim, retrieve documents that support or refute the claim

Given a question, retrieve detailed and persuasive arguments that answer the question
Given a query on COVID-19, retrieve documents that answer the query

Retrieve semantically similar text.

Given a news summary, retrieve other semantically similar summaries

Table 7: The prompt instructions used for MTEB benchmark evaluation, following Wang et al. (2024). The "STS*"

instruction applies to all STS tasks.
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Dataset Public Retrieval Data Only ~ Synthetic Data Only  Full Dataset
AmazonCounterfactualClassification 80.1 78.7 79.2
AmazonPolarityClassification 94.0 94.4 95.9
AmazonReviewsClassification 51.8 54.1 55.8
ArguAna 60.2 51.4 61.3
ArxivClusteringP2P 48.1 50.7 50.3
ArxivClusteringS2S 46.0 472 46.9
AskUbuntuDupQuestions 64.2 66.3 66.1
BIOSSES 85.6 85.1 87.5
Banking77Classification 88.5 88.3 89.2
BiorxivClusteringP2P 37.7 43.8 42.7
BiorxivClusteringS2S 36.9 41.4 41.2
CQADupstackRetrieval 48.8 443 47.1
ClimateFEVER 354 26.0 37.8
DBPedia 51.5 45.8 52.3
EmotionClassification 51.2 53.4 51.9
FEVER 91.2 79.1 89.4
FiQA2018 54.1 45.8 55.8
HotpotQA 77.6 57.9 75.9
ImdbClassification 90.3 93.4 94.2
MSMARCO 43.4 29.3 42.4
MTOPDomainClassification 96.3 95.7 96.6
MTOPIntentClassification 86.5 874 87.0
MassivelntentClassification 80.1 80.6 80.3
MassiveScenarioClassification 82.1 81.8 82.4
MedrxivClusteringP2P 322 34.8 33.6
MedrxivClusteringS2S 325 354 34.8
MindSmallReranking 32.5 33.8 333
NFCorpus 394 37.9 38.5
NQ 65.9 57.7 66.9
QuoraRetrieval 89.5 86.0 89.1
RedditClustering 63.9 61.7 64.8
RedditClusteringP2P 66.8 64.1 67.3
SCIDOCS 22.0 23.7 22.7
SICK-R 83.5 80.4 83.8
STS12 76.6 75.4 79.8
STS13 86.8 86.6 88.3
STS14 83.1 824 85.6
STS15 88.5 88.6 91.3
STS16 85.9 86.6 88.1
STS17 91.7 87.0 91.9
STS22 67.9 66.5 69.7
STSBenchmark 87.9 84.4 89.7
SciDocsRR 84.4 85.7 84.7
SciFact 78.6 74.1 76.4
SprintDuplicateQuestions 95.3 94.7 95.3
StackExchangeClustering 72.9 71.3 72.6
StackExchangeClusteringP2P 37.1 43.5 429
StackOverflowDupQuestions 54.1 54.7 55.0
SummEval 31.1 31.6 313
TRECCOVID 81.4 81.3 82.2
Touche2020 23.3 26.6 24.6
ToxicConversationsClassification 66.9 69.8 68.8
TweetSentimentExtractionClassification 63.7 65.3 64.8
TwentyNewsgroupsClustering 53.4 53.2 53.8
TwitterSemEval2015 81.1 71.5 81.5
TwitterURLCorpus 87.1 86.3 87.0
Average 65.9 64.5 67.0

Table 8: Complete MTEB evaluation results for each dataset. Detailed evaluation metrics and dataset information
are available in Muennighoff et al. (2023).
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Figure 7: The individual attention matrices from all 32 attention heads in the last layer of the bidirectional model,
obtained from a randomly selected example in the STS13 dataset.
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