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Abstract

Time‑series captioning is highly relevant in the industrial monitoring tasks: summariza-
tion of characteristic patterns and trends in time series can facilitate data analytics and
enable flexible user experience. Yet, due to the scarcity of labeled data, existing data-driven
methods have not seen definitive successes so far, while approaches relying on LLMs are im-
practical in real‑world settings due to privacy, cybersecurity, and computational constraints,
not to mention their big carbon footprint. In this work we ask whether a small model trained
on a small dataset can produce accurate, relevant, and readable time series summaries. We
propose a lightweight encoder‑decoder architecture trained with a novel cross-modal au-
toencoding method and demonstrate that, despite its size, the model achieves performance
comparable to the state‑of‑the‑art GPT‑4o and outperforms existing open‑source baselines.
Our results suggest that effective time series captioning is feasible under realistic industrial
requirements.

1 Introduction

Automatic generation of time series descriptions is highly demanded in such domains as finance, weather
forecasting, medicine, Internet of Things, and industry, and numerous systems were developed over the years
to address this task (Kukich, 1983; Goldberg et al., 1988; Sripada et al., 2001; Ferres et al., 2006; Yu et al.,
2007; Hunter et al., 2008; Carberry et al., 2013; Braun et al., 2018). Traditionally, they involved complex
rule-based approaches, costly and non-generalizable. In contrast to other natural language generation
(NLG) tasks (such as image captioning), data-driven time series summarization remains hampered by the
scarcity of labeled datasets due to high annotation costs and confidentiality restrictions. With the recent
surge in popularity of large language models (LLMs), there have been attempts to apply them to a variety
of tasks, including time series classification and forecasting Gruver et al. (2024); Ansari et al. (2024) . Al-
though LLM prompting may seem appealing due to the absence of data science overhead, in practice most
such approaches result in inaccurate predictions (Zhang et al., 2024) , not to mention the disproportional
carbon footprint of LLMs and lack of control.

Time series summarization is highly relevant in the industry, and in this work we propose an approach
to efficient and accurate time series summarization in the industrial context with limited labeled data and
develop a solution for operator decision support. To ensure safe and efficient production, plant operators
monitor numerous processes. In case of anomalies or emergencies, they need to quickly identify the source
of the problem and introduce corrective actions. To do so, operators could invoke a display of sensor readings
or trigger a forecast of a signal. However, screen space is limited, and changing user interface in industrial
control systems is a highly costly and slow process (Yaqub & Alsabban, 2023) . A convenient alternative or
complement to showing a plot of a signal could be its compact description. Fast automatic signal summariza-
tion would also benefit field operators, who may at best have a mobile device with a small screen or none at all.
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A text or audio message, e. g. ‘Temperature in boiler X was stable and then increased sharply over the past
several minutes’, instead of [00:00:00 52.4676; 00:01:00 51.5642; 00:02:00 52.8840; 00:03:00 53.6723; 00:04:00
52.3768; 00:05:00 54.6674; 00:06:00 57.7941; 00:07:00 60.7138; 00:08:00 64.8411; 00:09:00 69.7367; 00:10:00
73.6085; 00:11:00 76.4305; 00:12:00 77.3991; 00:13:00 79.7648; 00:14:00 80.8566], could be highly helpful and,
unlike a plot, easy to integrate. In the industry, safety is paramount, therefore, a quick response of the
operator in case of failure is critical to prevent losses, downtime, and hazards to the environment and
human health. For this reason, prediction speed and accuracy are crucial. In addition, due to stringent
cybersecurity and reliability requirements, many industrial DCS and SCADA systems are air‑gapped from
external networks, therefore, models must run offline (Knapp, 2024) . They also need to be fast and
sufficiently compact to be deployable across various control systems, most of which are CPU-only.

In view of the above, there are several requirements to time series summarization: faithfulness to input
(truthfully describing relevant properties of time series), readability (grammatical and stylistic correctness).
Practically, prediction speed, as well as independent and efficient offline deployment preserving privacy of
customer data, are critical factors for industrial applications.

To satisfy these requirements, we propose Cross-modal Autoencoding for Time series Summarization (CATS)
for accurate and efficient generation of time series descriptions using a model trained with a novel technique
of cross-modal autoencoding on a small dataset. Specifically, we make the following contributions: (1)
a compact multimodal model, CATS, consisting of a time series encoder and a text decoder, which can
be efficiently pretrained on unlabeled data; (2) a novel cross-modal autoencoding method as a training
technique for multimodal NLG with limited annotated data; (3) a new metric, TrendScore, providing a
realistic evaluation of time series descriptions, in contrast to traditional NLG scores, which we show to be
misleading for this task; (4) a demonstration of a successful application of our solution on describing real
industrial data.

2 Related Work

For a long time, time series captioning was on the margin of NLG research. Existing works involved elaborate
rule-based systems relying heavily on linguistic knowledge and domain heuristics (Kukich, 1983; Goldberg
et al., 1988; Sripada et al., 2001; Yu et al., 2007; Portet et al., 2009; Carberry et al., 2013; Braun et al., 2018).
These systems were highly costly and non-generalizable (Reiter & Dale, 1997; Gatt & Krahmer, 2018).

Even after the advent of rather capable language models (LMs) , surprisingly few studies tried using them
in the time series domain and building data-driven systems. Murakami et al. (2017) generate stock market
comments with an encoder-decoder model trained on a dataset of 7351 samples. Using embeddings of long-
and short-term time series, a decoder generates placeholders replaced at test time with arithmetic operations
to copy numeric values. Jhamtani & Berg-Kirkpatrick (2021) first learn to identify a small predefined set of
patterns in time series, which a used by an LSTM to generate a description. 5700 stock price samples were
crowdsourced for the task. Harris & Zaki (2022) generate simple summaries of health data with an encoder-
decoder model learning a template and identifying values to fill in. Data from 9.9k users was annotated
with rule-based methods, which constrained generation capabilities. Cai et al. (2024) pre-train a model
on 14,650 samples on reconstruction and matching tasks before fine-tuning on captioning. Only limited
examples are provided.

In view of the surge in popularity of LLMs, a number of studies attempted applying them to time series. An
overview of such approaches is provided by Zhang et al. (2024), namely: prompting (passing time series to
LLMs directly as raw text (Xue & Salim, 2023; Gruver et al., 2024)), quantization (discretizing time series into
bins (Ansari et al., 2024)), aligning (learning time series embeddings aligned with language (Jin et al., 2023)),
vision as bridge (plotting time series and using vision-language models (Zhang et al., 2023)), tool integration
(adopting LLMs to output dedicated tools). Most of the studies deal with tasks such as forecasting or classifi-
cation and achieve performance that is overall on par with existing models (which are usually much more com-
pact and efficient). Few studies tackle time series description, such as Zhang et al. (2023), yet no conclusive
evaluation is available. In more recent works, time series representations are aligned with LLM embeddings:
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Figure 1:

CATS architecture: during the main training stage, text is generated based on a time series
embedding and preceding text tokens (green arrows). The flow is the same at inference, when
signal is received from the plant and the generated summary is presented to the operator. During
the cross-modal autoencoding pretraining stage, text embeddings are fed back into the encoder
to recreate the time series (blue arrows). Optionally, the model can be pretrained with unlabeled
data (lilac arrows)

Chow et al. (2024) concatenate outputs of a time series encoder with text embeddings and feed them to an
LLM; the encoder is trained while prompting a frozen LLM with classification and captioning tasks;
Trabelsi et al. (2025) first train a model to align time series as string tokens with text embeddings, and
then generate several candidates for input time series and prompt an LLM to summarize them.

3 CATS: Generating Time Series Descriptions

To enable efficient generation of time series descriptions that are not only grammatical and fluent but also
faithful to input and its most characteristic properties, we need a model that is compact, supports transfer
learning, and can be trained to capture a mapping between patterns in the source modality (time series) and
references to them in the target modality (text), even with little data, which is always scarce in the industry.
The proposed architecture and training technique that fulfill these properties are described below.

3.1 Model Architecture

For efficient summarization, the model is composed of a dedicated time series encoder, PatchTST (Nie et al.,
2022), and a lean text decoder, GPT-2 (Radford et al., 2019), connected via cross-attention (Vaswani et al.,
2017), which has been successfully adopted in numerous works (Ondeng et al., 2023). A pretrained GPT-2
generates fluent text while being compact, and PatchTST has shown robust performance across a variety
of look-back windows and prediction horizons and can be configured to match GPT-2 in the number of
layers (12), attention heads (12), and the embedding dimension (768). It can also be pretrained with
unlabeled data.
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The architecture is shown in Fig. 1. In the encoder, since time series are not stationary and come from
different sensors, each window is independently standardized, then divided into patches of length 5 with
stride 3. The patches go through a linear layer, and sine-cosine positional encoding is added to its output,
which is then fed into the attention block. Each such block includes self-attention (with query, key and value
coming from the time series), a feed-forward layer and a residual connection. The output is passed to the
decoder cross-attention block (with key-value pairs from the time series, and query from its caption).

Descriptions are generated autoregressively, beginning from the ‘BOS’ token. Tokens are passed into the
decoder embedding layer, then positional encoding is added to the embeddings, which are further passed
to the decoder self-attention blocks (with query, key and value all coming from the text modality) and
cross-attention blocks (with query coming from the text and key and value pairs — from the encoder
self-attention block). The self-attention block in the decoder includes causal masking, which prevents the
model from attending to future tokens. The output of the final attention block is passed to a linear layer,
followed by softmax, producing next-token probabilities for text generation. Thus, during training on labeled
data, the model learns the conditional probability of a sequence of text tokens Y of length N given time
series X: P (Y | X) =

∏N
i=1 P (yi | y1, . . . , yi−1, X). Self-attention is first applied to the target sequence,

capturing the probability of each token given the past tokens, and subsequently, cross-attention ensures
that the text is learned in alignment with the time series data. During training, categorical cross-entropy,
− 1

N

∑N
i=1

∑V
k=1 yi,k log(ŷi,k), where V is vocabulary size, is minimized over the decoder output.

3.2 Cross-Modal Autoencoding

Although cross-attention enables the flow of information from the time series encoder to the text decoder, the
model may still overfit to the text distribution and the time series vocabulary without necessarily learning to
map words back to patterns in time series. Categorical cross-entropy would not be sufficient to control that,
since a crucial word, such as ‘increase’, ‘oscillate’, or ‘plummet’, is but one token in a sequence, compare:
‘The speed decreases slightly and stabilizes for a short time, then rises again...’ with a candidate description
‘The speed increases slightly and stabilizes for a short time, then drops again...’ Only 2 of 13 words are
wrong, and the loss would be low, yet these two words completely flip the meaning. See also Sec. 4.3.2.

To prevent such shortcuts, we propose to strengthen the alignment of two modalities through a novel pre-
training method: cross-modal autoencoding. Intuitively, the trends of a time series should be reconstructible
from its description (relying on words such as ‘climb’, ‘fall’ or ‘stabilize’). Using this intuition, we pretrain
on a reverse task: recreating time series from text. The model thus learns the probability of a time series X
of length M given word tokens Y : P (X | Y ) =

∏M
j=1 P (xj | x1, . . . , xj−1, Y ). In this case, embeddings of the

description are fed back into the encoder in cross-attention mode (with key, value pairs coming from the text,
and query — from the self-attention layer of the encoder). This flow is marked by blue arrows in Fig. 1. Mean
Squared Error (MSE) between the recreated and original time series, 1

M

∑M
j=1(xj − x̂j)2, is back-propagated,

reinforcing the learned mapping between time series patterns and phrases in their descriptions.

3.3 Multimodal Training

To generate accurate, relevant and readable time series summaries, the model must learn salient representa-
tions of both modalities and a robust mapping between them. To this end, several strategies are used.

To learn robust representations of time series, the encoder is first pretrained on the classical tasks of
forecasting and autoencoding in a in a self-supervised manner, utilizing unlabeled data. In forecasting, at
time t0, based on a window of N minutes from t0−N to t0, the model is to predict the next data point t1.
The autoencoding task involves reconstructing a time series window from t0 to tN . Pretraining is done by
minimizing the MSE loss. In our experiments, we compare model performance with and without pretraining.

The text decoder is initialized with open-source GPT-2 weights to foster fluency and grammatical correct-
ness of generated text. At inference, a temperature of 0.5 was used to control randomness in token sampling.

The model as a whole is trained on the main task of time series description: for a time series from t0 to tN ,
it generates a caption, which is compared to the ground truth, and categorical cross-entropy is minimized.
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For stronger multimodal representation learning, the model is pretrained using the novel cross-modal
autoencoding method, whereby the model first generates textual descriptions of time series and then
reconstructs the time series based on the produced text, simultaneously minimizing the loss on both tasks
(categorical cross-entropy for text and MSE for time series). For balanced training, the text generation loss
and the time series reconstruction loss are scaled using a coefficient α (empirically chosen as 0.5) such that
the combined loss for time series X of length N and its textual description Y of length M with vocabulary
size V is:

L = α − 1
N

N∑
i=1

V∑
k=1

yi,k log(ŷi,k) + (1 − α)
M∑

j=1
(xj − x̂j)2 (1)

To enable reconstruction, the model is first trained to minimize the cross-entropy loss on text generation, and
once it drops below 1, the decoder is frozen, and the cross-modal loss is minimized. To avoid overfitting, after
5 epochs, all layers are unfrozen and normal training is resumed, minimizing cross-entropy. This method
allows training an accurate text generation model, faithfully describing time series, without expensive data
annotation –– by relying on a small labeled dataset.

Training was done using Adam optimizer with a learning rate of 4×10−6 and early stopping (with a patience
of 5 epochs and min. delta 0.001) for 25-30 epochs. All experiments were run with 10 random seeds.

4 Experimental Setup

Below we describe the collected data as well as the baselines and the evaluation methodology.

4.1 Data Collection

One important problem hindering publications on the topic of automatic time series summarization is data
scarcity and absence of benchmarks. The few existing studies (see Sec. 2) annotate their own data (occa-
sionally using templates), which often appears too simplistic. Moreover, existing work focuses on specific
domains, such as weather or medicine, with characteristic lexical and stylistic traits, which limit their gen-
eralizability (consider words like ‘cloudy’, ‘feverish’, or ‘skyrocketing stock prices’). Of the few studies, only
one published the data. It comes from the financial domain, which reflects in the text style, but descriptions
are sufficiently generic for a quantitative test. The evaluation on this dataset is reported in Sec. 5.4.

Due to the limitations of this dataset (see details in Sec. 5.4), we collected our own data both for training and
qualitative testing. We used a proprietary industrial dataset that included recorded temperatures, pressures,
flows, and other signals. To model real-world use cases, we randomly sampled 10-minute windows (a length
common in forecasting and similar tasks in production), which were annotated by 41 Master’s students, each
describing at least 10 samples. Since this work is driven by industrial requirements, the annotators were
instructed to describe samples accurately, yet concisely, capturing the main patterns and trends, and using
the word ‘Variable’ as a placeholder, such that in production it could be substituted with ‘temperature’,
‘speed’, ‘level’, etc. Descriptions had to be stylistically neutral and generic. The resulting dataset consisted of
416 samples (split into 250 train, 66 dev and 100 test). In addition, 6162 unlabeled time series windows were
randomly sampled for pretraining. To compensate for the modest dataset size, we carried out an extensive
human evaluation: the 100 test samples were each rated by 5 users, resulting in 500 evaluated time series and
1320 description candidates in total — with moderate intraclass correlation (Shrout & Fleiss, 1979): ICC3 =
0.337, p-value 0.05. Importantly, absence of good-quality open datasets of time series descriptions motivates
this work, and the contributed novel cross-modal autoencoding method is aimed to train sufficiently accurate
models even with little data.

4.2 Baselines

Time series summarization is a very young field, with no established baselines. At the same time,
given the current surge of interest to LLMs, a number of studies applied LLMs such as GPT-2 and
Llama 2 to time series (see Sec. 2). Following these, we used several LLMs as a baseline, prompted to
describe time series in three different formats: as raw values (floating-point time series are passed as a
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Table 1: Automated metrics: classical scores do not reflect the accuracy of trend descriptions: the semanti-
cally similar examples 1-4 are scored lower than 5-7, where predictions are wrong

Prediction Reference BLEU ROUGE SPICE METEOR

1 Value declines gradually Variable experiences a
decreasing trend

0.00 0.00 0.00 0.00

2 Variable climbs up Variable experiences an
increasing trend

0.17 0.25 0.33 0.10

3 Variable has a stationary trend Variable maintains the same
stable value

0.13 0.17 0.22 0.14

4 Variable experiences fluctuations Variable oscillates between a higher
and a lower values

0.00 0.07 0.00 0.03

5 Variable maintains a constant value
followed by an increasing trend in value

Variable demonstrates an overall
decreasing trend

0.23 0.32 0.31 0.16

6 Variable climbs up the incline and is
stable at the end

Variable oscillates between values
and has a lot of noise

0.27 0.27 0.18 0.12

7 Variable demonstrates an overall
decreasing trend

Variable experiences an
increasing trend

0.50 0.55 0.44 0.21

string directly); as rounded values (time series are rounded off to integers and passed to an LLM as a
string); as Symbolic Aggregate Approximation (SAX) (data is binned into a sequence of discrete values).
All models including CATS were prompted with: ‘Describe the pattern or trend of the following time series
in one sentence capturing its main properties: avoid references to exact times and values. Use the term
‘variable’ to refer to the time series’. Cf. Trabelsi et al. (2025): ‘Describe this time series <time series>
encoded by <time series embedding>’.

Our research is driven by industry demand. As we briefly explain in Sec. 1, industries have strict data privacy
and cybersecurity requirements, and control systems commonly operate offline, often on CPU-only legacy
hardware, which limits the choice of models to open-source LLMs deployed locally (similar limitations also ap-
ply to other domains, e.g. healthcare). Other critical factors are prediction speed and computational resources,
therefore, the models need to be compact, so even 7B-scale models typically cannot be deployed in practice.
In view of these criteria, we used several legally approved locally available LLMs as a baseline: GPT-2,
instruction-tuned Mistral 7B (v0.3) (Jiang et al., 2023), Llama 2 (Touvron et al., 2023), Llama 3.1 and
Gemma 7B (Team et al., 2024), and GPT-4o on the public financial dataset. For the sake of completeness,
in initial experiments, we also tested vision-language models, but abandoned the path due to poor results —
cf. Llava 7B summary of Fig. 4 (a): The image shows a downward trending line graph representing volume
fluctuations, with two lines indicating different sets of data. Overall, since 1D time series are much more
compact than a 3D plot, we did not consider applying image captioning, which addresses different challenges,
but rather focused on the underexplored problem of time series summarization.

4.3 Evaluation Methodology

We now discuss the limitations of traditional NLG metrics in the context of time series description and
explain the proposed alternative.

4.3.1 Automated Metrics

Traditional NLG metrics such as BLEU (Papineni et al., 2002) or ROUGE (Lin, 2004), although used to
evaluate time series summarization (see Sec. 2), are ill-suited for the task, since they rely on n-gram overlap
and ignore synonyms and word order: in Tab. 1, examples 1-4 convey the same meaning using synonyms yet
receive lower scores than examples 5-7, where predictions are incorrect. The same concerns embedding-based
metrics such as BertScore (Zhang et al., 2019), which measures similarity of contextualized BERT embeddings
of source and target tokens. By visualizing BERT embeddings (see Fig. 2), one can see that, e.g., words like
declined, increase, and stable are close together but far from their respective synonyms. Such inconsistency
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in embeddings of words that are critical for semantic accuracy of time series descriptions invalidates metrics
that rely on such embeddings for their evaluation. In addition, even assuming a meaningful mapping of
words describing time series trends, the score would be biased towards the overall similarity of a token
sequence, which could be high even if crucial words are wrong, and some kind of weighing and tuning would
be necessary to ensure that a metric focuses on relevant words.

4.3.2 TrendScore

Given that popular text similarity metrics are unreliable for the task, we propose a new metric:
TrendScore, specifically designed to assess time series descriptions. In this approach, descriptions
are categorized into six trend classes: increasing; decreasing; stable; increasing and then decreas-
ing; decreasing and then increasing; and fluctuating. The classes were determined by inspecting the
annotated data. We collected an extensive list of keywords corresponding to each class (148 in total).
After POS tagging and lemmatization, based on keyword presence, order and combination with location
words, each description was assigned a trend class, and F1 was calculated (e.g. keywords and combinations
rebounds; troughs and ascends; lowpoint in the middle all indicate the class decreasing and then increasing).
This way, captions describing different trends were considered as different classes even if descriptions were
structured similarly or differed in only one word. Although this method has limitations (neither the set
of trend classes nor keywords can be exhaustive), nonetheless it serves as a much more appropriate and
rigorous evaluation method of time series descriptions than classical NLG metrics. For the sake of this work,
we manually verified the classes assigned to test set samples. In addition, to avoid any bias, we conducted
a user survey for a more nuanced evaluation of our model.

4.3.3 Human Evaluation

To ensure a holistic and impartial evaluation, we conducted an extensive user study. We split 100 test samples
into 9 forms, each rated by five users: 22 Master’s students and 23 researchers and engineers (resulting in
500 time series and 1320 description candidates in total). First, users were asked to rate descriptions of

Figure 2: t-SNE visualization of BERT embeddings: trend words (bold) are plotted in blue, others in gray.
Embeddings do not reflect the meaning of trend words, e.g. declined is closer to its antonym increase than
to synonyms decreases and decline
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4 time series based on three criteria on a Likert scale from 1 to 7: relevance (how well a summary captures
the most important aspects of the time series), accuracy (how truthfully a caption represents the direction,
steepness, and sequence of trends), and readability (how easy the text is to read and understand). Second,
users were asked to rank several captions for 7 time series based on how well they described the input:
3 samples from the test set (including a human description) and 4 unlabeled samples.

5 Results and Discussion

Below we discuss the experimental results. We compare CATS to the baselines (see Sec. 4.2) and run an
ablation with other pretraining strategies (see Sec. 5.2): we compare models with the same architecture
as ours, however, our model, with time series encoder pretrained with the novel cross-modal autoencoding
(CATS, CM*), is compared to models with encoder pretrained on classical autoencoding (CATS, AE),
forecasting (CATS, FO) and no pretraining (CATS, NP) — all trained on the time series description task.

5.1 Accuracy and Efficiency

The overall statistics and the TrendScore as a measure of accuracy of time series descriptions (see
Section 4.3.2) are summarized in Tab. 2. Compared to the baselines (see Section 4.2), CATS shows
several obvious advantages. Most importantly, it achieves a TrendScore of 0.91, which is significantly
higher than an average LLM. Although there is some variation both among the LLMs and across
time series encoding types, their overall score is unacceptably low, clearly showing that a compact
dedicated model trained even on a small dataset is much better suited for generating time series

Table 2: Comparing CATS to the baselines: in addition to an incomparably superior accuracy in terms
of TrendScore (as well as BertScore and LLM-as-a-judge) , CATS* is much more compact and quick at
inference (at a negligible training overhead, compared to the massive training done by the LLM providers)

Model Input Size Train Inference Trend Bert llama3.1 llama3.1
(B) Time (s) Time (s) Score Score F1 Consist.

CATS* with Pretraining Variants
CATS, NP time series 0.24 179.0 0.2 0.75±0.04 0.93±0.01 0.70±0.05 0.73±0.02
CATS, FO time series 0.24 145.4 0.3 0.78±0.04 0.93±0.01 0.61±0.05 0.76±0.04
CATS, AE time series 0.24 185.3 0.2 0.83±0.03 0.94±0.01 0.66±0.05 0.78±0.03
CATS, CM* time series 0.24 230.0 0.3 0.91±0.04 0.94±0.01 0.71±0.06 0.76±0.05

Prompting Off-the-Shelf Models
GPT-2 raw string 0.12 - 0.8 0.06±0.02 0.78±0.0 0.10±0.05 0.65±0.03
GPT-2 rounded 0.12 - 1.0 0.06±0.01 0.77±0.0 0.07±0.03 0.56±0.02
GPT-2 sax 0.12 - 1.1 0.21±0.01 0.77±0.0 0.08±0.04 0.65±0.03
Llama2 raw string 6.74 - 18.9 0.30±0.05 0.85±0.0 0.33±0.05 0.69±0.03
Llama2 rounded 6.74 - 17.4 0.29±0.03 0.85±0.0 0.29±0.03 0.73±0.03
Llama2 sax 6.74 - 18.1 0.21±0.02 0.85±0.0 0.11±0.05 0.82±0.03
Llama3.1 raw string 8.03 - 23.1 0.44±0.04 0.86±0.0 0.32±0.04 0.73±0.04
Llama3.1 rounded 8.03 - 19.7 0.43±0.02 0.86±0.0 0.26±0.05 0.78±0.03
Llama3.1 sax 8.03 - 20.5 0.27±0.02 0.86±0.0 0.22±0.06 0.78±0.05
Mistral raw string 7.25 - 70.0 0.48±0.04 0.86±0.0 0.18±0.03 0.80±0.03
Mistral rounded 7.25 - 79.2 0.44±0.05 0.86±0.0 0.16±0.04 0.82±0.03
Mistral sax 7.25 - 86.9 0.32±0.01 0.84±0.0 0.12±0.03 0.86±0.03
Gemma raw string 8.54 - 15.4 0.41±0.04 0.86±0.0 0.28±0.06 0.74±0.05
Gemma rounded 8.54 - 14.3 0.38±0.08 0.86±0.0 0.21±0.04 0.80±0.02
Gemma sax 8.54 - 16.9 0.35±0.04 0.85±0.0 0.19±0.05 0.79±0.05
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Figure 3: t-SNE visualization of embeddings from CATS pretrained with cross-modal autoencoding: trend
words (bold) are plotted in blue, others in gray. Embeddings are aligned with the meaning of trend words,
e.g. declined, decreases and decline are well separated from the two instances of increase

descriptions than an LLM without specialized training (at least at the time of the experimental work).
In contrast to TrendScore, BertScore is indiscriminately high for all models, regardless of the quality of
summaries (see examples in Fig.4: descriptions output by LLMs are typically very generic and not sample-
specific). We argue that this only reflects the fact that texts belong to the same topic — time series. This
also explains the bias of BertScore towards CATS: the higher scores are likely due to the ground truth
annotations in the test set coming from the same distribution as the train set (see also Sec.5.4).
Additionally, we implemented LLM-as-a-judge with Llama3.1: for each sample, the model was prompted to
evaluate how well the predicted summary captures the overall pattern or trend of the time series compared
to the reference description. Based on the output, binary F1 was calculated. While the resulting scores
for CATS variants ranged between 0.61 and 0.71, all LLMs (including Llama3.1 itself) received F1 between
0.07 and 0.33. Nonetheless, without a proven reliability of the LLM for the task, its judgments should be
interpreted with caution: first, descriptions produced by Llama3.1 are too generic (see Fig.4) and there is no
reason to expect that it can evaluate summaries better than generate them; second, prompted three times
for each sample, for most models it returned the same result only 60-70% of the time.

Importantly, the considerably smaller model size (ca. 32 ×smaller than 7B-scale LLMs), faster inference
(ca. 4 to 400 ×faster), and fast and cheap training (compared to the massive training on the side of LLM
providers) make our solution an efficient and environment-friendly alternative to LLMs, especially considering
the requirements of reproducibility, confidentiality, and independent offline deployment, which are imperative
in the context of commercial and industrial applications.

5.2 Impact of Pretraining

We have demonstrated that a compact model trained for time series summarization by far outperforms huge
general-purpose LLMs. To assess the effect of the novel cross-modal autoencoding method, we ran an ablation
study comparing four instances of CATS with identical architecture and training, but different pretraining.

With respect to faithfulness of descriptions to the input, measured with TrendScore (see Tab. 2), unsur-
prisingly, pretraining the time series encoder on autoencoding and forecasting (whereby it learns temporal
dependencies and trends in the input) benefits the subsequent time series captioning, increasing TrendScore
by 4.00% and 10.66%, respectively, compared to no pretraining. Yet cross-modal autoencoding offers a clear
advantage over the other methods, which is even more prominent compared to no pretraining (by 21.33%).
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In terms of user ranking, one can observe that descriptions written by humans are preferred over any model-
generated summaries in 0.67% of the cases (see Tab. 3). However, there is no consistent leader among the
pretraining strategies: e.g. the model with autoencoding is chosen best least often, but most often — second
best, and differences are negligible. We hypothesize that this is due to fatigue and attention span limit: after
choosing the best variant (and the choice is often non-obvious), one would be less attentive and motivated
to rigorously compare and order other candidates. A clearer distinction is revealed when human annotations
were not available (see Tab. 4). The model pretrained with cross-modal autoencoding is ranked both best and
second best most often, followed by unimodal autoencoding, confirming the TrendScore and showing that
time series encoder pretraining helps learn better representations and generate more accurate descriptions.
Compared to the classical techniques, cross-modal autoencoding demonstrates even more robust results.

The superiority of cross-modal autoencoding also manifests itself visually. Fig. 3 shows CATS embeddings
of trend words. One can see clear grouping of words increase; declined, decreases and decline; constant
and stable, and oscillates. The last three look like one group, which also makes sense, as oscillated time
series can be viewed as stable but noisy signal, as opposed to an upward or downward trend. Fig. 3 is a
stark contrast to Fig. 2. The clear separation between the embeddings of words referring to increasing and
decreasing trends from those related to constant and oscillating signals indicates that due to cross-modal
autoencoding, CATS, CM* learned to successfully distinguish different time series patterns.

5.3 Parametrized Evaluation

For a more nuanced evaluation, we asked users to assess descriptions by CATS, CM* according to the
criteria of relevance, accuracy, and readability on a Likert scale from 1 to 7. Relevance and accuracy
reached a rating of 5.58±1.50 and 5.33±1.60, respectively. The similar scores on both criteria make sense,
since a description that is relevant (capturing the most important aspects of a time series window) must
also be accurate (truthfully reflecting the direction, steepness, and sequence of trends). The high scores
testify that, on average, summaries captured the main characteristics of time series and described them
faithfully. Readability scored even higher, with an average of 6.34±1.07, suggesting that summaries gener-
ated by CATS, CM* were generally grammatically correct and easy to read and understand. The intra-class
correlation (Shrout & Fleiss, 1979) was moderate (ICC3=0.34, p-value=0.05).

A few examples are shown in Fig. 4. One can make several observations. First, the annotators were not native
speakers; therefore, their descriptions were not without imperfections, which also propagated to the model.
However, LLMs do not show a consistent advantage in readability or fluency and tend to be unnecessarily

Table 3: User ranking of summaries by humans and by CATS with different pretraining in the order of
preference (human version predictably preferred)

Source 1st choice 2nd choice 3rd choice 4th choice
Human 0.67 0.16 0.11 0.06
CATS, NP 0.15 0.28 0.28 0.29
CATS, AE 0.07 0.35 0.41 0.17
CATS, CM* 0.11 0.22 0.19 0.48

Table 4: User ranking of summaries by CATS with different pretraining in the order of preference: cross-
modal autoencoding is most frequently chosen as both first and second best

Source 1st choice 2nd choice 3rd choice
CATS, NP 0.25 0.27 0.48
CATS, AE 0.36 0.30 0.34
CATS, CM* 0.39 0.43 0.18
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(a) Human: In the beginning the variable stays on the same value until it grows rapidly
for a short time before falling rapidly before growing slowly again.
CATS: Variable is stable on the same value until it starts growing after reach-
ing its highest point falls fast a short time to grow at the end.
Mistral: Variable exhibits fluctuations around two distinct levels, with periods of rela-
tively low values clustered around 65 and periods of higher values around 85.
Gemma: The time series exhibits an alternating pattern of increasing and decreasing
values, with a general trend of gradual decline.
Llama3.1 : The variable exhibits fluctuations around a general trend with periods of

increase and decrease that can be observed over time.
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(b) Human: Variable decreases and grows slightly and at the end decreases rapidly.
CATS: Variable after rising, slowly decreases and then gradually increases
again but in the end, shows a sharp drop.
Mistral: Variable exhibits a fluctuating trend with some values increasing significantly
while others decrease noticeably.
Gemma: The time series exhibits an oscillating pattern with a general downward trend,
punctuated by occasional spikes and rebounds.
Llama3.1 : The variable exhibits a general trend of fluctuating values over time, with

some periods of increase and decrease in magnitude.
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(c) Human: Variable declines in a stable manner.
CATS: Variable demonstrates an overall decreasing trend.
Mistral: Variable exhibits a flat or stationary trend with minor fluctuations around spe-
cific values towards the end.
Gemma: The time series exhibits a pattern of alternating fluctuations between slightly
higher and lower values, with a general trend of decreasing values over time.
Llama3.1 : The variable generally exhibits a gradual decline over time, with periods of

stability or brief reversals in the trend before continuing downward.

0 2 4 6 8 10 12 14

400

410

420

430

440

(d) Human: Variable maintains the same stable value.
CATS: Variable displays no change in value.
Mistral: Variable exhibits a consistent and stable value with no discernible trend or vari-
ation over the observed time period.
Gemma: Variable exhibits a repetitive pattern of being constant at 418.70 for each ele-
ment in the sequence.
Llama3.1 : The variable exhibits a consistent and unchanging pattern over the observed

period, with no discernible trend or fluctuation in its value.

Figure 4: Examples of time series descriptions. In contrast to non-specific LLMs’ descriptions, occasionally
hallucinating absent properties, in most cases CATS captures trends and patterns in time series faithfully

verbose. More importantly, most descriptions produced by LLMs are very vague and fail to capture the
observed patterns, occasionally hallucinating absent properties. By contrast, in most cases CATS faithfully
captures the patterns in time series. To sum up, although there is still room for improvement, the time series
descriptions generated by our model were generally reliable, accurate and readable.

5.4 Evaluation on a Financial Dataset

Datasets of time series paired with descriptions are extremely scarce, however, there exists a stock price
dataset, TRUCE (Jhamtani & Berg-Kirkpatrick, 2021), containing 1900 real and 560 simulated time series
samples, each described by 3 annotators. The inter-rater agreement turned out to be moderate for the
simulated data (Krippendorff alpha 0.45: annotators agree on 55% of the samples) and poor for real data
(K.a. 0.26: annotators agree on 41% of the samples). Thus, only simulated data could be used (with a
caveat that the ground truth is agreed upon only half of the time).

We tested CATS on the entire data in a zero-shot fashion, without retraining. In addition, since the
data was in the public domain, we could also run a comparison with GPT-4o as a proprietary, but more
powerful baseline than the ones approved for the confidential data. We also tested Llama3.1 as the stronger
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(a) Human 1: Peaks in the middle.
Human 2: Stays steady in the beginning.
Human 3: Peaks at the beginning.
CATS: Variable shows a gradual decreasing trend throughout the entire dura-
tion.
Llama3.1 : The variable exhibits a general decrease in value over time, with some tem-

porary increases and fluctuations around a downward trend.
GPT-4o: Variable exhibits a gradual decline with minor fluctuations early on.
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(b) Human 1: Peak at the beginning.
Human 2: Peaks in the beginning.
Human 3: Peaks in the beginning.
CATS: Variable experiences a downward trajectory with an initial increase.
Llama3.1 : The variable exhibits a fluctuating trend with periods of increasing and

decreasing values around a central level, resulting in a overall oscillating pattern.
GPT-4o: Variable rises sharply, peaks, and then gradually declines with fluctuations.
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(c) Human 1: Peaks in the middle.
Human 2: Plot showing the hike in the mid time.
Human 3: Peak in the middle.
CATS: Variable increases slowly before reaching a high level and decreases
back to the end.
Llama3.1 : The variable exhibits an initial increase followed by a period of fluctuation

and then a more pronounced upward trend, before eventually decreasing somewhat and
stabilizing around a lower value.
GPT-4o: Variable shows initial growth, a sharp spike, and gradual decline.
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(d) Human 1: Sharp decline shortly after start.
Human 2: Sharp increase at the start.
Human 3: Peaks in the beginning.
CATS: Variable gradually declines with minor fluctuations.
Llama3.1 : The variable exhibits fluctuations that result in periods of both increase and

decrease, with a general tendency towards a mix of rising and falling values over time.
GPT-4o: Variable shows an initial rise, then a sharp drop, stabilizing later.

Figure 5: Examples of time series descriptions from the financial dataset. Summaries by CATS and GPT-4o
give a complete picture, while human annotations are very short, repetitive, and often contradict each other

open-source candidate. The resulting TrendScore of CATS summaries was 0.59, close to Llama3.1 (0.60)
and GPT-4o (0.62). Interpretation of these numbers requires a closer look at examples. As can be seen in
Fig. 5, CATS-generated summaries are much more complete, specific and nuanced than the ground-truth
annotations. They are also more advanced linguistically, with an average length of 9.8 words (cf. 4.9 in
references) and Measure of Textual Lexical Diversity (McCarthy, 2005) of 40.52 (cf. 16.81 in references).
This shows that CATS can generalize to new data and summarize time series in an accurate and detailed
way. It is also evident that GPT-4o is significantly more capable in time series description than the LLMs
of previous generations, and even shows some advantage over CATS, which is not surprising considering the
size of GPT-4o and its training data. What could appear surprising is the low TrendScore of both models —

TRUCE TSLM GPT-4o Llama3.1 Human 2 Human 3 CATS
BertScore 0.77 0.88 0.84±0.00 0.84±0.00 0.87 0.88 0.84±0.00
TrendScore NA NA 0.62±0.02 0.60±0.00 0.56 0.66 0.59±0.02
Llama3.1 -as-a-judge (F1) NA NA 0.27±0.05 0.13±0.02 0.14 0.17 0.16±0.03
Llama3.1 consistency NA NA 0.72±0.01 0.75±0.02 0.65 0.66 0.75±0.01

Table 5: Results on TRUCE data. Scores for TRUCE as reported in Jhamtani & Berg-Kirkpatrick (2021),
for TSLM — in Trabelsi et al. (2025). Annotators 2 and 3 are evaluated against annotator 1 as reference.
BertScore is almost uniformly high, while LLM-as-a-judge F1 is low for all candidates, including its own output
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yet the examples shed some light: human annotations throughout the dataset show a clear pattern of
describing one property of a sample (e.g. ‘high’ or ‘low’) and its location (e.g. ‘in the beginning’ or ‘in
the middle’) in a very short and simple phrase, apparently following a provided example, with minimum
variation. Such descriptions are incomplete even when all three annotators agree (which is only the case
half of the time). This is problematic for the evaluation regardless of the metric used. In Tab. 5, we
provide TrendScore, BertScore and Llama3.1-as-a-judge (binary F1) for comparison on the TRUCE data.
As discussed in Sec. 4.3.2, metrics relying on word embeddings are not suitable for evaluating time series
summaries due to the similarity of embeddings of words describing opposite trends, such as ‘rise’ or ‘fall’. This
prevents existing metrics from reflecting misalignment between time series trends and their descriptions —
see Fig. 2. The fairly high and almost uniformly distributed BertScore speaks more to the fact that all
candidate sentences belong to the same topic, rather than to their individual semantic alignment with the
input time series. As to TrendScore, it reflects the rather low inter-rater agreement of the ground truth
annotations and is thus similarly low both for summaries written by the other humans and those generated
by the models: given that the annotators agree only in 55% of samples, it is only fair that other annotators
will be considered ‘wrong’ at least half of the time. Model scores are equally affected by this randomness in
the ground truth.
By contrast, all scores of Llama3.1-as-a-judge are low (and are lowest for its own outputs), which is consistent
with results reported in Sec. 5.1. Nonetheless, Fig. 5 clearly demonstrates that summaries generated by
GPT-4o and CATS are more specific and complete than the human annotations in this dataset.

Overall, evaluation on the financial dataset results in several observations. First, both CATS and GPT-4o
produce more accurate and elaborate descriptions than the crowdsourced annotations. Second, although
accurate quantitative assessment is challenging in view of the above, visually, CATS performs almost on
par with GPT-4o on time series description, while being several orders of magnitude smaller and being
trained only on 250 samples, in contrast to the undisclosed but incomparably bigger training set of GPT-4o.
Third, in addition to the advantages in terms of the size of the model and training data, crucially, it can
be deployed offline, even on hardware with limited computational capacity, and preserve data privacy, thus
fulfilling the critical requirements of industrial applications and other domains. Fourth, automatic evaluation
of time series summarization is challenging not only technically, due to the versatility of natural language,
but also ‘epistemically’, due to biases and limitations of the ground truth, which leads to the last observation.
Namely, description of time series is a complex and challenging task not only for models, but also for humans.

6 Conclusion

In this work, we proposed a model and training method for efficient generation of accurate time series
summaries, which can enable flexible multimodal user experience and communicate important trends in
the development of a signal over time when visualization is problematic. This can provide insights into
the underlying process dynamics, which is essential for making informed decisions quickly, particularly in
complex industrial applications involving high risk to equipment, human safety and environment.

Our compact model, consisting of a time series encoder and a text decoder, allows efficient pretraining on
unlabeled data, and the novel cross-modal autoencoding allows training an accurate model even on a very
small dataset, without expensive labeling and prohibitively costly computations required by big models.
The proposed cross-modal autoencoding may be further investigated as a basis for uncertainty estimation
to boost user trust in model predictions.

As has been demonstrated in experiments on real industrial data with both automated evaluation and
a comprehensive user study, descriptions generated by our model fulfill all the main requirements: they
faithfully capture relevant properties of the time series and are concise and easy to read. Importantly,
the model is fast, resource-efficient and can be deployed offline, preserving data privacy, which is a critical
requirement in the industry, as well as in healthcare and other domains.

For further improvement in relevance and accuracy, additional pretraining techniques can be explored, such
as cross-modal masking or contrastive approaches. Collecting more or better annotations (e.g., by native
speakers, or even by more powerful LLMs using open data) would likely boost readability even further.
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An extension of our approach to multivariate time series may be of interest, for instance, for financial use
cases, such as comparing stocks. Technically, our approach is directly extensible to it by changing the number
of channels in the encoder. The train set would need to be increased accordingly.

Our additional contribution is a dedicated metric, TrendScore, which quantifies how often the overall trend
is captured. It is a very nuanced task, and TrendScore is an important first step, however, future work
is needed for further improvement, for instance, it can be enhanced by allowing more fine-grained trend
categorization, e.g., by assigning a sequence of trend classes and calculating the Levenshtein distance between
the prediction and the reference. At the same time, as the evaluation on the financial dataset showed, due
to the task complexity, even human annotations cannot be assumed to be reliable golden truth, therefore
research of direct evaluations of texts given only time series (without labels) would be an interesting avenue,
e.g. incorporating techniques like SAX as a starting point — or hierarchical classification of time series
combined with partitioning. However, this is a vast and complex field. Nonetheless, to the best of our
knowledge, the proposed metric is presently the only model-independent metric reflecting semantic accuracy
of time series descriptions, aligned with human judgment.

A production pilot of CATS is planned as a basis for future work.
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