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Abstract

To reduce the computation cost and the en-
ergy consumption in large language models
(LLM), skimming-based acceleration dynami-
cally drops unimportant tokens of the input se-
quence progressively along layers of the LLM
while preserving the tokens of semantic impor-
tance. However, our work for the first time
reveals the acceleration may be vulnerable to
Denial-of-Service (DoS) attacks. In this paper,
we propose No-Skim, a general framework to
help the owners of skimming-based LLM to un-
derstand and measure the efficiency robustness
of their acceleration scheme. Specifically, our
framework searches minimal and unnoticeable
perturbations to generate adversarial inputs that
sufficiently increase the remaining token ratio,
thus increasing the computation cost and en-
ergy consumption. With no direct access to the
model internals, we further devise a time-based
approximation algorithm to infer the remaining
token ratio as the loss oracle. We systemati-
cally evaluate the vulnerability of the skimming
acceleration in various LLM architectures in-
cluding BERT and RoBERTa on the GLUE
benchmark. In the worst case, the perturbation
found by No-Skim substantially increases the
running cost of LLM by over 103% on average.

1 Introduction

In Natural Language Processing, Transformer
(Vaswani et al., 2017) has facilitated the birth of
pre-trained language models, such as BERT (De-
vlin et al., 2018), RoBERTa (Liu et al., 2019) and
GPT (Radford et al., 2018), which have brought
significant improvements to various downstream
applications. Despite the success on the effective
performances, the computational complexity and
model parameter size are massive, thus deploying
these models to real-time service platforms and re-
source limited (i.e., energy, computation and mem-
ory resources) edge devices are very challenging.
To reduce the computation cost on language
models, recent works (Goyal et al., 2020; Ye et al.,

‘ Downstream
Classifier |

“““““““““

aaaaaa

rrrrrr d Dropped Tokens

Figure 1: The general design of skimming-based lan-
guage models on a sentiment classification task. In the
example, the important token “good” is preserved.

2021; Kim and Cho, 2020; Kim et al., 2022; Guan
et al., 2022) propose the design of skimming-based
language models. Skimming acceleration imple-
ments the intuition that human can comprehend the
whole sentence by paying extra attention to only a
few important words. As shown in Fig. 1, skim-
ming acceleration dynamically and progressively
drops unimportant tokens along different layers to
reduce the computation budget and preserves the
important tokens within the layers to maintain the
semantic information. For example, the average
FLOPs speed up is 281% on GLUE benchmark
(Wang et al., 2018) when deploying skimming ac-
celeration proposed in Guan et al. (2022).

The skimming-based language models can be de-
ployed on real-time service platforms and resource
limited edge devices to reduce the computation
complexity and decrease the energy consumption.
Despite the tremendous success on improving effi-
ciency, we need to understand and evaluate poten-
tial vulnerabilities on existing skimming-based lan-
guage models from the perspective of computation
efficiency, where the dropping of tokens can be de-
liberately manipulated by the unnoticeable changes
on text inputs, which will pose serious challenge
to the practical deployments. For real-time service
platforms, the increasing computation complexity
reduces the number of queries processed simultane-



ously, which eventually damage the service quality.
For resource limited edge devices, the increasing
computation cost accelerates the consumption of
valuable resources (e.g., battery life), which is not
acceptable for ordinary users.

However, existing adversarial attack (Li et al.,
2018; Ren et al., 2019; Gao et al., 2018; Li et al.,
2020) lacks the ability to evaluate efficiency robust-
ness in many aspects. First, the goal is mainly fo-
cus on damaging model accuracy, which lacks clear
efficiency information to properly guide the effi-
ciency robustness evaluation. Second, efficiency
information is in the form of discrete values, which
makes gradients hard to calculate. Third, when
the language models are deployed on online pre-
dictive API, no internal efficiency information is
obtainable.

To provide an accurate evaluation on the effi-
ciency robustness of skimming-based language
models, we propose No Skim, the first general
efficiency robustness evaluation framework on
the skimming-based language models, which in-
tegrates a rank-and-substitute scheme to generates
adversarial inputs that maximally increase the com-
putation complexity. Specifically, we implement a
gradient-based evaluation algorithm to effectively
search the appropriate perturbations, in which we
propose a loss smoothing algorithm to make the
efficiency loss differentiable. To solve the chal-
lenge where on model internals are available, we
further theoretically analyze the relation between
inference time and remaining token ratio and pro-
pose a time-based approximation algorithm to infer
the efficiency information. Then, we implement
a time-based evaluation algorithm, which makes
our evaluation applicable to various deployment
scenarios.

The contributions of our paper can be summa-
rized as follows:

* We are the first work to systematically study
the vulnerability of the skimming-based lan-
guage models from the perspective of effi-
ciency.

* We propose an effective efficiency robustness
evaluation framework No Skim that generates
adversarial inputs to increase the computation
complexity.

* We propose both gradient-based algorithm
and time-based algorithm to evaluate the effi-
ciency robustness under various deployment

scenarios.

* We conduct extensive evaluations on the state-
of-the-art dynamic skimming acceleration
scheme Transkimmer (Guan et al., 2022) with
BERT and RoBERTa architectures on the
GLUE benchmark. In the worst case, our
framework can increase the computation cost
by 103%.

2 Related Works

2.1 Skimming Acceleration Schemes

Skimming acceleration schemes have been a signif-
icant thrust of recent researches to improve the
efficiency of existing language models. Skim-
ming is first well-studied in recurrent-based neural
networks (Yu et al., 2017; Campos et al., 2017;
Yu et al., 2018; Fu and Ma, 2018), which saves
computation time-wise by dynamically skipping
some time steps and copying the hidden states di-
rectly to the next step without any update. Re-
cently, in the presence of transformer architec-
tures (Vaswani et al., 2017), skimming-based lan-
guage models reduce the computation complex-
ity by dropping some unimportant tokens progres-
sively along different layers. Skimming-based ac-
celeration schemes can be categorized into static
and dynamic schemes.

Static skimming schemes (Goyal et al., 2020;
Kim and Cho, 2020) use a fix remaining token ratio,
where all the input sequences are all dropped cer-
tain ratio of tokens during inference. However, dif-
ferent input sequences vary greatly within tasks and
between training and validation dataset, leading to
a bad generalization. Dynamic skimming schemes
are input-adaptive, which use hidden values or at-
tention values to dynamically decide whether the
token are dropped or not. Ye et al. (2021) propose
a RL-based scheme called TR-BERT, which adopts
reinforcement learning to independently optimize
a policy network that dynamically drops tokens.
Kim et al. (2022) propose a threshold-base scheme
called LTP, which drops the tokens whose the atten-
tion values is lower than the threshold. Guan et al.
(2022) propose a prediction-based scheme called
Transkimmer, which integrates each layer with a
lightweight fully connected network to make the
skimming decision for each token given the hidden
values. In this paper, we mainly investigate the effi-
ciency robustness of the dynamic skimming-based
language models as the computation complexity
varies according to the input text sequences.



2.2 Robustness Evaluation

Adversarial attacks (Li et al., 2018; Ren et al., 2019;
Gao et al., 2018; Li et al., 2020) are proposed
to evaluate language models’ ability to make cor-
rect prediction facing imperceptible perturbations.
However, these attack lacks the ability to evaluate
efficiency robustness due to its incorrect attack goal,
unavailable gradient information and unacquirable
efficiency information. In the meantime, a line of
works have been proposed to study the efficiency
robustness of existing language models. Zhang
et al. (2023) propose slow-down attacks on multi-
exit language models (Zhou et al., 2020), which
delay the exit positions to increase the computation
cost. Chen et al. (2022b,a) propose to maximize the
output sequences’ length to increase the inference
time. As skimming acceleration schemes improve
model efficiency different from the aforementioned
models, a systematic evaluation on the efficiency
robustness is necessary.

3 Formulation

3.1 Evaluation Objectives

The goal of our efficiency robustness evaluation
framework is to generate adversarial inputs that
deteriorate the efficiency of the skimming-based
language models. Intuitively, the framework gener-
ates unnoticeable perturbations on original inputs
to increase the remaining token ratio, which serves
as an indicator of model efficiency. Increasing the
remaining token ratio denotes the increase of the
computation complexity and the energy consump-
tion. We formulate the evaluation objectives as the
following optimization:

arg max Lepp(x+90) st Sim(x,z+0) > e,
(1
where z is the original input, ¢ is the perturbations
added on the input z, L.y denotes the efficiency
loss, Sim : X x X — (0,1) is the similarity
function and ¢ is the similarity threshold.
Generating adversarial inputs that increase the
computation cost poses serious challenges to the
practical deployments of skimming-based language
models. For real-time service platforms, through-
put is the key element to measure the quality of
the service. However, for a platform with a certain
level of computation power, the increasing compu-
tation complexity reduces the number of queries
processed simultaneously, which eventually dam-
ages the service quality and ruins online users’ ex-

perience. For resource limited edge devices, the
increasing computation cost accelerates the con-
sumption of valuable resources (e.g., battery life
for mobile phones), thus shortening the available
time, which is not acceptable for ordinary users.

3.2 Evaluation Scenarios

To comprehensively evaluate the potential effi-
ciency vulnerability of the skimming-based lan-
guage models, the framework should generally sup-
port the evaluations under different level of knowl-
edge and access to the language models. We as-
sume the evaluator has the following knowledge
and access to the target skimming-based language
model:

* White-box Access: White-box access assumes
the evaluator has full knowledge of the target
model (i.e., model parameters and dynamic skim-
ming scheme) and the vocabulary information
(i.e., the vocabulary size and the corresponding
word embeddings). And the gradient w.r.t. the
word embedding and model parameters can be di-
rectly calculated. It simulates a practical scenario
where the skimming language model is directly
deployed on the resource limited edge devices.

* Black-box Access: Black-box access is consid-
ered as the toughest scenario. It assumes that no
internal information (i.e., model information or
even speed up ratio) are acquirable for the eval-
uator. The evaluator can only approximate the
internal information by observing the running sta-
tus (e.g., inference time). It simulates a scenario
where the skimming language model is deployed
on cloud platforms as predictive API.

4 Methodology

We propose No skim, the first general framework to
evaluate the efficiency robustness of the skimming-
based language models. First, we present the gen-
eral design of the framework. Then, we provide
two specific implementations to evaluate the ef-
ficiency robustness of skimming-based language
models under two different scenarios.

4.1 General Design

Given an initial input, our No skim iteratively
searches unnoticeable perturbations to gradually
increase the computation cost. As shown in Fig. 2,
we provide an overview of the general pipeline of
our No skim, which is used to generate the adver-
sarial input. We also provide a detailed algorithmic
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Figure 2: The general evaluation framework of No Skim, where Word Importance Ranking step only runs once.

description of the generation process in Algorithm
1 of Appendix B, which consists of three major
steps:

* Stepl: Word Importance Ranking (Line 4-8) :
In this step, we aim to identify the most impor-
tant word that will drastically impact the model’s
efficiency when modifying it. An importance
score will be calculated for each word, and the
word with the larger importance score is more
likely to be modified in the following steps.

¢ Step2: Candidate Set Generation (Line 10-12)
: In this step, we aim to generate a candidate set
to represent the possible search space given the
word selected in the last step, where the candidate
words are imperceptible from the original words
to preserve the semantic information.

* Step3: Best Candidate Searching (Line 14-21)
: In this step, we search the whole candidate set
and aim to select the candidate that maximally
increases the computation cost and the energy
consumption. We substitute the original word
with each word in the candidate set and query the
target skimming-based language model to get the
efficiency information. Then, we compare the
efficiency degradation of each candidate word to
decide to best candidate word.

4.2 White-box Evaluation

Efficiency Loss. In white-box scenario, we are
able to observe the inner characteristic of the target
skimming-based model. We directly calculate the
remaining token ratio as the efficiency loss:

pre en(M;p)

Lepp(X) =
where K is the number of layers in the language
model, M is the binary skim decision for the token
sequence at layer [. For every element in M;, 0

stands for dropping the token, 1 stands for preserv-
ing the token. The remaining token ratio calculates
and averages the ratios of token remained of every
layers, which represents the computation complex-
ity speed-up.

Word Importance Ranking. Given a text se-
quence of n words X = (z1,x2, - ,Zy,), SOme
words play the key role of influencing the model’s
efficiency. We first calculate the importance score
of each word x; as follows:

m

0L,
Score; = Z TRefiX) , 3)

=g

where the F; is the embedding of word x;, m is
the feature dimension of embedding and L.y is
the efficiency loss. The score firstly calculates the
gradient of the efficiency loss w.r.t the word embed-
ding and then calculates the sum of gradient along
the embedding. The gradient implies the direction
and degree of efficiency loss’s change when manip-
ulating the word embedding. Perturbing the word
with the largest importance score is the easiest way
to increase the efficiency loss L. ¢, thus increasing
the computation complexity.

Candidate Set Generation. Once selecting the
most important word based on gradient, we need
to generate a candidate set composed of unnotice-
able perturbed versions of the selected word. The
candidate set represents the proper optimization
search space to increase the efficiency loss (i.e.,
remaining token ratio). For white-box scenario, we
design word-level perturbation and character-level
perturbation to generate the candidate set.

For word-level perturbation, knowing the vocab-
ulary information, we enumerate every word in the



vocabulary and calculate the efficiency loss change:

AV _ S B B OLcsy (X)
target — Z( target — selected) ’ an )
7=0 selected
C))

where Eyqrger denotes the embedding of a target
word in the vocabulary and Egejecteq denotes the
embedding of the selected important word. Equa-
tion 4 calculates the product of the change of em-
bedding and the partial derivative on embedding
when substituting the selected important word to
the target word. We then sample words from the
vocabulary as follows:

S = TOp-ktm«getevocab ‘/targetu (5)

where words with top-k efficiency loss change V'
are selected. In the meantime, we also discard the
words that deteriorate the text semantic information
from the candidate set.

For character-level perturbation, we simulate the
mistakes made by ordinary users during typing by
inserting random characters at random locations.
Since the character-level perturbation often leads to
UNK token in the embedding space, it is challeng-
ing to directly compare the efficiency loss changes
of these perturbed words. Thus, we randomly select
several characters in digits, letters and insert the
character at random locations to form the character-
level candidate set .S. The examples of word-level
and character-level perturbation are shown in Fig.
2.

Best Candidate Searching. After generating the
candidate set, We straightforwardly test all pertur-
bations in the candidate set and select the optimal
perturbation that leads to the largest computation
cost. In white-box scenario, we use the remaining
token ratio calculated in Eq. 2 to represent the com-
putation cost. For an original input, we iteratively
add unnoticeable perturbations to the original input
several times to generate highly effective adversar-
ial inputs.

Loss Smoothing Algorithm. Since the efficiency
loss proposed in Eq. 2 is discrete and non-
differentiable, we propose loss smoothing algo-
rithm, which uses the reparameterization trick (i.e.,
Gumbel-softmax) to sample the discrete skim deci-
sion M from the skim probability P:

At —  exp((log(P) +¢%)/7)
im0 exp((log(PF) + g*) /1)’

(6)

where t € {0,1}, g is independent and identically
sampled from Gumbel(0, 1) distribution and 7 is
the temperature. After smoothing, the estimated
skim decision M is differentialable.

4.3 Black-box Scenario

Time-based Approximation Algorithm. Black-
box scenario is considered as the toughest scenario,
as no internal information (i.e., model informa-
tion or even speed up ratio) are acquirable for us.
Inspired by the recent advances in side-channel at-
tacks (Brumley and Boneh, 2005; Inci et al., 2016;
Goyal et al., 2020; Timon, 2019), we propose from
a new perspective to approximate the remaining
token ratio in Eq. 2 to facilitate the evaluation
procedure, where the magnitude of inference time
actually represents different remaining token ra-
tios. First, we theoretically analysis the relation
between the inference time and remaining token
ratio in Theorem 1.

Theorem 1 Assumed skimming-based language
model f is composed by K encoders, R =
% Zfil 7 IS the total remaining token ratio, where
{r; Y| is the remaining token ratio of each en-
coder and r; € (0, 1], and x is the input text and T
is the corresponding inference time. If text length
is fixed, then T' < R.

Then, we empirically observe the relation be-
tween the remaining token ratio and the sequence-
level inference time, which measures the inference
time on the entire input sequence. However, as
shown in Fig. 3(a), we find the linear correlation
is imperfect due to the large variance of input se-
quences’ lengths. For example, a long input se-
quence with low remaining token ratio can still
require a large inference time. To eliminate the ef-
fects of lengths’ variance, we take the input length
into account:

Theorem 2 Assumed skimming-based language
model f is composed by K encoders, R =
% Zfil 7 i the total remaining token ratio, where
{r; Y, is the remaining token ratio of each en-
coder and r; € (0, 1], and x is the input text and T
is the corresponding inference time. If text length
is not fixed and the length is N, then T < R - N.

Theorem 2 shows that inference time is posi-
tively linear correlated with the product of remain-
ing token ratio and input length. The detailed
proofs are provided in Appendix C. Based on the
theoretical findings, we propose token-level infer-
ence time to approximate the remaining token ratio



and set the efficiency loss L. as follows:
Time(x)

length ’ (7)
length = Len(Tokenizer(x)),

Lepy =
where

where Time(z) is the inference time of the se-
quence z, Tokenizer is a tokenizer and Len
counts the token sequence length. As limited in the
black-box scenario, we have no inner information
about the architecture of the target model and its
corresponding tokenizer. Instead, we propose to
randomly select a third-party and public tokenizer
unrelated to the targeted skimming-based model to
approximate the token sequence length.

As shown in Fig. 3(b), we empirically observe
a perfect positive linear correlation between the
remaining token ratio and the token-level inference
time. The token-level inference time eliminates the
negative influence caused by the variance of the
sequence lengths, as a single token’s computation
cost is fixed given a specific language model. This
observation further proves the feasibility to conduct
a side-channel attack to infer the remaining token
ratio by analysis the token-level inference time.
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Figure 3: The linear relation between the remaining
token ratio and inference time, where (a) uses the in-
ference time on the sequence-level and (b) uses the
inference time on the token-level. We present the result
on Transkimmer (Guan et al., 2022) with a sentiment
classification task SST-2.

Word Importance Ranking. Since gradient in-
formation is no longer available, we propose mask-
based importance score to select the word that has
the largest impact on the computation efficiency.
As proposed in Eq. 8, we iteratively mask each
word z; in the original text sequence and form the
mask version X = (T1, L1, Tl )
We then calculate the importance score of each
word by subtracting the efficiency loss of the origi-
nal one from the mask one to get the efficiency loss
increment:

Score; = Leff(X) — Lepp(X),

where X = (:E1,-" y Li—1y L1, " 73371)7

®)

where Score; is the important score for the i'th
word and L. ¢ represents the remaining token ratio.
If masking the word leads to a large efficiency loss
increment, it means that the masked word is critical
for the model computation efficiency.

Candidate Set Generation. In the meantime, we
can not get the word embeddings under black-box
scenario. For word-level perturbation, we propose
to use the nearest neighbours of the target word in a
pre-trained word embedding space (e.g., word2vec
Mikolov et al. (2013)). The rest of the procedure is
the same as white-box scenario.

5 Evaluation Setting

Architecture & Dataset. To thoroughly evaluate
our framework, No skim, we consider the state-
of-the-art skimming scheme Transkimmer (Guan
etal., 2022) as our evaluation target. We implement
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019) with tasks of the GLUE Benchmark
(Wang et al., 2018), which are detailed in Tab. 6.

Metrics. We evaluate the efficiency of skimming-
based language models with the following metrics:

Average Remaining Ratio (ARR): As shown
in Fig. 7(a), the average token ratio calculates the
average remaining token ratio on the dataset. The
metric is a task-level metric that evaluate the overall
efficiency speed-up performance. When ARR is
closer to 0, the target model has better efficiency.

Cumulative Token Ratio (CRR): As shown
in Fig. 7(b), the cumulative token ratio calculates
cumulative distribution of the remaining token ratio
of each input. The metric indicates the variance
of efficiency speed-up on different samples. When
CRR is closer to 1, the target model has better
efficiency. Fig. 7 and more detailed description are
provided in Appendix A.

Baselines. Since we are the first work to evalu-
ate the efficiency robustness of skimming-based
language models, we compare with several adver-
sarial attacks: TextBugger (Li et al., 2018), Deep-
WordBug (Gao et al., 2018), BERTAttack (Li et al.,
2020) and PWWS (Ren et al., 2019). The details
settings are provided in Appendix A.

6 Evaluation

Effectiveness Under White-box Scenario. First,
we report how much computational complexity is
increased by our adversarial inputs in Tab. 1. We



. SF=0.5 SF=0.75 SF=1.0 SF=0.5 SF=0.75 SF=1.0

Scheme Scenario

ARRT CRR] ARRfT CRR| ARRtT CRR| ARRfT CRR] ARRfT CRR] ARRtT CRR|
SST2 + BERT SST2 + RoBERTa
Origin - 0442 0.563 0.172 0.833 0.142 0.863 0.331 0.674 0.194 0.811 0.150 0.855
TextBugger w.b. 0.440 0.565 0.168 0.837 0.134 0.871 0.288 0.717 0.169 0.836 0.136 0.869
DeepWordBug b.b. 0445 0.559 0.154 0.851 0.126 0.880 0.269 0.736 0.145 0.859 0.116 0.888
BERTAttack b.b. 0425 0.581 0.172 0.833 0.139 0.866 0.314 0.691 0.185 0.821 0.143 0.862
PWWS b.b. 0430 0.575 0.173 0.832 0.139 0866 0.313 0.692 0.182 0.823 0.140 0.865
No skim w.b. 0.730 0275 0.400 0.605 0322 0.683 0.519 0486 0.311 0.694 0.260 0.745
No skim b.b. 0.659 0346 0.256 0.749 0.185 0.820 0402 0.603 0.234 0.771 0.186 0.819
MRPC + BERT MRPC + RoBERTa

Origin - 0.551 0454 0443 0562 0242 0.763 0514 0491 0.397 0.608 0.252 0.753
TextBugger w.b. 0.605 0400 0452 0.553 0246 0.759 0579 0426 0425 0579 0.258 0.748
DeepWordBug b.b. 0.644 0361 0.505 0.500 0.241 0.765 0.583 0.423 0420 0.585 0.257 0.748
BERTAttack b.b. 0.577 0428 0432 0.573 0241 0.764 0533 0472 0406 0599 0.252 0.754
PWWS b.b. 0.618 0.387 0.483 0.522 0254 0.751 0559 0446 0422 0583 0.258 0.748
No skim w.b. 0.869 0.137 0.774 0.231 0499 0505 0.860 0.145 0.736 0.269 0.572 0.432
No skim b.b. 0.813 0.192 0.710 0.295 0299 0.706 0.741 0264 0526 0479 0343 0.661

Table 1: Efficiency robustness results on Skimming-based Language, where w.b. and b.b. represents white-box and

black-box scenario respectively.

make the following observations: (1) the baseline
attacks are not effective in evaluating efficiency
robustness. (2) Our No Skim demonstrates the
efficiency vulnerability of the existing skimming-
based language model, which increases the average
remaining ratio by 106% and decrease the cumula-
tive remaining ratio to 30% at most. (3) When the
skim factor SF' is larger, the negative influence on
model efficiency is less. Furthermore, Fig. 4 shows
an example of each layer’s average remaining ratio,
where our No skim generates samples that increase
the remaining ratio in every layer particularly the
former layers comparing to the original samples.
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Figure 4: The comparison of efficiency results on BERT
and SST-2 under white-box scenario.

Effectiveness Under Black-box Scenario. For
black-box scenario, we first evaluate the perfor-
mance of our time-based approximation algorithm.
As shown in Tab. 3, using token-level inference
time can more accurately approximate the remain-
ing token ratio comparing to the sentence-level
inference time, where the magnitude of the mean
square errors are only 10~ at most. Then, we eval-
uate the effectiveness of our No skim in Tab. 1. We
report that our black-box evaluation suffers sligtest
performance drop comparing to our white-box eval-

uation (e.g., around 0.1 on average remaining ratio).
Nevertheless, this poses serious challenges to the
deployments on real-time cloud services.

Metric  Scenario Skim Factor
0.5 0.75 1 0.5 0.75 1
BERT SST-2 BERT MRPC
LD w.b. 24340 32.817 30.517 32228 32.593 34.420
b.b. 12325 10.177  8.817  21.607 21.043 14.960
Ss w.b. 0.488 0.522 0.579 0.855 0.864 0.867
b.b. 0.585 0.624 0.695 0.920 0.929 0.934
RoBERTa SST-2 RoBERTa MRPC
LD w.b. 29.751 31.827 27.157 20.512 20.890 22.257
b.b. 3.437 3.403 4.390 9.880 9.360 8.373
ss w.b. 0.619 0.612 0.645 0.907 0915 0.913
b.b. 0.838 0.836 0.783 0.905 0.916 0.921

Table 2: The similarity between our generated inputs
and original inputs, where LD and SS stands for leven-
shtein distance and semantic similarity

Text Similarity. Further, we report how stealthy
are the imperceptible mutations on generated adver-
sarial inputs of our No skim compared to the origi-
nal ones. We measure both cosine similarity on the
sentence embedding generated by SBERT and lev-
enshtein distance on character-level to demonstrate
the similarity. As shown in Tab. 2, the average se-
mantic similarity is larger than 0.85 for most cases.
In the meantime, the levenshtein distance shows
less than 30 edit operation is required to generate
the adversarial inputs, which means the mutations
are of high stealthiness.

Influence on Model Utility. Next, we study
whether our No Skim will cause extra damages
to the model utility. As reported in Tab. 4, our
attack generate adversarial inputs that not only in-



SF=0.5 SF=0.75 SF=1.0
Sentence Token Sentence Token Sentence Token
SST-2 + BERT 7.416x1073  4.677x1073 1.109x1072 3.322x1073 7.634x1073 1.649x1073
MRPC + BERT  7.003x1073 5336x1073 7.030x107% 4.531x1073 5.609x10~* 4.890x10~*
SST-2 + RoBERTa  9.980x1073 3.990x107% 6.961x1073 1.915x10~% 5.110x10~3 1.408x1073
MRPC + RoBERTa 4.525x107% 3.680x1073 2.099x1073 1.687x10~% 1.082x1073 1.009x1073
Table 3: Mean square error on time-based approximation algorithm.
Scenario SF=0.5 SF=0.75 SF=1.0 SF=0.5 SF=0.75 SF=1.0 Module SF=0.5 SF=0.75 SF=1.0
SST-2 + BERT MRPC + BERT ARR CRR ARR CRR ARR CRR
Origih 0904 0884 0869 0853 0804  0.782 BERT SST-2
w.b. 0.644 0523 0613 0324 0320 0320
b.b. 0.649 0.647 0.780 0.343 0.380 0.513 +None 0.635 0.371 0.224 0.781 0.166 0.839
+Rank 0642 0363 0238 0767 0.175 0.831
SST-2 + RoBERTa MRPC + RoBERTa +Search 0725 028 0374 0.631 0315 0.689
Origin 0931  0.894 0896 083  0.850  0.767
o 0618 0540 0633 0445 040 0443 +All 0730 0275 0400 0.605 0322 0.683
b.b. 0.698 0583  0.694 0521 0583  0.523 BERT MRPC
+None 0752 0253 0665 0340 0360 0.644
) . . .- +Rank 0778 0227 0668 0337 037 0.636
Table 4: The negative effect comparison on model .uqhty +Search 0850 0.156 0769 0236 0497 0509
between our generated adversarial inputs and original AL 0869 0137 0774 0231 0499 0505

inputs.

crease the computation costs but also degrade the
classification performances of the skimming-based
models. Specifically, the accuracy is decreased
from 20% to 30%, which calls for more attentions
on our proposed evaluation.

Ablation Studies. First, Tab. 5 studies the effec-
tiveness of each module in No skim. Since candi-
date set generation is necessary, we mainly focus on
word importance ranking and best candidate search-
ing. As we can see, both module plays positive
effect on improving the evaluation effectiveness.
And best candidate searching is more influenced
than word importance ranking.

Then, we study the influence of mutant times.
Fig. 5 shows the metrics’ results when we mutant
the original texts for 1 to 5 times. When increasing
the mutant time, the ARR keep increasing and the
CRR is continuously dropping, which indicates
better evaluation effectiveness.
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Figure 5: The influence of mutant time.

Possible Defense. Finally, we study whether our
No skim can help improving the efficiency robust-
ness. We use No skim to generate 5000 samples and
incorporate them into adversarial training (Geng

Table 5: The effectiveness of each module in No skim,
where we conduct white-box evaluations.

et al., 2021). Fig. 6 shows the average remain-
ing ratio and accuracy at different training epochs.
With the increase of adversarial training epochs,
the efficiency robustness is largely strengthened.
But we find a minor drop on model accuracy (e.g.,
around 10%), which calls for better robustness and
accuracy trade-off in the future studies.
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Figure 6: The result of adversarial training.

7 Conclusions

In our work, we systematically study the potential
efficiency vulnerability of skimming acceleration
schemes on language models. We propose No Skim,
which generates adversarial inputs that drastically
increase the average inference cost of skimming-
based language models, which poses serious chal-
lenges to the deployments of the skimming-based
language models on real-time cloud services or
local hardware-constrained edge devices. As a se-
curity problem of the large language models, our
work welcomes future research to devise strong
defense against our evaluation.



8 Limitations

Apart from the performance on evluating the effi-
ciency robustness, we acknowledge that our work
has several limitations. Firstly, we only evalu-
ate our No Skim on the GLUE Benchmark (Wang
et al., 2018), which demonstrate the effectiveness
on alphabetic languages such as English. How-
ever, for logograms (e.g., Chinese), it requires to
design language-specific method to generate the
corresponding substitution set to achieve the at-
tack goal. Secondly, extensive results on other
backbones and datasets should be evaluate (e.g.,
datasets with longer sequences). Third, our work
only evaluate the defense result of adversarial train-
ing (Geng et al., 2021), more detailed defenses
should be proposed and analyzed. For the above
mentioned limitations, we leave them as the future
works.
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A Detailed Evaluation Settings
A.1 Datasets

The detail dataset information is show in Tab. 6:

Identifier Task Domain Length Size
SST-2 Sentiment ~ Movie Reviews 25 67k/0.9k
MRPC Paraphrase News 53 3.7k/0.5k

Table 6: Datasets in our evaluation, where the last col-
umn reports the training dataset size and validation
dataset size.

A.2  Metrics
We evaluate the efficiency of skimming-based lan-

gauge models with the following metrics:

Average Remaining Ratio: 0.457 Cumulative Remaining Ratio: 0.547
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Figure 7: The metrics that evaluate the model efficiency,
where (a) denotes the average remaining ratio and (b)
denotes the cumulative remaining ratio.

Average Remaining Ratio (ARR): As shown
in Fig. 4(a), the average token ratio first calcu-
lates and plots the average remaining token in each
layer for all inputs. Then, the metric calculates the
normalized area under the curve:

ARR = = ZMZ

where D is the test inputs dataset, L is the num-
ber of layers and M, l’ is the binary mask decision
at layer [ for the 'th test input. The metric is a
task-level metric that evaluate the overall efficiency
speed-up performance on the entire dataset. When
ARR is closer to 0, the target model has better
efficiency.

sum( MZ

, 9
len( Ml ©)
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Cumulative Token Ratio (CRR): As shown in
Fig. 4(b), the cumulative token ratio first calculates
and plots the cumulative distribution curve with
respect to the remaining token ratio of each input:

|D|
< ZRrrR},

sum/(
|D] & Z{ Z len( MZ
(10)

where zrTR is the threshold of remaining token
ratio and p(xrrRr) calculates the portion of text
inputs that have remaining token ratio larger than
xzrrr. Then, the metric calculates the area size
under the curve:

p(HTRTR

1
CRR—/ P(TRTR)ATRTR, (11)
0

which is the integral of the portion p(xgrr) with
respect to the remaining token ratio xgrrr on an
interval [0, 1]. The metric is a sample-level met-
ric that shows the distribution of each sample’s
remaining token ratio, indicating the variance of
efficiency speed-up on different samples. When
CRR is closer to 1, the target model has better
efficiency.

A.3 Hyper-parameters

We implement the skimming-based language mod-
els on the base of Hugging Face’s Transformers
(Wolf et al., 2020) with GLUE benchmark (Wang
et al., 2018) provided in Datasets (Lhoest et al.,
2021). For training skimming-based models, we
fine-tune the pretrained models with a linear clas-
sifier. For Transkimmer, we set the skim factor
SF as 0.5, 0.75 and 1.0 respectively where the
maximum sequence length as 64. For constructing
the adversarial inputs, we set the maximum mutant
time Ops as 10, where each mutant changes one
word. For gradient-level mutants, we ensure the
semantic similarity between words in the candidate
set and original word larger than 0.5. For black-box
scenario, we select bert-base-uncased (Devlin et al.,
2018) as the third-party and public tokenizer.

For training the skimming-based language mod-
els, we download the pre-trained BERT/RoBERTa
model provied in Huggingface. and add a linear
classifier after [CLS] token embedding. For train-
ing Transkimmer on SST-2, we fine-tune the model
3 epochs, where we set the batch size as 32 and
the learning rate as 2e-5 with an Adam optimizer.
For training Transkimmer on MRPC, we fine-tune
the model 5 epochs, where we set the batch size

as 32 and the learning rate as 5e-5 with an Adam
optimizer.

B Algorithm

The detailed algorithmic description of the genera-
tion phase is provided below:

Algorithm 1 General Efficiency Robustness Evalu-
ations Framework
1: Input: Original Input X = (z1,--- , x,), Tar-
get Skimming-based LLM F'(z), Number of
Operations Ops, Efficiency Loss Lesf(x).

2: Output: Adversarial Input Sample X.
3: Initialize: X < X
4: for word x; in X do
5: Compute Score; < ImportScore(z;)
6: end for
7 Xsort < Sort(X' ) according to Score
8: > Stepl: Word Importance Ranking
9: for idx in range(Ops) do > Search
perturbations iteratively
10 Tmaz < Xsort[idx]
11: Candidate Set S < CanGen(zqz)
12: > Step2: Candidate Set Generation
13: Initialize: Lyaz < Leps(X)
14: for candidate word s; in S do
15: Xean +—
(T1,  Tide—15 85> Tiduy 15"+ » Tn)
16: if Lefr(Xcan) > Limas then
17: Sbest < Sj
18: Linaz <+ Leff(Xcan)
19: end if
20: end for
21: B > Step3: Best Candidate Searchmg

22: X (&1,
23: end for .
24: Return: X

$zda: 1) Sbests xzdz-‘,—la

C Proofs

Theorem 3 Assumed skimming-based language
model f is composed by K encoders, R =
% Zfil r; is the total remaining token ratio, where
{r;}E | is the remaining token ratio of each en-
coder and r; € (0, 1], and x is the input text and T
is the corresponding inference time. If text length
is fixed, then T' < R.

Proof C.1 Assumed skimming-based language
model f is composed by K encoders with auto-
matic padding, where the feature dimension is d.
The input text’s length is fix and denotes as n. For

L Tp)



the encoder in the Transformers architecture, the
time complexity is shown as:

Ocncoder = O(n*d + nd?). (12)
Since the feature dimension d is far greater than

the text length n (n < d), we can derive such
approximation from Eq. 12:

Oencoder = O(n*d +nd*) = O(nd?).  (13)
Given a total number of K encoders, from Eq.
13, we can get the total time complexity of the orig-
inal language model:
Oall ~ O(L’I’LdQ) = K- Oencoder~ (14)
During inference stage, the skimming-based lan-
guage model dynamically drops unimportant token,
the real number of token that participate the infer-
ence process is ; - n, then the total time complexity
of the skimming-based language model is:

K K
Ockim = Y O(rind®) = > r; - O(nd?)
i=1 =1 (15)
=K-R-0O(nd*) = R-O(Knd?*)
=R-Ogu.

Meanwhile, time complexity reflects the real in-
ference time, we can get:

Oskim
Oaul

Ts kim __

=R,
T

(16)
where Ty and Ty is the inference time of
skimming-based language model and original lan-
guage model respectively. From Eq. 16, we can
derive:

Tskim ~R- Talla (17)

where Ty is often treated as a constant value. In
summary, the inference time on skimming-based
language model Tgy;,, is positively linear corre-
lated with the remaining token ratio R.

Theorem 4 Assumed skimming-based language
model f is composed by K encoders, R
% Zfil 14 Is the total remaining token ratio, where
{r;}, is the remaining token ratio of each en-
coder and r; € (0, 1], and x is the input text and T
is the corresponding inference time. If text length
is not fixed and the length is N, then T' < R - N.
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Proof C.2 Considering the scenario where the in-
put length is not fixed, we assume two texts with
two different lengths ni and ns. The corresponding
token remaining ratios are R! = % Zfi 71 and
R? = % Zfil r2. According to Eq. 15, the time
complexities are as follows:

1
Oskim
02

skim

~ R'-n1O(Kd?),
) ) (18)
~ R% . nyO(Kd?).

Meanwhile, time complexity reflects the real in-
ference time, from Eq. 18 we can get:

Tfkim O?kzm R ng

where the inference time on skimming-based lan-
guage model Tsy;, is influence by both the remain-
ing token ratio R and length n. In summary, the
inference time on skimming-based language model
Tskim 1S positively linear correlated with product
of the remaining token ratio R and text length n..
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