
No-Skim: Towards Efficiency Robustness Evaluation on Skimming-based
Language Models

Anonymous ACL submission

Abstract
To reduce the computation cost and the en-001
ergy consumption in large language models002
(LLM), skimming-based acceleration dynami-003
cally drops unimportant tokens of the input se-004
quence progressively along layers of the LLM005
while preserving the tokens of semantic impor-006
tance. However, our work for the first time007
reveals the acceleration may be vulnerable to008
Denial-of-Service (DoS) attacks. In this paper,009
we propose No-Skim, a general framework to010
help the owners of skimming-based LLM to un-011
derstand and measure the efficiency robustness012
of their acceleration scheme. Specifically, our013
framework searches minimal and unnoticeable014
perturbations to generate adversarial inputs that015
sufficiently increase the remaining token ratio,016
thus increasing the computation cost and en-017
ergy consumption. With no direct access to the018
model internals, we further devise a time-based019
approximation algorithm to infer the remaining020
token ratio as the loss oracle. We systemati-021
cally evaluate the vulnerability of the skimming022
acceleration in various LLM architectures in-023
cluding BERT and RoBERTa on the GLUE024
benchmark. In the worst case, the perturbation025
found by No-Skim substantially increases the026
running cost of LLM by over 103% on average.027

1 Introduction028

In Natural Language Processing, Transformer029

(Vaswani et al., 2017) has facilitated the birth of030

pre-trained language models, such as BERT (De-031

vlin et al., 2018), RoBERTa (Liu et al., 2019) and032

GPT (Radford et al., 2018), which have brought033

significant improvements to various downstream034

applications. Despite the success on the effective035

performances, the computational complexity and036

model parameter size are massive, thus deploying037

these models to real-time service platforms and re-038

source limited (i.e., energy, computation and mem-039

ory resources) edge devices are very challenging.040

To reduce the computation cost on language041

models, recent works (Goyal et al., 2020; Ye et al.,042

[CLS]

this

movie

.

is

maddening 

Input 
Sequences

Downstream
Classifier

“Positive”

Layer
#1

Input Token
Embedding

Forward Dropped Tokens

Layer
#2

Hidden 
States

Layer
#3

Hidden 
States

Layer
#3

Hidden 
States

Layer
#4

Hidden 
States

Figure 1: The general design of skimming-based lan-
guage models on a sentiment classification task. In the
example, the important token “good” is preserved.

2021; Kim and Cho, 2020; Kim et al., 2022; Guan 043

et al., 2022) propose the design of skimming-based 044

language models. Skimming acceleration imple- 045

ments the intuition that human can comprehend the 046

whole sentence by paying extra attention to only a 047

few important words. As shown in Fig. 1, skim- 048

ming acceleration dynamically and progressively 049

drops unimportant tokens along different layers to 050

reduce the computation budget and preserves the 051

important tokens within the layers to maintain the 052

semantic information. For example, the average 053

FLOPs speed up is 281% on GLUE benchmark 054

(Wang et al., 2018) when deploying skimming ac- 055

celeration proposed in Guan et al. (2022). 056

The skimming-based language models can be de- 057

ployed on real-time service platforms and resource 058

limited edge devices to reduce the computation 059

complexity and decrease the energy consumption. 060

Despite the tremendous success on improving effi- 061

ciency, we need to understand and evaluate poten- 062

tial vulnerabilities on existing skimming-based lan- 063

guage models from the perspective of computation 064

efficiency, where the dropping of tokens can be de- 065

liberately manipulated by the unnoticeable changes 066

on text inputs, which will pose serious challenge 067

to the practical deployments. For real-time service 068

platforms, the increasing computation complexity 069

reduces the number of queries processed simultane- 070
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ously, which eventually damage the service quality.071

For resource limited edge devices, the increasing072

computation cost accelerates the consumption of073

valuable resources (e.g., battery life), which is not074

acceptable for ordinary users.075

However, existing adversarial attack (Li et al.,076

2018; Ren et al., 2019; Gao et al., 2018; Li et al.,077

2020) lacks the ability to evaluate efficiency robust-078

ness in many aspects. First, the goal is mainly fo-079

cus on damaging model accuracy, which lacks clear080

efficiency information to properly guide the effi-081

ciency robustness evaluation. Second, efficiency082

information is in the form of discrete values, which083

makes gradients hard to calculate. Third, when084

the language models are deployed on online pre-085

dictive API, no internal efficiency information is086

obtainable.087

To provide an accurate evaluation on the effi-088

ciency robustness of skimming-based language089

models, we propose No Skim, the first general090

efficiency robustness evaluation framework on091

the skimming-based language models, which in-092

tegrates a rank-and-substitute scheme to generates093

adversarial inputs that maximally increase the com-094

putation complexity. Specifically, we implement a095

gradient-based evaluation algorithm to effectively096

search the appropriate perturbations, in which we097

propose a loss smoothing algorithm to make the098

efficiency loss differentiable. To solve the chal-099

lenge where on model internals are available, we100

further theoretically analyze the relation between101

inference time and remaining token ratio and pro-102

pose a time-based approximation algorithm to infer103

the efficiency information. Then, we implement104

a time-based evaluation algorithm, which makes105

our evaluation applicable to various deployment106

scenarios.107

The contributions of our paper can be summa-108

rized as follows:109

• We are the first work to systematically study110

the vulnerability of the skimming-based lan-111

guage models from the perspective of effi-112

ciency.113

• We propose an effective efficiency robustness114

evaluation framework No Skim that generates115

adversarial inputs to increase the computation116

complexity.117

• We propose both gradient-based algorithm118

and time-based algorithm to evaluate the effi-119

ciency robustness under various deployment120

scenarios. 121

• We conduct extensive evaluations on the state- 122

of-the-art dynamic skimming acceleration 123

scheme Transkimmer (Guan et al., 2022) with 124

BERT and RoBERTa architectures on the 125

GLUE benchmark. In the worst case, our 126

framework can increase the computation cost 127

by 103%. 128

2 Related Works 129

2.1 Skimming Acceleration Schemes 130

Skimming acceleration schemes have been a signif- 131

icant thrust of recent researches to improve the 132

efficiency of existing language models. Skim- 133

ming is first well-studied in recurrent-based neural 134

networks (Yu et al., 2017; Campos et al., 2017; 135

Yu et al., 2018; Fu and Ma, 2018), which saves 136

computation time-wise by dynamically skipping 137

some time steps and copying the hidden states di- 138

rectly to the next step without any update. Re- 139

cently, in the presence of transformer architec- 140

tures (Vaswani et al., 2017), skimming-based lan- 141

guage models reduce the computation complex- 142

ity by dropping some unimportant tokens progres- 143

sively along different layers. Skimming-based ac- 144

celeration schemes can be categorized into static 145

and dynamic schemes. 146

Static skimming schemes (Goyal et al., 2020; 147

Kim and Cho, 2020) use a fix remaining token ratio, 148

where all the input sequences are all dropped cer- 149

tain ratio of tokens during inference. However, dif- 150

ferent input sequences vary greatly within tasks and 151

between training and validation dataset, leading to 152

a bad generalization. Dynamic skimming schemes 153

are input-adaptive, which use hidden values or at- 154

tention values to dynamically decide whether the 155

token are dropped or not. Ye et al. (2021) propose 156

a RL-based scheme called TR-BERT, which adopts 157

reinforcement learning to independently optimize 158

a policy network that dynamically drops tokens. 159

Kim et al. (2022) propose a threshold-base scheme 160

called LTP, which drops the tokens whose the atten- 161

tion values is lower than the threshold. Guan et al. 162

(2022) propose a prediction-based scheme called 163

Transkimmer, which integrates each layer with a 164

lightweight fully connected network to make the 165

skimming decision for each token given the hidden 166

values. In this paper, we mainly investigate the effi- 167

ciency robustness of the dynamic skimming-based 168

language models as the computation complexity 169

varies according to the input text sequences. 170
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2.2 Robustness Evaluation171

Adversarial attacks (Li et al., 2018; Ren et al., 2019;172

Gao et al., 2018; Li et al., 2020) are proposed173

to evaluate language models’ ability to make cor-174

rect prediction facing imperceptible perturbations.175

However, these attack lacks the ability to evaluate176

efficiency robustness due to its incorrect attack goal,177

unavailable gradient information and unacquirable178

efficiency information. In the meantime, a line of179

works have been proposed to study the efficiency180

robustness of existing language models. Zhang181

et al. (2023) propose slow-down attacks on multi-182

exit language models (Zhou et al., 2020), which183

delay the exit positions to increase the computation184

cost. Chen et al. (2022b,a) propose to maximize the185

output sequences’ length to increase the inference186

time. As skimming acceleration schemes improve187

model efficiency different from the aforementioned188

models, a systematic evaluation on the efficiency189

robustness is necessary.190

3 Formulation191

3.1 Evaluation Objectives192

The goal of our efficiency robustness evaluation193

framework is to generate adversarial inputs that194

deteriorate the efficiency of the skimming-based195

language models. Intuitively, the framework gener-196

ates unnoticeable perturbations on original inputs197

to increase the remaining token ratio, which serves198

as an indicator of model efficiency. Increasing the199

remaining token ratio denotes the increase of the200

computation complexity and the energy consump-201

tion. We formulate the evaluation objectives as the202

following optimization:203

argmax
δ

Leff (x+ δ) s.t. Sim(x, x+ δ) ≥ ϵ,

(1)204

where x is the original input, δ is the perturbations205

added on the input x, Leff denotes the efficiency206

loss, Sim : X × X → (0, 1) is the similarity207

function and ϵ is the similarity threshold.208

Generating adversarial inputs that increase the209

computation cost poses serious challenges to the210

practical deployments of skimming-based language211

models. For real-time service platforms, through-212

put is the key element to measure the quality of213

the service. However, for a platform with a certain214

level of computation power, the increasing compu-215

tation complexity reduces the number of queries216

processed simultaneously, which eventually dam-217

ages the service quality and ruins online users’ ex-218

perience. For resource limited edge devices, the 219

increasing computation cost accelerates the con- 220

sumption of valuable resources (e.g., battery life 221

for mobile phones), thus shortening the available 222

time, which is not acceptable for ordinary users. 223

3.2 Evaluation Scenarios 224

To comprehensively evaluate the potential effi- 225

ciency vulnerability of the skimming-based lan- 226

guage models, the framework should generally sup- 227

port the evaluations under different level of knowl- 228

edge and access to the language models. We as- 229

sume the evaluator has the following knowledge 230

and access to the target skimming-based language 231

model: 232

• White-box Access: White-box access assumes 233

the evaluator has full knowledge of the target 234

model (i.e., model parameters and dynamic skim- 235

ming scheme) and the vocabulary information 236

(i.e., the vocabulary size and the corresponding 237

word embeddings). And the gradient w.r.t. the 238

word embedding and model parameters can be di- 239

rectly calculated. It simulates a practical scenario 240

where the skimming language model is directly 241

deployed on the resource limited edge devices. 242

• Black-box Access: Black-box access is consid- 243

ered as the toughest scenario. It assumes that no 244

internal information (i.e., model information or 245

even speed up ratio) are acquirable for the eval- 246

uator. The evaluator can only approximate the 247

internal information by observing the running sta- 248

tus (e.g., inference time). It simulates a scenario 249

where the skimming language model is deployed 250

on cloud platforms as predictive API. 251

4 Methodology 252

We propose No skim, the first general framework to 253

evaluate the efficiency robustness of the skimming- 254

based language models. First, we present the gen- 255

eral design of the framework. Then, we provide 256

two specific implementations to evaluate the ef- 257

ficiency robustness of skimming-based language 258

models under two different scenarios. 259

4.1 General Design 260

Given an initial input, our No skim iteratively 261

searches unnoticeable perturbations to gradually 262

increase the computation cost. As shown in Fig. 2, 263

we provide an overview of the general pipeline of 264

our No skim, which is used to generate the adver- 265

sarial input. We also provide a detailed algorithmic 266
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Step3: Best Candidate Searching

Gradient Ranking Mask Ranking Word-Level Character-Level

Remaining 
Token Ratio

Running
Status

 Inputs

Skimming-based
Language

Model

it 's a charming and 
often affecting journey

it 's a charming and often affecting journey
affhecting 0affecting

affectingk affect9ing
…

happy amusing

new old
…

it 's a charming and often affhecting journey

e.g., Remaining Token Ratio Increased By 180%

Query 
Target Model

Get Efficiency
Information

Figure 2: The general evaluation framework of No Skim, where Word Importance Ranking step only runs once.

description of the generation process in Algorithm267

1 of Appendix B, which consists of three major268

steps:269

• Step1: Word Importance Ranking (Line 4-8) :270

In this step, we aim to identify the most impor-271

tant word that will drastically impact the model’s272

efficiency when modifying it. An importance273

score will be calculated for each word, and the274

word with the larger importance score is more275

likely to be modified in the following steps.276

• Step2: Candidate Set Generation (Line 10-12)277

: In this step, we aim to generate a candidate set278

to represent the possible search space given the279

word selected in the last step, where the candidate280

words are imperceptible from the original words281

to preserve the semantic information.282

• Step3: Best Candidate Searching (Line 14-21)283

: In this step, we search the whole candidate set284

and aim to select the candidate that maximally285

increases the computation cost and the energy286

consumption. We substitute the original word287

with each word in the candidate set and query the288

target skimming-based language model to get the289

efficiency information. Then, we compare the290

efficiency degradation of each candidate word to291

decide to best candidate word.292

4.2 White-box Evaluation293

Efficiency Loss. In white-box scenario, we are294

able to observe the inner characteristic of the target295

skimming-based model. We directly calculate the296

remaining token ratio as the efficiency loss:297

Leff (X) =
1

K

K∑
l=0

sum(Ml)

len(Ml)
, (2)298

where K is the number of layers in the language299

model, Ml is the binary skim decision for the token300

sequence at layer l. For every element in Ml, 0301

stands for dropping the token, 1 stands for preserv- 302

ing the token. The remaining token ratio calculates 303

and averages the ratios of token remained of every 304

layers, which represents the computation complex- 305

ity speed-up. 306

Word Importance Ranking. Given a text se- 307

quence of n words X = (x1, x2, · · · , xn), some 308

words play the key role of influencing the model’s 309

efficiency. We first calculate the importance score 310

of each word xi as follows: 311

Scorei =
m∑
j=0

∂Leff(X)

∂Ej
i

, (3) 312

where the Ei is the embedding of word xi, m is 313

the feature dimension of embedding and Leff is 314

the efficiency loss. The score firstly calculates the 315

gradient of the efficiency loss w.r.t the word embed- 316

ding and then calculates the sum of gradient along 317

the embedding. The gradient implies the direction 318

and degree of efficiency loss’s change when manip- 319

ulating the word embedding. Perturbing the word 320

with the largest importance score is the easiest way 321

to increase the efficiency loss Leff , thus increasing 322

the computation complexity. 323

Candidate Set Generation. Once selecting the 324

most important word based on gradient, we need 325

to generate a candidate set composed of unnotice- 326

able perturbed versions of the selected word. The 327

candidate set represents the proper optimization 328

search space to increase the efficiency loss (i.e., 329

remaining token ratio). For white-box scenario, we 330

design word-level perturbation and character-level 331

perturbation to generate the candidate set. 332

For word-level perturbation, knowing the vocab- 333

ulary information, we enumerate every word in the 334
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vocabulary and calculate the efficiency loss change:335

Vtarget =
m∑
j=0

(Ej
target − Ej

selected) ·
∂Leff(X)

∂Ej
selected

,

(4)336

where Etarget denotes the embedding of a target337

word in the vocabulary and Eselected denotes the338

embedding of the selected important word. Equa-339

tion 4 calculates the product of the change of em-340

bedding and the partial derivative on embedding341

when substituting the selected important word to342

the target word. We then sample words from the343

vocabulary as follows:344

S = Top-ktarget∈V ocab Vtarget, (5)345

where words with top-k efficiency loss change V346

are selected. In the meantime, we also discard the347

words that deteriorate the text semantic information348

from the candidate set.349

For character-level perturbation, we simulate the350

mistakes made by ordinary users during typing by351

inserting random characters at random locations.352

Since the character-level perturbation often leads to353

UNK token in the embedding space, it is challeng-354

ing to directly compare the efficiency loss changes355

of these perturbed words. Thus, we randomly select356

several characters in digits, letters and insert the357

character at random locations to form the character-358

level candidate set S. The examples of word-level359

and character-level perturbation are shown in Fig.360

2.361

Best Candidate Searching. After generating the362

candidate set, We straightforwardly test all pertur-363

bations in the candidate set and select the optimal364

perturbation that leads to the largest computation365

cost. In white-box scenario, we use the remaining366

token ratio calculated in Eq. 2 to represent the com-367

putation cost. For an original input, we iteratively368

add unnoticeable perturbations to the original input369

several times to generate highly effective adversar-370

ial inputs.371

Loss Smoothing Algorithm. Since the efficiency372

loss proposed in Eq. 2 is discrete and non-373

differentiable, we propose loss smoothing algo-374

rithm, which uses the reparameterization trick (i.e.,375

Gumbel-softmax) to sample the discrete skim deci-376

sion M from the skim probability P :377

M t =
exp((log(P t) + gt)/τ)∑1

k=0 exp((log(P
k) + gk)/τ)

, (6)378

where t ∈ {0, 1}, g is independent and identically 379

sampled from Gumbel(0, 1) distribution and τ is 380

the temperature. After smoothing, the estimated 381

skim decision M is differentialable. 382

4.3 Black-box Scenario 383

Time-based Approximation Algorithm. Black- 384

box scenario is considered as the toughest scenario, 385

as no internal information (i.e., model informa- 386

tion or even speed up ratio) are acquirable for us. 387

Inspired by the recent advances in side-channel at- 388

tacks (Brumley and Boneh, 2005; Inci et al., 2016; 389

Goyal et al., 2020; Timon, 2019), we propose from 390

a new perspective to approximate the remaining 391

token ratio in Eq. 2 to facilitate the evaluation 392

procedure, where the magnitude of inference time 393

actually represents different remaining token ra- 394

tios. First, we theoretically analysis the relation 395

between the inference time and remaining token 396

ratio in Theorem 1. 397

Theorem 1 Assumed skimming-based language 398

model f is composed by K encoders, R = 399
1
K

∑K
i=1 ri is the total remaining token ratio, where 400

{ri}Ki=1 is the remaining token ratio of each en- 401

coder and ri ∈ (0, 1], and x is the input text and T 402

is the corresponding inference time. If text length 403

is fixed, then T ∝ R. 404

Then, we empirically observe the relation be- 405

tween the remaining token ratio and the sequence- 406

level inference time, which measures the inference 407

time on the entire input sequence. However, as 408

shown in Fig. 3(a), we find the linear correlation 409

is imperfect due to the large variance of input se- 410

quences’ lengths. For example, a long input se- 411

quence with low remaining token ratio can still 412

require a large inference time. To eliminate the ef- 413

fects of lengths’ variance, we take the input length 414

into account: 415

Theorem 2 Assumed skimming-based language 416

model f is composed by K encoders, R = 417
1
K

∑K
i=1 ri is the total remaining token ratio, where 418

{ri}Ki=1 is the remaining token ratio of each en- 419

coder and ri ∈ (0, 1], and x is the input text and T 420

is the corresponding inference time. If text length 421

is not fixed and the length is N , then T ∝ R ·N . 422

Theorem 2 shows that inference time is posi- 423

tively linear correlated with the product of remain- 424

ing token ratio and input length. The detailed 425

proofs are provided in Appendix C. Based on the 426

theoretical findings, we propose token-level infer- 427

ence time to approximate the remaining token ratio 428
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and set the efficiency loss Leff as follows:429

Leff =
Time(x)

length
,

where length = Len(Tokenizer(x)),

(7)430

where Time(x) is the inference time of the se-431

quence x, Tokenizer is a tokenizer and Len432

counts the token sequence length. As limited in the433

black-box scenario, we have no inner information434

about the architecture of the target model and its435

corresponding tokenizer. Instead, we propose to436

randomly select a third-party and public tokenizer437

unrelated to the targeted skimming-based model to438

approximate the token sequence length.439

As shown in Fig. 3(b), we empirically observe440

a perfect positive linear correlation between the441

remaining token ratio and the token-level inference442

time. The token-level inference time eliminates the443

negative influence caused by the variance of the444

sequence lengths, as a single token’s computation445

cost is fixed given a specific language model. This446

observation further proves the feasibility to conduct447

a side-channel attack to infer the remaining token448

ratio by analysis the token-level inference time.

Figure 3: The linear relation between the remaining
token ratio and inference time, where (a) uses the in-
ference time on the sequence-level and (b) uses the
inference time on the token-level. We present the result
on Transkimmer (Guan et al., 2022) with a sentiment
classification task SST-2.

449

Word Importance Ranking. Since gradient in-450

formation is no longer available, we propose mask-451

based importance score to select the word that has452

the largest impact on the computation efficiency.453

As proposed in Eq. 8, we iteratively mask each454

word xi in the original text sequence and form the455

mask version X̂ = (x1, · · · , xi−1, xi+1, · · · , xn).456

We then calculate the importance score of each457

word by subtracting the efficiency loss of the origi-458

nal one from the mask one to get the efficiency loss459

increment:460

Scorei = Leff (X̂)− Leff (X),

where X̂ = (x1, · · · , xi−1, xi+1, · · · , xn),
(8)461

where Scorei is the important score for the i′th 462

word and Leff represents the remaining token ratio. 463

If masking the word leads to a large efficiency loss 464

increment, it means that the masked word is critical 465

for the model computation efficiency. 466

Candidate Set Generation. In the meantime, we 467

can not get the word embeddings under black-box 468

scenario. For word-level perturbation, we propose 469

to use the nearest neighbours of the target word in a 470

pre-trained word embedding space (e.g., word2vec 471

Mikolov et al. (2013)). The rest of the procedure is 472

the same as white-box scenario. 473

5 Evaluation Setting 474

Architecture & Dataset. To thoroughly evaluate 475

our framework, No skim, we consider the state- 476

of-the-art skimming scheme Transkimmer (Guan 477

et al., 2022) as our evaluation target. We implement 478

BERT (Devlin et al., 2018) and RoBERTa (Liu 479

et al., 2019) with tasks of the GLUE Benchmark 480

(Wang et al., 2018), which are detailed in Tab. 6. 481

Metrics. We evaluate the efficiency of skimming- 482

based language models with the following metrics: 483

Average Remaining Ratio (ARR): As shown 484

in Fig. 7(a), the average token ratio calculates the 485

average remaining token ratio on the dataset. The 486

metric is a task-level metric that evaluate the overall 487

efficiency speed-up performance. When ARR is 488

closer to 0, the target model has better efficiency. 489

Cumulative Token Ratio (CRR): As shown 490

in Fig. 7(b), the cumulative token ratio calculates 491

cumulative distribution of the remaining token ratio 492

of each input. The metric indicates the variance 493

of efficiency speed-up on different samples. When 494

CRR is closer to 1, the target model has better 495

efficiency. Fig. 7 and more detailed description are 496

provided in Appendix A. 497

Baselines. Since we are the first work to evalu- 498

ate the efficiency robustness of skimming-based 499

language models, we compare with several adver- 500

sarial attacks: TextBugger (Li et al., 2018), Deep- 501

WordBug (Gao et al., 2018), BERTAttack (Li et al., 502

2020) and PWWS (Ren et al., 2019). The details 503

settings are provided in Appendix A. 504

6 Evaluation 505

Effectiveness Under White-box Scenario. First, 506

we report how much computational complexity is 507

increased by our adversarial inputs in Tab. 1. We 508
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Scheme Scenario
SF=0.5 SF=0.75 SF=1.0 SF=0.5 SF=0.75 SF=1.0

ARR↑ CRR↓ ARR↑ CRR↓ ARR↑ CRR↓ ARR↑ CRR↓ ARR↑ CRR↓ ARR↑ CRR↓

SST2 + BERT SST2 + RoBERTa

Origin - 0.442 0.563 0.172 0.833 0.142 0.863 0.331 0.674 0.194 0.811 0.150 0.855
TextBugger w.b. 0.440 0.565 0.168 0.837 0.134 0.871 0.288 0.717 0.169 0.836 0.136 0.869

DeepWordBug b.b. 0.445 0.559 0.154 0.851 0.126 0.880 0.269 0.736 0.145 0.859 0.116 0.888
BERTAttack b.b. 0.425 0.581 0.172 0.833 0.139 0.866 0.314 0.691 0.185 0.821 0.143 0.862

PWWS b.b. 0.430 0.575 0.173 0.832 0.139 0.866 0.313 0.692 0.182 0.823 0.140 0.865

No skim w.b. 0.730 0.275 0.400 0.605 0.322 0.683 0.519 0.486 0.311 0.694 0.260 0.745
No skim b.b. 0.659 0.346 0.256 0.749 0.185 0.820 0.402 0.603 0.234 0.771 0.186 0.819

MRPC + BERT MRPC + RoBERTa

Origin - 0.551 0.454 0.443 0.562 0.242 0.763 0.514 0.491 0.397 0.608 0.252 0.753
TextBugger w.b. 0.605 0.400 0.452 0.553 0.246 0.759 0.579 0.426 0.425 0.579 0.258 0.748

DeepWordBug b.b. 0.644 0.361 0.505 0.500 0.241 0.765 0.583 0.423 0.420 0.585 0.257 0.748
BERTAttack b.b. 0.577 0.428 0.432 0.573 0.241 0.764 0.533 0.472 0.406 0.599 0.252 0.754

PWWS b.b. 0.618 0.387 0.483 0.522 0.254 0.751 0.559 0.446 0.422 0.583 0.258 0.748

No skim w.b. 0.869 0.137 0.774 0.231 0.499 0.505 0.860 0.145 0.736 0.269 0.572 0.432
No skim b.b. 0.813 0.192 0.710 0.295 0.299 0.706 0.741 0.264 0.526 0.479 0.343 0.661

Table 1: Efficiency robustness results on Skimming-based Language, where w.b. and b.b. represents white-box and
black-box scenario respectively.

make the following observations: (1) the baseline509

attacks are not effective in evaluating efficiency510

robustness. (2) Our No Skim demonstrates the511

efficiency vulnerability of the existing skimming-512

based language model, which increases the average513

remaining ratio by 106% and decrease the cumula-514

tive remaining ratio to 30% at most. (3) When the515

skim factor SF is larger, the negative influence on516

model efficiency is less. Furthermore, Fig. 4 shows517

an example of each layer’s average remaining ratio,518

where our No skim generates samples that increase519

the remaining ratio in every layer particularly the520

former layers comparing to the original samples.521

Figure 4: The comparison of efficiency results on BERT
and SST-2 under white-box scenario.

Effectiveness Under Black-box Scenario. For522

black-box scenario, we first evaluate the perfor-523

mance of our time-based approximation algorithm.524

As shown in Tab. 3, using token-level inference525

time can more accurately approximate the remain-526

ing token ratio comparing to the sentence-level527

inference time, where the magnitude of the mean528

square errors are only 10−3 at most. Then, we eval-529

uate the effectiveness of our No skim in Tab. 1. We530

report that our black-box evaluation suffers sligtest531

performance drop comparing to our white-box eval-532

uation (e.g., around 0.1 on average remaining ratio). 533

Nevertheless, this poses serious challenges to the 534

deployments on real-time cloud services. 535

Metric Scenario Skim Factor

0.5 0.75 1 0.5 0.75 1

BERT SST-2 BERT MRPC

LD w.b. 24.340 32.817 30.517 32.228 32.593 34.420
b.b. 12.325 10.177 8.817 21.607 21.043 14.960

SS w.b. 0.488 0.522 0.579 0.855 0.864 0.867
b.b. 0.585 0.624 0.695 0.920 0.929 0.934

RoBERTa SST-2 RoBERTa MRPC

LD w.b. 29.751 31.827 27.157 20.512 20.890 22.257
b.b. 3.437 3.403 4.390 9.880 9.360 8.373

SS w.b. 0.619 0.612 0.645 0.907 0.915 0.913
b.b. 0.838 0.836 0.783 0.905 0.916 0.921

Table 2: The similarity between our generated inputs
and original inputs, where LD and SS stands for leven-
shtein distance and semantic similarity

Text Similarity. Further, we report how stealthy 536

are the imperceptible mutations on generated adver- 537

sarial inputs of our No skim compared to the origi- 538

nal ones. We measure both cosine similarity on the 539

sentence embedding generated by SBERT and lev- 540

enshtein distance on character-level to demonstrate 541

the similarity. As shown in Tab. 2, the average se- 542

mantic similarity is larger than 0.85 for most cases. 543

In the meantime, the levenshtein distance shows 544

less than 30 edit operation is required to generate 545

the adversarial inputs, which means the mutations 546

are of high stealthiness. 547

Influence on Model Utility. Next, we study 548

whether our No Skim will cause extra damages 549

to the model utility. As reported in Tab. 4, our 550

attack generate adversarial inputs that not only in- 551
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SF=0.5 SF=0.75 SF=1.0

Sentence Token Sentence Token Sentence Token

SST-2 + BERT 7.416×10−3 4.677×10−3 1.109×10−2 3.322×10−3 7.634×10−3 1.649×10−3

MRPC + BERT 7.003×10−3 5.336×10−3 7.030×10−3 4.531×10−3 5.609×10−4 4.890×10−4

SST-2 + RoBERTa 9.980×10−3 3.990×10−3 6.961×10−3 1.915×10−3 5.110×10−3 1.408×10−3

MRPC + RoBERTa 4.525×10−3 3.680×10−3 2.099×10−3 1.687×10−3 1.082×10−3 1.009×10−3

Table 3: Mean square error on time-based approximation algorithm.

Scenario SF=0.5 SF=0.75 SF=1.0 SF=0.5 SF=0.75 SF=1.0

SST-2 + BERT MRPC + BERT

Origin 0.904 0.884 0.869 0.853 0.804 0.782
w.b. 0.644 0.523 0.613 0.324 0.320 0.320
b.b. 0.649 0.647 0.780 0.343 0.380 0.513

SST-2 + RoBERTa MRPC + RoBERTa

Origin 0.931 0.894 0.896 0.836 0.850 0.767
w.b. 0.648 0.540 0.633 0.445 0.460 0.443
b.b. 0.698 0.583 0.694 0.521 0.583 0.523

Table 4: The negative effect comparison on model utility
between our generated adversarial inputs and original
inputs.

crease the computation costs but also degrade the552

classification performances of the skimming-based553

models. Specifically, the accuracy is decreased554

from 20% to 30%, which calls for more attentions555

on our proposed evaluation.556

Ablation Studies. First, Tab. 5 studies the effec-557

tiveness of each module in No skim. Since candi-558

date set generation is necessary, we mainly focus on559

word importance ranking and best candidate search-560

ing. As we can see, both module plays positive561

effect on improving the evaluation effectiveness.562

And best candidate searching is more influenced563

than word importance ranking.564

Then, we study the influence of mutant times.565

Fig. 5 shows the metrics’ results when we mutant566

the original texts for 1 to 5 times. When increasing567

the mutant time, the ARR keep increasing and the568

CRR is continuously dropping, which indicates569

better evaluation effectiveness.570
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Figure 5: The influence of mutant time.

Possible Defense. Finally, we study whether our571

No skim can help improving the efficiency robust-572

ness. We use No skim to generate 5000 samples and573

incorporate them into adversarial training (Geng574

Module SF=0.5 SF=0.75 SF=1.0

ARR CRR ARR CRR ARR CRR

BERT SST-2

+ None 0.635 0.371 0.224 0.781 0.166 0.839
+ Rank 0.642 0.363 0.238 0.767 0.175 0.831

+ Search 0.725 0.28 0.374 0.631 0.315 0.689

+ All 0.730 0.275 0.400 0.605 0.322 0.683

BERT MRPC

+ None 0.752 0.253 0.665 0.340 0.360 0.644
+ Rank 0.778 0.227 0.668 0.337 0.37 0.636

+ Search 0.850 0.156 0.769 0.236 0.497 0.509

+ All 0.869 0.137 0.774 0.231 0.499 0.505

Table 5: The effectiveness of each module in No skim,
where we conduct white-box evaluations.

et al., 2021). Fig. 6 shows the average remain- 575

ing ratio and accuracy at different training epochs. 576

With the increase of adversarial training epochs, 577

the efficiency robustness is largely strengthened. 578

But we find a minor drop on model accuracy (e.g., 579

around 10%), which calls for better robustness and 580

accuracy trade-off in the future studies. 581
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Figure 6: The result of adversarial training.

7 Conclusions 582

In our work, we systematically study the potential 583

efficiency vulnerability of skimming acceleration 584

schemes on language models. We propose No Skim, 585

which generates adversarial inputs that drastically 586

increase the average inference cost of skimming- 587

based language models, which poses serious chal- 588

lenges to the deployments of the skimming-based 589

language models on real-time cloud services or 590

local hardware-constrained edge devices. As a se- 591

curity problem of the large language models, our 592

work welcomes future research to devise strong 593

defense against our evaluation. 594
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8 Limitations595

Apart from the performance on evluating the effi-596

ciency robustness, we acknowledge that our work597

has several limitations. Firstly, we only evalu-598

ate our No Skim on the GLUE Benchmark (Wang599

et al., 2018), which demonstrate the effectiveness600

on alphabetic languages such as English. How-601

ever, for logograms (e.g., Chinese), it requires to602

design language-specific method to generate the603

corresponding substitution set to achieve the at-604

tack goal. Secondly, extensive results on other605

backbones and datasets should be evaluate (e.g.,606

datasets with longer sequences). Third, our work607

only evaluate the defense result of adversarial train-608

ing (Geng et al., 2021), more detailed defenses609

should be proposed and analyzed. For the above610

mentioned limitations, we leave them as the future611

works.612
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A.1 Datasets 771

The detail dataset information is show in Tab. 6:

Identifier Task Domain Length Size
SST-2 Sentiment Movie Reviews 25 67k/0.9k
MRPC Paraphrase News 53 3.7k/0.5k

Table 6: Datasets in our evaluation, where the last col-
umn reports the training dataset size and validation
dataset size.

772

A.2 Metrics 773

We evaluate the efficiency of skimming-based lan- 774

gauge models with the following metrics: 775
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Figure 7: The metrics that evaluate the model efficiency,
where (a) denotes the average remaining ratio and (b)
denotes the cumulative remaining ratio.

Average Remaining Ratio (ARR): As shown 776

in Fig. 4(a), the average token ratio first calcu- 777

lates and plots the average remaining token in each 778

layer for all inputs. Then, the metric calculates the 779

normalized area under the curve: 780

ARR =
1

L

L∑
l=0

1

|D|

|D|∑
i=0

sum(M i
l )

len(M i
l )

, (9) 781

where D is the test inputs dataset, L is the num- 782

ber of layers and M i
l is the binary mask decision 783

at layer l for the i′th test input. The metric is a 784

task-level metric that evaluate the overall efficiency 785

speed-up performance on the entire dataset. When 786

ARR is closer to 0, the target model has better 787

efficiency. 788
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Cumulative Token Ratio (CRR): As shown in789

Fig. 4(b), the cumulative token ratio first calculates790

and plots the cumulative distribution curve with791

respect to the remaining token ratio of each input:792

p(xRTR) =
1

|D|

|D|∑
i=0

{ 1
L

L∑
l=0

sum(M i
l )

len(M i
l )
≤ xRTR},

(10)793

where xRTR is the threshold of remaining token794

ratio and p(xRTR) calculates the portion of text795

inputs that have remaining token ratio larger than796

xRTR. Then, the metric calculates the area size797

under the curve:798

CRR =

∫ 1

0
p(xRTR)dxRTR, (11)799

which is the integral of the portion p(xRTR) with800

respect to the remaining token ratio xRTR on an801

interval [0, 1]. The metric is a sample-level met-802

ric that shows the distribution of each sample’s803

remaining token ratio, indicating the variance of804

efficiency speed-up on different samples. When805

CRR is closer to 1, the target model has better806

efficiency.807

A.3 Hyper-parameters808

We implement the skimming-based language mod-809

els on the base of Hugging Face’s Transformers810

(Wolf et al., 2020) with GLUE benchmark (Wang811

et al., 2018) provided in Datasets (Lhoest et al.,812

2021). For training skimming-based models, we813

fine-tune the pretrained models with a linear clas-814

sifier. For Transkimmer, we set the skim factor815

SF as 0.5, 0.75 and 1.0 respectively where the816

maximum sequence length as 64. For constructing817

the adversarial inputs, we set the maximum mutant818

time Ops as 10, where each mutant changes one819

word. For gradient-level mutants, we ensure the820

semantic similarity between words in the candidate821

set and original word larger than 0.5. For black-box822

scenario, we select bert-base-uncased (Devlin et al.,823

2018) as the third-party and public tokenizer.824

For training the skimming-based language mod-825

els, we download the pre-trained BERT/RoBERTa826

model provied in Huggingface. and add a linear827

classifier after [CLS] token embedding. For train-828

ing Transkimmer on SST-2, we fine-tune the model829

3 epochs, where we set the batch size as 32 and830

the learning rate as 2e-5 with an Adam optimizer.831

For training Transkimmer on MRPC, we fine-tune832

the model 5 epochs, where we set the batch size833

as 32 and the learning rate as 5e-5 with an Adam 834

optimizer. 835

B Algorithm 836

The detailed algorithmic description of the genera- 837

tion phase is provided below:

Algorithm 1 General Efficiency Robustness Evalu-
ations Framework

1: Input: Original Input X = (x1, · · · , xn), Tar-
get Skimming-based LLM F (x), Number of
Operations Ops, Efficiency Loss Leff (x).

2: Output: Adversarial Input Sample X̃ .
3: Initialize: X̃ ← X
4: for word xi in X̃ do
5: Compute Scorei ← ImportScore(xi)
6: end for
7: Xsort ← Sort(X̃) according to Score
8: ▷ Step1: Word Importance Ranking
9: for idx in range(Ops) do ▷ Search

perturbations iteratively
10: xmax ← Xsort[idx]
11: Candidate Set S ← CanGen(xmax)
12: ▷ Step2: Candidate Set Generation
13: Initialize: Lmax ← Leff (X)
14: for candidate word sj in S do
15: Xcan ←

(x̃1, · · · , x̃idx−1, sj , x̃idx+1, · · · , x̃n)
16: if Leff (Xcan) > Lmax then
17: sbest ← sj
18: Lmax ← Leff (Xcan)
19: end if
20: end for
21: ▷ Step3: Best Candidate Searching
22: X̃ ← (x̃1, · · · , x̃idx−1, sbest, x̃idx+1, · · · , x̃n)
23: end for
24: Return: X̃

838

C Proofs 839

Theorem 3 Assumed skimming-based language 840

model f is composed by K encoders, R = 841
1
K

∑K
i=1 ri is the total remaining token ratio, where 842

{ri}Ki=1 is the remaining token ratio of each en- 843

coder and ri ∈ (0, 1], and x is the input text and T 844

is the corresponding inference time. If text length 845

is fixed, then T ∝ R. 846

Proof C.1 Assumed skimming-based language 847

model f is composed by K encoders with auto- 848

matic padding, where the feature dimension is d. 849

The input text’s length is fix and denotes as n. For 850
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the encoder in the Transformers architecture, the851

time complexity is shown as:852

Oencoder = O(n2d+ nd2). (12)853

Since the feature dimension d is far greater than854

the text length n (n ≪ d), we can derive such855

approximation from Eq. 12:856

Oencoder = O(n2d+ nd2) ≈ O(nd2). (13)857

Given a total number of K encoders, from Eq.858

13, we can get the total time complexity of the orig-859

inal language model:860

Oall ≈ O(Lnd2) = K ·Oencoder. (14)861

During inference stage, the skimming-based lan-862

guage model dynamically drops unimportant token,863

the real number of token that participate the infer-864

ence process is ri ·n, then the total time complexity865

of the skimming-based language model is:866

Oskim ≈
K∑
i=1

O(rind
2) =

K∑
i=1

ri ·O(nd2)

= K ·R ·O(nd2) = R ·O(Knd2)

= R ·Oall.

(15)867

Meanwhile, time complexity reflects the real in-868

ference time, we can get:869

Tskim

Tall
≈ Oskim

Oall
= R, (16)870

where Tskim and Tall is the inference time of871

skimming-based language model and original lan-872

guage model respectively. From Eq. 16, we can873

derive:874

Tskim ≈ R · Tall, (17)875

where Tall is often treated as a constant value. In876

summary, the inference time on skimming-based877

language model Tskim is positively linear corre-878

lated with the remaining token ratio R.879

Theorem 4 Assumed skimming-based language880

model f is composed by K encoders, R =881
1
K

∑K
i=1 ri is the total remaining token ratio, where882

{ri}Ki=1 is the remaining token ratio of each en-883

coder and ri ∈ (0, 1], and x is the input text and T884

is the corresponding inference time. If text length885

is not fixed and the length is N , then T ∝ R ·N .886

Proof C.2 Considering the scenario where the in- 887

put length is not fixed, we assume two texts with 888

two different lengths n1 and n2. The corresponding 889

token remaining ratios are R1 = 1
K

∑K
i=1 r

1
i and 890

R2 = 1
K

∑K
i=1 r

2
i . According to Eq. 15, the time 891

complexities are as follows: 892

O1
skim ≈ R1 · n1O(Kd2),

O2
skim ≈ R2 · n2O(Kd2).

(18) 893

Meanwhile, time complexity reflects the real in- 894

ference time, from Eq. 18 we can get: 895

T 1
skim

T 2
skim

≈
O1

skim

O2
skim

=
R1 · n1

R2 · n2
, (19) 896

where the inference time on skimming-based lan- 897

guage model Tskim is influence by both the remain- 898

ing token ratio R and length n. In summary, the 899

inference time on skimming-based language model 900

Tskim is positively linear correlated with product 901

of the remaining token ratio R and text length n.. 902
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