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Abstract

Online news documents can contain thousands001
of characters and tens of events. To detect002
events in these documents, it is important to003
construct long-range context information. Such004
information, however, is not effectively cre-005
ated in existing event detection methods in-006
cluding DMBERT, MOGANED. As a result,007
these methods show poor event detection accu-008
racy in production where long documents are009
common. To address this, this paper proposes010
a Document-level Graph convolution network011
for Multi-event Detection (DGMED). DGMED012
represents each sentence in a long document as013
a graph, and it interconnects these graphs us-014
ing novel cross-sentence global neural network015
nodes. These nodes allow DGMED further016
construct accurate document-level contextual017
information, thus accurately extracting multi-018
ple events as required. We evaluate DGMED019
using a public event extraction dataset (i.e.,020
Maven) and a production large-scale dataset021
(named AML). Evaluation results show that022
DGMED can out-perform state-of-the-art meth-023
ods BERT+CRF and BiLSTM+CRF up to 0.7%024
in Maven and 5.7% in AML.025

1 Introduction026

Extracting multiple events from online news doc-027

uments is an important task for NLP applications,028

making it one of recent popular research areas in029

the NLP community (Liao and Grishman, 2010;030

Yang et al., 2018; Zheng et al., 2019; Feng et al.,031

2016; Zhao et al., 2018; Nguyen and Grishman,032

2015; Yang and Mitchell, 2016; Yan et al., 2019;033

Ma et al., 2020; Nguyen and Grishman, 2016; Chen034

et al., 2015a; Lai et al., 2020; Cui et al., 2020; Yang035

et al., 2019; Elhammadi et al., 2020). Event De-036

tection (ED) is often implemented as a sequence037

labeling task (Yan et al., 2019; Cui et al., 2020;038

Ding et al., 2019), and it follows two steps: it 1)039

identifies a trigger word, and 2) assigns the trigger040

word to a predefined event class.041

Accurately detecting multiple events in real- 042

world news documents is however challenging. 043

These documents contain thousands of characters 044

and describe tens of events. To detect events in 045

these documents, we find out that long-range con- 046

textual modeling must be implemented in ED meth- 047

ods; otherwise, the accuracy of these methods can 048

largely suffer. We illustrate this using Figure 1. In 049

the first fragment, the 2nd event is detected based 050

on a trigger word “fined". The 1st event is de- 051

tected based on “released" which follows a subject 052

“China Banking and Insurance Regulatory Commis- 053

sion (CBIRC)". Since CBIRC is a financial regula- 054

tory department, the 2nd event can be thus inferred 055

as an “anti-money laundering Regulatory Penalty 056

event". In the second fragment, 2nd event can be 057

still detected again based on “fined"; however, the 058

1st event is detected based on “punished" which 059

follows the subject “Municipal Supervision Bureau 060

(MSB)". Since MSB is not a financial regulatory de- 061

partment, the 2nd event is thus a “non-anti-money 062

laundering event". This event type is different from 063

the one detected in the first fragment, and such a 064

detection error can be handled using effective long- 065

range contextual modelling. 066

Though important, long-range contextual mod- 067

elling is still poorly implemented in existing ED 068

methods. Domain-specific ED methods (Yang 069

et al., 2018; Zheng et al., 2019; Xu et al., 2021) use 070

heuristics to detect events, and they show poor accu- 071

racy in practice. Neural-network-based ED meth- 072

ods, such as k-gram-based CNNs (Nguyen and 073

Grishman, 2015, 2016), use hierarchical attention- 074

based models (Chen et al., 2018) to capture con- 075

textual dependencies; but they fail to identify long- 076

range syntactic dependencies. More recent ED 077

methods address this using syntactic models (Liu 078

et al., 2018; Buyko et al., 2009), such as syntactic 079

Graph Convolutional Networks (GCNs) (Nguyen 080

and Grishman, 2018), syntactic transformers (Ma 081

et al., 2020) and graph attention networks (Yan 082
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Figure 1: Documents fragments that reflect the importance of long-range contextual modelling. Sensitive data are
masked using wildcards [PER] and [COM].

et al., 2019). These models, however, suffer from083

syntactic parsing errors, and these errors often prop-084

agate through entire neural networks, making these085

models difficult to be used by accuracy-sensitive086

applications.087

In this paper, we propose a Document-level088

Graph convolution network for Multi-Event089

Detection (DGMED). This method realizes the an-090

ticipated long-range contextual modelling. The091

design of DGMED addresses several challenges092

in processing long news documents: (1) contex-093

tual words which can identify event types are often094

scattered across multiple sentences; (2) multiple095

events often share overlapping contexts. To address096

these challenges, DGMED divide a document-level097

graph into several graphs: each graph corresponds098

to a sentence in a document. DGMED further099

carefully construct global nodes to connect the100

sentence-level graphs, and create document-level101

contextual information sharing through passing102

messages among sentence-level contexts.103

Further, we design a large-scale multi-event ex-104

traction dataset to evaluate DGMED. This dataset,105

named Anti-Money Laundering (AML), contains106

3,924 financial news documents collected from107

real-world websites. These documents contain a108

large number of events which must be extracted to109

support numerous downstream NLP applications in110

our production. We employ annotators to annotate111

these documents. These documents exhibit a high112

multi-event ratio of 93%, substantially higher than113

existing ED datasets, e.g., ACE 2005 (Walker et al.,114

2006) and KBP 2015 (Ellis et al., 2015). 115

Evaluation results show that DGMED not only 116

out-perform State-Of-The-Art (SOTA) methods 117

(i.e., BiLSTM+CRF) on the large-scale AML 118

dataset by up to 5.7%. It also out-performs SOTA 119

methods (i.e., BERT+CRF) on a public ED dataset: 120

MAVEN (Wang et al., 2020), showing the effec- 121

tiveness and generality of DGMED. 122

2 Related Work 123

This section describes the related work of DGMED. 124

Event detection is an important sub-task of Event 125

Extraction (EE). Early studies use manually gen- 126

erated features, such as lexical, syntactical or con- 127

textual features (Yang and Mitchell, 2016). Man- 128

ual features often lack contextual information that 129

is rather important for accurately detecting events. 130

Recent studies thus used deep neural networks, e.g., 131

Convolutional Neural Networks (CNNs) and Long 132

Short Term Memory Networks (LSTMs), for mod- 133

elling contextual information (Yang et al., 2018; 134

Feng et al., 2016; Zhao et al., 2018; Nguyen and 135

Grishman, 2015; Zheng et al., 2019; Nguyen and 136

Grishman, 2016; Chen et al., 2015a; Liu et al., 137

2018; Ding et al., 2019; Chen et al., 2018; Duan 138

et al., 2017). For example, DCFEE (Yang et al., 139

2018) uses a BiLSTM-CRF model to learn fea- 140

tures of financial events, the Doc2EDAG model 141

(Zheng et al., 2019) learns a neural embedding for 142

entities, sentences and documents, and the BERT- 143

MLP model (Yang et al., 2019) uses a pre-trained 144

BERT to encode sentences. (Deng et al., 2021) 145
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proposed ontology-based model to handle new un-146

seen event types. (Pouran Ben Veyseh et al., 2021)147

use pre-trained language model GPT-2 to gener-148

ate training samples for ED. MLBiNet (Lou et al.,149

2021) reformulate ED as a seq2Seq task to model150

document-level contexts and event relations.151

More recently, graph models have attracted152

much attention in natural language processing (Yao153

et al., 2019). There are several studies that at-154

tempted to implement ED with graph models,155

and they achieved better performance compared156

to above neural network counterparts (Yao et al.,157

2019; Yan et al., 2019; Nguyen and Grishman,158

2018; Lai et al., 2020; Cui et al., 2020). How-159

ever, existing graph models often focus on short-160

document scenario, and they only build sentence-161

level syntactic dependency trees. Although these162

models can further improve their performance by163

using syntactic rules, multi-skip dependency, gated164

convolution, or rebalancing data distribution (Cao165

et al., 2020; Tong et al., 2020; Wang et al., 2019a;166

Huang and Ji, 2020), they still exhibit insufficient167

performance in processing long financial news doc-168

uments with multiple events. This makes it nec-169

essary to further explore new GCN designs that170

can effectively implement multi-event extraction in171

long documents, which is the focus of this paper.172

3 Method173

In this section, we introduce the design of DGMED.174

Figure 2 presents an overview of DGMED. The in-175

put of DGMED is a document. This document is176

encoded (by Feature extractor), and then passed to a177

syntactic-aware-GCN layer which creates a graph178

that describes the information in each sentence.179

Multiple sentence-level graphs are connected us-180

ing global nodes. These nodes are passed to a181

CRF layer (Lafferty et al., 2001b) where multiple182

events are eventually detected. In the following, we183

will describe the designs of these layers in details.184

Throughout our description, we use D = {si}m1185

to denote a document, si = {wij}n1 to denote a186

sentence, where si is the i-th sentence and wij is187

the j-th token in i-th sentence.188

3.1 Encoder Layers189

To support event extration, DGMED must first en-190

code a given document. Given that most of the doc-191

uments in our production are English and Chinese,192

we implement two encoder layers in DGMED:193

BiLSTM (Hochreiter and Schmidhuber, 1997) and194
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Figure 2: The overview of DGMED.

BERT (Devlin et al., 2018). The BiLSTM encoder 195

is used to encode Chinese corpus, and BERT is 196

used to encode English corpus. The BiLSTM en- 197

coder concatenate word embedding wordi, entity 198

type embedding eti, position embedding psi and 199

POS tag embedding posi to build word embedding. 200

The BERT encoder sums token embedding, seg- 201

ment embedding and position embedding as input. 202

3.2 Document-level GCN Layers 203

Inspired by prior GCN-based ED methods, we 204

build a graph for each sentence and represent each 205

word as a graph node, and the link between two 206

words in a dependency tree as an edge. The graph 207

is represented by an n × n adjacency matrix Ai, 208

where n is the total number of words in the i-th 209

sentence. 210

We follow classic GCNs (Kipf and Welling, 211

2017) which use a scalable approach for semi- 212

supervised learning on graph data. Considering 213

an L-layer GCN where l ∈ [1, ..., L], if H l−1
i de- 214

notes the input state andH l
i denotes the output state 215

of the i-th sentence of the l-th layer. This GCN can 216

be formally defined as: 217

H l
i = GCN(Ai, H

l−1
i ,W )

= σ(AiH
l−1
i W )

(1) 218

where Ai ∈ Rn×n is the adjacency matrix, W is a 219

trainable filter matrix and σ is a nonlinear activation 220

function, e.g., ReLU. 221

We notice that the dependency relations between 222

words are not equally important. Motivated by 223

(Nguyen and Grishman, 2018), We multiply Ai by 224

a weighted edge matrix V , in which each element 225
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Vxy represents the weight of the edge between node226

x and node y, to distinguish between dependency227

relations. Finally, our convolutional operation can228

be defined as:229

H l
i = σ(Ai ◦ V H l−1

i W ) (2)230

where Vxy in V is obtained by looking up a one-231

dimensional p-length vector parameter, p is the to-232

tal number of all possible relations between nodes.233

In the following, we denote this method as S-234

GCN .235

Modeling document-level context. By far we236

have embeddings for all words after the syntactic-237

aware GCN layer; but these embeddings encode238

contextual information only at the sentence level.239

To build cross-sentence context (i.e., document-240

level), we propose to construct global nodes which241

allow information to be exchanged among sen-242

tences.243

As shown in Figure 2, the global nodes are con-244

nected with candidate trigger words to gather cross-245

sentence information. We treat all verbs as candi-246

date trigger words, and global nodes are not con-247

nected with all word nodes, which avoid incurring248

excessive noise on the graph. Global nodes can be249

regarded as virtual hubs to gather and propagate250

information from and to word nodes. We initialize251

the embeddings of global nodes randomly.252

Memory-efficient alternate update strategy.253

We need to train the document-level graph that254

comprises of sentence-level graphs connected by255

global nodes. A key challenge is that the document-256

level graph is often large in size, and it is difficult to257

be fitted into the memory of a GPU. For example,258

given a document that has 100× 128 words after259

padding (here, 100 is the number of sentences and260

128 is the number of words of each sentence). To261

process such a document, we would need to create262

an adjacency matrix in the size of (12800 + G)2263

where G is the number of global nodes to create.264

To process such a matrix efficiently, we propose265

a memory-efficient alternate update (i.e., training)266

strategy. This strategy divides the update process of267

l-th layer into two phases: 1) updating global nodes268

and 2) updating word nodes for each sentence.269

Document-level Syntactic-Aware-GCN layers in270

Figure 2 shows the process of the memory-efficient271

alternate update strategy. At the first phase, we272

focus on updating the global nodes. This can be273

achieved by constructing a sub-graph that contains274

the global nodes as well as their neighbors (i.e., 275

candidate trigger word nodes and their associated 276

edges). As the red part shows, this sub-graph is a 277

bipartite graph and it is used for updating global 278

nodes and learn document-level knowledge. 279

We then formally define the update strategy. 280

Global node embeddings of the l-th layer Gl can 281

be updated based on the following formula: 282[
−;G

l
]
= S −GCN(Ad,

[
H l−1

trigger;G
l−1

]
,Wd)

(3) 283

whereAd represents the adjacency matrix of trig- 284

ger candidate nodes and global nodes, and H l−1
trigger 285

represents candidate trigger word node embeddings 286

in the l − 1-th layer. Wd is a learnable parameter. 287

At the second phase, each sentence-level sub- 288

graph is connected to trained global nodes respec- 289

tively. Word embeddings within the sentence can 290

be therefore updated with both local and document- 291

level information. As shown in Figure 2, each 292

update step only requires a sub-graph with global 293

nodes and word nodes from a single sentence. 294

The embeddings of the i-th sentence Hi can be 295

formulated as follows: 296[
H l

i ;−

]
= S −GCN(Ãi,

[
H l−1

i ;Gl
]
,Ws)

(4) 297

298

H l =
[
H l

1;H
l
2; ...;H

l
m

]
(5) 299

where H l represents the document word embed- 300

dings of the l-th layer, and Ãi represents sentence- 301

level graph adjacency matrix of the i-th sentence 302

and global nodes. Ws is a trainable parameter 303

shared between sentences. 304

By alternately updating global nodes and word 305

nodes, DGMED can capture all sentence-level and 306

document-level information without consuming 307

tremendous GPU memory. By contrast, BiLSTM- 308

based DGMED of two phases contains 25M param- 309

eters compared to 187M of one phase model. For 310

BERT-based DGMED, the parameters of the two 311

models are 280M and 118M, respectively. This 312

alternate update process is formally defined in Al- 313

gorithm 1. 314

3.3 CRF Layer 315

After aggregating the node representations of 316

syntactic-aware GCN layers, we build a fully- 317

connected network to project the final hidden out- 318

put state h: 319

p(yt|h) = softmax(Wth+ bt) (6) 320
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Algorithm 1 The alternate update strategy

Input: Number of layers L, embeddings of tokens
e1, ... , en, initialized embedding of global
nodes g1, ... , gk, end positions of sentences p1,
... , pm, positions of candidate trigger words
t1, ... , t|triggers|.

Output: Updated embeddings of tokens e1, ... ,
en.

1: //initialization
2: G0 ← [g1; ...; gk]
3: for l from 1 to L do
4: H l−1

1 = [e0; e1; ...; ep1 ]
5: ...
6: H l−1

m = [epm−1+1; epm−1+2; ...; epm ]

7: H l−1
trigger = [et1 ; et2 ...; et|triggers| ]

8: //update global nodes
9: [_;Gl] =S-GCN(Ad, [H

l−1
trigger;G

l−1])
10: //update word nodes of each sentence
11: for i from 1 to m do
12: [H l

i ; _] =S-GCN(Ãi, [H
l−1
i ;Gl])

13: [epi−1+1; ...; epi ] = H l
i

14: end for
15: end for

where yt is the tag label sequence, Wt maps the321

word representation h to the feature score for each322

event type and bt is a bias term.323

It has been shown crucial to handle the priori324

transition probabilities between labels in sequence325

labeling. This is however not considered in previ-326

ous graph-based event detection models. To close327

this gap, we propose to place a CRF layer after the328

fully-connected network. Let J denote the num-329

ber of all possible transition paths of labels, we330

adopt the negative log-likelihood loss function as331

our optimization objective:332

loss = −log( eSj∑J
j=1 e

Sj
) (7)333

here,334

Sj =

N∑
t=1

ϕjp(yt|h) +
N∑
t=2

ψjp(yt−1, yt|h) (8)335

where ϕj and ψj are the emission score function336

and transition score function, respectively.337

4 AML Dataset338

In this section, we describe the design and statis-339

tics of the AML dataset. In production, we sup-340

port a large number of financial applications which341

NO.EVT NO.DOC PROP(%)
1 219 7.08
[2, 10] 1,565 50.60
[11, 20] 865 27.97
[21, ) 444 14.35

Table 1: Statistics of documents and associated events.

Event Type NO.ANN NO.DOC
RP 26,990 2,751
RR 6,221 2,400
RI 2,054 1,115
JC 703 384
RV 159 79
Total 36,127 6,729

Table 2: Counts of annotations and event types.

Dataset Domain Label Size MER
ACE2005 general manual 599 N/A

MAVEN general manual 3,623 100%

DCFEE finance auto 2,976 3%

AML finance manual 3,924 93%

Table 3: Dataset comparison.

need to automatically detect events relevant to 342

anti-money laundering regulations. To help de- 343

sign methods to detect these events, we initially 344

collected more than 8,000 financial news docu- 345

ments from widely-used Chinese financial web- 346

sites, including China Economic Information Net- 347

works (CEIN, 2021) and Sina Finance (Sina Cor- 348

poration, 2021). These documents were published 349

between 2018 and 2020. After cleaning the col- 350

lected documents, the dataset eventually contains 351

3,924 documents. These documents comprise of 352

1,485 characters on average, ranging from 21 char- 353

acters to 5,113 characters. 354

Statistics of events and annotation. The doc- 355

uments in the AML dataset have 5 event types: 356

Regulatory Penalty (RP), Regulatory Release (RR), 357

Regulatory Investigation (RI), Judicial Case (JC), 358

Regulatory View (RV). We employed 5 professional 359

annotators to label trigger words by the most rel- 360

evant event types following the “BIO" annotation 361

scheme. Since each event type has 2 particular 362

labels “B" and “I" and all event types share the 363

same label “O", the total number of tags needed 364

is 2P + 1, where P is the number of predefined 365

event types. Each sample is annotated by two an- 366

notators. If their annotation results are different, an 367

5



Method AML MAVEN
P R F1 P R F1

DMCNN 70.3±0.0 67.4±0.5 68.8±0.1 66.3±0.9 55.9±0.5 60.6±0.2
BiLSTM 77.2±0.1 72.8±0.5 74.9±0.2 59.8±0.8 67.0±0.8 62.8±0.8
BiLSTM+CRF 77.6±0.2 75.5±0.1 76.5±0.2 63.4±0.7 64.8±0.7 64.1±0.1
MOGANED 79.4±0.4 80.6±0.3 80.0±0.3 63.4±0.9 64.1±0.9 63.8±0.2
DMBERT 81.5±0.5 80.1±0.1 80.8±0.2 62.7±1.0 72.3±1.0 67.1±0.4
BERT+CRF 81.0±0.3 81.6±0.2 81.3±0.2 65.0±0.8 70.9±0.9 67.8±0.2

DGMED(BiLSTM) 81.5 ±0.3 82.9±0.1 82.2±0.1 63.7 ±0.1 67.9 ±0.4 65.7 ±0.2
DGMED(BERT) – – – 65.8±0.2 71.3 ±0.3 68.5±0.2

Table 4: The overall trigger classification performance of various models on AML and MAVEN.

extra annotator is employed until the difference is368

resolved.369

Table 1 presents a summary of events in the doc-370

uments, where NO.EVT denotes the number of371

events that a document contains, NO.DOC denotes372

the number of documents that correspond to a cer-373

tain range of event counts, and PROP(%) denotes374

the proportion of corresponding documents. As we375

can see, up to 93% of documents contain more than376

2 events, and over 40% of documents contain more377

than 11 events.378

Table 2 further provides an in-depth analysis of379

event types and associated annotation in the AML380

dataset. NO.ANN is the number of trigger words381

for an event type. NO.DOC is the number of doc-382

uments in which an event type occurs. As we can383

see, the documents contain a balanced distribution384

of event types, and there are sufficient annotations385

for each event type.386

We also examine the quality of annotation. To387

this end, we randomly selected 200 documents and388

invited a NLP expert to annotate these documents389

independently. We regard this NLP expert’s anno-390

tation as ground-truth. The precision is 97.6%, and391

the recall is 96.9%, implying the high quality of392

annotation in the AML dataset.393

Dataset comparison Table 3 compares the AML394

dataset with other widely used ED datasets: ACE395

2005 (Walker et al., 2006), MAVEN (Wang et al.,396

2020), DCFEE (Yang et al., 2018). We compare397

these datasets in four aspects: data domains, label-398

ing methods, dataset sizes and multi-event ratios.399

ACE 2005 contains 1,800 manually labeled docu-400

ments, but it has only 599 Chinese documents. Sim-401

ilarly, MAVEN contains 4,480 manually labeled402

documents in total including 3,623 publicly avail-403

able train and development set, but all in English. 404

The multi-event ratio(MER) for DCFEE is only 3%, 405

which is far not enough for building multi-event 406

detection models. The Doc2EDAG (Zheng et al., 407

2019) dataset does not contain trigger words which 408

are important for detecting events. Thus, it can 409

be only used for event argument extraction. Com- 410

pared to all these datasets, AML exhibits a high 411

multi-event ratio: 93% and it contains the largest 412

collection of financial documents with high-quality 413

manual labels. 414

5 Experiments 415

In this section, we evaluate the DGMED method 416

and compare it with SOTA methods on the AML 417

dataset and the MAVEN dataset (Wang et al., 418

2020). MAVEN is a general English event detec- 419

tion dataset with 168 event types. (Yu et al., 2021) 420

propose a lifelong learning framework for event 421

detection on MAVEN. However, they only evaluate 422

their model on the development set. For the AML 423

dataset, we randomly selected 80% documents in 424

the AML dataset for training, 10% for validation, 425

and 10% for testing. The MAVEN dataset contains 426

2913 training samples, 710 validation samples, and 427

857 test samples. We submit the predictions of 428

DGMED to a competition hosted on CodaLab (Co- 429

daLab, 2020). We adopt Precision (P), Recall (R) 430

and F-measure (F1) as main evaluation metrics. 431

We use the Stanford Chinese CoreNLP 432

toolkit (Stanford NLP Group, 2021) for sentence 433

splitting, tokenizing, named entity recognition 434

(NER), POS-tagging and dependency parsing. We 435

obtain a pre-trained word embedding by using fast- 436

Text algorithm (Joulin et al., 2017) on the Baidu 437

Tieba Chinese corpus (Baidu Corporation, 2021). 438

We run experiments on a NVIDIA Tesla P100 439
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Model RP RR RI JC RV
P R F1 P R F1 P R F1 P R F1 P R F1

DMCNN 72.5 69.8 71.1 61.2 66.0 63.5 64.8 73.1 68.7 0.0 0.0 0.0 0.0 0.0 0.0
BiLSTM 80.5 75.0 77.7 65.7 71.8 68.6 72.2 80.1 75.9 0.0 0.0 0.0 0.0 0.0 0.0
BiLSTM+CRF 80.8 78.3 79.5 68.3 71.9 70.1 70.8 79.8 75.0 38.7 12.1 18.5 40.0 9.1 14.8
MOGANED 88.3 76.4 81.9 66.8 82.0 73.6 69.1 86.4 76.8 29.7 27.4 28.5 0.0 0.0 0.0
DMBERT 83.7 81.1 82.4 69.4 80.4 74.5 75.8 83.3 79.4 35.5 28.8 31.8 26.2 56.2 35.7
BERT+CRF 82.7 80.4 81.5 70.4 83.6 76.4 73.5 84.5 78.6 29.7 20.0 23.2 0.0 0.0 0.0

DGMED(BiLSTM) 83.1 84.7 83.9 73.7 82.0 77.6 83.8 84.1 83.9 41.0 37.3 39.1 35.7 62.5 45.5

Table 5: Results on the AML dataset. Event-level precision (P), recall (R) and F1-score evaluated on the test set.

GPU. For BiLSTM, we use the same embedding440

size of 50 for word embedding, entity type embed-441

ding, position embedding and POS tagging embed-442

ding. In a downstream neural network, we enlarge443

the hidden units of BiLSTM encoder and syntactic-444

aware-GCN layer to 200 and 128, respectively. We445

adopt batch size as 32, the learning rate as 0.001,446

and the number of global nodes in each layer as 2.447

For BERT, we use BERTbase (Devlin et al., 2018)448

as the feature extractor. The model checkpoints449

and implementation are from MAVEN.450

We compare DGMED with:451

1. DMCNN (Chen et al., 2015b) is a CNN-based452

model for extracting events.453

2. BiLSTM (Hochreiter and Schmidhuber,454

1997) uses forward LSTM and a backwards455

LSTM to extract events.456

3. MOGANED (Yan et al., 2019) is a GCN that457

uses aggregated attention to model multi-level458

syntactic representations in a sentence.459

4. DMBERT (Wang et al., 2019b) is a BERT-460

based model which uses a dynamic multi-461

pooling layer to aggregate features.462

5. BiLSTM+CRF and BERT+CRF use463

CRF (Lafferty et al., 2001a) as output layers,464

and use BiLSTM and BERT as feature465

extractors, respectively.466

5.1 Overall Performance467

Table 4 shows the performance results of DGMED468

and baselines. Considering that most Chinese469

BERT models are built at the character level470

and dependency parsing relations for GCN are471

built at the token level, we didn’t conduct the472

DGMED(BERT), i.e. BERT+DOC-GCN+CRF, ex-473

periment for AML dataset because this leads to474

inconsistencies of different layers of the model. 475

Experimental results on both the two datasets show 476

that DGMED model outperforms all other base- 477

lines. DGMED(BiLSTM), i.e. BiLSTM+DOC- 478

GCN+CRF, get 5.7% and 1.6% promotion on 479

F1-score compared with BiLSTM+CRF on two 480

datasets respectively. And DGMED(BERT) outper- 481

forms BERT+CRF by 0.7% on MAVEN dataset. 482

Table 5 further shows that F1-scores based on event 483

types of AML dataset, DGMED achieves the best 484

overall performance. The significant improvement 485

in F1-score demonstrates the importance of imple- 486

menting document-level graph construction. 487

5.2 Parameter Study 488

We then evaluate DGMED with different param- 489

eter settings and the indispensability of each key 490

module on AML dataset. 491

Long-text scenarios. The global nodes in 492

DGMED are effective in modelling long-range con- 493

textual information, especially in long text. To 494

show this, we build a long-text-centric testing 495

dataset which contains only the documents with 496

lengths over 800 characters. As shown in Table 6, 497

DGMED(BiLSTM)’s F1-score out-performs base- 498

lines by 1.7∼15.6. Moreover, its F1-decrease is 499

less than all other models including BERT-based 500

and BiLSTM-based models. This demonstrates 501

that the use of DOC-GCN is the key to making 502

models work in long-text scenarios. 503

Number of global nodes. We then evaluate the 504

impact of the number of global nodes (denoted by 505

No.GN in Table 8). When No.GN is 1, DGMED 506

achieves comparable performance with other base- 507

lines. When increasing No.GN to 2, DGMED 508

starts to out-performing baselines and it achieves 509

the highest F1-score. An interesting observation 510
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Model P R F1
DMCNN 67.3 64.2 65.7(↓ 3.1)
BiLSTM 73.8 70.5 72.1(↓ 2.8)
BiLSTM+CRF 76.7 71.3 73.9(↓ 2.6)
MOGANED 77.9 79.1 78.5(↓ 1.5)
DMBERT 79.4 78.6 79.0(↓ 1.8)
BERT+CRF 79.3 79.9 79.6(↓ 1.7)
DGMED(BiLSTM) 80.4 82.3 81.3(↓ 0.8)

Table 6: Results on the long-text datasets.

is that the performance of DGMED does not al-511

ways increase with more global nodes. A possible512

explanation is that: if we use an excessive num-513

ber of global nodes, the document-level graph in514

DGMED will end with a large number of unneces-515

sary edges. These edges can result in extra noises,516

which can adversely affect the performance. With517

a few global nodes, we cannot identify complex518

cross-sentence dependencies. The optimal number519

of global nodes depends on the types of documents,520

and we are working towards automatically choos-521

ing this number.522

Ablation study. DGMED has three novel com-523

ponents: (1) a document-level graph to learn the524

information across sentences using global nodes,525

(2) a syntactic-aware GCN layer to distinguish de-526

pendency relations, (3) a CRF layer to handle priori527

transition probabilities between labels. To evaluate528

the performance gain by each component, we will529

remove these components in DGMED sequentially,530

and show their performance results in Table 7. We531

first remove the document-level graph, and the F1-532

score drops by 1.2%. We then remove the CRF533

layer and the syntactic-aware method in order, and534

the F1-score drops by 1.4% and 2.1%, respectively.535

Finally, if we remove all the components, the F1-536

score of DGMED will drop by 3.0%. These results537

show that all the novel components in DGMED538

can contribute to the performance improvement in539

F1-score.540

6 Conclusion541

This paper introduces DGMED, a novel method542

that can effectively extract multiple events from543

long documents. DGMED contains novel syntactic-544

aware GCN layers which can filter out irrelevant545

syntactic neighbors, thus improving event detection546

accuracy. It also contains novel global nodes which547

can connect sentence-level graphs, thus creating548

required long-range contextual information. We549

Model P R F1
DGMED(BiLSTM) 81.5 82.9 82.2
-document-level graph 81.8 80.2 81.0
-document-level graph
-CRF layer

82.5 79.2 80.8

-document-level graph
-syntactic-aware method

75.7 85.0 80.1

-document-level graph
-syntactic-aware method
-CRF layer

76.3 82.3 79.2

Table 7: Ablation study results on the AML dataset.

NO. GN P R F1
1 80.3 84.0 82.1
2 81.5 82.9 82.2
3 81.0 82.9 81.9
4 80.6 82.8 81.7

Table 8: Performance of CFMED with different num-
bers of global nodes. NO.GN refers to number of global
nodes.

create a new dataset AML which contains massive 550

long documents associated with multiple important 551

events. AML contains high-quality data annotation 552

and it is suitable to evaluate multi-event extraction 553

at scale. Experimental results show that DGMED 554

can out-perform SOTA methods on both public ED 555

datasets and the AML dataset. 556
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