DGMED: A Novel Document-Level Graph Convolution Network
for Multi-Event Detection

Anonymous ACL submission

Abstract

Online news documents can contain thousands
of characters and tens of events. To detect
events in these documents, it is important to
construct long-range context information. Such
information, however, is not effectively cre-
ated in existing event detection methods in-
cluding DMBERT, MOGANED. As a result,
these methods show poor event detection accu-
racy in production where long documents are
common. To address this, this paper proposes
a Document-level Graph convolution network
for Multi-event Detection (DGMED). DGMED
represents each sentence in a long document as
a graph, and it interconnects these graphs us-
ing novel cross-sentence global neural network
nodes. These nodes allow DGMED further
construct accurate document-level contextual
information, thus accurately extracting multi-
ple events as required. We evaluate DGMED
using a public event extraction dataset (i.e.,
Maven) and a production large-scale dataset
(named AML). Evaluation results show that
DGMED can out-perform state-of-the-art meth-
ods BERT+CRF and BiLSTM+CRF up to 0.7%
in Maven and 5.7% in AML.

1 Introduction

Extracting multiple events from online news doc-
uments is an important task for NLP applications,
making it one of recent popular research areas in
the NLP community (Liao and Grishman, 2010;
Yang et al., 2018; Zheng et al., 2019; Feng et al.,
2016; Zhao et al., 2018; Nguyen and Grishman,
2015; Yang and Mitchell, 2016; Yan et al., 2019;
Ma et al., 2020; Nguyen and Grishman, 2016; Chen
etal., 2015a; Lai et al., 2020; Cui et al., 2020; Yang
et al., 2019; Elhammadi et al., 2020). Event De-
tection (ED) is often implemented as a sequence
labeling task (Yan et al., 2019; Cui et al., 2020;
Ding et al., 2019), and it follows two steps: it 1)
identifies a trigger word, and 2) assigns the trigger
word to a predefined event class.

Accurately detecting multiple events in real-
world news documents is however challenging.
These documents contain thousands of characters
and describe tens of events. To detect events in
these documents, we find out that long-range con-
textual modeling must be implemented in ED meth-
ods; otherwise, the accuracy of these methods can
largely suffer. We illustrate this using Figure 1. In
the first fragment, the 2nd event is detected based
on a trigger word “fined". The 1st event is de-
tected based on “released" which follows a subject
“China Banking and Insurance Regulatory Commis-
sion (CBIRC)". Since CBIRC is a financial regula-
tory department, the 2nd event can be thus inferred
as an “anti-money laundering Regulatory Penalty
event". In the second fragment, 2nd event can be
still detected again based on “fined"; however, the
Ist event is detected based on “punished" which
follows the subject “Municipal Supervision Bureau
(MSB)". Since MSB is not a financial regulatory de-
partment, the 2nd event is thus a “non-anti-money
laundering event". This event type is different from
the one detected in the first fragment, and such a
detection error can be handled using effective long-
range contextual modelling.

Though important, long-range contextual mod-
elling is still poorly implemented in existing ED
methods. Domain-specific ED methods (Yang
et al., 2018; Zheng et al., 2019; Xu et al., 2021) use
heuristics to detect events, and they show poor accu-
racy in practice. Neural-network-based ED meth-
ods, such as k-gram-based CNNs (Nguyen and
Grishman, 2015, 2016), use hierarchical attention-
based models (Chen et al., 2018) to capture con-
textual dependencies; but they fail to identify long-
range syntactic dependencies. More recent ED
methods address this using syntactic models (Liu
et al., 2018; Buyko et al., 2009), such as syntactic
Graph Convolutional Networks (GCNs) (Nguyen
and Grishman, 2018), syntactic transformers (Ma
et al., 2020) and graph attention networks (Yan
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Figure 1: Documents fragments that reflect the importance of long-range contextual modelling. Sensitive data are

masked using wildcards [PER] and [COM].

et al., 2019). These models, however, suffer from
syntactic parsing errors, and these errors often prop-
agate through entire neural networks, making these
models difficult to be used by accuracy-sensitive
applications.

In this paper, we propose a Document-level
Graph convolution network for Multi-Event
Detection (DGMED). This method realizes the an-
ticipated long-range contextual modelling. The
design of DGMED addresses several challenges
in processing long news documents: (1) contex-
tual words which can identify event types are often
scattered across multiple sentences; (2) multiple
events often share overlapping contexts. To address
these challenges, DGMED divide a document-level
graph into several graphs: each graph corresponds
to a sentence in a document. DGMED further
carefully construct global nodes to connect the
sentence-level graphs, and create document-level
contextual information sharing through passing
messages among sentence-level contexts.

Further, we design a large-scale multi-event ex-
traction dataset to evaluate DGMED. This dataset,
named Anti-Money Laundering (AML), contains
3,924 financial news documents collected from
real-world websites. These documents contain a
large number of events which must be extracted to
support numerous downstream NLP applications in
our production. We employ annotators to annotate
these documents. These documents exhibit a high
multi-event ratio of 93%, substantially higher than
existing ED datasets, e.g., ACE 2005 (Walker et al.,

2006) and KBP 2015 (Ellis et al., 2015).

Evaluation results show that DGMED not only
out-perform State-Of-The-Art (SOTA) methods
(i.e., BILSTM+CRF) on the large-scale AML
dataset by up to 5.7%. It also out-performs SOTA
methods (i.e., BERT+CRF) on a public ED dataset:
MAVEN (Wang et al., 2020), showing the effec-
tiveness and generality of DGMED.

2 Related Work

This section describes the related work of DGMED.
Event detection is an important sub-task of Event
Extraction (EE). Early studies use manually gen-
erated features, such as lexical, syntactical or con-
textual features (Yang and Mitchell, 2016). Man-
ual features often lack contextual information that
is rather important for accurately detecting events.
Recent studies thus used deep neural networks, e.g.,
Convolutional Neural Networks (CNNs) and Long
Short Term Memory Networks (LSTMs), for mod-
elling contextual information (Yang et al., 2018;
Feng et al., 2016; Zhao et al., 2018; Nguyen and
Grishman, 2015; Zheng et al., 2019; Nguyen and
Grishman, 2016; Chen et al., 2015a; Liu et al.,
2018; Ding et al., 2019; Chen et al., 2018; Duan
et al., 2017). For example, DCFEE (Yang et al.,
2018) uses a BiILSTM-CRF model to learn fea-
tures of financial events, the Doc2EDAG model
(Zheng et al., 2019) learns a neural embedding for
entities, sentences and documents, and the BERT-
MLP model (Yang et al., 2019) uses a pre-trained
BERT to encode sentences. (Deng et al., 2021)



proposed ontology-based model to handle new un-
seen event types. (Pouran Ben Veyseh et al., 2021)
use pre-trained language model GPT-2 to gener-
ate training samples for ED. MLBiNet (Lou et al.,
2021) reformulate ED as a seq2Seq task to model
document-level contexts and event relations.
More recently, graph models have attracted
much attention in natural language processing (Yao
et al., 2019). There are several studies that at-
tempted to implement ED with graph models,
and they achieved better performance compared
to above neural network counterparts (Yao et al.,
2019; Yan et al., 2019; Nguyen and Grishman,
2018; Lai et al., 2020; Cui et al., 2020). How-
ever, existing graph models often focus on short-
document scenario, and they only build sentence-
level syntactic dependency trees. Although these
models can further improve their performance by
using syntactic rules, multi-skip dependency, gated
convolution, or rebalancing data distribution (Cao
et al., 2020; Tong et al., 2020; Wang et al., 2019a;
Huang and Ji, 2020), they still exhibit insufficient
performance in processing long financial news doc-
uments with multiple events. This makes it nec-
essary to further explore new GCN designs that
can effectively implement multi-event extraction in
long documents, which is the focus of this paper.

3 Method

In this section, we introduce the design of DGMED.
Figure 2 presents an overview of DGMED. The in-
put of DGMED is a document. This document is
encoded (by Feature extractor), and then passed to a
syntactic-aware-GCN layer which creates a graph
that describes the information in each sentence.
Multiple sentence-level graphs are connected us-
ing global nodes. These nodes are passed to a
CRF layer (Lafferty et al., 2001b) where multiple
events are eventually detected. In the following, we
will describe the designs of these layers in details.
Throughout our description, we use D = {s;}]"
to denote a document, s; = {w;;}} to denote a
sentence, where s; is the i-th sentence and wj; is
the j-th token in ¢-th sentence.

3.1 Encoder Layers

To support event extration, DGMED must first en-
code a given document. Given that most of the doc-
uments in our production are English and Chinese,
we implement two encoder layers in DGMED:
BiLSTM (Hochreiter and Schmidhuber, 1997) and
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Figure 2: The overview of DGMED.

BERT (Devlin et al., 2018). The BiLSTM encoder
is used to encode Chinese corpus, and BERT is
used to encode English corpus. The BiLSTM en-
coder concatenate word embedding word;, entity
type embedding et;, position embedding ps; and
POS tag embedding pos; to build word embedding.
The BERT encoder sums token embedding, seg-
ment embedding and position embedding as input.

3.2 Document-level GCN Layers

Inspired by prior GCN-based ED methods, we
build a graph for each sentence and represent each
word as a graph node, and the link between two
words in a dependency tree as an edge. The graph
is represented by an n x n adjacency matrix A;,
where n is the total number of words in the i-th
sentence.

We follow classic GCNs (Kipf and Welling,
2017) which use a scalable approach for semi-
supervised learning on graph data. Considering
an L-layer GCN where [ € [1, ..., L], if H™" de-
notes the input state and /7, Zl denotes the output state
of the i-th sentence of the [-th layer. This GCN can
be formally defined as:

H! = GON(A;, H™, W)

= o(AHT'W) W
where A; € R™*"™ is the adjacency matrix, W is a
trainable filter matrix and o is a nonlinear activation
function, e.g., ReLLU.

We notice that the dependency relations between
words are not equally important. Motivated by
(Nguyen and Grishman, 2018), We multiply A; by
a weighted edge matrix V/, in which each element



V2 represents the weight of the edge between node
x and node y, to distinguish between dependency
relations. Finally, our convolutional operation can
be defined as:

H! = o(A; o VHT'W) (2)

where V,, in V' is obtained by looking up a one-
dimensional p-length vector parameter, p is the to-
tal number of all possible relations between nodes.
In the following, we denote this method as S-
GCN.

Modeling document-level context. By far we
have embeddings for all words after the syntactic-
aware GCN layer; but these embeddings encode
contextual information only at the sentence level.
To build cross-sentence context (i.e., document-
level), we propose to construct global nodes which
allow information to be exchanged among sen-
tences.

As shown in Figure 2, the global nodes are con-
nected with candidate trigger words to gather cross-
sentence information. We treat all verbs as candi-
date trigger words, and global nodes are not con-
nected with all word nodes, which avoid incurring
excessive noise on the graph. Global nodes can be
regarded as virtual hubs to gather and propagate
information from and to word nodes. We initialize
the embeddings of global nodes randomly.

Memory-efficient alternate update strategy.
We need to train the document-level graph that
comprises of sentence-level graphs connected by
global nodes. A key challenge is that the document-
level graph is often large in size, and it is difficult to
be fitted into the memory of a GPU. For example,
given a document that has 100 x 128 words after
padding (here, 100 is the number of sentences and
128 is the number of words of each sentence). To
process such a document, we would need to create
an adjacency matrix in the size of (12800 + G)?
where G is the number of global nodes to create.
To process such a matrix efficiently, we propose
a memory-efficient alternate update (i.e., training)
strategy. This strategy divides the update process of
[-th layer into two phases: 1) updating global nodes
and 2) updating word nodes for each sentence.
Document-level Syntactic-Aware-GCN layers in
Figure 2 shows the process of the memory-efficient
alternate update strategy. At the first phase, we
focus on updating the global nodes. This can be
achieved by constructing a sub-graph that contains

the global nodes as well as their neighbors (i.e.,
candidate trigger word nodes and their associated
edges). As the red part shows, this sub-graph is a
bipartite graph and it is used for updating global
nodes and learn document-level knowledge.

We then formally define the update strategy.
Global node embeddings of the I-th layer G' can
be updated based on the following formula:
H-l gt

iG] = 8= GON(Aq, [T, W)
3
where A, represents the adjacency matrix of trig-

ger candidate nodes and global nodes, and H,f,,_i; ger

represents candidate trigger word node embeddings
in the [ — 1-th layer. W is a learnable parameter.

At the second phase, each sentence-level sub-
graph is connected to trained global nodes respec-
tively. Word embeddings within the sentence can
be therefore updated with both local and document-
level information. As shown in Figure 2, each
update step only requires a sub-graph with global
nodes and word nodes from a single sentence.

The embeddings of the i-th sentence H; can be
formulated as follows:

[

11—

=S~ GCN(A;, |H5GH W)
4)

H' = |H}; Y . HL | 5)

where H'! represents the document word embed-
dings of the [-th layer, and /L- represents sentence-
level graph adjacency matrix of the i-th sentence
and global nodes. Wj is a trainable parameter
shared between sentences.

By alternately updating global nodes and word
nodes, DGMED can capture all sentence-level and
document-level information without consuming
tremendous GPU memory. By contrast, BILSTM-
based DGMED of two phases contains 25M param-
eters compared to 187M of one phase model. For
BERT-based DGMED, the parameters of the two
models are 280M and 118M, respectively. This
alternate update process is formally defined in Al-
gorithm 1.

3.3 CRF Layer

After aggregating the node representations of
syntactic-aware GCN layers, we build a fully-
connected network to project the final hidden out-
put state h:

p(yt|h) = softmax(Wih + by) (6)



Algorithm 1 The alternate update strategy

Input: Number of layers L, embeddings of tokens
€1, ... , €n, initialized embedding of global
nodes g1, ... , gk, end positions of sentences p1,

.. » Pm, positions of candidate trigger words
t1, ..o s t\triggers\-

Output: Updated embeddings of tokens ey, ... ,
€n-

1: //initialization
2 GO < [g1; - 9x)
3: for [ from 1 to L do

4: H = [eg;en; .5 ep]

5:

6: Hrﬁﬁ1 = (€11 €ppr 427 -5 €pp

-1
7 trigger — [etl 3 €tg e et|tm‘ggers\]
8: //update global nodes
-1 _

9: [—; Gl] :S'GCN(Ad7 [Htm'gger; Gl 1])
10: / Jupdate word nodes of each sentence
11: for ¢ from 1 to m do
12: [HY; ] =S-GCN(A;, [H! ™ GY)
13: [eps_1415 - €p;) = H!

14: end for
15: end for

where y; is the tag label sequence, W; maps the
word representation A to the feature score for each
event type and b, is a bias term.

It has been shown crucial to handle the priori
transition probabilities between labels in sequence
labeling. This is however not considered in previ-
ous graph-based event detection models. To close
this gap, we propose to place a CRF layer after the
fully-connected network. Let J denote the num-
ber of all possible transition paths of labels, we
adopt the negative log-likelihood loss function as
our optimization objective:

S

Z}'Izl e @

loss = —log(

here,

N N
Sj=>_ ¢ipuilh) + > wip(y-1,u:lh) (®)

t=1 t=2
where ¢; and 1); are the emission score function

and transition score function, respectively.

4 AML Dataset

In this section, we describe the design and statis-
tics of the AML dataset. In production, we sup-
port a large number of financial applications which

NO.EVT NO.DOC PROP(%)

1 219 7.08
[2,10] 1,565 50.60
[11,20] 865 27.97
[21,) 444 14.35

Table 1: Statistics of documents and associated events.

Event Type NO.ANN NO.DOC
RP 26,990 2,751
RR 6,221 2,400
RI 2,054 1,115
IC 703 384
RV 159 79
Total 36,127 6,729

Table 2: Counts of annotations and event types.

Dataset Domain Label Size MER
ACE2005 general  manual 599 N/A
MAVEN general manual 3,623  100%
DCFEE finance auto 2976 3%
AML finance manual 3,924 93%

Table 3: Dataset comparison.

need to automatically detect events relevant to
anti-money laundering regulations. To help de-
sign methods to detect these events, we initially
collected more than 8,000 financial news docu-
ments from widely-used Chinese financial web-
sites, including China Economic Information Net-
works (CEIN, 2021) and Sina Finance (Sina Cor-
poration, 2021). These documents were published
between 2018 and 2020. After cleaning the col-
lected documents, the dataset eventually contains
3,924 documents. These documents comprise of
1,485 characters on average, ranging from 21 char-
acters to 5,113 characters.

Statistics of events and annotation. The doc-
uments in the AML dataset have 5 event types:
Regulatory Penalty (RP), Regulatory Release (RR),
Regulatory Investigation (RI), Judicial Case (JC),
Regulatory View (RV). We employed 5 professional
annotators to label trigger words by the most rel-
evant event types following the “BIO" annotation
scheme. Since each event type has 2 particular
labels “B" and “I" and all event types share the
same label “O", the total number of tags needed
is 2P 4 1, where P is the number of predefined
event types. Each sample is annotated by two an-
notators. If their annotation results are different, an



AML MAVEN

Method P R F1 p R F1

DMCNN 70.3+0.0 67.4+0.5 68.8+0.1 | 66.3£09 559+0.5 60.6+=0.2
BiLSTM 77.24+0.1 72.84£0.5 74.9+0.2 | 59.840.8 67.0+0.8 62.8+0.8
BiLSTM+CRF | 77.64+0.2 75.54+0.1 76.5+0.2 | 63.44+0.7 64.840.7 64.1+0.1
MOGANED 79.44+0.4 80.6+0.3 80.0£0.3 | 63.44+09 64.1£0.9 63.84+0.2
DMBERT 81.5+0.5 80.1+0.1 80.8+0.2 | 62.7£1.0 72.3+1.0 67.1+0.4
BERT+CRF 81.0+0.3 81.6+0.2 81.3+0.2 | 65.0+0.8 70.9+0.9 67.840.2
DGMED(BILSTM) | 81.5 +0.3 82.94+0.1 82.24+0.1| 63.7 £0.1 67.9 £0.4 65.7 £0.2
DGMED(BERT) - - - 65.840.2 71.3 £0.3 68.5+0.2

Table 4: The overall trigger classification performance of various models on AML and MAVEN.

extra annotator is employed until the difference is
resolved.

Table 1 presents a summary of events in the doc-
uments, where NO.EVT denotes the number of
events that a document contains, NO.DOC denotes
the number of documents that correspond to a cer-
tain range of event counts, and PROP(%) denotes
the proportion of corresponding documents. As we
can see, up to 93% of documents contain more than
2 events, and over 40% of documents contain more
than 11 events.

Table 2 further provides an in-depth analysis of
event types and associated annotation in the AML
dataset. NO.ANN is the number of trigger words
for an event type. NO.DOC is the number of doc-
uments in which an event type occurs. As we can
see, the documents contain a balanced distribution
of event types, and there are sufficient annotations
for each event type.

We also examine the quality of annotation. To
this end, we randomly selected 200 documents and
invited a NLP expert to annotate these documents
independently. We regard this NLP expert’s anno-
tation as ground-truth. The precision is 97.6%, and
the recall is 96.9%, implying the high quality of
annotation in the AML dataset.

Dataset comparison Table 3 compares the AML
dataset with other widely used ED datasets: ACE
2005 (Walker et al., 2006), MAVEN (Wang et al.,
2020), DCFEE (Yang et al., 2018). We compare
these datasets in four aspects: data domains, label-
ing methods, dataset sizes and multi-event ratios.
ACE 2005 contains 1,800 manually labeled docu-
ments, but it has only 599 Chinese documents. Sim-
ilarly, MAVEN contains 4,480 manually labeled
documents in total including 3,623 publicly avail-

able train and development set, but all in English.
The multi-event ratio(MER) for DCFEE is only 3%,
which is far not enough for building multi-event
detection models. The Doc2EDAG (Zheng et al.,
2019) dataset does not contain trigger words which
are important for detecting events. Thus, it can
be only used for event argument extraction. Com-
pared to all these datasets, AML exhibits a high
multi-event ratio: 93% and it contains the largest
collection of financial documents with high-quality
manual labels.

S Experiments

In this section, we evaluate the DGMED method
and compare it with SOTA methods on the AML
dataset and the MAVEN dataset (Wang et al.,
2020). MAVEN is a general English event detec-
tion dataset with 168 event types. (Yu et al., 2021)
propose a lifelong learning framework for event
detection on MAVEN. However, they only evaluate
their model on the development set. For the AML
dataset, we randomly selected 80% documents in
the AML dataset for training, 10% for validation,
and 10% for testing. The MAVEN dataset contains
2913 training samples, 710 validation samples, and
857 test samples. We submit the predictions of
DGMED to a competition hosted on CodaLab (Co-
dalLab, 2020). We adopt Precision (P), Recall (R)
and F-measure (F1) as main evaluation metrics.
We use the Stanford Chinese CoreNLP
toolkit (Stanford NLP Group, 2021) for sentence
splitting, tokenizing, named entity recognition
(NER), POS-tagging and dependency parsing. We
obtain a pre-trained word embedding by using fast-
Text algorithm (Joulin et al., 2017) on the Baidu
Tieba Chinese corpus (Baidu Corporation, 2021).
We run experiments on a NVIDIA Tesla P100



Model RP RR RI JC RV

P R F1| P R F1| P R F1| P R F1| P R F1
DMCNN 72.5 69.8 71.1|61.2 66.0 63.5|64.8 73.1 68.7| 0.0 0.0 0.0| 0.0 00 0.0
BiLSTM 80.5 75.0 77.7|65.7 71.8 68.6(72.2 80.1 759| 0.0 0.0 0.0| 00 0.0 0.0
BiLSTM+CRF |80.8 78.3 79.5|68.3 71.9 70.1|70.8 79.8 75.0|38.7 12.1 18.5/40.0 9.1 14.8
MOGANED 88.3 76.4 81.9|66.8 82.0 73.6/69.1 86.4 76.8|29.7 27.4 28.5| 0.0 0.0 0.0
DMBERT 83.7 81.1 82.4|69.4 80.4 74.5|75.8 83.3 79.4|35.5 28.8 31.8|26.2 56.2 35.7
BERT+CRF 82.7 80.4 81.5|70.4 83.6 76.4|73.5 84.5 78.6(29.7 20.0 23.2| 0.0 0.0 0.0
DGMED(BILSTM) | 83.1 84.7 83.9|73.7 82.0 77.6‘83.8 84.1 83.9‘41.0 37.3 39.1|35.7 62.5 45.5

Table 5: Results on the AML dataset. Event-level precision (P), recall (R) and F1-score evaluated on the test set.

GPU. For BiLSTM, we use the same embedding
size of 50 for word embedding, entity type embed-
ding, position embedding and POS tagging embed-
ding. In a downstream neural network, we enlarge
the hidden units of BiLSTM encoder and syntactic-
aware-GCN layer to 200 and 128, respectively. We
adopt batch size as 32, the learning rate as 0.001,
and the number of global nodes in each layer as 2.
For BERT, we use BERT},s. (Devlin et al., 2018)
as the feature extractor. The model checkpoints
and implementation are from MAVEN.
We compare DGMED with:

1. DMCNN (Chen et al., 2015b) is a CNN-based
model for extracting events.

2. BILSTM (Hochreiter and Schmidhuber,
1997) uses forward LSTM and a backwards
LSTM to extract events.

3. MOGANED (Yan et al., 2019) is a GCN that
uses aggregated attention to model multi-level
syntactic representations in a sentence.

4. DMBERT (Wang et al., 2019b) is a BERT-
based model which uses a dynamic multi-
pooling layer to aggregate features.

5. BILSTM+CRF and BERT+CRF use
CREF (Lafferty et al., 2001a) as output layers,
and use BiLSTM and BERT as feature
extractors, respectively.

5.1 Overall Performance

Table 4 shows the performance results of DGMED
and baselines. Considering that most Chinese
BERT models are built at the character level
and dependency parsing relations for GCN are
built at the token level, we didn’t conduct the
DGMED(BERT), i.e. BERT+DOC-GCN+CREF, ex-
periment for AML dataset because this leads to

inconsistencies of different layers of the model.
Experimental results on both the two datasets show
that DGMED model outperforms all other base-
lines. DGMED(BiLSTM), i.e. BiLSTM+DOC-
GCN+CREF, get 5.7% and 1.6% promotion on
F1-score compared with BILSTM+CRF on two
datasets respectively. And DGMED(BERT) outper-
forms BERT+CRF by 0.7% on MAVEN dataset.
Table 5 further shows that F1-scores based on event
types of AML dataset, DGMED achieves the best
overall performance. The significant improvement
in F1-score demonstrates the importance of imple-
menting document-level graph construction.

5.2 Parameter Study

We then evaluate DGMED with different param-
eter settings and the indispensability of each key
module on AML dataset.

Long-text scenarios. The global nodes in
DGMED are effective in modelling long-range con-
textual information, especially in long text. To
show this, we build a long-text-centric testing
dataset which contains only the documents with
lengths over 800 characters. As shown in Table 6,
DGMED(BILSTM)’s F1-score out-performs base-
lines by 1.7~15.6. Moreover, its F1-decrease is
less than all other models including BERT-based
and BiLSTM-based models. This demonstrates
that the use of DOC-GCN is the key to making
models work in long-text scenarios.

Number of global nodes. We then evaluate the
impact of the number of global nodes (denoted by
No.GN in Table 8). When No.GN is 1, DGMED
achieves comparable performance with other base-
lines. When increasing No.GN to 2, DGMED
starts to out-performing baselines and it achieves
the highest F1-score. An interesting observation



Model P R F1

DMCNN 673 64.2 65.7(] 3.1)
BiLSTM 73.8 70.5 72.1(} 2.8)
BiLSTM+CRF 76.7 71.3 73.9(} 2.6)
MOGANED 77.9 79.1 78.5() 1.5)
DMBERT 79.4 78.6 79.0() 1.8)
BERT+CRF 79.3 79.9 79.6() 1.7)

DGMED(BILSTM) 80.4 82.3 81.3({ 0.8)

Table 6: Results on the long-text datasets.

is that the performance of DGMED does not al-
ways increase with more global nodes. A possible
explanation is that: if we use an excessive num-
ber of global nodes, the document-level graph in
DGMED will end with a large number of unneces-
sary edges. These edges can result in extra noises,
which can adversely affect the performance. With
a few global nodes, we cannot identify complex
cross-sentence dependencies. The optimal number
of global nodes depends on the types of documents,
and we are working towards automatically choos-
ing this number.

Ablation study. DGMED has three novel com-
ponents: (1) a document-level graph to learn the
information across sentences using global nodes,
(2) a syntactic-aware GCN layer to distinguish de-
pendency relations, (3) a CRF layer to handle priori
transition probabilities between labels. To evaluate
the performance gain by each component, we will
remove these components in DGMED sequentially,
and show their performance results in Table 7. We
first remove the document-level graph, and the F1-
score drops by 1.2%. We then remove the CRF
layer and the syntactic-aware method in order, and
the F1-score drops by 1.4% and 2.1%, respectively.
Finally, if we remove all the components, the F1-
score of DGMED will drop by 3.0%. These results
show that all the novel components in DGMED
can contribute to the performance improvement in
F1-score.

6 Conclusion

This paper introduces DGMED, a novel method
that can effectively extract multiple events from
long documents. DGMED contains novel syntactic-
aware GCN layers which can filter out irrelevant
syntactic neighbors, thus improving event detection
accuracy. It also contains novel global nodes which
can connect sentence-level graphs, thus creating
required long-range contextual information. We

Model P R F1
DGMED(BiLSTM) 81.5 82.9 82.2
-document-level graph  81.8 80.2 81.0
-document-level graph

_CRF layer 82.5 79.2 80.8
-document-level graph 757 85.0 80.1

-syntactic-aware method

-document-level graph

-syntactic-aware method 76.3 82.3 79.2
-CREF layer

Table 7: Ablation study results on the AML dataset.

NO.GN P R F1
1 80.3 84.0 82.1
2 81.5 82.9 82.2
3 81.0 82.9 81.9
4 80.6 82.8 81.7

Table 8: Performance of CFMED with different num-
bers of global nodes. NO.GN refers to number of global
nodes.

create a new dataset AML which contains massive
long documents associated with multiple important
events. AML contains high-quality data annotation
and it is suitable to evaluate multi-event extraction
at scale. Experimental results show that DGMED
can out-perform SOTA methods on both public ED
datasets and the AML dataset.

References

Baidu Corporation. 2021. Baidu tieba. https://
tieba.baidu.com/index.html. Accessed:
2021-09-09.

Ekaterina Buyko, Erik Faessler, Joachim Wermter, and
Udo Hahn. 2009. Event extraction from trimmed de-
pendency graphs. In BioNLP@HLT-NAACL, pages
19-27. Association for Computational Linguistics.

Pengfei Cao, Yubo Chen, Jun Zhao, and Taifeng Wang.
2020. Incremental event detection via knowledge
consolidation networks. In EMNLP, pages 707-717.
Association for Computational Linguistics.

CEIN. 2021. China economic information networks.
https://www.cei.cn/. Accessed: 2021-09-
09.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015a. Event extraction via dynamic multi-
pooling convolutional neural networks. In IJJCNLP,
pages 167-176, Beijing, China. Association for Com-
putational Linguistics.


https://tieba.baidu.com/index.html
https://tieba.baidu.com/index.html
https://tieba.baidu.com/index.html
https://www.aclweb.org/anthology/W09-1403/
https://www.aclweb.org/anthology/W09-1403/
https://www.aclweb.org/anthology/W09-1403/
https://doi.org/10.18653/v1/2020.emnlp-main.52
https://doi.org/10.18653/v1/2020.emnlp-main.52
https://doi.org/10.18653/v1/2020.emnlp-main.52
https://www.cei.cn/
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/P15-1017

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015b. Event extraction via dynamic
multi-pooling convolutional neural networks. In
ACL-1JCNLP, pages 167-176, Beijing, China. As-
sociation for Computational Linguistics.

Yubo Chen, Hang Yang, Kang Liu, Jun Zhao, and
Yantao Jia. 2018. Collective event detection via a
hierarchical and bias tagging networks with gated
multi-level attention mechanisms. In EMNLP, pages
1267-1276, Brussels, Belgium. Association for Com-
putational Linguistics.

CodaLab. 2020.
lenge.

org/competitions/27320#results. Ac-
cessed: 2021-11-15.

Maven event detection chal-

Shiyao Cui, Bowen Yu, Tingwen Liu, Zhenyu Zhang,
Xuebin Wang, and Jingiao Shi. 2020. Edge-enhanced
graph convolution networks for event detection with
syntactic relation. In Finds of EMNLP, pages 2329—
2339. Association for Computational Linguistics.

Shumin Deng, Ningyu Zhang, Luoqiu Li, Chen Hui,
Tou Huaixiao, Mosha Chen, Fei Huang, and Huajun
Chen. 2021. OntoED: Low-resource event detection
with ontology embedding. In ACL-IJCNLP, pages
2828-2839, Online. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Ning Ding, Ziran Li, Zhiyuan Liu, Haitao Zheng, and
Zibo Lin. 2019. Event detection with trigger-aware
lattice neural network. In EMNLP-IJCNLP, pages
347-356. Association for Computational Linguistics.

Shaoyang Duan, Ruifang He, and Wenli Zhao. 2017.
Exploiting document level information to improve
event detection via recurrent neural networks. In
IJCNLP, pages 352-361, Taipei, Taiwan. Asian Fed-
eration of Natural Language Processing.

Sarah Elhammadi, Laks V. S. Lakshmanan, Raymond T.
Ng, Michael Simpson, Baoxing Huai, Zhefeng Wang,
and Lanjun Wang. 2020. A high precision pipeline
for financial knowledge graph construction. In COL-
ING, pages 967-977. International Committee on
Computational Linguistics.

Joe Ellis, Jeremy Getman, Dana Fore, Neil Kuster, Zhiyi
Song, Ann Bies, and Stephanie M. Strassel. 2015.
Overview of linguistic resources for the TAC KBP
2015 evaluations: Methodologies and results. In TAC.
NIST.

Xiaocheng Feng, Lifu Huang, Duyu Tang, Heng Ji, Bing
Qin, and Ting Liu. 2016. A language-independent
neural network for event detection. In ACL. The
Association for Computer Linguistics.

https://competitions.codalab.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735-1780.

Lifu Huang and Heng Ji. 2020. Semi-supervised new
event type induction and event detection. In EMNLP,
pages 718-724, Online. Association for Computa-
tional Linguistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient text
classification. In EACL, pages 427-431, Valencia,
Spain. Association for Computational Linguistics.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In /CLR. OpenReview.net.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001a. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001b. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In ICML, pages 282-289. Morgan Kauf-
mann.

Viet Dac Lai, Tuan Ngo Nguyen, and Thien Huu
Nguyen. 2020. Event detection: Gate diversity and
syntactic importance scores for graph convolution
neural networks. In EMNLP, pages 5405-5411, On-
line. Association for Computational Linguistics.

Shasha Liao and Ralph Grishman. 2010. Using doc-
ument level cross-event inference to improve event
extraction. In ACL, pages 789-797, Uppsala, Swe-
den. Association for Computational Linguistics.

Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018.
Jointly multiple events extraction via attention-based
graph information aggregation. In EMNLP, pages
1247-1256, Brussels, Belgium. Association for Com-
putational Linguistics.

Dongfang Lou, Zhilin Liao, Shumin Deng, Ningyu
Zhang, and Huajun Chen. 2021. MLBiNet: A cross-
sentence collective event detection network. pages
4829-4839, Online. Association for Computational
Linguistics.

Jie Ma, Shuai Wang, Rishita Anubhai, Miguel Balles-
teros, and Yaser Al-Onaizan. 2020. Resource-
enhanced neural model for event argument extraction.
In Findings of EMNLP, pages 3554-3559, Online.
Association for Computational Linguistics.

Thien Huu Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolutional
neural networks. In ACL, pages 365-371. The Asso-
ciation for Computer Linguistics.

Thien Huu Nguyen and Ralph Grishman. 2016. Model-
ing skip-grams for event detection with convolutional
neural networks. In EMNLP, pages 886—-891, Austin,
Texas. Association for Computational Linguistics.


https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.18653/v1/D18-1158
https://doi.org/10.18653/v1/D18-1158
https://doi.org/10.18653/v1/D18-1158
https://doi.org/10.18653/v1/D18-1158
https://doi.org/10.18653/v1/D18-1158
https://competitions.codalab.org/competitions/27320#results
https://competitions.codalab.org/competitions/27320#results
https://competitions.codalab.org/competitions/27320#results
https://doi.org/10.18653/v1/2020.findings-emnlp.211
https://doi.org/10.18653/v1/2020.findings-emnlp.211
https://doi.org/10.18653/v1/2020.findings-emnlp.211
https://doi.org/10.18653/v1/2020.findings-emnlp.211
https://doi.org/10.18653/v1/2020.findings-emnlp.211
https://doi.org/10.18653/v1/2021.acl-long.220
https://doi.org/10.18653/v1/2021.acl-long.220
https://doi.org/10.18653/v1/2021.acl-long.220
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/D19-1033
https://doi.org/10.18653/v1/D19-1033
https://doi.org/10.18653/v1/D19-1033
https://aclanthology.org/I17-1036
https://aclanthology.org/I17-1036
https://aclanthology.org/I17-1036
https://doi.org/10.18653/v1/2020.coling-main.84
https://doi.org/10.18653/v1/2020.coling-main.84
https://doi.org/10.18653/v1/2020.coling-main.84
https://tac.nist.gov/publications/2015/additional.papers/TAC2015.KBP_resources_overview.proceedings.pdf
https://tac.nist.gov/publications/2015/additional.papers/TAC2015.KBP_resources_overview.proceedings.pdf
https://tac.nist.gov/publications/2015/additional.papers/TAC2015.KBP_resources_overview.proceedings.pdf
https://doi.org/10.18653/v1/p16-2011
https://doi.org/10.18653/v1/p16-2011
https://doi.org/10.18653/v1/p16-2011
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/2020.emnlp-main.53
https://doi.org/10.18653/v1/2020.emnlp-main.53
https://doi.org/10.18653/v1/2020.emnlp-main.53
https://www.aclweb.org/anthology/E17-2068
https://www.aclweb.org/anthology/E17-2068
https://www.aclweb.org/anthology/E17-2068
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.18653/v1/2020.emnlp-main.435
https://doi.org/10.18653/v1/2020.emnlp-main.435
https://doi.org/10.18653/v1/2020.emnlp-main.435
https://doi.org/10.18653/v1/2020.emnlp-main.435
https://doi.org/10.18653/v1/2020.emnlp-main.435
https://aclanthology.org/P10-1081
https://aclanthology.org/P10-1081
https://aclanthology.org/P10-1081
https://aclanthology.org/P10-1081
https://aclanthology.org/P10-1081
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/2021.acl-long.373
https://doi.org/10.18653/v1/2021.acl-long.373
https://doi.org/10.18653/v1/2021.acl-long.373
https://doi.org/10.18653/v1/2020.findings-emnlp.318
https://doi.org/10.18653/v1/2020.findings-emnlp.318
https://doi.org/10.18653/v1/2020.findings-emnlp.318
https://doi.org/10.3115/v1/p15-2060
https://doi.org/10.3115/v1/p15-2060
https://doi.org/10.3115/v1/p15-2060
https://doi.org/10.3115/v1/p15-2060
https://doi.org/10.3115/v1/p15-2060
https://doi.org/10.18653/v1/D16-1085
https://doi.org/10.18653/v1/D16-1085
https://doi.org/10.18653/v1/D16-1085
https://doi.org/10.18653/v1/D16-1085
https://doi.org/10.18653/v1/D16-1085

Thien Huu Nguyen and Ralph Grishman. 2018. Graph
convolutional networks with argument-aware pooling
for event detection. In AAAI-IAAI-EAAI pages 5900—
5907. AAAI Press.

Amir Pouran Ben Veyseh, Viet Lai, Franck Dernon-
court, and Thien Huu Nguyen. 2021. Unleash GPT-2
power for event detection. pages 6271-6282, Online.
Association for Computational Linguistics.

Sina Corporation. 2021. Sina finance. https://
finance.sina.com.cn/. Accessed: 2021-09-
09.

Stanford NLP Group. 2021. Stanford corenlp.
https://nlp.stanford.edu/software/
stanford-dependencies.html. Accessed:
2021-09-09.

Meihan Tong, Bin Xu, Shuai Wang, Yixin Cao, Lei Hou,
Juanzi Li, and Jun Xie. 2020. Improving event de-
tection via open-domain trigger knowledge. In ACL,
pages 5887-5897, Online. Association for Computa-
tional Linguistics.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilin-
gual training corpus 1dc2006t06. In Web Download.
Philadelphia: Linguistic Data Consortium, 2006.

Xiaozhi Wang, Xu Han, Zhiyuan Liu, Maosong Sun,
and Peng Li. 2019a. Adversarial training for weakly
supervised event detection. In NAACL, pages 998—
1008, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Xiaozhi Wang, Xu Han, Zhiyuan Liu, Maosong Sun,
and Peng Li. 2019b. Adversarial training for weakly
supervised event detection. In NAACL, pages 998—
1008, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang, Rong
Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai Lin,
and Jie Zhou. 2020. MAVEN: A Massive General
Domain Event Detection Dataset. In EMNLP, pages
1652—-1671, Online. Association for Computational
Linguistics.

Runxin Xu, Tianyu Liu, Lei Li, and Baobao Chang.
2021. Document-level event extraction via heteroge-
neous graph-based interaction model with a tracker.
In ACL. The Association for Computer Linguistics.

Haoran Yan, Xiaolong Jin, Xiangbin Meng, Jiafeng
Guo, and Xueqi Cheng. 2019. Event detection with
multi-order graph convolution and aggregated atten-
tion. In EMNLP, pages 5765-5769. Association for
Computational Linguistics.

Bishan Yang and Tom M. Mitchell. 2016. Joint extrac-
tion of events and entities within a document context.
In NAACL-HLT, pages 289-299. The Association for
Computational Linguistics.

10

Hang Yang, Yubo Chen, Kang Liu, Yang Xiao, and
Jun Zhao. 2018. DCFEE: A document-level chinese
financial event extraction system based on automat-
ically labeled training data. In ACL, pages 50-55.
Association for Computational Linguistics.

Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan, and
Dongsheng Li. 2019. Exploring pre-trained language
models for event extraction and generation. In ACL,
pages 5284-5294, Florence, Italy. Association for
Computational Linguistics.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In AAAI, pages 7370-7377. AAAI Press.

Pengfei Yu, Heng Ji, and Prem Natarajan. 2021. Life-
long event detection with knowledge transfer. pages
5278-5290, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Yue Zhao, Xiaolong Jin, Yuanzhuo Wang, and Xueqi
Cheng. 2018. Document embedding enhanced event
detection with hierarchical and supervised attention.
In ACL, pages 414-419. Association for Computa-
tional Linguistics.

Shun Zheng, Wei Cao, Wei Xu, and Jiang Bian. 2019.
Doc2edag: An end-to-end document-level frame-
work for chinese financial event extraction. In
EMNLP-IJCNLP, pages 337-346. Association for
Computational Linguistics.


https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16329
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16329
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16329
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16329
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16329
https://doi.org/10.18653/v1/2021.acl-long.490
https://doi.org/10.18653/v1/2021.acl-long.490
https://doi.org/10.18653/v1/2021.acl-long.490
https://finance.sina.com.cn/
https://finance.sina.com.cn/
https://finance.sina.com.cn/
https://nlp.stanford.edu/software/stanford-dependencies.html
https://nlp.stanford.edu/software/stanford-dependencies.html
https://nlp.stanford.edu/software/stanford-dependencies.html
https://doi.org/10.18653/v1/2020.acl-main.522
https://doi.org/10.18653/v1/2020.acl-main.522
https://doi.org/10.18653/v1/2020.acl-main.522
https://doi.org/10.18653/v1/N19-1105
https://doi.org/10.18653/v1/N19-1105
https://doi.org/10.18653/v1/N19-1105
https://doi.org/10.18653/v1/N19-1105
https://doi.org/10.18653/v1/N19-1105
https://doi.org/10.18653/v1/N19-1105
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://aclanthology.org/2021.acl-long.274.pdf
https://aclanthology.org/2021.acl-long.274.pdf
https://aclanthology.org/2021.acl-long.274.pdf
https://doi.org/10.18653/v1/n16-1033
https://doi.org/10.18653/v1/n16-1033
https://doi.org/10.18653/v1/n16-1033
https://doi.org/10.18653/v1/P18-4009
https://doi.org/10.18653/v1/P18-4009
https://doi.org/10.18653/v1/P18-4009
https://doi.org/10.18653/v1/P18-4009
https://doi.org/10.18653/v1/P18-4009
https://doi.org/10.18653/v1/P19-1522
https://doi.org/10.18653/v1/P19-1522
https://doi.org/10.18653/v1/P19-1522
https://doi.org/10.1609/aaai.v33i01.33017370
https://aclanthology.org/2021.emnlp-main.428
https://aclanthology.org/2021.emnlp-main.428
https://aclanthology.org/2021.emnlp-main.428
https://doi.org/10.18653/v1/P18-2066
https://doi.org/10.18653/v1/P18-2066
https://doi.org/10.18653/v1/P18-2066
https://doi.org/10.18653/v1/D19-1032
https://doi.org/10.18653/v1/D19-1032
https://doi.org/10.18653/v1/D19-1032

