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Abstract
In this paper we introduce a novel family of at-
tributed graphs for the purpose of shape discrimi-
nation. Our graphs typically arise from variations
on the Mapper graph construction, which is an
approximation of the Reeb graph for point cloud
data. Our attributions enrich these constructions
with (persistent) homology in ways that are prov-
ably stable, thereby recording extra topological
information that is typically lost in these graph
constructions. We provide experiments which
illustrate the use of these invariants for shape rep-
resentation and classification. In particular, we ob-
tain competitive shape classification results when
using our topologically attributed graphs as inputs
to a simple graph neural network classifier.

1. Introduction
Topological Data Analysis studies finite spaces by associ-
ating topological invariants to them that serve as intuitive
structural summaries for unsupervised analysis or as nonlin-
ear featurizations for downstream supervised learning appli-
cations. The most common such invariant is a persistence
diagram, which, roughly, gives a concise representation of
homological features that are apparent in the data at multi-
ple scales. Graphical topological summaries form another
important collection of tools for representing data; these
include merge trees, Mapper graphs, and, their continuous
counterparts, Reeb graphs.

In this paper, we combine Mapper graphs with persistence
diagrams in order to define new, highly discriminative shape
representations. The main ideas of these constructions are
illustrated in Figures 1 and 2. Roughly, the Mapper graph
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Figure 1. The Mapper graph construction applied to the torus ad-
mits a natural decoration with homology (with coefficients in a
field k).

gives a large-scale structural summary of connected com-
ponents, while the persistence diagram attributions encode
finer-scale topological structure.

The structure of the paper is as follows. In Sections 2 and 3,
we introduce precise mathematical formalism for attributed
graphs and their continuous analogues—decorated Reeb
graphs—in the language of category theory. We then intro-
duce novel constructions of topologically attributed graphs
and prove their stability in Section 4. Sections 5 and 6
are devoted to computational considerations; in particular,
how our topologically attributed graphs are constructed and
compared in practice. We also provide a classification ex-
periment, where we show that our constructions achieve
competitive shape classification performance when they are
fed as inputs into a simple graph neural network.

2. Categorically Attributed Graphs
We view a simple undirected graph G = (V,E) as a cate-
gory1 G, with objects corresponding to elements of V ∪ E

1See (Riehl, 2017) for a good introduction to category theory.
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and with a unique morphism e → v whenever a node v is
incident to an edge e. This makes G equivalent to a poset
(G,≤) where e ≤ v.

Definition 2.1 (Attributed Graph). An attributed graph is
a functor F : G → C which assigns to each vertex v and
each edge e of G objects F (v) and F (e) in C, along with a
morphism F (e ≤ v) : F (e) → F (v) in C, provided e ≤ v.

Example 2.2. Suppose we are considering a social media
platform, such as Facebook. Users correspond to nodes of
a graph G and edges correspond to friendships. We can
define an attribution valued in the category Set as follows:
Let F (v) to be the set of interests or pages that v follows
and let F (e) be the intersection of these interests or pages.
The inclusion F (e) ↪→ F (v) makes this an attribution.

Attributed Graphs for Representing Shapes. In this
paper, we are primarily interested in attributed graphs which
capture aspects of the geometry and/or topology of a given
space (or finite approximation thereof). As such, we will
mostly work with attributions that come from homology2,
which is an attribution valued in Vec—the category of vector
spaces and linear maps over a field k. A first example of the
type of attributed graph we are interested in is as follows.
Example 2.3 (Decorated Mapper Graphs). Let X be a com-
pact space and assume f : X → R is a continuous map. Let
U = (Ui)i∈I be a cover of R with no (non-empty) triple
intersections. We can pullback this cover along f to ob-
tain f−1(U) as a cover of X , where each cover element
f−1(Ui) is further refined into its connected components.
The nerve of this cover defines the Mapper graph MU,f

of X
f−→ R with respect to U (Singh et al., 2007). It has

vertices V corresponding to components C of f−1(Ui) and
edgesE = {C∩C ′ |C,C ′ ∈ f−1(U) and C∩C ′ ̸= ∅} cor-
responding to non-empty intersections of these components.
The decorated Mapper graph (DMG) F : MU,f → Vec
augments the Mapper graph by assigning to each compo-
nent C ∈ V and C ∩ C ′ ∈ E the homology (with co-
efficients in a field k) of the corresponding components,
i.e. F (C) := Hn(C) and F (C ∩ C ′) := Hn(C ∩ C ′). The
inclusion C ∩ C ′ ⊆ C of components induces a map in
homology F (C ∩ C ′ ≤ C) := Hn(C ∩ C ′ ⊆ C).

An example of a DMG is shown in Figure 1.

Discrete Shape Representations and TDA. In our next
example, we consider an extension of the DMG concept
which applies to finite spaces. As a reminder, Topological
Data Analysis (TDA) provides a tool for homology infer-
ence that replaces homology with persistent homology; we
assume that the reader is familiar with the basic concepts of
TDA, but review one key construction below.

Definition 2.4 (Rips Persistence). Given a finite metric

2See (Hatcher, 2002) for a textbook treatment.

Figure 2. Persistent Decorated Mapper Graph. (a) A synthetic
point cloud data set, nodes colored by the value of its filtration
function, height along the z-axis. (b) A Mapper graph of the
dataset. (c) The nodes of the Mapper graph are attributed with
persistence diagrams; each node corresponds to a connected com-
ponent of a level set of the dataset, and the (degree-1) persistent
homology of this subset gives the attribution. Nodes of the Mapper
graph are colored by total persistence (i.e.,

∑
(dI − bi), where the

sum is over points (bi, dI) in the diagram).

space (X, dX) the Vietoris-Rips complex at scale r is
the simplicial complex V R(X, r) whose simplices con-
sist of subsets σ ⊆ X where dX(x, x′) ≤ 2r for all
x, x′ ∈ σ. Notice that if r ≤ s, then there is an inclusion
V R(X, r) ⊆ V R(X, s). Passing to the geometric realiza-
tion of these complexes and the induced continuous maps
makes V R(X) := V R(X, •) into a functor from (R,≤)—
the poset category of the reals—to Top—the category of
topological spaces and maps, i.e. V R(X) is an object in
the functor category TopR. Applying homology Hn then
defines the Rips persistent homology PHn(X), which is
an object in VecR. This latter object can then be faithfully
encoded as a persistence diagram, which records births and
deaths of homological features across scales.

Definition 2.5 (Persistent DMGs). Given a finite metric
space (X, dX) and function f : X → R, we can con-
struct the (discrete version of the) Mapper graph MU,f

in a manner similar to Example 2.3 by inferring compo-
nents via a chosen clustering algorithm applied to f−1(Ui).
The clusters then replace the components C ∈ f−1(Ui)
in the construction above. This allows us to define a per-
sistent Decorated Mapper Graph F : MU,f → VecR that
assigns to each vertex and each edge—corresponding to
a cluster and an intersection of clusters, respectively—the
persistent homology of each, i.e. F (C) := PHn(C) and
F (C ∩ C ′ ≤ C) := PHn(C ∩ C ′ ⊆ C).

This structure is illustrated in Figure 2. In this figure, only
the node attributions are included.

Persistent DMGs give intuitive and informative summaries
of discrete shapes, and are the main object that we use in
applications below (see Sections 5 and 6). The next part
of the paper is concerned with establishing basic theory for
these objects, focusing on stability.
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3. Decorated Reeb Graphs
In this section, we introduce continuous versions of the
Mapper graphs and attributions described above.

Reeb Graphs. In practice, choosing the cover and cluster-
ing schema for Mapper can be an art with sometimes hard
to interpret and unstable behavior. These defects are then
inherited by the decoration process. These issues have been
mostly handled (Munch & Wang, 2016; Carriere & Oudot,
2018) by viewing Mapper graphs as discrete approximations
of the Reeb graph (Reeb, 1946), which we review next.

Definition 3.1. A Reeb graph is a pair (R, f) consisting of
a compact 1-dimensional geometric simplicial complex R
and a piecewise linear map f : R → R. A metric df on
R is defined by df (x, x′) = infγ max f ◦ γ − min f ◦ γ,
where the infimum is over all paths from x to x′.

Example 3.2. Let X be a compact geometric simplicial
complex and let f : X → R be a continuous piecewise
linear map. The Reeb graph associated to f : X → R starts
by defining R to be set of equivalence classes X/ ∼, where
x ∼ x′ if x and x′ lie in the same connected component
of f−1(v). Since f is constant on equivalence classes, it
factors to define a map f̂ : R → R where f = f̂ ◦ q and q
is the quotient map q : X → X/ ∼. The pair (R, f̂) then
defines a Reeb graph in the sense of Definition 3.1.

We now make geometric graphs the domain of attribution.

Definition 3.3. Let R be a compact 1D geometric com-
plex and let O(R) be its poset category of open sets. A
continuous attribution is a functor F : O(R) → C.

Example 3.4 (Decorated Reeb Graph (DRG)). When (R, f)
is a Reeb graph and C = Vec, we refer to a continuous
attribution F : O(R) → Vec as a decorated Reeb graph or
DRG. Specifically, let (R, f̂) be a Reeb graph arising from
the construction of Example 3.2. The homology decorated
Reeb graph is the continuously attributed graph that assigns
to each open set U ⊂ R in the Reeb graph the homology
F (U) = Hn(q

−1(U)).

Categorical Reeb Graphs. In order to prove that the Reeb
graph is stable, (de Silva et al., 2016) used the following
definition of a Reeb graph.

Definition 3.5. A categorical Reeb graph is a functor R :
O(R) → Set, where O(R) is the category of open subsets
of R ordered by inclusion, that satisfies constructibility—
there exists some finite collection of critical values τ =
{t0, . . . , tn} ⊂ R such that if I ⊆ J are two intervals with
equal intersection with τ , then the map R(I ⊆ J) is an
isomorphism—and the cosheaf axiom—if U = {Ui}i∈I is
a cover of an open set U ∈ O(R) then the universal map
from the colimit lim−→R(Ui) → R(U) is an isomorphism.

Example 3.6. Every Reeb graph (R, f) gives rise to a cat-
egorical Reeb graph R via R(U) := π0(f

−1(U)), where
π0 : Top → Set is the path components functor.

We now unify Definitions 3.3 and 3.5 to provide an alterna-
tive description of Example 3.4. This involves engineering
a category that can track both components and homology
vector spaces.

Definition 3.7. Let PVec denote the category of discretely
parameterized vector spaces. Objects of PVec are func-
tors σ : S → Vec, where S is a set regarded as a dis-
crete category and a morphism from σ : S → Vec to
τ : T → Vec consists of a set map µ : S → T and a
natural transformation σ ⇒ τ ◦ µ. This category has a
functor dom : PVec → Set that sends σ : S → Vec to S.

Definition 3.8. A categorical decorated Reeb graph is a
functor F : O(R) → PVec such that dom ◦ F satisfies the
axioms of Definition 3.5.

Example 3.9. Let F : O(R) → Vec be a DRG. This gives
rise to a categorical DRG F : O(R) → PVec where F(U) is
the object of PVec that maps π0(f̂−1(U)) → Vec by taking
a connected component of f̂−1(U) ∋ A ⊂ R to F (A).

4. Persistent Decorations and Stability
One of the main contributions of TDA has been the obser-
vation that connected components and homology are stable
only when considered as part of a family of topological
spaces. We now review the concepts used to quantify this.

Metrics. Two of the most prominent distance metrics used
in TDA are Gromov-Hausdorff distance and interleaving
distance, which we now define.

Definition 4.1 (Gromov-Hausdorff Distance). Let (X, dX)
and (Y, dY ) be metric spaces. The distortion of a pair of (not
necessarily continuous) maps Φ : X → Y and Ψ : Y → X
is the quantity dist(Φ,Ψ) defined by

sup{|dX(x, x′)− dY (y, y
′)| | (x, y), (x′, y′) ∈ C(Φ,Ψ)},

where

C(Φ,Ψ) := {(x, y) ∈ X × Y | y = Φ(x) or x = Ψ(y)}.

The Gromov-Hausdorff distance between X and Y is

dGH(X,Y ) := inf
Φ,Ψ

1

2
dist(Φ,Ψ).

The stability results we are interested in are based on the
interleaving construction of TDA.

Definition 4.2 (Interleaving Distance). Let P be a poset, C a
category and CP the functor category equipped with a notion
of shifting/smoothing for any ϵ ≥ 0, i.e. (•)ϵ : CP → CP,
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is a functor that sends F 7→ F ϵ and this functor is equipped
with a natural transformation ηϵ : idCP ⇒ (•)ϵ that interacts
in compatible ways3. We say that two objects F,G ∈ CP

are ϵ-interleaved if there exist morphisms ϕ : F → Gϵ and
ψ : G→ F ϵ such that η2ϵF = ψϵ ◦ ϕ and η2ϵG = ϕϵ ◦ ψ. The
interleaving distance between F and G is then defined as

dI(F,G) = inf{ϵ | F and G are ϵ-interleaved}.

Example 4.3 (Rips Persistence). If we choose P = (R,≤)
and C = Vec in Definition 4.2 we obtain the usual inter-
leaving distance for 1-parameter persistence modules. Rips
persistent homology for a finite metric space X (see Defini-
tion 2.4), written PHn(X) ∈ VecR, has a natural notion of
shifting by defining PHn(X)ϵ(r) = Hn(V R(X)(r + ϵ)).
The fact that V R(X) is a functor provides a map from
V R(X, r) → V R(X, r + ϵ), which gives the data of the
natural transformation ηϵ. Thus the interleaving distance
between Rips persistent homology functors is well-defined.

Interleavings between Rips persistent homology leads to a
foundational stability result of TDA (Chazal et al., 2009;
2014): for finite metric spaces X and Y

dI(PHn(X), PHn(Y )) ≤ dGH(X,Y ).

The type of stability we’re interested in is not only governed
by the Gromov-Hausdorff distance between point clouds,
but scalar functions on these. This is expressed in the fol-
lowing definition, which is equivalent to a metric used in
(Chazal et al., 2009); see also (Bauer et al., 2014), where a
similar metric is used in the context of Reeb graphs.

Definition 4.4. Let X and Y be metric spaces equipped
with functions f : X → R and g : Y → R, written Xf and
Yg, respectively. If Φ : X → Y and Ψ : Y → X are maps,
then the functional distortion of Φ and Ψ is

FunDist
(
Φ,Ψ

)
:= max


1
2dist(Φ,Ψ)

||f − g ◦ Φ||∞
||g − f ◦Ψ||∞.

The functional distortion distance is then

dFD(Xf , Yg) := inf
Φ,Ψ

FunDist
(
Φ,Ψ

)
.

It is straightforward to show that dFD is a pseudometric on
the space of pairs (X, f).

Stability of Persistent Discrete DRGs. We now define
a persistent discrete Decorated Reeb Graph construction,
which refines the notion of a persistent DMG (Definition
2.5), and will be stable under perturbations of the functional
distortion distance.

3This is called a flow structure on the category CP, whose full
details are explored in (Stefanou, 2018; De Silva et al., 2018).

Definition 4.5 (Persistent Discrete DRG). Given a finite
metric space endowed with a scalar-valued function Xf , we
define f−1

r (U) to be the full subcomplex of V R(X, r) on all
vertices x ∈ f−1(U), for each open subset U ⊂ R. We then
define the persistent (discretized) decorated Reeb graph of
Xf to be the following 2-parameter family of categorical
DRGs (Definition 3.8):

DF : (R2,≤) → Fun(O(R),PVec) (r, s) 7→ F(r, s)

where

F(r, s)(U) := {A ∈ π0(f
−1
r (U)) → H•(V R(A, s))}.

Remark 4.6. For a fixed r ≥ 0, F(r, s) assigns to each con-
nected component of f−1

r (U) the Vietoris-Rips persistent
homology of that point cloud at scale s. Then DF (r, •) can
be considered as a DRG DF (r, •) : O(R) → PVecR, by
setting DF (r, •)(U)(s) = DF (r, s)(U). If we also fix a
cover U, we recover the persistent DMG of Definition 2.5
by choosing clusters associated to U ∈ U to be given by the
connected components of f−1

r (U).

In the above sense, the persistent discrete DRG refines the
notion of a persistent DMG. This relaxation to a more con-
tinuous and categorical setting is crucial to our proof of the
stability result below.

Theorem 4.7 (Stability of Persistent Discrete DRGs). Let
Xf and Yg be finite metric spaces endowed with scalar-
valued functions. Let DF and DG be their respective per-
sistent discrete DRGs (Definition 4.5). Then we have

dI(DF,DG) ≤ dFD(Xf , Yg).

The ϵ-smoothing of DF is defined by

DF ϵ(r, s)(U) = DF (r + ϵ, s+ ϵ)(U ϵ)

where U ϵ := {t ∈ R | ∃v ∈ U s.t. |t − v| < ϵ} is the
ϵ-thickening of the open set U ∈ O(R). This leads to the
notion of the interleaving distance dI used in the theorem.

Proof Sketch. Suppose the functional distortion distance
of Definition 4.4 between Xf and Yg is less than δ. This
means that for every ϵ > δ there are maps Φ : X → Y
and Ψ : Y → X whose distortion is less than 2ϵ. Also,
||f − g ◦Φ||∞ ≤ ϵ, which implies that ∀U ∈ O(R) we have

f−1(U) ⊆ Φ−1(g−1(U ϵ)).

This implies that if σ ⊆ f−1(U) is a subset with
d(xi, xj) ≤ 2r for all pairs of points in σ, i.e. σ ∈
V R(X, r)∩f−1

r (U), then Φr,s(σ) ∈ g−1
r+ϵ(U

ϵ)∩V R(Y, s+
ϵ). Moreover, this containment holds when restricted to a
component A ∈ π0(f

−1
r (U)). Symmetric reasoning using

the condition ||g−f ◦Ψ||∞ ≤ ϵ guarantees that ∀U ∈ O(R)

g−1(U) ⊆ Ψ−1(f−1(U ϵ))
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and in particular Φr,s(σ) ∈ g−1
r+ϵ(U

ϵ) ∩ V R(Y, s + ϵ) is
carried to a simplex Ψr+ϵ,s+ϵ ◦ Φ(σ) ∈ f−1

r+2ϵ(U
2ϵ) ∩

V R(X, s+2ϵ) that is contiguous to σ inside f−1
r+2ϵ(U

2ϵ)∩
V R(X, s+ 2ϵ), thus guaranteeing that the induced map on
homology V R(A, s) → V R(A, s+ ϵ) for each component
A ∈ π0(f

−1
r (U)) is the same as Ψr+ϵ,s+ϵ ◦ Φr,s. This es-

tablishes half of the interleaving condition and the other half
is argued mutatis mutandi.

Stability of Barcode Transforms. We end this theoreti-
cal section with another stability result, which deals more
directly with DRGs. While the constructions involved are
somewhat more straightforward, we discuss their limitations
in practice at the end of the section.
Definition 4.8 (Barcode Transform). Let F : O(R) → Vec
be the decorated Reeb graph associated to f : X → R,
where each open set U ⊆ R is assigned a finite-dimensional
vector space. We define the barcode transform of F to be
the map

BF : R→ VecR

r ∈ R 7→
(
t ∈ R≥0 7→ F

(
Bdf (r, t)

))
Since every persistence module can be identified with a bar-
code, we can view the barcode transform as an assignment
of a barcode to each point in the Reeb graph.

Using ϵ-smoothings of open sets, i.e. setting P = O(R) and
F ϵ(U) := F (U ϵ) in Definition 4.2, we can define interleav-
ing distances for categorical Reeb graphs and categorical
decorated Reeb graphs. Moreover, the interleaving distance
of categorical Reeb graphs gives rise to an interleaving dis-
tance of concrete Reeb graphs as defined in (de Silva et al.,
2016). In the following we define the functional distortion
distance for barcode transforms and show that it is con-
trolled by the interleaving distance of the Reeb graphs and
their corresponding categorical decorated Reeb graphs.
Definition 4.9. Let F : O(R) → Vec and G : O(S) →
Vec be concrete decorated Reeb graphs over (R, f) and
(S, g). We define the functional distortion distance of the
corresponding barcode transforms by

dFD
(
BF,BG

)
:= inf

Φ,Ψ
max


FunDist(Φ,Ψ)

sup
r∈R

dI
(
BF (r), BG ◦ Φ(r)

)
sup
s∈S

dI
(
BF ◦Ψ(s), BG(s)

)
where FunDist is taken w.r.t. f and g and the infimum is
over all functions Φ: R→ S and Ψ: S → R.
Theorem 4.10. Let F : O(R) → Vec and G : O(S) →
Vec be concrete decorated Reeb graphs over (R, f) and
(S, g) and F,G : O(R) → PVec the corresponding cate-
gorical decorated Reeb graphs, then

dI
(
R,S

)
≤ dFD

(
BF,BG

)
≤ 6dI

(
F,G

)
.

Proof Sketch. We begin with the inequality on the left. As
shown in (Bauer et al., 2015), dI

(
R,S

)
≤ dFD

(
Rf , Sg

)
and, since the functional distortion distance on Reeb graphs
corresponds to the first part of the functional distortion dis-
tance of barcode transforms (Definition 4.9), we obviously
get dFD

(
Rf , Sg

)
≤ dFD

(
BF,BG

)
.

To demonstrate the inequality on the right, let
dom : PVec → Set be the functor that sends func-
tors in PVec to its domain. We observe that domF = R

the categorical Reeb graph of (R, f). Hence, given an
ϵ-interleaving between F and G, applying dom yields
an ϵ-interleaving between R and S and, furthermore,
an ϵ-interleaving between (R, f) and (S, g). As shown
in (Bauer et al., 2015), dFD(Rf , Sg) ≤ 3dI(R,S).
One can now check that the functions Φ: R → S
and Ψ: S → R constructed in the proof of this in-
equality satisfy dI

(
BF (r), BG ◦ Φ(r)

)
≤ 6ϵ and

dI
(
BF ◦ Ψ(s), BG(s)

)
≤ 6ϵ for all r ∈ R and for all

s ∈ S.

The details of the last part of the proof are quite technical,
and we provide full details in the Appendix.
Remark 4.11. We remark that this result is interesting from
a theoretical perspective, but has some shortcomings in
practice. In particular, the functional distortion distance
used here is infinite if the ranks of BF (r) and BG(r) do
not agree for all sufficiently large r.

5. Computation
We now describe constructions of attributed graphs from
point cloud data. In the following, we generically refer to
such attributed graphs as Decorated Reeb Graphs (DRGs).

Creating Reeb Graphs. Reeb graphs are most naturally
defined for continuous metric spaces, so one needs to ap-
proximate a Reeb graph structure for discrete data. We pro-
vide a construction similar to the Mapper algorithm (Singh
et al., 2007) for estimating Reeb graphs. We first fix a scale
r for the Vietoris-Rips complex V R(X, r). Choosing an
appropriate value of r is treated as a hyperparameter tuning
process; similar ideas for Reeb graph estimation go back
at least to (Ge et al., 2011). For the shape datasets consid-
ered in this paper, we used a simple heuristic which took
r = m · r0, where r0 is the smallest scale at which the VR
complex is connected and m is a small integer (we typically
took m = 2 or 3). Next, we choose a resolution parame-
ter n and uniformly subdivided the image of f into n bins,
U1, . . . , Un (we treat this as a partition of the range, but one
could instead thicken slightly and work with an open cover,
similar to the usual Mapper construction). This is used to ap-
proximate the Reeb graph G of (V R(X, r), f): each node
v of G corresponds to a connected component Av ⊂ X of
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one of the sets f−1(Ui), and there is an edge between nodes
v and w if Av ⊂ f−1(Ui), Aw ⊂ f−1(Ui+1) and Av and
Aw are connected by an edge in the 1-skeleton of V R(X, r).
An alternative approach would be to compute the exact Reeb
graph for V R(X, r) via algorithms of (Harvey et al., 2010)
or (Parsa, 2012); these algorithms are very efficient, but we
found that they did not scale well in the Vietoris-Rips setting
due to blowup in the size of the simplicial complexes.

Creating DRGs - Local Approach. Let G = (V,E) be
an estimated Reeb graph for V R(X, r). A simple approach
to adding persistent homology decorations toG is as follows.
In this local approach, degree-n persistent homology is
computed for the subset of X corresponding to each node in
G. The resulting data structure (G,D) consisting of a finite
graph G = (V,E) and an attribution function D : V →
R × Barcodes, where Barcodes is the set of (persistent
homology) barcodes. The attribution takes a node v ∈ V
to D(v) = (f̄(v), B(v)), where f̄(v) = 1

|Av|
∑
x∈Av

f(x)

and B(v) is the persistent homology barcode of Av .

This method for constructing a DRG can be seen as an ap-
proximation of a particular slice of the persistent discrete
DRG structure DF : (R2,≤) → Fun(O(R),PVec) intro-
duced in Definition 4.5, as we observed in Remark 4.6.

Creating DRGs - Barcode Transform Approach. The
following is an alternative approach to adding persistent
homology decorations to G = (V,E), an estimated Reeb
graph for V R(X, r). For each v ∈ V , we define a fil-
tration on V R(X, r) by distance to the set Av and com-
pute the degree-n persistent homology of the resulting fil-
tered simplicial complex. This once again results in a data
structure of the form (G,D) with the attribution function
D : V → R × Barcodes now recording average function
value and persisent homology of the distance-to-Av function.
This method for constructing the DRG is a simplification of
the true barcode transform for the decorated Reeb graph of
V R(X, r) (see Definition 4.8).
Remark 5.1. The local DRG algorithm easily scales to han-
dle datasets with thousands of points and provides intuitive
data summaries consisting of an approximation of the Reeb
graph skeleton, attributed with persistence diagrams en-
coding local structural information (see Figures 2 and 3).
However, we note that this representation is an aggressive
simplification of the structure described in Definition 4.5, so
that the theoretical stability result of Theorem 4.7 does not
directly apply in this setting. On the other hand, the barcode
transform approach to constructing DRGs gives an approxi-
mation of the true barcode transform of V R(X, r), and is
therefore much more closely tied to theory. This construc-
tion requires several computations of persistent homology
on the full complex V R(X, r) (endowed with different fil-
trations), so that it is not scalable to large datasets. As such,

most of our computational experiments below will focus on
the local DRG construction.

Comparing DRGs. Since the interleaving distance con-
sidered in Theorem 4.7 is not applicable to our data rep-
resentation and is computationally intractable, we use the
Fused Gromov-Wasserstein (FGW) framework (Vayer et al.,
2020) for metric-based analysis of DRGs. Intuitively, the
FGW distance, defined below, is a more easily approximable
proxy for the functional distortion distance dFD.

Let (G1, D1), (G2, D2) be DRGs constructed as described
above (via either the local or barcode transform approaches).
The α-FGW distance is defined by

dFGW,α((G1, D1), (G2, D2))
2 (1)

= inf
π∈C(V1,V2)

α · Lgr(π) + (1− α) · Lbc(π)

where the set C(G1, G2) and the loss functions Lgr and Lbc

are defined as follows. An element π ∈ C(G1, G2) is a ma-
trix of size |V1| × |V2| satisfying

∑
v1∈V1

π(v1, v2) =
1

|V2|
for all v2 ∈ V2 and

∑
v2∈V2

π(v1, v2) = 1
|V1| for all

v1 ∈ V1—intuitively, this is the space of probabilistic cou-
plings of the uniform measures on V1 and V2, respectively.
The graph loss Lgr(π) is defined by∑

(d1(v1, w1)− d2(v2, w2))
2
π(v1, v2)π(w1, w2), (2)

where the sum is over all vi, wi ∈ Vi and dI : Vi × Vi → R
is a choice of function representing graph structure—for
example, we typically use the shortest path distance, where
each edge (vi, wi) in Ei is weighted by |f i(vi) − f i(wi)|.
Finally, the barcode loss Lbc(π) is defined by∑

vi∈Vi

db(D1(v1), D2(v2))
2π(v1, v2), (3)

where db is the standard bottleneck distance between bar-
codes. The intuition for the distance is as follows: π ∈
C(V1, V2) is interpreted as a probabilistic registration of the
nodes of G1 and G2, the loss Lgr measures how well the
registration preserves the graph structure, the loss Lbc mea-
sures how well the registration preserves attributions, and
the hyperparameter α balances contributions of graph struc-
ture and attributions; the optimization problem therefore
searches for a probabilistic registration which incurs the
least total distortion of these structures. Fixing a methodol-
ogy for assigning a distance graph function d : V ×V → R
to a DRG (G,D), it follows from Theorem 1 of (Vayer et al.,
2020) that dFGW,α defines a pseudometric on the space of
DRGs, for any choice of α ∈ [0, 1].

The idea for FGW distance originates from the Gromov-
Wasserstein (GW) distances introduced by Mémoli in
(Mémoli, 2007); roughly, the GW 2-distance is obtained
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by setting α = 1 in the FGW formula. The GW distances
can be seen as Lp-relaxations of the Gromov-Hausdorff
(GH) distance and are used for the comparison of metric
measure spaces (mm-spaces). The FGW distance was intro-
duced in (Vayer et al., 2020) to adapt GW distance to the
setting of mm-spaces whose points come with feature attri-
butions. In particular, our use of dFGW,α can be seen as a
relaxation of the functional distortion distance of Definition
4.9. Such a relaxation makes the discrete optimization prob-
lem arising in GH distances amenable to approximation by
gradient descent, as the search space of the optimization be-
comes a compact, convex polytope C(V1, V2) ⊂ R|V1|×|V2|.
For finite mm-spaces of size O(n), a gradient descent iter-
ation for approximation of GW distance has O(n3 log(n))
cost (Peyré et al., 2016). For the FGW distance in our set-
ting, computation is complicated by the need to evaluate
|V1| × |V2| bottleneck distances, each of which carries a cu-
bic cost in the number of points in the diagrams. To ease this
computational burden, we frequently replace the bottleneck
distance computations with Euclidean distance between per-
sistence image vectorizations of the diagrams (Adams et al.,
2017). We remark that (Fused) Gromov-Wasserstein dis-
tances have been used successfully in several recent works
to compare other topological invariants—see, e.g., (Li et al.,
2021; Curry et al., 2022; Li et al., 2023).

Related Constructions. Our constructions have a sim-
ilar flavor to other enriched topological invariants in the
literature. Most similar are the Decorated Merge Trees
(DMTs) introduced by the first four authors in (Curry et al.,
2022). A DMT is a certain rooted tree attributed with homo-
logical information which can be extracted from a dataset
endowed with a filter function—roughly, a DMT captures
the topology of sublevel sets of the filtration, while the con-
structions in the present paper are concerned with level set
topology. Our constructions also share features of Persis-
tent Homology Transforms (PHTs) (Turner et al., 2014),
which associate a collection of persistence diagrams to a
shape in Euclidean space by using projections to various 1-
dimensional subspaces as filter functions. Our constructions
also yield families of persistence diagrams, but the families
are parameterized by nodes of Mapper graphs, rather than
by collections of lines.

6. Experiments
We now illustrate our computational pipeline with several
experiments. Our source code is available at our GitHub
repository4.

4https://github.com/trneedham/Topologically-Attributed-
Graphs

Example DRGs. In Figure 3, we provide a few examples
of DRGs constructed via the methods described in Section
5.

The first row of Figure 3 shows a shape from Model-
Net10 (Wu et al., 2015), a curated collection of CAD models
of household objects. The CAD model has been converted
to point cloud data by sampling. We show the DRG com-
puted via the local approach, with respect to height along the
z-axis; nodes of the DRG are colored by total persistence of
their diagram attributes. We show the diagrams associated
to two of the nodes, as well as the associated subsets of the
original dataset.

The second row of the figure shows a humanoid figure from
the SHREC14 dataset (Pickup et al., 2014); once again,
the pointcloud data is obtained by sampling a triangulated
surface. For this example, the filtration function is the p-
eccentricity (with p = 100) (see (Mémoli, 2011), Definition
5.3) of the shortest path distance on the 1-skeleton of the
underlying Vietoris-Rips complex. We show the associated
DRG (via the local approach), some persistence diagram
attributes, and the persistence image vectorizations of these
diagrams.

Finally, the third row of Figure 3 shows the synthetic dataset
from Figure 2, once again endowed with the height func-
tion. In this case, the DRG is computed via the Barcode
Transform approach. Observe that the associated persistence
diagrams capture the global topology of the shape—note
that the death time of each point is ∞ and that one point in
each diagram is of multiplicity 2. The difference between
the diagrams is the birth times of the features; the DRG
nodes are colored by average birth time in their diagrams.

Synthetic Shape Comparison. To explore the behavior
of the Fused Gromov-Wasserstein (FGW) distance dFGW,α

defined in (1), we consider a synthetic point cloud dataset
consisting of four classes: torus, solid torus, cylinder and
solid cylinder. Each torus shape consists of 400 points
sampled from a toroidal surface with minor radius 1 and
major radius 6 and solid tori are generated similarly, but we
take 1600 samples to get a comparable density. Cylinders
consist of 400 points sampled from the surface of a cylinder
of radius 1 and length 2 · π · (6 + 1) so that the surface area
is comparable to the torus and solid cylinders are generated
similarly with 1600 sample points. Each shape in the dataset
has its point coordinates perturbed independently at random
and the resulting point cloud is then randomly rigidly rotated.
The full dataset consists of 20 samples of each shape class.

Each shape is converted to a DRG using the local approach,
with filter functions given by 1st PCA coordinates. Node
attributes are converted to persistence images, for compu-
tational efficiency. For each α ∈ {0.0, 0.25, 0.5, 1.0}, we
construct the shape-to-shape distance matrix with respect
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Figure 3. Examples of DRGs created with our methods. See Sec-
tion 6 for a detailed description.

to dFGW,α, where the dI’s in (2) are shortest path distances
in the Reeb graph and db in (3) is replaced by Euclidean
distance between persistence images.

Multidimensional Scaling plots for the distance matrices are
shown in 4. When α = 0, the distance only sees the per-
sistence image attributes, and the torus and cylinder classes
are indistinguishable (the topology of each connected com-
ponent of each of their level sets are very similar). For
α ∈ {0.25, 0.5}, both the global structure of the Reeb graph
and the local persistence image structures are considered,
and all classes are able to be distinguished. Finally, when
α = 1, only the Reeb graph structures are considered in
the metric; here, the torus and solid torus classes are unable
to be distinguished, and the same is true of the cylinder
and solid cylinder classes. This experiment suggests that
there is a fairly robust range of α-values where the metric
meaningfully takes into account both Reeb graph and local
persistence structures for distinguishing shapes.

We remark that we ran the same experiment using DRGs
constructed via the Barcode Transform method; here the
results were much less interpretable. This is due to the
fact that the distance between Barcode Transform DRGs is
strongly controlled by the homotopy types of the shapes (cf.
Remark 4.11); it was difficult to tune parameters so that the
underlying Vietoris-Rips complexes used in the construction
consistently had the correct homotopy type.

Graph Neural Network-Based Classification. To more
thoroughly test the capability of DRGs to distinguish shapes,
we use DRGs as inputs to a Graph Neural Network (GNN)
classifier. Our data comes from the ModelNet10 dataset (Wu

Figure 4. Synthetic shape dataset results. The top row shows a
sample from each of the shape classes in the experiment; points are
colored by their filter function values (first PCA coordinate). The
remaining figures show Multidimensional Scaling embeddings of
the dataset, coming from pairwise distance matrices with respect
to dFGW,α for various α-values.

et al., 2015) of CAD models of household objects. The data
consists of 10 classes of objects, pre-partitioned into a train-
ing set (3991 objects) and a testing set (908 objects). We
sample 1024 points form each object to form a dataset of
point clouds. From each point cloud, we extract two DRGs:
one using z-coordinates as the filtration function and the
other using x-coordinates (see the first row of Figure 3).
The nodes of the DRGs are attributed with vectorizations of
the persistence diagrams—in this case, we used summary
statistics of the persistence diagrams, following (Ali et al.,
2022), Definition 2.1. We also attributed each node with
the average Euclidean position of its associated pointcloud.
These vector-attributed graphs were used as input to a sim-
ple GNN, consisting of four convolutional layers of width
256, implemented in PyTorch. All neural networks in this
experiment were trained on a single CPU.

Table 1. ModelNet10 Classification Results.
PointNet Reeb Dgms DRGz DRGx DRGxz

89.43 77.64 63.55 84.69 85.24 87.11

Results of the classification experiment are reported in Ta-
ble 1. Besides results for the DRGs with filter function
given by z-coordinate (DRGz) and x-coordinate (DRGx),
we also report the combined prediction from the two models
(DRGxz). The combined prediction was made by averag-
ing the predictions of the DRGz and DRGx models—we
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also trained a GNN using a disjoint pair of DRGs (with x
and z-coordinate filtrations) to represent each shape and got
similar classification scores. To test the contributions of
the diagram attributes, we also trained a network on graphs
where nodes were only attributed with average Euclidean
coordinates (Reeb). Likewise, we tested the contribution of
the graph structure by converting each DRG into a complete
graph on its nodes, each of which is attributed with per-
sistence statistics and Euclidean coordinates (Dgms). We
see that the combination of graph structure and topological
attributes provide a large boost in classification accuracy,
with the best accuracy obtained by the combination of x and
z-filtrations.

To test against a baseline, we use the popular PointNet
architecture for point cloud classification (Qi et al., 2017).
The PointNet classification accuracy is essentially state-of-
the-art for ModelNet10 classification (when using only point
clouds as input, without additional structure from the CAD
models), and we see that it has a slight edge over the DRG
classification score. However, we note that the PointNet
model5 contains 3,463,763 parameters, compared to our
209,162 parameter GNN. Moreover, achieving this level
of accuracy took ∼12 hours of training time for PointNet,
while our GNN model contained an order of trained in
∼10 minutes; we preprocessed the data to extract Reeb
graphs, which took ∼1.5 hours, bringing the total time for
processing and training to around ∼3 hours (processing
using both x and z filtrations). This suggests that the DRG
representations have a rich structure with easily learnable
features.

Table 2. ModelNet10 Subset Classification Results.
PointNet DRGz DRGx DRGxz

83.26 78.52 70.70 82.93

We tested the representational richness of DRGs further by
retraining the DRG and PointNet models on only 10% of
the ModelNet10 training data, then testing classification
accuracy on the full training set. In this sparse training data
setting, we see that all models still perform reasonably well,
but point out that the gap between PointNet and DRGxz has
essentially vanished, even though the latter is less complex
by an order of magnitude.

7. Discussion
In this paper, we introduced formalism for topologically
attributed graphs and provided theoretical results on their
stability. We also demonstrated the potential applicability of
these ideas through proof-of-concept experiments. Future

5A PyTorch implementation, following https://github.
com/nikitakaraevv/pointnet.

work will involve building a closer connection between the
theory of topologically attributed Reeb graphs and their com-
putational execution. Notably, our computational pipeline
does not incorporate the more sheaf-theoretic or categori-
cal features of decorated Reeb graphs, and integration of
these aspects is an important goal. We also plan to continue
to develop the computational pipeline toward more robust
applications. One interesting direction will be to develop
the pipeline to handle more general filtration functions, or
to incorporate discovery of effective filter functions into
a machine learning framework. We also intend to extend
this framework to handle more general attributed simplicial
complexes, to which newly developed tools of Topological
Deep Learning (Hajij et al., 2023) will apply.
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A. Proof of Theorem 4.10
Left inequality
As shown in (Bauer et al., 2015), dI

(
R,S

)
≤ dFD

(
Rf , Sg

)
and, since the functional distortion distance on Reeb
graphs corresponds to the first part of the functional
distortion distance of barcode transforms (Definition 4.9),
we obviously get dFD

(
Rf , Sg

)
≤ dFD

(
BF,BG

)
.

Right inequality
Let Sϵ : Fun(O(R),PVec) → Fun(O(R),PVec) be the
smoothing functor, defined by SϵF(U) := F(U ϵ) and
ι : F → SϵF be defined by ι(U) := F(U ⊆ U ϵ). In the
following we denote an object of PVec by a tuple (I,D)
representing a set I and a functor D : I → Vec. Suppose
F and G are ϵ-interleaved, i.e. we have the following com-
mutative diagram:

F SϵF S2ϵF

G SϵG S2ϵG

ι

(α,η)

ιϵ

(αϵ,ηϵ)

ι

(β,ρ) (βϵ,ρϵ)

ιϵ

(4)

where α denotes the morphisms between the parameter-
izing sets and η denotes the morphisms between the pa-
rameterized vector spaces. Let dom : PVec → Set
be a forgetful functor defined on an object (I,D) ∈
PVec by dom

(
(I,D)

)
:= I and on a morphism

(α, η) : (I,D) → (I ′, D′) by dom
(
(α, η)

)
:= α.

If we postcompose F with dom we obtain dom ◦
F(U) = dom(F(U)) = π0(f

−1(U)) and dom ◦
F(U ⊆ V ) = π0(f

−1(U) ⊆ f−1(V )). Hence, we get
dom ◦ F = R the categorical Reeb graph correspond-
ing to (R, f). Denote by R : concreteReebgraphs →
categoricalReebgraphs the functor that sends a con-
crete Reeb graph (R, f) to the corresponding categorical
Reeb graph R (see (de Silva et al., 2016)). We now apply
dom on Equation (4) and obtain the following commutative
diagram of Set-valued functors:

R(R, f) SϵR(R, f) S2ϵR(R, f)

R(S, g) SϵR(S, g) S2ϵR(S, g)

ι

α

ιϵ

αϵ

ι

β βϵ

ιϵ

(5)

By Proposition 4.29 in (de Silva et al., 2016), the smooth-
ing of open sets Sϵ is equivalent to the smoothing of the
underlying geometric Reeb graphs. Let Tϵ(R, f) be the
ϵ-thickening of (R, f) defined by TϵR := R × [−ϵ, ϵ] and
Uϵ(R, f) be the Reeb graph of Tϵ(R, f) (the ϵ-smoothing of
(R, f)). These spaces can be summarized by the following

commutative diagram:

R TϵR UϵR

R
f

p1

f̂ϵ

q

fϵ

(6)

where p1 is the projection to the first factor and q is the
quotient map to the Reeb space. The map p1 induces a
natural isomorphism RTϵ =⇒ SϵR such that(

RTϵ(R, f)(U) −→ SϵR(R, f)(U)
)

=
(
π0(f̂

−1
ϵ (U))

π0(p1)−−−−→ π0(f
−1(U ϵ))

)
; (de Silva et al., 2016) Theorem 4.2. Moreover, the map q
induces a natural isomorphism RTϵ =⇒ RUϵ such that(

RTϵ(R, f)(U) → RUϵ(R, f)(U)
)

=
(
π0(f̂

−1
ϵ (U))

π0(q)−−−→ π0(f
−1
ϵ (U))

)
; (de Silva et al., 2016) Theorem 3.15. Let h denote the
composition of the following natural isomorphisms:

h : SϵR RTϵ RUϵ

h(U) : π0(f
−1(U ϵ)) π0(f

−1
ϵ (U))

π0(f̂
−1
ϵ (U))

π0(p1)
−1 π0(q)

(7)

Applying h to Equation (5) yields

R(R, f) RUϵ(R, f) RU2ϵ(R, f)

R(S, g) RUϵ(S, g) RU2ϵ(S, g)

h(ι)

h(α)

h(ιϵ)

h(αϵ)

h(ι)

h(β) h(βϵ)

h(ιϵ)

(8)

By Theorem 3.20 in (de Silva et al., 2016), the functor
R is one part of an equivalence between the categories of
concrete Reeb graphs and categorical Reeb graphs. If we
apply the inverse functor R−1 (the display locale functor)
to Equation (8) we obtain the following ϵ-interleaving of
Reeb graphs:

(R, f) Uϵ(R, f) U2ϵ(R, f)

(S, g) Uϵ(S, g) U2ϵ(S, g)

ι

φ

ιϵ

φϵ

ι

ψ ψϵ

ιϵ

(9)
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Note that by the proof of Theorem 3.20 in (de Silva et al.,
2016) and the following discussion the functors R and R−1

are actually inverse to each other, i.e. R ◦ R−1 = id and
R−1 ◦ R = id. In particular, we have that R(φ) = R ◦
R−1

(
h(α)

)
= h(α), i.e. , for all U , we obtain the following

commutative diagram:

π0(f
−1(U)) π0(g

−1
ϵ (U))

π0(f
−1(U)) π0(g

−1
ϵ (U))

π0(f
−1(U)) π0(g

−1(U ϵ))

π0(φ)

= =

h(α)

= h(U)−1

α

(10)

using the inverse of the isomorphism h(U) in Equation (7).
By the proof of Lemma 15 in (Bauer et al., 2015), there
exist Φ: R→ S and Ψ: S → R sucht that

sup
(r,r′),(s,s′)
∈C(Φ,Ψ)

1

2
|df (r, r′)− dg(s, s

′)| ≤ 3(ϵ+ δ)

||f − g ◦ Φ||∞ ≤ ϵ+ δ

||g − f ◦Ψ||∞ ≤ ϵ+ δ

(11)

for all sufficiently small δ > 0. For r ∈ R, we now show
that BF (r) is close to BG ◦ Φ(r) in the interleaving dis-
tance.

Let κ > 0, t ∈ R≥0 and B(f(r), t) ⊆ R be an open ball of
radius t around f(r). Since |f(r) − g ◦ Φ(r)| ≤ ϵ + δ, if
κ > ϵ+ δ, we get:

B
(
f(r), t

)
⊆ B

(
g ◦ Φ(r), t+ κ

)
⊆ B

(
g ◦ Φ(r), t+ κ+ 2ϵ

)
⊆ B

(
f(r), t+ 2(κ+ ϵ)

)
.

(12)

Therefore, by functoriality of F and the ϵ-interleaving be-
tween F and G in Equation (4) we obtain:

F
(
B
(
f(r), t

))
F
(
B
(
f(r), t+ 2(κ+ ϵ)

))

F
(
B
(
g ◦ Φ(r), t+ κ

)) (
B
(
g ◦ Φ(r), t+ κ+ 2ϵ

))

G
(
B
(
g ◦ Φ(r), t+ κ+ ϵ

))

F(ι)

F(ι)

F(ι)

(αt+κ ,ηt+κ)

F(ι)

(βt+κ+ϵ ,ρt+κ+ϵ)

(13)

If we apply dom to Equation (13) we obtain:

π0

(
f−1

(
B(f(r), t)

))

π0

(
f−1

(
B(f(r), t+ 2(κ+ ϵ))

))

π0

(
f−1

(
B(g ◦ Φ(r), t+ κ)

))

π0

(
f−1

(
B(g ◦ Φ(r), t+ κ+ 2ϵ)

))

π0

(
g−1

(
B(g ◦ Φ(r), t+ κ+ ϵ)

))

π0(ι)

π0(ι)

π0(ι)

αt+κ

π0(ι)

βt+κ+ϵ

(14)
Let Bdf (r, t) be the open ball of radius t around r in
R. Since, Bdf (r, t) ⊆ f−1(B(f(r), t)) is by definition

path-connected, Bdf (r, t) ∈ π0

(
f−1

(
B(f(r), t)

))
and,

since r ∈ Bdf (r, t), we have Bdf (r, t) = [r] the path-
component of r in f−1(B(f(r), t)). By the same argu-
ment, Bdg (Φ(r), t + κ + ϵ) = [Φ(r)] ∈ π0

(
g−1

(
B(g ◦

Φ(r), t+ κ+ ϵ)
))

. Moreover, π0(ι)([r]) = [ι(r)] = [r] ∈

π0

(
f−1

(
B(g ◦Φ(r), t+ κ)

))
. By using Equation (10) for

U = B(g ◦ Φ(r), t+ κ) we obtain:

π0
(
f−1(B(g ◦ Φ(r), t+ κ))

)

π0
(
g−1
ϵ (B(g ◦ Φ(r), t+ κ))

)

π0
(
g−1(B(g ◦ Φ(r), t+ κ+ ϵ))

)

π0(φ)

α

h−1

(15)
By Equation (7), h−1 := π0(p1) ◦ π0(q)−1 and, by
(Bauer et al., 2015) Section 3.2, Φ := p1 ◦ φ̃δ. Since
φ̃δ(r) ∈ φ(Bdf (r, δ)) = q−1

(
φ(Bdf (r, δ))

)
, φ(Bdf (r, δ))

is path-connected and φ(r) ∈ φ(Bdf (r, δ)), we have
that [φ(r)] = [q(φ̃δ(r))] = π0(q)([φ̃δ(r)]). Hence,
π0(q)

−1([φ(r)]) = [φ̃δ(r)]. By definition of Φ, we have
[Φ(r)] = [p1 ◦ φ̃δ(r)] = π0(p1)([φ̃δ(r)]). Therefore, h−1 ◦
π0(φ)([r]) = h−1([φ(r)]) = π0(p1) ◦ π0(q)−1([φ(r)]) =
π0(p1)([φ̃δ(r)]) = [Φ(r)] = αt+κ([r]). By com-
mutativity of Equation (14), βt+κ+ϵ ◦ αt+κ([r]) =
βt+κ+ϵ([Φ(r)]) = π0(ι)([r]) = [r]. As a consequence,
αt+κ ◦ π0(ι)(Bdf (r, t)) = Bdg (Φ(r), t + κ + ϵ) and
π0(ι)◦βt+κ+ϵ(Bdg (Φ(r), t+κ+ϵ)) = Bdf (r, t+2(κ+ϵ)).
Thus, the interleaving in Equation (13) yields the following

12
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commutative diagram in Vec:

F
(
Bdf (r, t)

)
F
(
Bdf (r, t+ 2(κ+ ϵ))

)
F ([r]) F ([r])

G
(
Bdg (Φ(r), t+ κ+ ϵ)

)

F (ι)

F (ι)

ηt+κ([r])

F (ι)

F (ι)

ρt+κ+ϵ([Φ(r)])

(16)
where [r] and [Φ(r)] denote the topological path-
components in the respective preimages.

We now start with Φ(r). Similar to Equation (12) we obtain
the following inclusions of open intervals in R:

B
(
g ◦ Φ(r), t

)
⊆ B

(
f(r), t+ κ

)
⊆ B

(
f(r), t+ κ+ 2ϵ

)
⊆ B

(
g ◦ Φ(r), t+ 2(κ+ ϵ)

) (17)

for every κ > ϵ+ δ. Therefore, by functoriality of G and the
ϵ-interleaving between F and G in Equation (4) we obtain:

G
(
B
(
g ◦ Φ(r), t

))
G
(
B
(
g ◦ Φ(r), t+ 2(κ+ ϵ)

))

G
(
B
(
f(r), t+ κ

))
G
(
B
(
f(r), t+ κ+ 2ϵ

))

F
(
B
(
f(r), t+ κ+ ϵ

))

G(ι)

G(ι)

G(ι)

(βt+κ ,ρt+κ)

G(ι)

(αt+κ+ϵ ,ηt+κ+ϵ)

(18)
and, by applying dom, we get:

π0

(
g−1

(
B(g ◦ Φ(r), t)

))

π0

(
g−1

(
B(g ◦ Φ(r), t+ 2(κ+ ϵ))

))

π0

(
g−1

(
B(f(r), t+ κ)

))

π0

(
g−1

(
B(f(r), t+ κ+ 2ϵ)

))

π0

(
f−1

(
B(f(r), t+ κ+ ϵ)

))

π0(ι)

π0(ι)

π0(ι)

βt+κ

π0(ι)

αt+κ+ϵ

(19)
As in the previous case, we have that Bdg (Φ(r), t) ⊆
g−1

(
B(g ◦ Φ(r), t)

)
is the path-component of Φ(r), i.e.

[Φ(r)] = Bdg (Φ(r), t) ∈ π0

(
g−1

(
B(g ◦ Φ(r), t)

))
and,

analogously, [r] = Bdf (r, t+κ+ϵ) ∈ π0

(
f−1

(
B(f(r), t+

κ + ϵ)
))

. We now use the analog of Equation (10) for
U = B(f(r), t+κ), ψ from the interleaving in Equation (9)
and β to obtain:

π0
(
g−1(B(f(r), t+ κ))

)

π0
(
f−1
ϵ (B(f(r), t+ κ))

)

π0
(
f−1(B(f(r), t+ κ+ ϵ))

)

π0(ψ)

β

h−1

(20)
By Equation (7), h−1 := π0(p1) ◦ π0(q)

−1

and, by (Bauer et al., 2015) Section 3.2, Ψ :=
p1 ◦ ψ̃δ. Since ψ̃δ(Φ(r)) ∈ ψ(Bdg (Φ(r), δ)) =
q−1

(
ψ(Bdg (Φ(r), δ))

)
, ψ(Bdg (Φ(r), δ)) is path-

connected and ψ(Φ(r)) ∈ ψ(Bdg (Φ(r), δ)), we have that
[ψ(Φ(r))] = [q(ψ̃δ(Φ(r)))] = π0(q)([ψ̃δ(Φ(r))]). Hence,
π0(q)

−1([ψ(Φ(r))]) = [ψ̃δ(Φ(r))]. By definition of Ψ, we
have [Ψ(Φ(r))] = [p1 ◦ ψ̃δ(Φ(r))] = π0(p1)([ψ̃δ(Φ(r))]).
Therefore, h−1 ◦ π0(ψ)([Φ(r)]) = h−1([ψ(Φ(r))]) =
π0(p1) ◦ π0(q)−1([ψ(Φ(r))]) = π0(p1)([ψ̃δ(Φ(r))]) =
[Ψ(Φ(r))] = βt+κ([Φ(r)]).

From Equation (11) we get 1
2 |df (r,Ψ ◦ Φ(r))| ≤ 3(ϵ+ δ).

If κ + ϵ > 6(ϵ + δ), then Bdf (r, 6(ϵ + δ)) ⊆ Bdf (r, t +

κ + ϵ) ⊆ f−1
(
B(f(r), t + κ + ϵ)

)
. Hence, since r and

Ψ ◦Φ(r) ∈ Bdf (r, t+ κ+ ϵ) and Bdf (r, t+ κ+ ϵ) is path-
connected, [r] = [Ψ◦Φ(r)] ∈ π0

(
f−1(B(f(r), t+κ+ϵ))

)
.

Therefore, starting with Bdg (Φ(r), t) = [r], we obtain
βt+κ ◦ π0(ι)([Φ(r)]) = βt+κ([Φ(r)]) = [Ψ ◦ Φ(r)] =
[r] = Bdf (r, t + κ + ϵ). This implies that we can extract
the following commutative diagram from Equation (18):

G
(
Bdg (Φ(r), t)

)
G
(
Bdg (Φ(r), t+ 2(κ+ ϵ))

)
G([Φ(r)]) G([Φ(r)])

F
(
Bdf (r, t+ κ+ ϵ)

)

G(ι)

G(ι)

ρt+κ([Φ(r)])

G(ι)

G(ι)

ηt+κ+ϵ([r])

(21)
Now we define

µt : F
(
Bdf (r, t)

)
→ G

(
Bdg (Φ(r), t+ κ+ ϵ)

)
µt := ηt+κ ◦ F (ι)
νt : G

(
Bdg (Φ(r), t)

)
→ F

(
Bdf (r, t+ κ+ ϵ)

)
νt := ρt+κ ◦G(ι)

(22)

Since F and G are ϵ-interleaved we have the following com-

13
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mutative diagram

F
(
B(f(r), t)

)
F
(
B(g ◦ Φ(r), t+ κ)

)

G
(
B(f(r), t+ ϵ)

)
G
(
B(g ◦ Φ(r), t+ κ+ ϵ)

)
F(ι)

(αt,ηt) (αt+κ,ηt+κ)

G(ι)

(23)
Following the component Bdf (r, t) we get

F
(
Bdf (r, t)

)
F
(
[r]

)

G
(
. . .

)
G
(
Bdg (Φ(r), t+ κ+ ϵ)

)
F (ι)

ηt ηt+κ

G(ι)

(24)
This implies that the map µt = ηt+κ ◦ F (ι) = G(ι) ◦ ηt.
Analogously we obtain that νt = ρt+κ ◦G(ι) = F (ι) ◦ ρt.
Moreover, for s < t ∈ R≥0, the following diagram and its
analog for ν obviously commute:

F
(
Bdf (r, s)

)
F
(
Bdf (r, t)

)
G
(
Bdg (Φ(r), s+ κ+ ϵ)

)
G
(
Bdg (Φ(r), t+ κ+ ϵ)

)
F (ι)

µs µt

G(ι)

(25)
Combining these results with Equation (16) and Equa-
tion (21), we obtain the following (κ+ ϵ)-interleaving:

F
(
Bdf (r, t)

)
G
(
Bdg (Φ(r), t)

)

F
(
Bdf (r, t+ κ+ ϵ)

)
G
(
Bdg (Φ(r), t+ κ+ ϵ)

)

F
(
Bdf (r, t+ 2(κ+ ϵ))

)
G
(
Bdg (Φ(r), t+ 2(κ+ ϵ))

)

F (ι) µt G(ι)νt

F (ι) µt+κ+ϵ G(ι)νt+κ+ϵ

(26)
Hence, BF (r) and BG(Φ(r)) are (κ + ϵ)-interleaved
for every κ > 5ϵ + 6δ. Since inf{κ + ϵ |
κ > 5ϵ + 6δ and δ > 0} = 6ϵ, we finally obtain
dI
(
BF (r), BG(Φ(r))

)
≤ 6ϵ. By symmetry, we analo-

gously obtain dI
(
BF (Ψ(s)), BG(s)

)
≤ 6ϵ. Together with

Equation (11), these bounds imply the theorem.
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