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Abstract

Interlinear glossed text (IGT) is a popular for-001
mat in language documentation projects, where002
each morpheme is labeled with a descriptive an-003
notation. Automating the creation of interlinear004
glossed text can be desirable to reduce annota-005
tor effort and maintain consistency across anno-006
tated corpora. Prior research (Ginn et al., 2023;007
Zhao et al., 2020; Moeller and Hulden, 2018)008
has explored a number of statistical and neural009
methods for automatically producing IGT.010

As large language models (LLMs) have showed011
promising results across multilingual tasks,012
even for rare, endangered languages (Zhang013
et al., 2024), it is natural to wonder whether014
they can be utilized for the task of generating015
IGT. We explore whether LLMs can be effec-016
tive at the task of interlinear glossing with in-017
context learning, without any traditional train-018
ing. We propose new approaches for selecting019
examples to provide in-context, observing that020
targeted selection can significantly improve per-021
formance. We find that LLM-based methods022
beat standard transformer baselines, despite re-023
quiring no training at all. These approaches024
still underperform state-of-the-art supervised025
systems for the task, but are highly practical026
for researchers outside of the NLP community,027
requiring minimal effort to use.028

1 Introduction029

With thousands of endangered languages at risk of030

extinction, language documentation has become031

a major area of linguistic research (Himmelmann,032

2006; Woodbury, 1999), aiming to produce perma-033

nent artifacts such as annotated corpora, reference034

grammars, and dictionaries. Furthermore, research035

has explored the potential for computational meth-036

ods to aid in language documentation and revital-037

ization (Palmer et al., 2009; Moeller and Hulden,038

2018; Wiemerslage et al., 2022; Kann et al., 2022;039

Gessler, 2022; Zariquiey et al., 2022; Zhang et al.,040

2022; Flavelle and Lachler, 2023).041
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Figure 1: Accuracy of an LLM-based glossing method
on Gitksan data, varying the number of provided exam-
ples and the strategy for selecting examples.

In particular, we study the task of generating 042

interlinear glossed text (IGT), a line-by-line format 043

for annotated text corpora that is commonly used 044

in documentation projects. IGT generation has 045

been studied using statistical (Palmer et al., 2009; 046

Samardžić et al., 2015; McMillan-Major, 2020) 047

and neural (Moeller and Hulden, 2018; Zhao et al., 048

2020; Barriga Martínez et al., 2021) methods. 049

A key challenge when working with endangered 050

languages is that, in nearly all cases,1 there is very 051

little labeled or unlabeled data available. This is 052

particularly challenging for large neural models 053

which depend on large, representative training data 054

sets. Research has explored methods to overcome 055

this challenge for IGT generation systems, such 056

as crosslingual transfer (He et al., 2023; Okabe 057

and Yvon, 2023; Ginn et al., 2024) and architec- 058

tural modifications (Girrbach, 2023a), but these 059

approaches struggle in very low-resource scenarios. 060

In addition, previous approaches generally require 061

expertise in model training, implementation, and 062

deployment, as well as the computational resources 063

1As Liu et al. (2022) notes, not all endangered languages
are low-resource (and vice versa), and such languages bear
different concerns when developing language technology.
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needed to serve large neural models.064

As large language models (LLMs) have demon-065

strated impressive performance on various natu-066

ral language tasks, the question arises whether067

they can benefit language documentation. We seek068

to evaluate the ability of current LLMs to gener-069

ate interlinear glossed text, compared with earlier070

state-of-the-art methods. This research can also071

shed light on the language-agnostic capabilities of072

LLMs, requiring the model to learn patterns in very073

rare languages which are unlikely to have signifi-074

cant presence in their training data.075

We study strategies for selecting in-context ex-076

amples, finding significant impacts to performance.077

Our best-performing systems outperform trans-078

former model baselines, despite involving no train-079

ing whatsoever. They still underperform SOTA080

systems that induce morphological segmentation,081

but at the same time hold promise for offering a082

new approach to interlinear glossing for language083

documentation practitioners.084

2 Background085

2.1 Interlinear Glosed Text086

A typical example of IGT is shown in item 1.087

(1) nuhu’
this

tih-’eeneti-3i’
when.PAST-speak-3PL

heneenei3oobei-3i’
IC.tell.the.truth-3PL

088

“When they speak, they tell the truth.” (Cowell, 2020)089

The first line (transcription line) contains the text090

in the language being documented, and may be seg-091

mented into morphemes (as here). The second line092

(gloss line) provides a gloss for each morpheme in093

the transcription. Glosses may indicate grammati-094

cal function or a translation of the morpheme (for095

stems). The third line contains a translation into a096

high-resource language such as English. Produc-097

ing each of these lines requires knowledge of the098

language and/or skilled linguistic analysis.099

Generally, automated IGT systems are trained to100

predict the gloss line given the transcription line101

(and sometimes the translation as in Zhao et al.,102

2020; Rice et al., 2024). The primary aim of such103

systems is to assist a human annotator, providing104

suggestions for common morphemes that are often105

glossed with the same label. These systems are not106

intended to replace human annotators, who are vi-107

tal to the documentation process, annotating novel108

morphemes and interesting linguistic phenomena,109

as well as verifying automatically-produced labels.110

2.2 LLMs for Rare Languages 111

Though LLMs generally have limited understand- 112

ing of rare and low-resource languages (Ebrahimi 113

et al., 2022), they can often achieve signifi- 114

cantly better performance through crosslingual in- 115

context learning (X-ICL), where a number of ex- 116

amples in the target language are provided directly 117

in the prompt to a multilingual model (Winata et al., 118

2021; Lin et al., 2022; Cahyawijaya et al., 2024). 119

We study X-ICL methods for using LLMs for the 120

task of IGT generation, including complete IGT ex- 121

amples in the prompt. We hypothesize that this ap- 122

proach will leverage both the set of labeled training 123

examples and the robust multilingual knowledge 124

of the language model. In particular, we explore 125

the effects of including an increasing number of 126

examples in context (section 4) and using different 127

strategies to select relevant examples (section 5). 128

2.3 Related Work 129

A number of approaches have been used for IGT 130

generation. Palmer et al. (2009) uses a maximum 131

entropy classifier and represents the earliest work 132

describing benefits of using automated glossing sys- 133

tems. A number of papers (Samardžić et al., 2015; 134

Moeller and Hulden, 2018; McMillan-Major, 2020) 135

use statistical classifiers such as conditional ran- 136

dom fields. Recent research explores neural models 137

such as recurrent neural networks and transform- 138

ers (Moeller and Hulden, 2018; Zhao et al., 2020; 139

Barriga Martínez et al., 2021). Other approaches 140

improve glossing performance using crosslingual 141

transfer (He et al., 2023; Okabe and Yvon, 2023; 142

Ginn et al., 2024), hard attention (Girrbach, 2023a), 143

and pseudolabeling (Ginn and Palmer, 2023). 144

IGT data is not only useful for preservation and 145

revitalization projects, but also for downstream 146

tasks such as machine translation (Zhou et al., 147

2019), developing linguistic resources like dictio- 148

naries (Beermann et al., 2020) and UMR (Uniform 149

Meaning Representation) graphs (Buchholz et al., 150

2024), studying syntax and morphology (Bender 151

et al., 2013; Zamaraeva, 2016; Moeller et al., 2020), 152

and dependency parsing (Georgi et al., 2012). 153

Given the cost and difficulty of obtaining IGT 154

data, research has explored methods to scrape it 155

from Latex documents (Schenner and Nordhoff, 156

2016; Nordhoff and Krämer, 2022) and even im- 157

ages (Round et al., 2020). Finally, work has at- 158

tempted to standardize IGT conventions and for- 159

mats, balancing consistency and expressiveness 160
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across languages (Lehmann, 1982; Hughes et al.,161

2003; Nordhoff, 2020; Mortensen et al., 2023).162

3 Methodology163

We study the IGT generation task described in Ginn164

et al. (2023). Given a transcription line and trans-165

lation line, systems must predict the gloss line.166

We focus on the closed track setting, where the167

input words are not segmented into morphemes.168

This task is strictly more difficult than the setting169

where words are already segmented, as models170

must jointly learn segmentation and gloss predic-171

tion. As reported in Ginn et al. (2023), the SOTA172

on this task remains far weaker than the setting with173

segmented inputs, with up to a 40 point discrepency174

in SOTA performance.175

3.1 Data176

We use the IGT corpora and splits from the 2023177

SIGMORPHON Shared Task (Ginn et al., 2023),178

allowing us to directly compare to several other sys-179

tems. We use the languages described in Table 1.180

# IGT Examples
Language Train Dev Test
Gitskan [git] 74 42 31
Lezgi [lez] 705 88 87
Natugu [ntu] 791 99 99
Uspanteko [usp] 9774 232 633

Table 1: Languages and data splits, originally from Ginn
et al. (2023)

We primarily focus on the lower-resource lan-181

guages from the shared task, where neural methods182

tended to struggle due to limited training data. We183

use the data as formatted by Ginn et al. (2024).184

3.2 Evaluation185

We evaluate using the same metrics as the shared186

task. We primarily report morpheme accuracy,187

which measures how many morpheme glosses188

match between the predicted and true glosses. Any189

predicted glosses beyond the length of the true190

gloss string are ignored.191

3.3 Models192

We run preliminary experiments using Co-193

here’s Command R+ model,2 a 104B parameter194

instruction-tuned language model with 128K token195

context that is designed for multilingual tasks.196

2https://docs.cohere.com/docs/command-r-plus

3.4 Prompting 197

Though the exact prompt varies from experiment 198

to experiment, all runs use the same base prompt, 199

included in Appendix A. In the system prompt, we 200

define the IGT generation task and desired output 201

format and provide additional information such as 202

the language and list of possible glosses. In the user 203

prompt, we provide few-shot examples (if any) and 204

the target example to be glossed. 205

We run each experiment three times with tem- 206

perature 0 and a different random seed, ensuring 207

both the retrieval strategy and model API calls are 208

reproducible. We report the average and standard 209

deviation for performance. 210

4 Many-Shot Prompting 211

Few-shot prompting, where a model is provided 212

with a small number of examples in the context, has 213

proven very effective at a variety of tasks (Brown 214

et al., 2020; Winata et al., 2021; Lin et al., 2022; 215

Cahyawijaya et al., 2024). Furthermore, as model 216

context lengths have continued to increase, it has 217

become possible to provide hundreds or even thou- 218

sands of examples, and performance typically con- 219

tinues to improve (Bertsch et al., 2024). On the 220

other hand, increasingly long prompts bear a high 221

cost, and strategies to retrieve relevant examples 222

can often achieve similar performance at a fraction 223

of the cost (see section 5). 224

4.1 Experimental Settings 225

For all experiments, we run two settings, one with 226

just the base task description, and one where we 227

include a list of possible glosses for functional mor- 228

phemes. We scrape this list of glosses from all of 229

the seen glosses in the training set. We instruct 230

the model to only use these glosses for functional 231

morphemes (while stem morphemes should still 232

be glossed with their translation). We refer to this 233

setting as [+ GLOSSLIST], with an example gloss 234

list in Appendix B. 235

For each language, we experiment with vary- 236

ing number of examples. For all languages except 237

Gitksan, we run experiments providing no exam- 238

ples (zero-shot) and 1, 2, 3, 5, 10, 30, 50, and 239

100 examples. Gitksan has fewer than 100 training 240

examples, so we use all 74 for the final setting. 241

For each example in our eval set, we randomly 242

sample examples from the training set to be in- 243

cluded in the prompt. In section 5, we compare this 244

strategy to more intentional retrieval strategies that 245
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Figure 2: Morpheme accuracy of LLM-based glossing on Gitksan, Lezgi, Natugu, and Uspanteko, varying the
number of provided examples. Reported values are averages over three runs; error bars indicate standard deviation.

aim to select relevant examples.246

4.2 Results247

We report results for our languages in Figure 2,248

with a full table of results provided in Appendix C.249

Generally, we see that the model has very weak250

performance in the zero-shot setting, indicating251

that the model has little knowledge of our chosen252

languages. In some cases, the zeroshot experiments253

produce results that are not even in the desired254

output format.255

Performance improves drastically for the first256

few shots added, showing smaller improvements as257

the number of shots increases. For Gitksan, perfor-258

mance levels up as the number of provided exam-259

ples approaches the full training set. For the other260

languages with much larger training sets, perfor-261

mance shows continued improvement even around262

100 shots, supporting the findings of Bertsch et al.263

(2024). We suspect that this trend would continue264

to some extent, but the cost of providing hundreds265

of examples quickly becomes infeasible.266

Relationship between Shots and Accuracy267

What sort of shape is formed by the curve in Fig-268

ure 1 and Figure 2? The relationship appears to269

be roughly logarithmic, starting steep and level-270

ing off. To quantify this relationship, we take271

the log(#shots + 1) for each setting.3 Figure 3272

shows the transformed curve for Gitksan, which273

now shows a strong linear relationship.274

We compute the R2 value over all settings and275

report it in Table 2.276

We observe extremely strong correlation values277

across all settings. This indicates that the logarith-278

mic model is a good fit for the data, and predicts279

3Adding 1 so the zero-shot setting is defined.

y = 2.746x + 2.2512
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Figure 3: Morpheme accuracy for Gitksan, where the
predictor variable is the logarithm of the number of
provided examples (plus one).

Language Base + Glosslist
Gitksan 0.962 0.958
Lezgi 0.934 0.981

Natugu 0.993 0.996
Uspanteko 0.952 0.983

Table 2: Coefficient of determination (R2) computed
between morpheme accuracy and log(#shots+ 1)

.

that maintaining steady performance improvements 280

requires exponentially more examples. 281

Effect of Gloss List We initially hypothesized 282

that providing a complete list of possible glosses 283

in the prompt could help the model better adhere 284

to the desired glossing conventions. We report a 285

summary plot of the difference in accuracy between 286

the two settings across languages in Figure 4. 287

The average difference is close to 0, well within 288

a standard deviation in all cases, and thus there is 289

little evidence to suggest that including the gloss 290

list meaningfully affects performance. A possible 291

explanation is that since the model has very limited 292

prior knowledge of these languages, providing a 293

list of glosses without any explanation or examples 294

does not provide any useful information. 295
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Figure 4: Difference in averaged accuracy between set-
tings with and without a complete gloss list provided in
the prompt. We observe minimal differences.

To investigate whether including a gloss list296

changes the predictions at all, we measure the ad-297

herence percentage. This metric is computed by di-298

viding the number of predicted (functional) glosses299

that adhere to the gloss list by the total number of300

predicted glosses. We report the distribution over301

languages and settings in Figure 5.302
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Figure 5: Distribution of adherence percentages, across
languages, comparing with and without the glosslist.

We observe that including the gloss list in the303

prompt is effective for increasing adherence com-304

pared to the base setting. While the experiments305

without the gloss list vary widely, the experiments306

with it nearly always use glosses from the list. On307

the other hand, we have observed no evidence that308

the gloss list improves performance, suggesting309

that the model may be predicting glosses from the310

list randomly.311

Furthermore, including a gloss list in the prompt312

carries a fixed cost of several hundred tokens for313

every prompt (e.g. for Uspanteko, the cost is 124314

tokens). Since it provides negligible benefit, we315

opt to omit the glosslist for future experiments in316

order to reduce cost. 317

5 Retrieval Strategies 318

While including a large number of in-context ex- 319

amples can certainly improve performance, long 320

prompts carry a high cost that may be infeasible for 321

real-world documentation projects. For example, 322

running prompts with a thousand examples in Us- 323

panteko costs roughly 10 cents per inference call, 324

which can quickly add up over thousands of exam- 325

ples. Many LLMs still have limited context length, 326

particularly among open-source models, and in- 327

cluding many examples may not even be possible. 328

Finally, Bertsch et al. (2024) suggests that the effec- 329

tiveness of many-shot prompting is mainly due to 330

the model seeing relevant examples, and ignoring 331

many irrelevant ones. 332

With this in mind, we consider a method in- 333

spired by retrieval-augmented generation (RAG, 334

Lewis et al. 2020). RAG was originally used for 335

knowledge-intensive tasks, using document embed- 336

dings to search for relevant documents to a given 337

query and include them in prompt context. We ap- 338

ply a similar strategy in order to search for relevant 339

IGT examples from our training corpus to include 340

in our prompt. 341

5.1 Experimental Settings 342

We consider several strategies for selecting exam- 343

ples that are relevant for the target sentence. 344

Random As a baseline, we use the random strat- 345

egy from the prior section, which simply samples 346

n examples randomly from the training corpus. 347

Word Recall and Word Precision We hypothe- 348

size that a straightforward way to improve perfor- 349

mance is by providing examples which have the 350

same morphemes as the target sentence. Since our 351

data is not segmented into morphemes, we instead 352

look for matching words (which will nearly always 353

be composed of the same morphemes). We split 354

each example into words using whitespace, and 355

compute the word recall for a target sentence T 356

and candidate training sentence S. 357

WORDRECALL =
|unique(S) ∩ unique(T )|

|unique(T )|
(1) 358

This computes the fraction of unique words in 359

the target sentence that appear in the candidate 360

sentence. We can also compute the word precision 361
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with a slightly modified formula:362

WORDPRECISION =
|S ∩ unique(T )|

|S|
(2)363

This metric rewards examples where the major-364

ity of words in the candidate are in the target sen-365

tence. Notice that we do not use the unique words366

of S, instead weighting an example that uses the367

same word from T several times more heavily. We368

select the examples with the highest word recall or369

precision, considering each example independently370

and breaking ties randomly.371

Aggregate Word Recall One limitation of the372

prior approach is that by considering each candi-373

date individually, we can potentially select several374

redundent examples in few-shot scenarios. Instead,375

we can compute the aggregate word recall over a376

candidate sample of n examples.377

Sagg =
n⋃

i=1

unique(Si) (3)378

AGGWORDREC =
|Sagg ∩ unique(T )|

|unique(T )|
(4)379

This metric rewards samples that jointly cover380

more of the words in the target. This is equivalent381

to the Maximum Coverage Problem, and as such382

is NP-Hard (Nemhauser et al., 1978). We use the383

greedy algorithm, which runs in polynomial time384

(Hochbaum, 1996).385

chrF A limitation of the previous strategies is386

that, by only considering atomic words, there is no387

way to select examples that may contain the same388

morphological units. One way we can attempt to389

capture morphological similarity is through using390

substring similarity metrics such as chrF (Popović,391

2015) and chrF++ (Popović, 2017). These metrics392

compute the F-score of character n-gram matches393

(chrF++ also incorporates word n-grams), and have394

been shown to correspond more closely to human395

judgements for machine translation.396

Morpheme Recall Although we do not have seg-397

mented data, much research has explored methods398

to induce morphological segmentations from data399

in an unsupervised manner. In particular, we use400

Morfessor (Creutz and Lagus, 2005), a popular401

statistical method that seeks to find a segmenta-402

tion that maximizes overall the probability of seg-403

mented words.404

We create silver segmentations using Morfessor 405

and compute the recall metric as described earlier, 406

but using morphemes rather than words. We train 407

the segmentation model use the default parameters 408

on the training data and use Viterbi inference to 409

segment test examples. We use the Morfessor 2.0 410

library (Virpioja et al., 2013). 411

5.2 Results 412

We report results across our four languages and six 413

retrieval strategies in Figure 6. We run tests using 414

1, 2, 5, 10, 30, and 50 examples in each prompt. 415

Comparison with Random Retrieval Across 416

all languages, we observe clear and significant im- 417

provements over the random selection method de- 418

scribed in the prior section (here indicated with a 419

gray line). This is the case both with a small num- 420

ber of fewshot examples and as the number grows 421

large. The only exception is the 50 example setting 422

for Gitksan, at which point the provided examples 423

make up a large fraction of the training corpus. 424

This is an intuitive result, as the IGT generation 425

task requires, at minimum, knowledge about the 426

words of a language and their potential glosses. 427

Even a simple baseline that glosses tokens with 428

their most common gloss from the training set is 429

often fairly effective (Ginn et al., 2023). This is 430

particularly important since the LLM used seems to 431

have very limited prior knowledge of the language, 432

as evidenced by the poor zero-shot performance. 433

Relationship between Shots and Accuracy As 434

before, we generally see consistently improving 435

performance as additional examples are added. 436

However, there are several cases where perfor- 437

mance drops going from 30 to 50 shots, as in 438

Gitksan (Word Precision, Max Coverage, and Mor- 439

pheme Recall) and Lezgi (chrF Score). Both of 440

these languages have fairly small corpora, and it is 441

possible that after a point these strategies run out of 442

beneficial examples, and any additional examples 443

simply contribute noise to the prompt. 444

Effect of Different Granularities Many of the 445

strategies perform very similarly, but there are 446

some observable trends across granularity levels 447

(word, morpheme, and substring). We observe that 448

the chrF strategy is nearly always the most effec- 449

tive, outperforming the word- and morpheme-based 450

strategies in most cases. We hypothesize that this 451

strategy strikes a balance by selecting examples 452
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Figure 6: Morpheme accuracy of LLM-based glossing on four languages, varying the number of provided examples
and using different strategies to select relevant examples. Reported values are averages over three runs.

with subword similarity, but not introducing error453

due to noisy morpheme segmentations.454

Word Recall vs Morpheme Recall We observe455

mixed results across the Word Recall and Mor-456

pheme Recall strategies. We observe a few settings457

where there appears to be a significant gap between458

the two (Gitksan at 30 shots; Lezgi at 50 shots), but459

generally the strategies are close. It is possible that460

the words in our evaluation examples often either461

are monomorphemic, or contain a combination of462

morphemes already observed in the training data,463

and thus selecting relevant examples according to464

morphemes has little benefit.465

Word Recall vs Word Precision While the Word466

Recall and Word Precision strategies both seek to467

quantify the word-level similarity between the tar-468

get and candidate sentences, they are computed469

slightly differently and produce different results.470

The Word Recall strategy prioritizes candidate sen-471

tences that contain a large fraction of the word types472

in the target sentence, ignoring repeated words.473

Meanwhile, the Word Precision strategy selects 474

candidates based on the fraction of words within 475

the candidate that are also in the target. 476

The Word Recall strategy consistently outper- 477

forms Word Precision, except for the two largest 478

settings in Gitksan. This indicates that it is more im- 479

portant to provide examples which cover the words 480

in the target than it is to provide several examples 481

for a single word. 482

Word Recall vs Max Word Coverage We ex- 483

perimented with the Max Word Coverage setting, 484

where we consider the recall of the selected set of 485

candidates as whole, rather than individually. We 486

observe minimal benefits, in fact underperforming 487

the Word Recall setting in many cases. 488

6 Comparison with SOTA 489

Finally, we compare our best-performing strate- 490

gies from the prior section with several previous 491

baseline methods: 492

• The token classification transformer model 493
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of Ginn et al. (2023), which uses an encoder494

model to predict glosses word-by-word495

• Tü-CL from Girrbach (2023b), which uses496

hard attention to induce latent segmentations497

and predict glosses on segmented words498

For the LLM-based method, we select the chrF499

strategy and test with 30 examples for Gitksan and500

100 examples for the other languages. We make501

some small prompt optimizations described in Ap-502

pendix A, and raise the temperature to 0.2. We use503

the following language models:504

• Cohere’s Command R+, which was used for505

preliminary experiments.506

• OpenAI’s GPT-4o, specifically the gpt-507

4o-2024-05-13 checkpoint (OpenAI, 2024)508

• Google’s Gemini 1.5 Pro (Gemini Team,509

2024)510

We run evaluation on the held out test set and report511

results in Figure 7.512

6.1 Discussion513

We observe that the LLM based glossing strategies514

outperform a simple transformer in all languages,515

despite using no training whatsoever and using a516

small fraction of the training set as examples. Of517

the LLM models, Gemini performs best on three518

languages. However, we note that Gemini refuses519

to produce answers for many examples, which we520

count as completely wrong. If we omit such exam-521

ples, Gemini’s performance is even higher, achiev-522

ing 55.9%, 50.8%, and 63.9% accuracy on Lezgi,523

Natugu, and Uspanteko respectively.524

On the other hand, the LLM methods typi-525

cally underperform the SOTA method of Girrbach526

(2023b), except for Gitksan, where the best LLM527

(Gemini) outperforms by 6.5 points. The Girrbach528

(2023b) approach explicitly models segmentation529

through a learned latent representation, which our530

strategy does not utilize. Future work with LLM-531

based methods could explore an analogous process,532

explicitly prompting the LLM to generate segmen-533

tations before producing final glosses.534

Furthermore, these methods will likely continue535

to improve as LLMs become more capable for rare536

(or even completely unseen) languages, as mea-537

sured by benchmarks such as Tanzer et al. (2024).538

Most trivially, as LLMs with increasingly long con-539

texts are developed, we can provide more examples540

in-context, which our results indicate will continue541

to provide benefits.542
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56.2
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41.3
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50.2
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18.2
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47.6

0 20 40 60 80

git
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ntu

usp

Token class Tu-CL Cohere GPT-4 Gemini

Figure 7: Morpheme accuracy results on test splits,
comparing several LLMs and baseline systems.

7 Conclusion 543

We find that SOTA large language models struggle 544

to produce interlinear glosses for the endangered 545

languages used in our research. However, by select- 546

ing relevant examples from a training corpus and 547

providing them as part of the context for each ex- 548

ample to be glossed, we can significantly improve 549

performance. We find that the relationship between 550

performance and the number of few-shot examples 551

is roughly logarithmic. Performance improves by a 552

wide margin when we select examples with a high 553

chrF++ score relative to the target sentence. 554

Our best systems outperform a standard trans- 555

former model, despite involving no explicit training 556

and using a fraction of the training data. How- 557

ever, they still underperform the SOTA system for 558

the glossing task on three out of four languages. 559

Thus, for documentary linguists hoping to use auto- 560

mated glossing solutions, the use of LLMs may not 561

achieve ideal accuracy. At the same time, LLMs 562

may still be a preferrable choice for languages with 563

very limited data comparable to Gitksan, and the 564

use of an API is often far more accessible than 565

training and hosting a neural model. Our results 566

encourage further exploration of this approach. 567
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Limitations568

While we have selected a small set of languages569

that we believe give insight into the performance of570

automated glossing systems, they are certainly not571

representative of all the world’s languages. In par-572

ticular, LLMs may struggle more with languages573

that use non-Latin writing scripts (Zhang et al.,574

2023).575

We use a single prompt template for the major-576

ity of experiments and do not conduct extensive577

prompt engineering. Frameworks such as DSPy578

(Khattab et al., 2024) have shown that prompt op-579

timization can often greatly improve performance,580

so it is entirely possible that we could achieve better581

performance on this problem with the same models582

and strategies.583

We evaluate three popular closed-source LLMs,584

but results may vary across other models. In partic-585

ular, we have not yet considered open-source, local586

LLMs due to resource constraints.587

Ethics Statement588

As our work involves documentation data produced589

through the combined efforts of documentary lin-590

guists and speakers of endangered languages, we591

strive to respect their desires and avoid treating592

data as merely a resource to train models with593

(Schwartz, 2022).594

We do not intend for automated glossing sys-595

tems to replace human annotators, which would596

drastically impact the quality, novelty, and utility597

of annotated corpora, but rather to serve as a tool598

available to support documenters.599

Finally, we acknowledge that the use of large600

language models carries a high environmental cost,601

and make efforts to minimize unnecessary API602

calls and to track our usage.603
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A Prompt Format 966

We use the following prompts for our preliminary 967

experiments. The blue placeholders are replaced 968

with the appropriate values. The system prompt is 969

as follows. 970
971

You are an expert documentary linguist, 972

specializing in $language. You are 973

working on a documentation project 974

for $language text, where you are 975

creating annotated text corpora 976

using the interlinear glossed text ( 977

IGT) and following the Leipzig 978

glossing conventions. 979

980

Specifically, you will be provided with 981

a line of text in $language as well 982

as a translation of the text into 983

$metalang, in the following format. 984

985

Transcription: some text in $language 986

Translation: translation of the 987

transcription line in $metalang 988

989

You are to output the gloss line of IGT. 990

You should gloss stem/lexical 991

morphemes with their translation in 992

$metalang, and gloss gram/functional 993

morphemes with a label indicating 994

their function. Please output the 995

gloss line in the following format: 996

997

Glosses: the gloss line for the 998

transcribed text 999

1000

Glosses should use all caps lettering 1001

for functional morphemes and 1002

standard lettering for stem 1003

translations. Glosses for morphemes 1004

in a word should be separated by 1005

dashes, and words should be 1006

separated by spaces. 10071008
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The main prompt is as follows:1009
1010

Here are some complete glossed examples:1011

$fewshot_examples1012

1013

Please gloss the following example in1014

$metalang.1015

1016

Transcription: $transcription1017

Translation: $translation10181019

For zero-shot prompts, we remove the first sen-1020

tence of the main prompt. Furthermore, from quali-1021

tative analysis, we observe that the LLM sometimes1022

pulls words from the translation to use as glosses,1023

resulting in incorrect examples. Thus, for the fi-1024

nal test, we omit the translation lines from both1025

prompts.1026

B Example Gloss List1027

We provide an example list of glosses for Gitksan.1028

There are some formatting artificats, due to the1029

automatic extraction of glosses.1030
1031

#(PROSP), (#COMP), (#PROSP), 1.I, 1.SG1032

.=, 1PL.II, 1SG, 1SG.II, 2SG, 3.I, 3.1033

II, 3.III, 3PL, 3PL.II, 3PL.INDP, 31034

SG.II, ANTIP, AX, CAUS1, CAUS2, CCNJ1035

, CN, CNTR, COMP, CONNN, DEM.PROX,1036

DES, DISTR, DM, DWID, EPIS, FOC, FUT1037

, FUT=3, IBM, INCEP, INS, IPFV, IPFV1038

=EPIS=CN, IRR, IRR=3, LOC, LOC=CN,1039

LVB, MANR, NEG, NEG=FOC, NEG=FOC=3,1040

NMLZ, OBL, PART, PASS, PCNJ, PN, PR.1041

EVID, PREP, PREP=CN, PROG=CN, PROG[=1042

CN], PROSP, PROSP=3, PROSP=3.I, REAS1043

, SELF, SG, SPT, SX, T, T=PN, TR, TR1044

=CN, TR=PN, VAL, VER, VERUM, [#(1045

PROSP), [(#COMP), [(PROSP), [PROG=CN1046

, [PROSP10471048

C Full Results1049

We present full results across all of our experimen-1050

tal settings in Table 3.1051
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# In-Context Examples

Strategy 0 1 2 3 5 10 30 50 100

GITKSAN

Random 0.7±0.0 4.9±1.2 6.9±0.9 8.9±0.9 9.2±0.4 12.7±0.7 16.8±1.1 18.5±1.2 17.1±0.3
Rand +GLOSSLIST 0.8±0.2 5.3±0.9 7.4±1.0 9.3±1.1 11.1±1.8 12.3±0.8 15.7±1.3 16.5±1.7 17.9±0.7
Word Rec. 10.8±0.3 12.4±0.9 16.3±4.6 16.9±1.1 18.3±1.4 18.7±1.3
Word Prec. 8.5±0.3 9.7±0.5 12.2±0.6 14.8±1.1 19.7±0.3 19.4±0.5
Max Word Cov. 11.1±1.9 14.5±1.7 15.1±0.8 15.1±0.5 18.2±1.5 17.7±0.3
chrF 11.7±0.4 13.3±0.3 14.6±1.1 16.8±0.8 20.8±0.4 21.0±0.6
Morph. Rec. 9.8±0.2 13.1±0.5 15.1±0.7 16.2±1.2 20.6±2.2 18.5±0.7

LEZGI

Random 1.0±0.2 4.1±0.6 5.3±0.6 5.3±0.8 6.9±1.6 7.3±0.6 13.7±1.2 14.2±1.4 21.8±6.0
Rand +GLOSSLIST 1.0±0.1 3.4±0.1 5.0±0.7 5.2±1.0 6.1±0.7 9.5±0.7 11.5±1.6 14.7±3.8 18.5±0.1
Word Rec. 17.0±0.7 17.6±2.8 26.5±1.5 30.2±2.1 34.6±1.6 37.6±1.5
Word Prec. 13.7±1.3 13.6±0.8 22.4±1.6 25.9±1.4 30.2±1.7 33.4±1.9
Max Word Cov. 16.3±0.4 20.6±2.6 26.4±0.9 30.2±1.3 33.5±1.2 34.1±1.4
chrF 16.4±1.6 18.7±0.5 26.4±0.8 31.3±0.7 37.9±0.4 34.6±1.1
Morph. Rec. 17.2±0.9 18.1±0.5 27.8±0.1 29.9±3.4 33.6±1.3 38.2±1.9

NATUGU

Random 1.5±0.3 4.7±0.4 5.6±0.3 7.2±0.7 8.1±0.7 10.4±0.3 16.2±1.3 18.2±1.4 21.2±0.3
Rand +GLOSSLIST 2.0±0.2 5.3±0.4 6.1±0.4 7.1±1.0 8.4±0.3 10.2±0.7 15.1±1.4 16.9±1.0 19.4±0.6
Word Rec. 10.4±0.4 13.7±0.6 19.4±1.0 24.5±1.8 27.9±1.6 28.4±2.1
Word Prec. 7.8±0.2 9.9±0.5 16.0±0.2 18.8±1.5 26.9±0.8 27.0±1.0
Max Word Cov. 11.2±0.3 13.8±0.3 20.2±0.3 21.7±1.0 25.2±2.2 25.2±1.0
chrF 11.1±0.4 18.2±0.7 24.8±0.5 29.0±1.4 33.1±0.9 34.0±0.5
Morph. Rec. 8.3±0.5 13.9±0.3 20.2±2.0 24.0±1.9 29.6±1.9 31.0±1.4

USPANTEKO

Random 2.7±0.3 12.1±0.9 14.1±0.6 14.7±1.0 17.1±0.6 19.4±1.1 26.9±1.4 29.1±1.2 33.7±1.5
Rand +GLOSSLIST 2.8±0.4 11.3±0.8 13.9±0.6 14.6±0.9 16.3±0.8 19.4±0.9 26.7±0.9 29.8±0.5 34.1±1.9
Word Rec. 26.7±1.4 30.4±1.6 37.3±1.3 42.4±0.8 50.9±0.2 52.6±0.7
Word Prec. 19.7±0.2 25.3±0.4 31.3±1.0 37.9±0.6 45.7±0.4 47.5±0.8
Max Word Cov. 26.7±1.2 36.7±1.0 43.5±1.7 46.1±1.0 50.7±2.2 52.8±2.0
chrF 28.1±0.7 33.7±0.7 40.4±0.1 46.0±0.2 56.5±0.7 59.5±0.7
Morph. Rec. 26.1±0.7 29.8±0.8 36.6±0.1 41.0±1.3 50.0±0.4 53.4±0.3

Table 3: Full morpheme accuracy results across languages, selection strategies, and number of examples.
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