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Abstract

Medical code assignment from clinical texts is
a crucial task in the healthcare industry. Clini-
cal texts are typically very long sequences and
the number of possible labels are large, mak-
ing this task quite challenging. Recent work
applies deep neural network models to encode
the medical notes and assign medical codes
to clinical documents. Some works use effec-
tive attention mechanisms to construct label-
specific document representations and show
promising results. In this paper, we propose
a new attention mechanism, GE-LAAT (graph
enhanced label attention), which utilizes code
graphs to learn robust representation vectors
for medical codes and improve upon the state
of the art models. Experiments on the MIMIC-
III dataset are conducted to show the effective-
ness of our proposed model.

1 Introduction

Medical notes are text documents written by clin-
icians during patient encounters. These notes are
usually accompanied by a set of codes from the In-
ternational Classification of Diseases (ICD), which
present a standardized way of indicating diagnoses
and procedures that were performed during the en-
counter. The codes are then used for different pur-
poses such as billing or predictive modeling of pa-
tient state (Choi et al., 2016; Ranganath et al., 2015;
Denny et al., 2010; Avati et al., 2017). Manual cod-
ing by a human coder can be very challenging due
to many reasons. First, the label space is very high-
dimensional, with over 15,000 codes in the ICD-9
taxonomy. Second, a typical text is very lengthy,
includes irrelevant information, misspellings and
non-standard abbreviations, and a large medical
vocabulary (Birman-Deych et al., 2005). Hence,
there is a need for an accurate automated coding
system to overcome these issues. In this paper, we
improve upon the state of the model LAAT (Vu
et al., 2020) by proposing a graph enhanced label

attention mechanism and a new approach to learn
code representations and show the effectiveness of
our approach via experiments.

2 Related Work

CNN (Kim, 2014) uses pretrained word vectors
with 1D convolution and max pooling for text clas-
sification. CAML (Mullenbach et al., 2018) inte-
grates CNNs and a label-wise attention mechanism
to learn rich representations. It has a variant called
DR-CAML that uses ICD code descriptions to regu-
larized the loss function. MultiResCNN (Li and Yu,
2020) combines residual learning (He et al., 2016)
and multiple channels concatenation with different
convolutional filters. HyperCore (Cao et al., 2020)
utilizes hyperbolic embedding and co-graph repre-
sentation with code hierarchy. MSATT-KG (Xie
et al., 2019) contains a densely connected convolu-
tional neural network which can produce variable
n-gram features and a multi-scale feature attention
to adaptively select multi-scale features. The graph
convolutional neural network (Kipf and Welling,
2017) is also employed to capture the hierarchical
relationships among medical codes. Gated-CNN-
NCI (Ji et al., 2020) uses a gated CNN along with
a note-code interaction module which uses a graph
message passing mechanism to capture the depen-
dency between notes and codes. LAAT (Vu et al.,
2020) uses a bidirectional LSTM, followed by an
attention mechanism and obtains the best results
among all state of the art methods. It has a vari-
ant called JointLAAT which uses the hierarchical
structure among the codes. In this paper, we focus
on improving LAAT, by designing a more effective
attention mechanism.

3 Methodology

3.1 Problem Definition

A clinical note X with n words is represented
as X = [wy,wy,...,w,] where each w; repre-
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Figure 1: The distribution of label frequencies in the
training set. The x-axis shows the label frequency and
the y-axis shows the number of different codes that are
observed with that frequency.

sents a word. The set of all possible codes is
L = {c1,¢ca,..,cr)} and |L] is the total number
of labels in the dataset. The goal is to find a map-
ping F : X — y such that

y = F(wy,ws, ..., wn; D) (D

where D is available side information and y € R/
is multi-hot indicator vector with y; = 1 if note X
contains code c;.

3.2 Node2vec

Node2vec (Grover and Leskovec, 2016) is a frame-
work for learning continuous feature representa-
tions for nodes in networks. The model learns a
mapping of nodes to a low-dimensional space of
features that maximizes the likelihood of preserv-
ing network neighborhoods of nodes. A flexible
notion of a node’s network neighborhood is defined
and a diverse set of neighborhoods are explored us-
ing a biased random walk procedure. Formally, the
the following objective function is optimized:

max Y~ log Pr (Ng(u)|f(u)) )
f ueV

which maximizes the log-probability of observ-
ing a network neighborhood Ng(u) for a node u
conditioned on its feature representation, given by
f under sampling strategy S. Assuming that the
likelihood of observing a neighborhood node is in-
dependent of observing any other neighborhood
node given the feature representation of the source,

the likelihood as factorized as:

Pr(Ns(u)lf(u)) = [ Prnlf(w) 3

n;ENg(u)

where the conditional likelihood of every source-
neighborhood node pair is modeled as a softmax
unit parametrized by a dot product of their features:

exp (f(nq) - f(u))
> vev exp (f(v) - f(u))

We use the node2vec model to generate the pre-
trained embedding matrix P € R% Ll where d,
is the embedding dimensionality. We use two dif-
ferent graphs to generate pretrained embeddings,
which are defined in the next section.

Pr (ni| f(u)) = )

3.3 Graph Construction

The label distribution in the dataset is extremely
unbalanced as shown in Figure 1, and it is difficult
to detect the rare labels accurately with only a few
samples. Thus, we leverage two different graphs
to utilize: 1) hierarchical structure of codes. 2)
cooccurence between codes.

3.3.1 Hierarchical Graph

The ICD codes are organized using a hierarchi-
cal structure. For example, the codes “Chemical
burn of eyelids and periocular area” (940.0), “Other
burns of eyelids and periocular area” (940.1) and
“Alkaline chemical burn of cornea and conjunctival
sac” (940.2), are all under a higher category called
"Burn confined to eye and adnexa" (940). Similarly,
"Burn confined to eye and adnexa" (940), "Burn
confined to eye and adnexa" (941), "Burn of face
head and neck" (942) and "Burn of trunk" (943)
are all under a more higher category called "Burns"
(940-949). This hierarchy naturally forms a tree
structure, which is a connected acyclic undirected
graph. Each node represents a code and there is an
undirected edge between each node and its children.
Note that the labels that we want to predict are the
leaf nodes.

3.3.2 Cooccurence Graph

We build an alternative, data-driven graph in order
to capture the co-occurence patterns between codes
similar to (Cao et al., 2020) and (Chen et al., 2019).
First, we construct the co-occurence matrix M,
where M;; denotes the number of times code c;
and code c; occur together in a medical note in
the training set. We row normalize M and obtain
M = DM, where D is a diagonal matrix with
Dy = ijlf‘ M;;. Some codes do not cooccur
with any other code, hence they are disconnected
from the graph. For a disconnected node, we add



an edge to all the other nodes with an equal weight,
i.e., for a disconnected code c;, we set Mij =
1/(|L| — 1) for all j # i. Finally, we prune the
graph by only keeping the top 3 neighbors with the
highest edge weights for each node and dropping
the remaining edges. For a disconnected node, we
randomly pick 3 neighbors to keep.

34 GE-LAAT

In this section, we explain our model in detail. Note
that we follow a similar approach to (Vu et al.,
2020) and our main contribution comes from the
design of the attention module. The architecture of
our model is shown in Figure 2.

34.1 Embedding Layer

The embedding layer takes as input a clinical note
X = [w1,Wag, ..., wy] with n words and outputs
the corresponding pretrained embedding vectors
€w;,€wsy, -+, €w, for each word wj.

3.4.2 Bidirectional LSTM Layer

Given the input sequence ey,.w, Of vectors
€w;;€ws, ---, €w,, the bidirectional LSTM layer
learns latent feature vectors representing each in-
put word. We compute the hidden states of the
LSTMs corresponding to the i word as:

|

LSTM (ew,:w,,) 5)

iiSTM(ewl:wn) (6)

ZTEl
I

where LSTM and LST M denote forward and
backward LSTMs respectively. The final represen-
tation vector h; is formed as:

hy = by & Iy (7

where @ represents the concatenation operation.
The dimensionality of hidden states h; and h;
are both set as u, hence, h; € R2*. All h;

are concatenated to obtain the document matrix
H-= [hl, ho, ..., hn] € R2uxn,

3.4.3 Graph Enhanced Label Attention
Layer

This layer transforms H into label specific vectors
using our graph enhanced attention mechanism.
The mechanism takes H as input and outputs |L|
label-specific vectors representing the input docu-
ment.

Z = tanh(W1H) (®)
U = leakyReLU(W2P + b) )
A = softmaz(U' Z) (10)

Here, P € R%*Il is the pretrained node2vec
embedding matrix (generated using one of
hierarchical/co-occurence graph) where each col-
umn of P represents the pretrained node2vec em-
bedding for a single code ¢;. W; € Rdax2u
and Wy € R%*9% are trainable weight matrices,
b € R% and d,, is a hyperparameter. We transform
the document representation H and the original
node2vec vectors P using W; and Wy respec-
tively in order project them into the same space.
U € R%*IL and Z € R%*" are multiplied and
a softmax is applied at the row level to obtain the
label-specific weight matrix A € RIZ*" where
each element Aj; of A shows how much atten-
tion should be given to the 5" word of the docu-
ment when trying to predict the i*” label. Finally,
the attention weight matrix A is multiplied with
the hidden state matrix H to produce the label-
specific vectors representing the input document
as V. = HAT, where each column v; of the ma-
trix V € R2*I js the representation of the input
document corresponding to label c;.

3.4.4 Output Layer

Each label-specific representation v; is passed as
input to a corresponding single-layer feed-forward
network FF; to produce the probability ¥; of ob-
serving the i label given the document:

an

The training objective is to minimize the binary
cross-entropy loss between the predicted label ¥;
and the target y; where o represents the sigmoid
function.

Vi = o(FFi(vi))

4 Experiments

Following the state of the art work on ICD coding
from clinical text, we test our model on the Medi-
cal Information Mart for Intensive Care (MIMIC)
MIMIC-III (Johnson et al., 2016) dataset.
MIMIC-III Following previous work (Mullen-
bach et al., 2018), (Xie et al., 2019), (Li and Yu,
2020), we focus on the discharge summaries, which
condense all the information during a patient stay
into a single document. Each admission was tagged
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Figure 2: Network Architecture for GE-LAAT. The shapes are shown under the matrices. The input document
vector, goes through the embedding layer and the Bi-LSTM layer, outputting the hidden state matrix. Then, by
utilizing the pretrained node2vec vectors, the attention layer transforms the hidden state matrix into label-specific
document vectors, which go through individual feed-forward neural networks.

manually by coders with a set of ICD-9 codes de-
scribing diagnoses and procedures during the pa-
tient stay. In this dataset, there were 52,722 dis-
charge summaries and 8,929 unique codes in total.
We use the same split provided by (Mullenbach
et al., 2018) conduct experiments on the full set of
codes. There are 47,719 discharge summaries for
training, 1,631 for validation and 3,372 for testing.
The exact preprocessing steps and the optimal hy-
perparameter settings in (Vu et al., 2020) are used
in the model. For node2vec pretraining, we set
d, = 128 for GE-LAAT-C and d,, = 512 for GE-
LAAT-H and use the default settings in the github
repo ! for the other parameters.

We present the results in Table 1. GE-LAAT-C
and GE-LAAT-H represent the cooccurence and
the hierarchical graph based versions of GE-LAAT
respectively. GE-LAAT-H improves the state of the
art Macro-AUC and Micro-AUC by 1.8% and 0.2%
respectively. The improvement in Macro-AUC is
more significant than Micro-AUC and GE-LAAT-C
and GE-LAAT-H both have a higher Macro-AUC
scores compared to LAAT and JointLAAT. This
indicates a more balanced performance across all
labels and suggests the graphs are useful for im-
proving the performance for the rare labels. More-

Thttps://github.com/aditya-grover/node2vec

AUC F1
Model Macro | Micro | Macro | Micro b@3
CNN 80.6 96.9 4.2 419 | 58.1
BiGRU 82.2 97.1 3.8 41.7 | 58.5
CAML 89.5 98.6 8.8 539 | 709
DR-CAML 89.7 98.5 8.6 529 | 69.0
MSATT-KG 91.0 99.2 9.0 553 | 72.8
MultiResCNN 91.0 98.6 8.5 552 | 734
HyperCore 93.0 98.9 9.0 55.1 | 72.2
GatedCNN-NCI | 92.2 98.9 9.2 56.3 | 73.6
LAAT 91.9 98.8 9.9 57.5 | 73.8
JointLAAT 92.1 98.8 10.7 575 | 73.5
GE-LAAT-C 92.3 98.8 10.2 56.8 | 73.0
GE-LAAT-H 93.8 99.0 9.3 56.0 | 72.5

Table 1: Results for MIMIC-III full dataset

over, GE-LAAT-H has a much higher Macro-AUC
score compared to GE-LAAT-C, suggesting that
the hierarchical graph is more useful than the cooc-
curence graph.

5 Conclusion

In this paper, we proposed a novel extension of
LAAT by introducing a graph enhanced label at-
tention mechanism. Our solution can learn useful
code representations, which are then used to gener-
ate label-specific document vectors. Experiments
show the effectiveness of our method.
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