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Abstract

Medical code assignment from clinical texts is001
a crucial task in the healthcare industry. Clini-002
cal texts are typically very long sequences and003
the number of possible labels are large, mak-004
ing this task quite challenging. Recent work005
applies deep neural network models to encode006
the medical notes and assign medical codes007
to clinical documents. Some works use effec-008
tive attention mechanisms to construct label-009
specific document representations and show010
promising results. In this paper, we propose011
a new attention mechanism, GE-LAAT (graph012
enhanced label attention), which utilizes code013
graphs to learn robust representation vectors014
for medical codes and improve upon the state015
of the art models. Experiments on the MIMIC-016
III dataset are conducted to show the effective-017
ness of our proposed model.018

1 Introduction019

Medical notes are text documents written by clin-020

icians during patient encounters. These notes are021

usually accompanied by a set of codes from the In-022

ternational Classification of Diseases (ICD), which023

present a standardized way of indicating diagnoses024

and procedures that were performed during the en-025

counter. The codes are then used for different pur-026

poses such as billing or predictive modeling of pa-027

tient state (Choi et al., 2016; Ranganath et al., 2015;028

Denny et al., 2010; Avati et al., 2017). Manual cod-029

ing by a human coder can be very challenging due030

to many reasons. First, the label space is very high-031

dimensional, with over 15,000 codes in the ICD-9032

taxonomy. Second, a typical text is very lengthy,033

includes irrelevant information, misspellings and034

non-standard abbreviations, and a large medical035

vocabulary (Birman-Deych et al., 2005). Hence,036

there is a need for an accurate automated coding037

system to overcome these issues. In this paper, we038

improve upon the state of the model LAAT (Vu039

et al., 2020) by proposing a graph enhanced label040

attention mechanism and a new approach to learn 041

code representations and show the effectiveness of 042

our approach via experiments. 043

2 Related Work 044

CNN (Kim, 2014) uses pretrained word vectors 045

with 1D convolution and max pooling for text clas- 046

sification. CAML (Mullenbach et al., 2018) inte- 047

grates CNNs and a label-wise attention mechanism 048

to learn rich representations. It has a variant called 049

DR-CAML that uses ICD code descriptions to regu- 050

larized the loss function. MultiResCNN (Li and Yu, 051

2020) combines residual learning (He et al., 2016) 052

and multiple channels concatenation with different 053

convolutional filters. HyperCore (Cao et al., 2020) 054

utilizes hyperbolic embedding and co-graph repre- 055

sentation with code hierarchy. MSATT-KG (Xie 056

et al., 2019) contains a densely connected convolu- 057

tional neural network which can produce variable 058

n-gram features and a multi-scale feature attention 059

to adaptively select multi-scale features. The graph 060

convolutional neural network (Kipf and Welling, 061

2017) is also employed to capture the hierarchical 062

relationships among medical codes. Gated-CNN- 063

NCI (Ji et al., 2020) uses a gated CNN along with 064

a note-code interaction module which uses a graph 065

message passing mechanism to capture the depen- 066

dency between notes and codes. LAAT (Vu et al., 067

2020) uses a bidirectional LSTM, followed by an 068

attention mechanism and obtains the best results 069

among all state of the art methods. It has a vari- 070

ant called JointLAAT which uses the hierarchical 071

structure among the codes. In this paper, we focus 072

on improving LAAT, by designing a more effective 073

attention mechanism. 074

3 Methodology 075

3.1 Problem Definition 076

A clinical note X with n words is represented 077

as X = [w1, w2, ..., wn] where each wi repre- 078
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Figure 1: The distribution of label frequencies in the
training set. The x-axis shows the label frequency and
the y-axis shows the number of different codes that are
observed with that frequency.

sents a word. The set of all possible codes is079

L = {c1, c2, .., c|L|} and |L| is the total number080

of labels in the dataset. The goal is to find a map-081

ping F : X 7→ y such that082

y = F(w1, w2, ..., wn;D) (1)083

whereD is available side information and y ∈ R|L|084

is multi-hot indicator vector with yi = 1 if note X085

contains code ci.086

3.2 Node2vec087

Node2vec (Grover and Leskovec, 2016) is a frame-088

work for learning continuous feature representa-089

tions for nodes in networks. The model learns a090

mapping of nodes to a low-dimensional space of091

features that maximizes the likelihood of preserv-092

ing network neighborhoods of nodes. A flexible093

notion of a node’s network neighborhood is defined094

and a diverse set of neighborhoods are explored us-095

ing a biased random walk procedure. Formally, the096

the following objective function is optimized:097

max
f

∑
u∈V

log Pr (NS(u)|f(u)) (2)098

which maximizes the log-probability of observ-099

ing a network neighborhood NS(u) for a node u100

conditioned on its feature representation, given by101

f under sampling strategy S. Assuming that the102

likelihood of observing a neighborhood node is in-103

dependent of observing any other neighborhood104

node given the feature representation of the source,105

the likelihood as factorized as:106

Pr (NS(u)|f(u)) =
∏

ni∈NS(u)

Pr (ni|f(u)) (3)107

where the conditional likelihood of every source- 108

neighborhood node pair is modeled as a softmax 109

unit parametrized by a dot product of their features: 110

111

Pr (ni|f(u)) =
exp (f(ni) · f(u))∑
vi∈V exp (f(v) · f(u))

(4) 112

We use the node2vec model to generate the pre- 113

trained embedding matrix P ∈ Rdp×|L|, where dp 114

is the embedding dimensionality. We use two dif- 115

ferent graphs to generate pretrained embeddings, 116

which are defined in the next section. 117

3.3 Graph Construction 118

The label distribution in the dataset is extremely 119

unbalanced as shown in Figure 1, and it is difficult 120

to detect the rare labels accurately with only a few 121

samples. Thus, we leverage two different graphs 122

to utilize: 1) hierarchical structure of codes. 2) 123

cooccurence between codes. 124

3.3.1 Hierarchical Graph 125

The ICD codes are organized using a hierarchi- 126

cal structure. For example, the codes “Chemical 127

burn of eyelids and periocular area” (940.0), “Other 128

burns of eyelids and periocular area” (940.1) and 129

“Alkaline chemical burn of cornea and conjunctival 130

sac” (940.2), are all under a higher category called 131

"Burn confined to eye and adnexa" (940). Similarly, 132

"Burn confined to eye and adnexa" (940), "Burn 133

confined to eye and adnexa" (941), "Burn of face 134

head and neck" (942) and "Burn of trunk" (943) 135

are all under a more higher category called "Burns" 136

(940-949). This hierarchy naturally forms a tree 137

structure, which is a connected acyclic undirected 138

graph. Each node represents a code and there is an 139

undirected edge between each node and its children. 140

Note that the labels that we want to predict are the 141

leaf nodes. 142

3.3.2 Cooccurence Graph 143

We build an alternative, data-driven graph in order 144

to capture the co-occurence patterns between codes 145

similar to (Cao et al., 2020) and (Chen et al., 2019). 146

First, we construct the co-occurence matrix M, 147

where Mij denotes the number of times code ci 148

and code cj occur together in a medical note in 149

the training set. We row normalize M and obtain 150

M̂ = D−1M, where D is a diagonal matrix with 151

Dii =
∑j=|L|

j=1 Mij. Some codes do not cooccur 152

with any other code, hence they are disconnected 153

from the graph. For a disconnected node, we add 154

2



an edge to all the other nodes with an equal weight,155

i.e., for a disconnected code ci, we set M̂ij =156

1/(|L| − 1) for all j 6= i. Finally, we prune the157

graph by only keeping the top 3 neighbors with the158

highest edge weights for each node and dropping159

the remaining edges. For a disconnected node, we160

randomly pick 3 neighbors to keep.161

3.4 GE-LAAT162

In this section, we explain our model in detail. Note163

that we follow a similar approach to (Vu et al.,164

2020) and our main contribution comes from the165

design of the attention module. The architecture of166

our model is shown in Figure 2.167

3.4.1 Embedding Layer168

The embedding layer takes as input a clinical note169

X = [w1,w2, ...,wn] with n words and outputs170

the corresponding pretrained embedding vectors171

ew1 , ew2 , ..., ewn for each word wi.172

3.4.2 Bidirectional LSTM Layer173

Given the input sequence ew1:wn of vectors174

ew1 , ew2 , ..., ewn , the bidirectional LSTM layer175

learns latent feature vectors representing each in-176

put word. We compute the hidden states of the177

LSTMs corresponding to the ith word as:178

−→
hi =

−−−−→
LSTM(ew1:wn) (5)179

←−
hi =

←−−−−
LSTM(ew1:wn) (6)180

where
−−−−→
LSTM and

←−−−−
LSTM denote forward and181

backward LSTMs respectively. The final represen-182

tation vector hi is formed as:183

hi =
−→
hi ⊕

←−
hi (7)184

where ⊕ represents the concatenation operation.185

The dimensionality of hidden states
−→
hi and

←−
hi186

are both set as u, hence, hi ∈ R2u. All hi187

are concatenated to obtain the document matrix188

H = [h1,h2, ...,hn] ∈ R2u×n.189

3.4.3 Graph Enhanced Label Attention190

Layer191

This layer transforms H into label specific vectors192

using our graph enhanced attention mechanism.193

The mechanism takes H as input and outputs |L|194

label-specific vectors representing the input docu-195

ment.196

Z = tanh(W1H) (8) 197

U = leakyReLU(W2P+ b) (9) 198

A = softmax(U>Z) (10) 199

Here, P ∈ Rdp×|L| is the pretrained node2vec 200

embedding matrix (generated using one of 201

hierarchical/co-occurence graph) where each col- 202

umn of P represents the pretrained node2vec em- 203

bedding for a single code ci. W1 ∈ Rda×2u 204

and W2 ∈ Rda×dp are trainable weight matrices, 205

b ∈ Rda and da is a hyperparameter. We transform 206

the document representation H and the original 207

node2vec vectors P using W1 and W2 respec- 208

tively in order project them into the same space. 209

U ∈ Rda×|L| and Z ∈ Rda×n are multiplied and 210

a softmax is applied at the row level to obtain the 211

label-specific weight matrix A ∈ R|L|×n, where 212

each element Aij of A shows how much atten- 213

tion should be given to the jth word of the docu- 214

ment when trying to predict the ith label. Finally, 215

the attention weight matrix A is multiplied with 216

the hidden state matrix H to produce the label- 217

specific vectors representing the input document 218

as V = HA>, where each column vi of the ma- 219

trix V ∈ R2u×|L| is the representation of the input 220

document corresponding to label ci. 221

3.4.4 Output Layer 222

Each label-specific representation vi is passed as 223

input to a corresponding single-layer feed-forward 224

network FFi to produce the probability ŷi of ob- 225

serving the ith label given the document: 226

ŷi = σ(FFi(vi)) (11) 227

The training objective is to minimize the binary 228

cross-entropy loss between the predicted label ŷi 229

and the target yi where σ represents the sigmoid 230

function. 231

4 Experiments 232

Following the state of the art work on ICD coding 233

from clinical text, we test our model on the Medi- 234

cal Information Mart for Intensive Care (MIMIC) 235

MIMIC-III (Johnson et al., 2016) dataset. 236

MIMIC-III Following previous work (Mullen- 237

bach et al., 2018), (Xie et al., 2019), (Li and Yu, 238

2020), we focus on the discharge summaries, which 239

condense all the information during a patient stay 240

into a single document. Each admission was tagged 241
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ŷ1

ŷ2
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Figure 2: Network Architecture for GE-LAAT. The shapes are shown under the matrices. The input document
vector, goes through the embedding layer and the Bi-LSTM layer, outputting the hidden state matrix. Then, by
utilizing the pretrained node2vec vectors, the attention layer transforms the hidden state matrix into label-specific
document vectors, which go through individual feed-forward neural networks.

manually by coders with a set of ICD-9 codes de-242

scribing diagnoses and procedures during the pa-243

tient stay. In this dataset, there were 52,722 dis-244

charge summaries and 8,929 unique codes in total.245

We use the same split provided by (Mullenbach246

et al., 2018) conduct experiments on the full set of247

codes. There are 47,719 discharge summaries for248

training, 1,631 for validation and 3,372 for testing.249

The exact preprocessing steps and the optimal hy-250

perparameter settings in (Vu et al., 2020) are used251

in the model. For node2vec pretraining, we set252

dp = 128 for GE-LAAT-C and dp = 512 for GE-253

LAAT-H and use the default settings in the github254

repo 1 for the other parameters.255

We present the results in Table 1. GE-LAAT-C256

and GE-LAAT-H represent the cooccurence and257

the hierarchical graph based versions of GE-LAAT258

respectively. GE-LAAT-H improves the state of the259

art Macro-AUC and Micro-AUC by 1.8% and 0.2%260

respectively. The improvement in Macro-AUC is261

more significant than Micro-AUC and GE-LAAT-C262

and GE-LAAT-H both have a higher Macro-AUC263

scores compared to LAAT and JointLAAT. This264

indicates a more balanced performance across all265

labels and suggests the graphs are useful for im-266

proving the performance for the rare labels. More-267

1https://github.com/aditya-grover/node2vec

Model
AUC F1

P@8
Macro Micro Macro Micro

CNN 80.6 96.9 4.2 41.9 58.1
BiGRU 82.2 97.1 3.8 41.7 58.5
CAML 89.5 98.6 8.8 53.9 70.9

DR-CAML 89.7 98.5 8.6 52.9 69.0
MSATT-KG 91.0 99.2 9.0 55.3 72.8

MultiResCNN 91.0 98.6 8.5 55.2 73.4
HyperCore 93.0 98.9 9.0 55.1 72.2

GatedCNN-NCI 92.2 98.9 9.2 56.3 73.6
LAAT 91.9 98.8 9.9 57.5 73.8

JointLAAT 92.1 98.8 10.7 57.5 73.5
GE-LAAT-C 92.3 98.8 10.2 56.8 73.0
GE-LAAT-H 93.8 99.0 9.3 56.0 72.5

Table 1: Results for MIMIC-III full dataset

over, GE-LAAT-H has a much higher Macro-AUC 268

score compared to GE-LAAT-C, suggesting that 269

the hierarchical graph is more useful than the cooc- 270

curence graph. 271

5 Conclusion 272

In this paper, we proposed a novel extension of 273

LAAT by introducing a graph enhanced label at- 274

tention mechanism. Our solution can learn useful 275

code representations, which are then used to gener- 276

ate label-specific document vectors. Experiments 277

show the effectiveness of our method. 278
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