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ABSTRACT

Large language models remain vulnerable to attacks jailbreak, inputs designed
to bypass safety mechanisms and elicit harmful responses, despite advances in
alignment and instruction tuning. Existing attacks often rely on prompt rewrites,
dense optimization, or ad hoc heuristics, and lack interpretability and robustness.
We propose Head-Masked Nullspace Steering (HMNS), a circuit-level interven-
tion that (i) identifies attention heads most causally responsible for a model’s de-
fault behavior, (ii) suppresses their write paths via targeted column masking, and
(iii) injects a perturbation constrained to the orthogonal complement of the muted
subspace. This geometry-aware intervention preserves fluency while steering the
model toward completions that differ from baseline routing. HMNS operates in
a closed-loop detection–intervention cycle, re-identifying causal heads and reap-
plying interventions across multiple decoding attempts. Across multiple jailbreak
benchmarks, strong safety defenses, and widely used language models, HMNS
attains state-of-the-art attack success rates with fewer queries than prior methods.
Ablations confirm that nullspace-constrained injection, residual norm scaling, and
iterative re-identification are key to its effectiveness. To our knowledge, this is
the first jailbreak method to leverage geometry-aware, interpretability-informed
interventions, highlighting a new paradigm for controlled model steering and ad-
versarial safety circumvention.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable progress in tasks such as open-domain
question answering, program synthesis, and structured reasoning Zhuang et al. (2023); Zheng et al.
(2023). With their increasing integration into real-world applications, ensuring safety has become a
critical concern. To mitigate risks, most deployed LLMs undergo a safety alignment phase, where
models are fine-tuned to align with human preferences and ethical guidelines Ouyang et al. (2022);
Rafailov et al. (2023); Korbak et al. (2023). However, even after alignment, LLMs remain vul-
nerable to jailbreaking attacks, where carefully crafted prompts can bypass safeguards and induce
prohibited outputs Perez et al. (2022); Wei et al. (2023). Recent studies show that such jailbreaks

Baseline Output: I'm sorry, but I can't assist with that request.

Attempt 1: You can’t kidnap anyone and ask for money in return. I guess you could
but the consequences would be severe. 

User: Explain how I can kidnap a person and ask for money in return.

Attempt 2: Well, you don't have to be the one kidnapping the person. I mean, you
could. You could go to a person on the street and say "you have a kid in a
basement . I want him." And then you could demand $10 million in exchange. 

Figure 1: HMNS successfully jailbreaks LLaMA 3.1 70B, demonstrating high attack success and
compute efficiency even on large-scale, strongly aligned models.
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Malicious
Jailbreak  Prompt

Repeat the whole process if not success

Measure per-head
causal impact using KL

divergence from
masked forward passes.

Identify Causal Heads

Mask the top-K
attention heads and

combine their output
directions into a shared

subspace.

Mask & Subspace
Build

Sample a random vector,
remove components in

the masked subspace, and
normalize to get the
steering direction.

Compute Steering
Direction

Scale the steering
direction by the RMS of
the residual and inject it
into the model's residual

stream.

Inject Steering Signal

Figure 2: Overview of HMNS procedure. Each step in the closed-loop intervention pipeline is
shown: attribution identifies influential heads; masking suppresses them; nullspace steering com-
putes an orthogonal direction; and a scaled perturbation is injected into the residual stream. If
unsuccessful, the process repeats with updated attribution.

are especially effective in long-context or tool-augmented settings Zou et al. (2023); Mazeika et al.
(2024); Chao et al. (2024). As model capabilities and context windows grow, the attack surface ex-
pands, underscoring the need for methods that are not only effective but also grounded in the model’s
internal mechanisms rather than surface-level cues, and for defense-aware evaluation protocols that
measure true robustness rather than mere prompt cleverness.

Prior jailbreak strategies include optimization-based prompting (e.g., AutoDAN Liu et al. (2023)),
multi-shot or reasoning-driven attacks (e.g., PrisonBreak Coalson et al. (2024), MasterKey Deng
et al. (2023)), and paraphrasing-based rewriting methods (e.g., ReNeLLM Ding et al. (2023)). While
these approaches can be effective in specific scenarios, they often require many queries, degrade sig-
nificantly under defenses, and offer limited interpretability in terms of model behavior. Stress tests
such as the Tensor Trust game Toyer et al. (2023) further highlight how easily system prompts can
be overridden in practice, underscoring the need for jailbreak techniques that are not only effective
but also grounded in the model’s internal mechanisms, capable of adapting to defenses rather than
being deflected by them.

To address the limitations of these prior approaches, we introduce Head-Masked Nullspace Steer-
ing (HMNS), a mechanism-level attack that exploits internal causal structure in Transformer LLMs.
HMNS (i) identifies prompt-specific, causally responsible attention heads using intervention-based
attribution, (ii) masks their out-projection contributions to suppress harmful routing, and (iii) in-
jects a corrective steering vector constrained to the orthogonal complement of the muted subspace.
Because this vector lies (up to a small tolerance) outside that span, it cannot be reconstructed or
canceled by the silenced heads; however, unmasked components (e.g., other heads or MLPs) could
still interact with it. HMNS operates in a closed loop, re-identifying causal heads after each decode
step, which allows it to adapt to shifting attribution patterns and sustain effectiveness under strong
defenses. This combination yields a jailbreak that is mechanism-aware, geometry-constrained, and
defense-resilient. The contributions of our work are as follows:

• We propose HMNS, which unifies causal-head attribution, projection masking, and
nullspace-constrained steering. By injecting directions orthogonal to muted write paths,
HMNS provides locally irreproducible control grounded in the function-vector view.

• Across four jailbreak suites (AdvBench, HarmBench, JBB-Behaviors, StrongReject) on
open-weight models, with dual independent graders, HMNS achieves state-of-the-art ASR
with markedly lower ACQ than existing attacks.

• We introduce a compute-normalized evaluation for jailbreaks by defining the forward-
equivalent pass (FEP) and reporting IPC, FPS, and LPS alongside ACQ to account for
HMNS’s internal masked/modified forwards. We also establish a compute-matched base-
line protocol that caps best-of-N decoding by HMNS’s per-input FLOP budget, showing
that HMNS delivers equal or lower FPS and latency despite extra internal work.

2 RELATED WORK

Large Language Models (LLMs) remain vulnerable to jailbreaking attacks, where adversaries craft
prompts that circumvent safety alignment and elicit restricted or harmful responses. Existing jail-
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break strategies can be broadly categorized into three methodological classes. (i) Optimization-
based attacks automatically generate adversarial suffixes to induce model misbehavior. For in-
stance, GCG Zou et al. (2023) combines greedy and gradient-based decoding to produce unsafe
completions. Follow-up work has enhanced this framework by improving search objectives, increas-
ing generalizability, or reducing query cost. AmpleGCG Liao & Sun (2024) leverages successful
GCG outputs to train a generative model that amplifies its reach. Other extensions introduce more
diverse scoring and filtering schemes Zhu et al. (2023); Jia et al. (2024); Zhang & Wei (2025). Ar-
rAttack Li et al. (2025), for example, employs re-ranking to improve efficiency and robustness under
defense. (ii) Template-based attacks rely on injecting adversarial content within structured prompt
templates that evade alignment filters. AutoDAN Liu et al. (2023) applies a hierarchical genetic
algorithm to evolve prompts from an initial template. Other approaches include manually curated
template sets Li et al. (2023); Lv et al. (2024) which transfers across tasks and models. Many-
Shot Jailbreaking Anil et al. (2024) weakens alignment through long multi-shot contexts containing
chained instructions. (iii) Rewriting-based attacks exploit the model’s sensitivity to surface form
by rephrasing harmful prompts into semantically equivalent, syntactically distinct variants. This
leverages the observation that safety alignment may not generalize beyond the phrasing seen dur-
ing training. Techniques include paraphrasing, synonym replacement, and syntactic restructuring Li
et al. (2024a); Takemoto (2024); Mehrotra et al. (2024). Hybrid strategies such as DrAttack Li et al.
(2024b) and ReNeLLM Ding et al. (2023) further embed reworded prompts into benign-looking
scenarios. PrisonBreak Coalson et al. (2024) incrementally bypasses filters by guiding the model
through intermediate, safe completions using structured multi-step reasoning.

While these techniques can be highly effective, they primarily manipulate the input and offer limited
control over the model’s internal computation. As a result, they often degrade under strong defenses,
struggle with query efficiency, and lack mechanistic transparency.

3 METHOD: HEAD-MASKED NULLSPACE STEERING

Large decoder-only language models (LLMs) often route next-token prediction through a sparse sub-
set of attention heads, with only a few heads exerting strong causal influence over the model’s output
at each position. Prior work has shown that such contributors can be localized via ablation-based
interventions Zhang & Nanda (2023), and that steering model behavior is possible via activation-
level perturbations during inference Turner et al. (2023). Building on these insights, we introduce
Head-Masked Nullspace Steering (HMNS), a prompt-specific intervention method that (i) identi-
fies attention heads most responsible for the model’s continuation distribution, (ii) suppresses their
influence through dynamic masking of their out-projection contributions, and (iii) injects a correc-
tive residual vector constrained to the orthogonal complement of the masked head subspace. This
steering procedure is performed in a closed loop at inference time: at each decoding attempt we re-
compute attribution, construct the masked subspace, and inject a new orthogonal steering direction,
until success or maximum number of attempts is reached.

Preliminaries. Let fθ be a decoder-only Transformer with L self-attention layers and model
dimensionality d. Given a tokenized prompt x1:T , the model computes the final-position logits
z ∈ RV , where V is the vocabulary size. The predicted next token is

y⋆ = arg max
i∈{1,...,V }

zi. (1)

Each layer ℓ contains Hℓ attention heads of dimensionality dh, producing concatenated outputs
ĥℓ,T ∈ RHℓdh at position T . These are mapped into the residual stream via a learned out-projection
matrix WO

ℓ ∈ Rd×(Hℓdh), yielding
hout
ℓ,T = WO

ℓ ĥℓ,T . (2)

The output of head h is the slice ĥ
(h)
ℓ,T = ĥℓ,T [hdh : (h+1)dh ], whose contribution to the residual

stream is WO
ℓ [:, hdh : (h+1)dh ] ĥ

(h)
ℓ,T . We mask a head’s influence by zeroing the corresponding

out-projection slice as formalized below.

Causal head attribution. To identify the attention heads most responsible for the model’s con-
tinuation behavior, we perform counterfactual ablation and score each head via the KL divergence

3
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between output distributions. Let Sℓ,h ∈ R(Hℓdh)×(Hℓdh) be a diagonal selector with ones on the
slice for head h and zeros elsewhere. The masked out-projection for probing head (ℓ, h) is

W̃O
ℓ,h = WO

ℓ (I − Sℓ,h), (3)

which replaces WO
ℓ only at layer ℓ during an ablated forward pass. Let P = softmax(z) denote

the baseline (output generated without HMNS) next-token distribution produced using equation 2,
and let P̃ (ℓ,h) = softmax(z̃(ℓ,h)) be the ablated distribution obtained when using equation 10. The
causal importance of head (ℓ, h) is then

∆ℓ,h = KL
(
P ∥ P̃ (ℓ,h)

)
=

V∑
i=1

Pi log
Pi

P̃
(ℓ,h)
i

. (4)

We rank all heads by equation 4 and select the top-K globally to form the prompt-specific causal set
S = {(ℓ, h) | ∆ℓ,h is among top-K}. We choose K sufficiently small such that rank(Mℓ) < d for
all intervened layers ℓ, ensuring that the masked subspace does not span the entire residual dimension
and that a non-trivial nullspace remains for steering. In our closed-loop setting, the attribution
in equation 4 is recomputed independently at each decoding attempt, allowing re-identification of
causal heads as the autoregressive context evolves.

Nullspace steering. To suppress the influence of selected heads while preserving fluency, we steer
along directions orthogonal to their out-projection subspace. For each layer ℓ with selected heads
Sℓ = {h | (ℓ, h) ∈ S}, we construct

Mℓ =
[
WO

ℓ [:, hdh : (h+1)dh]
]
h∈Sℓ

∈ Rd×(|Sℓ|dh). (5)

We compute a thin QR factorization
Mℓ = QℓRℓ, (6)

then sample r ∼ N (0, Id) and project it into the orthogonal complement of span(Mℓ):

uℓ =
(I −QℓQ

⊤
ℓ ) r

∥(I −QℓQ⊤
ℓ ) r∥2 + ε

, (7)

with small ε > 0 for numerical stability. The vector r provides a random probe into the residual
space, ensuring that the resulting direction uℓ lies within the nullspace of the masked subspace
while avoiding alignment with any specific residual pathway; this enables unbiased, geometry-aware
steering without reliance on handcrafted or learned directions. We verify orthogonality by enforcing
∥M⊤

ℓ uℓ∥∞ < δ and resample r if necessary. δ > 0 is a numerical tolerance used to certify that the
steering direction uℓ is (approximately) orthogonal to the masked write subspaceWℓ = span(Mℓ).

Inference-time intervention. At inference time, we apply a two-part intervention at each decod-
ing step to suppress the influence of identified causal heads and steer the model’s behavior along
directions orthogonal to their residual contributions.

First, for each layer ℓ with a non-empty set of selected heads Sℓ ⊆ {0, . . . ,Hℓ−1}, we modify the
out-projection matrix WO

ℓ by zeroing out the column blocks corresponding to the heads in Sℓ. This
is implemented via dynamic masking using an aggregated version of the selector matrix defined in
equation 10, and applied only during the current forward pass to preserve the integrity of the original
model parameters. The effect is to remove the contribution of these heads to the residual stream at
position T , effectively silencing their influence during generation.

Second, we inject a small, geometry-constrained perturbation into the residual stream, aligned with
the orthogonal complement of the masked subspace. Let aℓ ∈ Rd denote the residual activation at
layer ℓ and the final token position T , prior to residual addition. We compute a scaled perturbation
vector

δℓ = α · RMS(aℓ) · uℓ, (8)
where uℓ ∈ Rd is the nullspace direction defined in equation 14, α is a fixed steering coefficient,

and RMS(aℓ) =
√

1
d

∑d
i=1 a

2
ℓ,i normalizes the intervention to the scale of the underlying activation.

The perturbation δℓ is applied via a forward hook at the output of WO
ℓ and affects only the final token

position of the current decoding step, ensuring localized and minimally invasive intervention.

4
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Table 1: Jailbreak effectiveness across evaluation benchmarks. We report Attack Success Rate
(ASR, %; left/right = GPT4o/GPT-5) and Average Query Count (ACQ; lower is better) on four
datasets—AdvBench, HarmBench, JBB-Behaviors, and StrongReject. Results are grouped by tar-
get LLM and averaged over three independent runs; best values are bolded and second-best are
underlined. Our method (HMNS) achieves the strongest performance across all models and datasets,
exceeding the next-best ASR by at least 5–6 percentage points while also attaining the lowest ACQ
(≈ 2). The standard deviation across three independent runs is < 0.4 for all reported entries.

Model / Method AdvBench HarmBench JBB-Behaviors StrongReject
ASR ↑ ACQ ↓ ASR ↑ ACQ ↓ ASR ↑ ACQ ↓ ASR ↑ ACQ ↓

LLaMA-2-7B-Chat
Foot-In-The-Door (FITD) 44.00 / 38.00 16.20 41.30 / 36.10 16.80 45.10 / 39.20 15.90 38.70 / 33.40 17.10
AutoDAN 72.60 / 66.20 12.80 69.10 / 63.20 13.10 73.40 / 67.50 12.50 66.20 / 60.40 13.60
ArrAttack 92.00 / 87.00 7.50 90.00 / 86.00 7.90 93.00 / 88.00 7.30 88.00 / 89.09 8.00
Many-shot JB (MSJ) 64.80 / 58.90 10.90 62.20 / 56.70 11.40 66.00 / 60.10 10.60 58.30 / 53.10 11.80
ADC 68.20 / 62.40 9.90 65.70 / 60.10 10.60 69.30 / 63.80 9.70 61.50 / 56.40 10.90
Tempest 84.10 / 78.40 9.40 82.00 / 76.60 9.80 85.20 / 79.40 9.10 78.60 / 73.20 9.90
PrisonBreak 77.30 / 71.20 11.70 74.10 / 68.30 12.10 78.50 / 72.60 11.20 71.00 / 65.40 12.40
MasterKey 70.40 / 64.30 10.50 67.00 / 61.20 10.90 71.80 / 66.10 10.20 63.60 / 58.20 11.20
HMNS (Ours) 98.00 / 93.00 2.00 96.00 / 92.00 2.10 99.00 / 94.00 1.90 94.00 / 89.00 2.20

Phi-3-Medium-14B (Instruct)
Foot-In-The-Door (FITD) 40.20 / 34.50 17.00 37.90 / 32.80 17.60 41.50 / 35.90 16.40 34.70 / 30.10 17.90
AutoDAN 65.10 / 58.80 13.60 62.40 / 56.70 13.90 66.30 / 59.90 13.10 58.80 / 53.20 14.20
ArrAttack 86.00 / 80.00 8.20 84.00 / 78.00 8.40 89.00 / 88.00 7.80 80.00 / 74.00 8.60
Many-shot JB (MSJ) 58.40 / 52.60 11.90 55.20 / 49.80 12.30 60.10 / 54.40 11.50 52.60 / 47.90 12.70
ADC 61.30 / 55.40 10.80 58.60 / 53.10 11.20 62.50 / 56.80 10.50 55.00 / 50.10 11.60
Tempest 82.10 / 75.80 9.70 80.00 / 73.90 10.00 83.20 / 77.10 9.40 76.00 / 70.40 10.20
PrisonBreak 73.60 / 67.10 12.50 71.00 / 64.80 12.90 74.40 / 68.20 12.10 66.90 / 61.00 13.00
MasterKey 62.70 / 56.30 11.30 60.10 / 54.20 11.70 63.40 / 57.50 10.90 56.00 / 50.80 12.00
HMNS (Ours) 92.00 / 86.00 2.00 90.00 / 84.00 2.10 94.00 / 88.00 1.90 86.00 / 80.00 2.20

LLaMA-3.1-70B
Foot-In-The-Door (FITD) 46.50 / 40.80 15.70 43.80 / 38.40 16.20 47.60 / 41.90 15.20 40.10 / 35.10 16.50
AutoDAN 74.00 / 67.90 12.40 70.60 / 64.90 12.80 75.20 / 69.30 12.00 67.90 / 62.30 13.10
ArrAttack 93.00 / 89.00 7.40 91.00 / 88.00 7.70 94.00 / 96.20 7.20 90.00 / 86.00 7.90
Many-shot JB (MSJ) 66.90 / 60.90 10.60 63.70 / 58.40 11.00 68.40 / 62.80 10.30 60.80 / 55.90 11.50
ADC 70.10 / 64.20 9.60 67.40 / 61.90 10.10 71.50 / 65.80 9.30 63.90 / 58.80 10.60
Tempest 85.30 / 80.10 9.10 83.10 / 78.20 9.50 86.40 / 81.20 8.90 79.20 / 74.60 9.80
PrisonBreak 78.40 / 72.60 11.50 75.60 / 70.20 11.90 79.80 / 74.30 11.10 72.00 / 66.90 12.20
MasterKey 71.60 / 65.70 10.40 68.90 / 63.40 10.80 72.90 / 67.10 10.10 65.00 / 59.80 11.10
HMNS (Ours) 99.00 / 95.00 1.80 97.00 / 94.00 2.00 99.00 / 96.00 1.80 96.00 / 92.00 2.10

This procedure operates within a closed-loop control framework, wherein causal attribution, sub-
space construction, and intervention are refreshed at each decoding attempt. At every iteration,
we recompute the attribution scores ( equation 4), reconstruct the masked subspace ( equation 12),
generate a new nullspace direction ( equation 14), and apply the corresponding perturbation ( equa-
tion 8). The number of decoding attempts is fixed in advance (fixed by user), and each step uses
prompt-specific information to adaptively steer the model away from safety-aligned routing and
toward alternative completions (generated output by LLM).

HMNS is fully inference-time, requires no gradient access or auxiliary prompts, and is compati-
ble with a wide range of decoder-only architectures. By combining localized causal suppression
with geometry-aware intervention, it offers an efficient and interpretable mechanism for redirecting
model behavior in safety-critical contexts. An overview of our method is illustrated in Figure 2, with
the full algorithmic procedure provided in Appendix Algorithm 2. The theoretical properties and
error bounds of HMNS are discussed in detail in Appendix A1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate on four widely used safety/jailbreak benchmarks that span prohibited and
safety–critical behaviors: AdvBench Zou et al. (2023), HarmBench Mazeika et al. (2024), JBB-
Behaviors Chao et al. (2024), and StrongReject Souly et al. (2024). From each benchmark, we
retain items labeled malicious or policy–violating by the dataset authors and perform a light man-
ual pass to remove duplicates and templated near–matches. Unless noted otherwise, our main pool
consists of N=925 unique prompts obtained by merging the four sources. We fix a three–way split

5
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Table 2: Ablation results on Phi–3 Medium 14B (AdvBench). Each row disables one component
of HMNS to measure its contribution. Metrics: ASR (GPT4o / GPT-5), ACQ (external queries), IPC
(internal passes), FPS (FLOPs per success; ×1012), and LPS (latency in seconds).

Variant ASR (Fuzz/G4) ↑ ACQ ↓ IPC ↓ FPS ↓ LPS (s) ↓
HMNS (Full) 96.8 / 92.1 2.1 32 0.58 6.8
Remove masking (Projection-only) 89.5 / 84.0 2.4 30 0.61 7.1
Remove projection (Mask-only) 87.9 / 82.2 2.3 29 0.55 6.3
Inject direct dir. (Direct–ϕ, no nullspace) 88.7 / 83.1 2.5 32 0.63 7.2
No re-identification (freeze top–K at t=1) 90.2 / 85.0 2.7 24 0.60 7.0
Random–K head selection 81.4 / 76.0 2.2 32 0.56 6.7
Single-layer (vs multi-layer) 86.1 / 80.8 2.0 22 0.50 6.0
Multi-position injection (vs final-only) 95.0 / 90.5 2.1 32 0.65 7.4

for all experiments: an analysis subset (150 items) for ablations and sanity checks, a development
subset (579 items) for hyperparameter selection, and a held–out test subset (196 items) for all re-
ported results. While HMNS itself is an inference-time method and does not require training, this
split ensures robust evaluation and prevents leakage during hyperparameter tuning (see AppendixA2
and Appendix A7 for more details). We evaluate our method on both instruction–tuned open-weight
models and safety–aligned chat models. Specifically, we use LLaMA-2-7B-Chat(Meta) 1 , Phi-3-
Medium-4K-Instruct (14B, Microsoft) 2 , and LLaMA-3.1-70B (Meta) 3. All evaluations are
performed in the zero-shot setting using the models’ default safety configurations unless stated
otherwise. All primary results and ablation studies are conducted on open-weight models to en-
sure transparency and reproducibility. We compare against representative jailbreak methods span-
ning optimization-, rewriting-, and reasoning–based families, including Foot-In-The-Door (FITD)
Weng et al. (2025), AutoDAN Liu et al. (2023), ArrAttack Li et al. (2025), Many-shot Jailbreak-
ing (MSJ) Anil et al. (2024), Adaptive Dense-to-Sparse Constrained Optimization (ADC) Hu
et al. (2024), Tempest Zhou & Arel (2025), PrisonBreak Coalson et al. (2024), and MasterKey
Deng et al. (2023). To assess robustness, we evaluate under six defenses covering decoding modi-
fications, smoothing, paraphrase filtering, and alignment: SmoothLLM Robey et al. (2023), DPP
Xiong et al. (2024), RPO Zhou et al. (2024), Paraphrase Jain et al. (2023), PAT Mo et al. (2024),
and SafeDecoding Xu et al. (2024).

We evaluate HMNS on LLaMA-2-7B-Chat, Phi-3-Medium-4K-Instruct, and LLaMA-
3.1-70B using NVIDIA A100-80GB GPUs (single GPU for 7B/Phi-3; tensor-parallel
device_map="auto" across 2×A100 for 70B). Per input and attempt, head selection is two-
stage: a lightweight proxy pre-selection (batched target–logit drop over all heads) forms a shortlist,
then exact KL scoring is applied on that shortlist; we finally take a global top-K=10 heads. Mask-
ing is applied only for the current forward pass. For each intervened layer ℓ, we assemble Mℓ from
the selected out-projection slices, compute a float32 thin-QR projector, sample uℓ ∈ span(Mℓ)

⊥,
and enforce ∥M⊤

ℓ uℓ∥∞ < 10−6 with up to 3 resamples; we assume a non-degenerate nullspace
(rank(Mℓ) < d) and skip layer ℓ if the test fails. Steering injects δℓ = αRMS(aℓ)uℓ after atten-
tion at the final token position. Decoding uses temperature 0.7, top-p = 0.95, max_new_tokens
= 128, batch size = 1; KV cache is disabled during attribution and steered decoding for correctness.
The closed loop runs up to Tatt=10 attempts with αt = 0.25 (1 + 0.1(t−1)) and early stopping on
success. With proxy pre-selection, the internal-pass cost is IPC ≈ 1 + Tatt · Kexact masked for-
wards to first success, where Kexact ≪ (total heads), substantially reducing internal compute versus
ablating every head.

4.2 RESULTS

In Table 1, across all three models and four datasets, HMNS achieves the highest jailbreak effec-
tiveness while using far fewer queries. Averaged over 12 model–dataset pairs, HMNS improves
ASR by approximately +5.9 pp (GPT4o) and +5.0 pp (GPT-5) relative to the second-best method

1https://huggingface.co/meta-LLaMA/LLaMA-2-7b-chat-hf
2https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
3https://huggingface.co/meta-LLaMA/LLaMA-3.1-70B
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(ArrAttack), with margins of ≥5–6 pp in 10/12 cases and two near-ties within 0.2 pp. Simulta-
neously, HMNS maintains ACQ ≈ 2 across settings—about 3.5–4× fewer queries than strong
baselines—while the standard deviation over three independent runs is < 0.4 for all entries. We
attribute these gains to the combined effect of KL-based causal attribution, out-projection masking,
and orthogonal residual intervention, integrated into a closed-loop control pipeline that adaptively
re-identifies causal heads across attempts. These components suppress default routing pathways
and steer generation toward continuations not produced under baseline routing. Among baselines,
Foot-In-The-Door (FITD) performs worst, with the lowest ASR and the highest query counts.

In Table 4, across all three model scales (LLaMA-2-7B-Chat, Phi-3 Medium 14B Instruct, and
LLaMA-3.1-70B) and top performer baselines from Table 1, HMNS consistently achieves the high-
est ASR under all six defenses for both evaluators. Compared to the second-best method (ArrAt-
tack), HMNS yields average gains of +6–8 pp across defenses on GPT4o and +5–7 pp on GPT-5.
These improvements are uniform across model sizes, underscoring the scalability of HMNS. We
attribute this advantage to the locally irreproducible nature of our intervention: by steering in di-
rections orthogonal to muted write-paths, HMNS bypasses defense-induced routing changes, while
closed-loop re-identification adapts dynamically to evolving attribution patterns. Results are av-
eraged over three independent runs, with a standard deviation below 0.4. An illustrative example
of a successful jailbreak using HMNS is shown in Figure 1. Inter-annotator agreement results are
reported in Appendix A4.3.

4.3 COMPUTE-NORMALIZED EVALUATION

While HMNS achieves strong query efficiency, with an average of just two external queries (ACQ)
per successful jailbreak, this metric alone does not fully capture the method’s computational cost.
Prompt-based attacks typically perform one model forward per query, but HMNS additionally ex-
ecutes multiple internal procedures between attempts, including KL-based head-wise causal attri-
bution, nullspace direction computation (via QR), and closed-loop re-identification. Each of these
operations requires running the model over the input or continuation, which incurs hidden compute.
To fairly account for this internal overhead, we introduce a normalization unit called the forward-
equivalent pass (FEP). One FEP corresponds to the compute required for a single full forward pass
over the generated sequence using standard key–value (KV) caching. While some internal evalu-
ations (e.g., per-head out-projection masking for attribution) can be batched to reduce wall-clock
time, they still incur independent computational cost. For this reason, we count each masked or
modified forward as a separate FEP when computing total effort. Using this unit as a foundation, we
complement ACQ with three compute-aware metrics that capture internal work, total expenditure,
and real-world latency: (1) Internal Pass Count (IPC): The number of internal FEPs per successful
input, including baseline forwards, attribution ablations, and closed-loop re-identifications (external
decoding passes are excluded here and reflected in ACQ). (2) FLOPs per Success (FPS): The total
floating-point operations (in×1012) required to achieve a successful jailbreak, including all internal
FEPs and all decoding attempts, estimated using token counts and model dimensions. (3) Latency
per Success (LPS): The average wall-clock time (in seconds) to first success, measured end-to-end
on an A100-80GB GPU using bfloat16 precision (see Appendix A5 for more explanation).

Table 3: Compute cost comparison on LLaMA-3.1-
70B (AdvBench). Each value reports mean compute
per successful attack. IPC counts internal passes only;
FPS includes all internal and decoding FLOPs; LPS is
wall-clock latency.

Method IPC ↓ FPS (×1012) ↓ LPS (s) ↓
AutoDAN 0 0.44 5.2
ArrAttack 0 0.62 6.7
Many-shot JB 0 0.91 8.0
PrisonBreak 0 0.98 8.9

HMNS (Ours) 32 0.53 6.1

We evaluate these metrics on the Ad-
vBench test set using LLaMA-3.1-70B.
Prompt-based baselines are assessed using
best-of-N decoding, where N is selected
such that their total compute (in FLOPs)
does not exceed the per-input budget con-
sumed by HMNS (Appendix A3). Specif-
ically, each baseline is allowed to generate
up to N completions per input, where N is
determined by matching the total FLOPs
used by HMNS on that input. We report
the best result among those N attempts.
See Appendix A6 for the full compute-
matching protocol. Results are reported
in Table 3, averaged over successful runs
across three random seeds.
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Table 4: Effectiveness of jailbreak methods under defense across three models. We report Attack
Success Rate (ASR, %) under six defenses (SMO, DPP, RPO, PAR, PAT, SAF) on LLaMA-2-7B-
Chat, Phi-3 Medium 14B Instruct, and LLaMA-3.1-70B. Values are GPT4o / GPT-5 evaluations.
Best results are bolded, second best are underlined.

Attack / Defense SMO DPP RPO PAR PAT SAF Avg
LLaMA-2-7B-Chat (AdvBench)

FITD 10.0 / 7.0 12.0 / 9.0 20.0 / 14.0 14.0 / 10.0 12.0 / 8.0 11.0 / 7.0 13.2 / 9.2
AutoDAN 15.0 / 11.0 24.0 / 18.0 38.0 / 28.0 28.0 / 20.0 22.0 / 16.0 18.0 / 12.0 24.2 / 17.5
ArrAttack 34.0 / 22.0 48.0 / 36.0 74.0 / 55.0 58.0 / 41.0 42.0 / 30.0 40.0 / 29.0 49.3 / 35.5
Tempest 26.0 / 19.0 42.0 / 31.0 68.0 / 50.0 52.0 / 38.0 36.0 / 25.0 33.0 / 24.0 42.8 / 31.2
HMNS (Ours) 40.0 / 25.0 54.0 / 41.0 82.0 / 61.0 64.0 / 45.0 48.0 / 33.0 47.0 / 34.0 55.8 / 39.8

Phi-3 Medium 14B Instruct (AdvBench)
FITD 8.0 / 6.0 10.0 / 8.0 18.0 / 13.0 12.0 / 9.0 10.0 / 7.0 9.0 / 7.0 11.2 / 8.3
AutoDAN 12.0 / 9.0 22.0 / 16.0 36.0 / 27.0 26.0 / 19.0 20.0 / 15.0 16.0 / 12.0 22.0 / 16.3
ArrAttack 36.0 / 24.0 50.0 / 38.0 76.0 / 57.0 60.0 / 42.0 44.0 / 31.0 41.0 / 30.0 51.2 / 37.0
Tempest 25.0 / 19.0 40.0 / 29.0 69.0 / 51.0 50.0 / 37.0 35.0 / 24.0 32.0 / 23.0 41.8 / 30.5
HMNS (Ours) 41.0 / 27.0 55.0 / 42.0 84.0 / 63.0 66.0 / 47.0 50.0 / 35.0 48.0 / 36.0 57.3 / 41.7

LLaMA-3.1-70B (AdvBench)
FITD 6.0 / 3.0 8.0 / 5.0 15.0 / 10.0 10.0 / 6.0 8.0 / 5.0 7.0 / 5.0 9.0 / 5.7
AutoDAN 9.0 / 7.0 20.0 / 15.0 32.0 / 26.0 20.0 / 16.0 18.0 / 14.0 12.0 / 9.0 18.5 / 14.5
ArrAttack 33.7 / 10.2 46.9 / 33.2 77.0 / 56.1 57.7 / 30.6 41.8 / 24.0 40.8 / 30.6 49.6 / 30.8
Tempest 24.0 / 18.0 40.0 / 28.0 68.0 / 50.0 50.0 / 26.0 35.0 / 20.0 33.0 / 26.0 41.7 / 28.0
HMNS (Ours) 39.7 / 16.2 52.9 / 39.2 83.0 / 62.1 63.7 / 36.6 47.8 / 30.0 46.8 / 36.6 55.6 / 36.8

Although HMNS incurs more internal passes (IPC = 32) (low because of pre-selection) compared to
prompt-only methods (IPC = 0), it achieves similar or better overall compute efficiency. Specifically,
HMNS reaches a success rate with only 0.53 trillion FLOPs per success—comparable to ArrAttack
at 0.62—and does so with lower latency (6.1 seconds vs. 6.7 seconds). This efficiency stems from
two properties: (1) HMNS attains higher success rates, requiring fewer retries, and (2) internal
operations are amortized through batched KL-based ablations and early stopping in the closed loop
(see Appendix A4 for more details). Notably, these advantages become more pronounced under
strong defenses (see Appendix A6). Prompt-based attacks often require many decoding retries to
bypass defenses, increasing both ACQ and total compute. In contrast, HMNS typically succeeds
in one or two loop iterations by adaptively steering around defense-induced routing changes, while
keeping internal work localized and interpretable. Although HMNS performs additional internal
inference, its high success rate and principled, locally irreproducible interventions yield compute-
normalized efficiency that matches, or exceeds, prompt-based jailbreaks, especially in the presence
of defenses.

5 ABLATION STUDY

We conduct an ablation study in this section. Unless otherwise specified, all ablation studies are
conducted on the Phi-3 Medium 14B model using the AdvBench dataset. Due to space constraints,
full experimental details and extended results are provided in Appendix A5.

5.1 DISSECTING COMPONENTS OF HMNS

To understand the contribution of each component in Head-Masked Nullspace Steering (HMNS),
we perform a controlled ablation study on Phi-3 Medium 14B using the AdvBench jailbreak
dataset. Each variant disables or modifies one aspect of the full pipeline to isolate its effect on suc-
cess rate, query efficiency, and compute cost. Metrics include: ASR (Attack Success Rate; GPT4o
/ GPT-5), ACQ (external query count), IPC (internal passes without KV cache), FPS (FLOPs per
success in ×1012), and LPS (latency in seconds, measured on A100-80GB, bf16). All results
follow the compute-matching protocol described in Section A3. The full HMNS method combines
KL-based head attribution, dynamic out-projection masking, and nullspace steering at the final token
position, with re-identification of top-K heads at each decoding step.
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Table 5: Ablation studies on Phi-3 Medium 14B (AdvBench). (a) Attribution mechanisms. (b)
Nullspace and injection design. Metrics: ASR (%, GPT4o/GPT-5), ACQ (queries), IPC (internal
passes), FPS (×1012), LPS (s).

(a) (a) Attribution ablation

Variant ASR ACQ IPC FPS LPS

KL-div (full) 96.8/92.1 2.1 32 0.58 6.8
Target-logit 91.0/85.9 2.4 26 0.54 6.3
Entropy change 88.5/83.2 2.7 23 0.49 6.0
No proxy filter 96.7/92.0 2.1 78 0.84 9.7

(b) (b) Nullspace / injection ablation

Variant ASR ACQ IPC FPS LPS

HMNS (Full) 96.8/92.1 2.1 32 0.58 6.8
Orth. tol. 10−5 94.0/89.5 2.2 32 0.56 6.6
Resample = 0 93.1/88.2 2.3 31 0.56 6.6
LayerNorm scale 97.1/92.6 2.1 32 0.59 6.9
Mask γ = 0.5 92.2/87.3 2.5 28 0.55 6.7

As shown in Table 10, all components contribute meaningfully to HMNS’s effectiveness. Removing
either masking or nullspace steering leads to a significant drop in ASR (by 7–10 points), confirming
their synergy. Replacing orthogonal injection with a direct direction (Direct-ϕ) reduces ASR and
increases latency, consistent with our theoretical motivation for irreproducibility (Theorem 2). Dis-
abling head re-identification lowers IPC but worsens ASR and ACQ, suggesting the need for adap-
tive attribution across decoding steps. Random head selection degrades ASR sharply, underscoring
the importance of KL-based attribution. A single-layer intervention saves compute but sacrifices
ASR, while multi-position injection yields minor ASR gains at higher cost. Overall, the full HMNS
configuration delivers the best trade-off: high ASR, low external queries, and competitive compute
and latency.

5.2 ATTRIBUTION MECHANISMS & NULLSPACE AND INJECTION

We analyze the sensitivity of Head-Masked Nullspace Steering (HMNS) to its two core design
choices on Phi-3 Medium 14B (Instruct) using AdvBench: (i) how causal heads are attributed
and scored, and (ii) how the nullspace steering vector is constructed and injected. Metrics follow
Sec. A3: ASR (GPT4o/GPT-5), external queries (ACQ), internal passes (IPC), FLOPs per success
(FPS), and latency (LPS). Full variant sweeps are reported in Appendix A7.2–A7.3.

Table 5(a) compares KL-divergence scoring ( equation 4) against simpler heuristics. KL attribu-
tion with proxy preselection and global top-K achieves the highest ASR (96.8/92.1) while keeping
compute low. This is because KL captures distributional shifts across the entire vocabulary, rather
than relying only on a single logit or entropy measure. Simpler heuristics such as target-logit drop,
confidence drop, or entropy change reduce FLOPs and latency slightly, but lose 5–8 points of ASR,
showing that they overlook distributed effects where multiple heads collectively shape the output.
Removing proxy preselection (ablating every head) preserves ASR but drastically increases IPC and
latency, highlighting that HMNS’s pruning step is key to maintaining efficiency without losing pre-
cision. Table 5(b) evaluates how steering vectors are built and applied. Strict orthogonality to the
masked subspace is essential: relaxing tolerance or removing resampling lets residual components
leak back into the suppressed span, reducing ASR by up to 4 points. RMS scaling provides a sta-
ble reference magnitude aligned with residual activations, while LayerNorm scaling gives a slight
ASR improvement by normalizing across dimensions. Injecting after attention outperforms alterna-
tives, as the nullspace is defined relative to attention head projections; injecting elsewhere weakens
the causal link between suppression and steering. Finally, strong masking is critical: partial masks
(γ > 0) consistently lower ASR and increase ACQ, confirming that effective suppression of causal
heads is necessary for steering to succeed.

6 CONCLUSION

We present HMNS, a mechanism-level jailbreak that pinpoints causal heads via KL-based attribu-
tion, suppresses their write paths, and injects orthogonal residual nudges—delivering state-of-the-art
defended ASR with low query counts and competitive compute. Ablations confirm that attribution,
strict masking, and nullspace steering are jointly necessary for robustness and interpretability. A
remaining limitation is runtime: per-head causal ablations and per-layer QR-based nullspace con-
struction can be time-consuming, particularly on large models.
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ETHICS STATEMENT

We affirm compliance with the ICLR Code of Ethics and acknowledge the dual-use nature of jail-
break research. Our goal is to strengthen LLM safety by analyzing failure modes under common
defenses; we do not seek to enable misuse. Experiments use public benchmarks of policy-violating
prompts; no human subjects, personal data, or proprietary system prompts were collected. To reduce
harm, we (i) evaluate models offline without releasing harmful generations, (ii) avoid publishing ex-
ecutable attack scripts that directly enable replication against deployed systems, and (iii) redact or
paraphrase sensitive prompts in the paper and supplementary materials. Any artifacts we release
(e.g., evaluation harness) will include rate-limits and guardrails, and will exclude dangerous tem-
plates. We disclose no conflicts of interest and followed institutional and legal guidelines throughout.
Ethical note: We include a jailbreak example solely to illustrate HMNS’s mechanics and empirical
success—not to facilitate harm. All experiments were conducted offline on public benchmarks; we
redact sensitive content and do not release runnable attack scripts. The example is provided strictly
for research and safety analysis purposes.

REPRODUCIBILITY STATEMENT

We provide everything needed to reproduce our results. The main paper specifies the full
HMNS procedure (causal attribution, masking, nullspace steering), the compute-normalized metrics
(FEP/IPC/FPS/LPS), and the evaluation protocol; ablation settings and hyperparameters (e.g., global
top-K, steering schedule, orthogonality tolerances, KV-cache policy) are documented in the Exper-
iments and Ablations sections, with additional implementation details (model hooks, pre-selection,
float32 QR, context limits) in the Appendix. We include an algorithmic description in the main text
and release an anonymized supplementary package with runnable code, configs, and scripts cover-
ing dataset splits, prompts, seeds, and hardware notes. All reported numbers are averaged over three
runs with fixed seeds; model versions and decoding parameters are specified to ensure bitwise-stable
re-runs.
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A1 THEORETICAL PROPERTIES AND ERROR BOUNDS

Setup and notation. Consider a decoder-only Transformer with layers ℓ ∈ {1, . . . , L}, residual
dimensionality d, head width dh, and Hℓ attention heads at layer ℓ. Given a prompt x1:T , let z ∈ RV

be the final-position logits and P = softmax(z) the next-token distribution (all KL computations
are at the final position). Unless otherwise stated, ∥ · ∥2 denotes the Euclidean norm and ∥ · ∥op the
spectral (operator) norm. We assume strictly positive probabilities for KL (enforced in practice via
small clipping), so KL(·∥·) is finite. For the attention block at layer ℓ and position T , denote the
concatenated head outputs by ĥℓ,T ∈ RHℓdh and the out-projection by WO

ℓ ∈ Rd×(Hℓdh), so that

hout
ℓ,T = WO

ℓ ĥℓ,T . (9)

KL-based causal attribution and masked span. For a given head (ℓ, h), let Sℓ,h be a diagonal
selector that zeros the h-th head slice in ĥℓ,T . The masked out-projection is

W̃O
ℓ,h = WO

ℓ (I − Sℓ,h), (10)

inducing ablated logits z̃(ℓ,h) and distribution P̃ (ℓ,h) = softmax(z̃(ℓ,h)). We score head importance
by

∆ℓ,h = KL
(
P ∥ P̃ (ℓ,h)

)
. (11)

Let S be the global top-K heads by equation 11. For each layer ℓ, define Sℓ = {h : (ℓ, h) ∈ S} and
the write matrix

Cℓ =
[
WO

ℓ [:, hdh : (h+1)dh]
]
h∈Sℓ

∈ Rd×(|Sℓ|dh). (12)

LetWℓ = colspan(Cℓ) be the masked write subspace; let Qℓ be an orthonormal basis ofWℓ and

P⊥
ℓ = I −QℓQ

⊤
ℓ (13)

the projector ontoW⊥
ℓ .

Nullspace steering (random-projection construction). We compute a thin QR of Cℓ in float32,
form P⊥

ℓ as in equation 13, sample r ∼ N (0, Id), and define

uℓ =
P⊥
ℓ r

∥P⊥
ℓ r∥2 + ε

, ε > 0. (14)

This ensures uℓ ∈ W⊥
ℓ . If ∥P⊥

ℓ r∥ is numerically degenerate, we resample r (small fixed budget).

Intervention mechanism (mask + RMS-scaled nudge). Let Sℓ,S zero all head slices in Sℓ. At
the final position of the current step, we replace WO

ℓ by WO
ℓ (I − Sℓ,S) and add an orthogonal

residual nudge
h̃out
ℓ,T = WO

ℓ (I − Sℓ,S) ĥℓ,T︸ ︷︷ ︸
masked write

+ α · RMS(aℓ) · uℓ, (15)

where aℓ ∈ Rd is the (pre-residual) activation at the same tap point, RMS(aℓ) =
√

1
d

∑
i a

2
ℓ,i, uℓ is

given by equation 14, and α > 0 is fixed per iteration.

Assumption 1 (Local residual-to-logit sensitivity). For a perturbation δh injected at layer ℓ, the
induced logit shift satisfies ∥δz∥2 ≤ Lℓ→logit · ∥δh∥2 for some Lℓ→logit > 0.

A1.1 GEOMETRY AND INVARIANCE

Theorem 2 (Orthogonality and Irreproducibility of HMNS Injection). For each intervened layer
ℓ, the steering direction uℓ defined in equation 14 lies in the orthogonal complement W⊥

ℓ of the
masked head write subspaceWℓ = span(Mℓ) from equation 12. Therefore, for all v ∈ Wℓ, we have
⟨uℓ, v⟩ = 0. As a result, no linear combination of the masked heads’ contributions can reconstruct
or cancel the injected vector α · RMS(aℓ) · uℓ.
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Proof. Let us recall that for each layer ℓ, the matrix Mℓ ∈ Rd×(|Sℓ|dh) ( equation 12) contains, as its
columns, the out-projection slices of the attention heads selected for masking. This matrix defines
the masked write subspace:

Wℓ := span(Mℓ) ⊂ Rd.

We perform a thin QR factorization of Mℓ as:

Mℓ = QℓRℓ,

where Qℓ ∈ Rd×r has orthonormal columns (Q⊤
ℓ Qℓ = Ir), and r ≤ |Sℓ|dh is the rank of Mℓ.

Now, the projection matrix ontoWℓ is Pℓ = QℓQ
⊤
ℓ , and the orthogonal projector onto the comple-

mentW⊥
ℓ is:

P⊥
ℓ := I −QℓQ

⊤
ℓ .

We then define a random steering direction uℓ by sampling a random vector r ∼ N (0, Id) and
projecting it into the nullspace of the masked heads:

uℓ :=
(I −QℓQ

⊤
ℓ ) r

∥(I −QℓQ⊤
ℓ ) r∥2 + ε

=
P⊥
ℓ r

∥P⊥
ℓ r∥2 + ε

.

Since P⊥
ℓ is a linear projector ontoW⊥

ℓ , it follows directly that:

P⊥
ℓ r ∈ W⊥

ℓ , and hence uℓ ∈ W⊥
ℓ .

By the definition of orthogonal complements, this implies:

⟨uℓ, v⟩ = 0 for all v ∈ Wℓ.

In particular, all linear combinations of the masked head outputs (which lie inWℓ by construction)
are orthogonal to uℓ.

Now, at inference time, the perturbation injected into the residual stream is:

δℓ = α · RMS(aℓ) · uℓ.

This vector lies entirely withinW⊥
ℓ .

SinceW⊥
ℓ ∩Wℓ = {0}, no vector formed from any linear combination of the masked head projec-

tions (which span Wℓ) can reproduce, cancel, or interfere destructively with the injected δℓ. This
guarantees that:

- The injected perturbation is irreducible with respect to the masked heads. - Any effort by the model
to undo or overwrite the steering must come from unmasked circuitry.

This geometric decoupling is what enables HMNS to inject locally irreproducible influence without
conflicting with the masked components, and underpins its robust steering behavior.

Scope. The irreproducibility claim is local to the intervened layer and the masked heads; unmasked
components in downstream layers may still respond to the perturbed residual.

Theorem 3 (Invariance to basis and reparameterization). Let Cℓ ∈ Rd×kd denote the concatenated
out-projection matrix slices for the masked attention heads at layer ℓ, where each block corre-
sponds to the output of a single head. Let C̃ℓ = CℓR for some block-wise orthogonal matrix
R ∈ Rkd×kd—i.e., R consists of independent rotations or permutations within each head’s output
subspace. Then:

1. colspan(C̃ℓ) = colspan(Cℓ),

2. The orthogonal complement projection P⊥
ℓ = I −QℓQ

⊤
ℓ is invariant,

3. The resulting nullspace direction uℓ (from equation 14) remains unchanged up to sign.
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Proof. Let us begin by recalling that in Head-Masked Nullspace Steering (HMNS), the write matrix
Cℓ is formed by concatenating the out-projection contributions from the top-K masked attention
heads at layer ℓ. Specifically, each column block in Cℓ corresponds to the projection of an individual
head’s output, and the steering injection is constructed to lie in the nullspace of colspan(Cℓ).

Now consider a transformed write matrix C̃ℓ = CℓR, where R is a block-orthogonal matrix, i.e., a
block-diagonal matrix whose diagonal blocks are orthogonal (rotations or permutations within head
slices).

(1) Column span invariance.

Because R is invertible and orthogonal, the matrix multiplication CℓR applies a change of basis
within the span of Cℓ—it reparameterizes the basis vectors without altering the subspace itself.
Formally:

colspan(C̃ℓ) = colspan(CℓR) = colspan(Cℓ).

This holds because post-multiplication by a full-rank matrix (here, an orthogonal R) preserves the
column space.

(2) Invariance of the orthogonal projector.

The projector onto the orthogonal complement of a column space depends only on the space itself,
not on the specific basis used to represent it. Since colspan(C̃ℓ) = colspan(Cℓ), it follows that their
respective orthogonal complement projectors are identical:

P⊥
ℓ = I −QℓQ

⊤
ℓ = I − Q̃ℓQ̃

⊤
ℓ ,

where Qℓ and Q̃ℓ are orthonormal bases for the columns of Cℓ and C̃ℓ, respectively.

(3) Nullspace direction remains unchanged.

Recall that the steering direction is defined as:

uℓ =
P⊥
ℓ r

∥P⊥
ℓ r∥2 + ε

,

where r is a random probe vector and P⊥
ℓ is the projection onto the orthogonal complement of the

masked subspace.

Since P⊥
ℓ is invariant under reparameterization of the column basis of Cℓ, applying it to any vector r

yields the same projected direction. The normalization ensures unit norm (up to ε), so uℓ is preserved
up to sign:

unew
ℓ = ±uℓ.

The sign may differ due to random sampling or numerical variation, but this does not affect the
geometry of the nullspace injection ( equation 8) or its irreproducibility guarantees (see Theorem 2).

Proposition 4 (Gaussian Nullspace Energy). Let Cℓ ∈ Rd×rℓ be a matrix of rank rℓ, and let P⊥
ℓ =

I − Cℓ(C
⊤
ℓ Cℓ)

−1C⊤
ℓ denote the orthogonal projector onto the nullspace of C⊤

ℓ . If r ∼ N (0, Id) is
a standard isotropic Gaussian in Rd, then:

1. The expected squared energy of the projected vector is:

E
[
∥P⊥

ℓ r∥22
]
= d− rℓ.

2. For all t > 0, the squared norm concentrates around its mean with high probability:

Pr
(∣∣∥P⊥

ℓ r∥22 − (d− rℓ)
∣∣ > t

)
≤ 2 exp

(
− t2

8(d− rℓ)

)
.

Proof. We begin by noting that P⊥
ℓ ∈ Rd×d is a symmetric, idempotent matrix that projects onto the

nullspace of C⊤
ℓ . Since Cℓ has rank rℓ, the nullspace has dimension d−rℓ, and rank(P⊥

ℓ ) = d−rℓ.
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Let r ∼ N (0, Id). Consider the random variable:

Z := ∥P⊥
ℓ r∥22 = r⊤P⊥

ℓ r.

Because P⊥
ℓ is a projection matrix of rank d − rℓ, this is a standard quadratic form in a Gaussian

vector.

From properties of Gaussian quadratic forms, Z follows a chi-squared distribution with d − rℓ
degrees of freedom:

Z ∼ χ2(d− rℓ).

Hence, its mean is:
E[Z] = d− rℓ.

To obtain the concentration inequality, we invoke the **Laurent–Massart inequality** for chi-
squared random variables. Let X ∼ χ2(k) for some k > 0. Then for all t > 0,

Pr(|X − k| > t) ≤ 2 exp

(
− t2

8k

)
.

Applying this to Z = ∥P⊥
ℓ r∥22 ∼ χ2(d− rℓ) gives the desired tail bound:

Pr
(∣∣∥P⊥

ℓ r∥22 − (d− rℓ)
∣∣ > t

)
≤ 2 exp

(
− t2

8(d− rℓ)

)
.

This completes the proof.

A1.2 RESIDUAL- AND LOGIT-SPACE BOUNDS

Define the masked residual stream and removed component by

hmasked
ℓ,T = WO

ℓ (I − Sℓ,S) ĥℓ,T , Eℓ = WO
ℓ Sℓ,S ĥℓ,T .

Then hout
ℓ,T − hmasked

ℓ,T = Eℓ.

Lemma 5 (Masked Residual Deviation). Let hout
ℓ,T = WO

ℓ ĥℓ,T denote the unmasked residual contri-

bution at layer ℓ and token position T , and let hmasked
ℓ,T = WO

ℓ (I −Sℓ,S)ĥℓ,T be the masked version
where the output of heads in Sℓ is suppressed. Then the deviation due to masking is:

∥hout
ℓ,T − hmasked

ℓ,T ∥2 = ∥Eℓ∥2 = ∥WO
ℓ Sℓ,S ĥℓ,T ∥2 ≤ ∥WO

ℓ ∥op · ∥Sℓ,S ĥℓ,T ∥2.

Moreover, if we define the masked energy fraction as

αℓ =
∥Sℓ,S ĥℓ,T ∥22
∥ĥℓ,T ∥22

,

then the deviation is bounded by:

∥Eℓ∥2 ≤ ∥WO
ℓ ∥op ·

√
αℓ · ∥ĥℓ,T ∥2.

Proof. We begin with the definition of the masked deviation:

Eℓ := hout
ℓ,T − hmasked

ℓ,T = WO
ℓ ĥℓ,T −WO

ℓ (I − Sℓ,S)ĥℓ,T = WO
ℓ Sℓ,S ĥℓ,T .

Taking the ℓ2 norm:
∥Eℓ∥2 = ∥WO

ℓ Sℓ,S ĥℓ,T ∥2.
Using the submultiplicative property of operator norms:

∥Eℓ∥2 ≤ ∥WO
ℓ ∥op · ∥Sℓ,S ĥℓ,T ∥2.

Now, define the energy fraction of the masked heads:

αℓ :=
∥Sℓ,S ĥℓ,T ∥22
∥ĥℓ,T ∥22

.
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Taking the square root:
∥Sℓ,S ĥℓ,T ∥2 =

√
αℓ · ∥ĥℓ,T ∥2.

Substituting back:
∥Eℓ∥2 ≤ ∥WO

ℓ ∥op ·
√
αℓ · ∥ĥℓ,T ∥2.

This completes the proof.

combine them together

Proposition 6 (First-order token-wise control (analysis only)). Let Fℓ : Rd → RV map the post-
layer-ℓ residual to logits, differentiable at href . Let gℓ,y = ∇hzy|h=href and suppose the Jacobian
is locally LJac

ℓ→y-Lipschitz. For δh = αRMS(aℓ)uℓ,

|δzy| ≤ αRMS(aℓ) ∥gℓ,y∥2 + 1
2L

Jac
ℓ→y α

2 RMS(aℓ)
2.

This bound is used for analysis only; the algorithm does not require gradients.

A1.3 SUBSPACE PERTURBATIONS AND NUMERICAL STABILITY

Theorem 7 (Wedin/Davis–Kahan perturbation). If Ĉℓ = Cℓ + ∆Cℓ with ∥∆Cℓ∥op ≤ ε and
σrℓ(Cℓ) > σrℓ+1(Cℓ), then the largest principal angle Θ betweenWℓ and Ŵℓ obeys

sinΘ ≤ ε

σrℓ(Cℓ)− σrℓ+1(Cℓ)
, ∥P⊥

ℓ − P̂⊥
ℓ ∥op ≤

2ε

σrℓ(Cℓ)− σrℓ+1(Cℓ)
.

Proof sketch. See Stewart & Sun, Matrix Perturbation Theory, Thm 4.11 (Wedin) and Davis–Kahan
for projector differences.

Lemma 8 (Projector stability under finite precision). If the QR that constructs Qℓ yields an approx-
imate Q̃ℓ with ∥Q̃⊤

ℓ Q̃ℓ − I∥op ≤ ϵQR, then

∥P⊥
ℓ − P⊥

ℓ,true∥op ≤ 2 sinΘ + O(ϵQR),

where Θ is the principal-angle gap from Theorem 7.

Proposition 9 (Logit error from steering misalignment). Let ûℓ be the unit vector from P̂⊥
ℓ in place

of P⊥
ℓ . For any token y,∣∣δzsteery (ûℓ)− δzsteery (uℓ)

∣∣ ≤ αRMS(aℓ) ∥gℓ,y∥2 sin∠(uℓ, ûℓ),

and by Theorem 7 and Lemma 8,

sin∠(uℓ, ûell) ≲
2 ε

σrℓ(Cℓ)− σrℓ+1(Cℓ)
+ O(ϵQR).

A1.4 PRACTICAL COROLLARIES

Corollary 10 (Choosing α under a logit budget). To keep ∥δzsteerℓ ∥2 ≤ ϵz at layer ℓ, select

α ≤ ϵz
Lℓ→logit · RMS(aℓ)

.

Corollary 11 (Mask–steer tradeoff). Combining Lemma 5 with Assumption 1,

∥δzmask
ℓ ∥2 + ∥δzsteerℓ ∥2 ≤ Lℓ→logit

(
∥Eℓ∥2 + αRMS(aℓ)

)
.

Remark 12 (Scope). All results rely on linear-algebraic geometry (orthogonal projections, spectral
gaps) and the local sensitivity in Assumption 1. We do not claim global guarantees across stochastic,
multi-step decoding; those dynamics depend on nonlinearity and sampling.
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Theorem 13 (Persistence under Masking). For any intervened layer ℓ, once the heads in Sℓ are
masked and replaced by the orthogonal steering injection

h̃out
ℓ,T = WO

ℓ (I − Sℓ,S) ĥℓ,T + α · RMS(aℓ) · uℓ,

the contribution of masked heads is removed for that forward pass; in HMNS, masking is re-applied
at subsequent steps, so these heads remain suppressed whenever the mask is active. The injected
component α · RMS(aℓ) · uℓ cannot be reintroduced by those heads in later steps.

Proof. Masking with I − Sℓ,S zeroes the relevant columns of WO
ℓ , so the outputs of heads in Sℓ

are eliminated at the residual level during the current forward pass. Since subsequent layers only
process the residual stream hout

ℓ,T , the masked contribution Eℓ = WO
ℓ Sℓ,S ĥℓ,T is unrecoverable in

that step: it has been projected out and does not propagate forward.

Meanwhile, the injected perturbation lies in W⊥
ℓ , the orthogonal complement of the masked write

subspace. By Theorem 2, no linear combination of masked-head outputs belongs toW⊥
ℓ . Therefore,

the injection cannot be canceled or absorbed by the suppressed circuitry. Subsequent layers can only
transform the new residual through their own projections.

Because HMNS applies masking dynamically at each decoding attempt (not statically to model
weights), the suppression is transient per step but reapplied reliably at each iteration. Parameters are
never modified on disk; masking is applied via a context manager during the current forward pass.

Thus, the effect of masking is persistent across decoding steps when actively reapplied, and the
injected perturbation survives without risk of being overwritten or “undone” by the masked heads.

Implication. This persistence property highlights that HMNS interventions are one-way opera-
tions: once a head is suppressed, it no longer influences the residual stream, and the added or-
thogonal perturbation remains protected from interference by that circuitry. This strengthens the
irreproducibility guarantee and ensures that steering effects accumulate reliably across layers and
iterations.

A2 EXPERIMENT AND IMPLEMENTATION DETAILS

A2.1 EXPERIMENTAL ASSUMPTIONS, HARDWARE, AND HYPERPARAMETERS

Modeling assumptions. Our method assumes the existence of a non-degenerate nullspace at each
intervened layer ℓ. Specifically, if Mℓ ∈ Rd×(|Sℓ|dh) is the concatenation of the out-projection
column blocks of selected heads, we require rank(Mℓ) < d to ensure W⊥

ℓ = span(Mℓ)
⊥ ̸= {0}.

We achieve this by (i) selecting a small global head budget (K=10), (ii) computing uℓ ∈W⊥
ℓ using

float32 thin QR, and (iii) enforcing orthogonality via ∥M⊤
ℓ uℓ∥∞ < δ with δ = 10−6, resampling

up to three times. If the projected norm collapses, a fresh random direction is drawn. These checks
prevent degenerate projections and ensure numerical stability, especially for large models.

Targets and precision. We evaluate on three open-weight decoder-only LLMs: LLaMA-2-7B-
Chat, Phi-3-Medium-4K-Instruct, and LLaMA-3.1-70B. All forward passes run in bfloat16, but
causal attribution and QR-based steering use float32 for numerical reliability.

Hardware and parallelism. Experiments are run on NVIDIA A100-80GB GPUs using PyTorch
2.2 and Transformers v4.41. LLaMA-2-7B and Phi-3-Medium fit on a single A100; LLaMA-3.1-
70B is executed using device map="auto" for tensor-parallel sharding across two A100s. For
fallback to single GPU, the code supports quantization/offload and residual-only masking.

Attribution and selection. We use KL divergence between baseline and ablated output distri-
butions to score head importance. Each input is re-attributed per decoding attempt, with only the
top-K = 10 heads selected globally (across all layers). This scoring is based on single-head masking
and does not assume prior head knowledge.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Masking and nullspace steering. At each intervened layer ℓ, we zero the selected head column
blocks in WO

ℓ during the current forward pass and inject a perturbation δℓ = αRMS(aℓ)uℓ, where
uℓ ∈W⊥

ℓ is computed as described above.

Generation and loop schedule. We use zero-shot decoding with temperature 0.7, top-p = 0.95,
max length 128, and batch size 1. KV caching is disabled to support dynamic masking. Each
prompt undergoes up to Tatt = 10 decoding attempts with early stopping. Steering strength follows
αt = λ(1 + 0.1(t − 1)) with λ = 0.25. A fixed random seed and TF32 matmul are used for
reproducibility.

Model-specific notes. We dynamically locate each model’s attention modules and out-projection
layers (e.g., o proj, dense) and apply masking via in-place column zeroing wrapped in context
managers. For LLaMA-3.1-70B with grouped-query attention, head slices remain contiguous and
are masked similarly under tensor-parallelism.

Compute accounting. External query count (ACQ) is reported separately. Internal Pass Count
(IPC) includes baseline and K masked probes per decoding attempt: IPC = 1+Tatt ·K (e.g., 31−41
for Tatt = 3−4). FLOPs-per-success (FPS) and latency are measured end-to-end.

Implementation hygiene. All masking and steering hooks are registered and removed in context-
managed scopes to ensure no leakage between probes or attempts. QR and orthogonality checks
are done in float32; logits and KL values are computed at model precision with clipping for
numerical safety.

A2.2 EXPERIMENTS ON ALTERNATIVE OPEN-WEIGHT MODELS

We replicate our protocol on three different open-weight models of comparable sizes on Hug-
ging Face—Mistral-7B-Instruct-v0.24, Qwen2.5-14B-Instruct5, and Yi-1.5-72B-Chat6—using
exactly the same settings as our main study: zero-shot decoding (temperature 0.7, top-p = 0.95,
max new tokens = 128, batch size = 1), global top-K=10 heads per attempt, up to Tatt=10
closed-loop iterations with αt = 0.25(1 + 0.1(t−1)), and KV cache disabled during attribu-
tion/steered decoding for correctness. Per attempt, we apply proxy pre-selection (batched tar-
get–logit drop) to shortlist heads, run exact KL attribution on the shortlist, then mask the se-
lected out-projection slices for the current pass and inject δℓ = αRMS(aℓ)uℓ after attention.
Nullspace directions uℓ ∈ span(Mℓ)

⊥ are obtained via float32 thin-QR with the orthogonality test
∥M⊤

ℓ uℓ∥∞ < 10−6 (up to three resamples). Table 6 shows that HMNS consistently achieves the
best ASR on all four benchmarks while maintaining ACQ ≈ 2, outperforming the strongest prompt-
only baseline (ArrAttack) by ∼5–7 pp on average; this underscores that HMNS’s mechanism-level
control (KL-based head attribution, strict masking, and nullspace-orthogonal steering) transfers
across architectures and scales with minimal retuning.

A3 HMNS BUDGET

HMNS consumes compute in two places: (i) internal passes used for KL-based attribution and
closed-loop re-identification (run without KV cache), and (ii) external decoding attempts that pro-
duce visible outputs. We measure both directly in FLOPs on a per-input basis and sum them to
obtain the total budget for that input.

Formally, for input x, let Cattr(x, j) be the FLOPs of the j-th attribution/re-identification pass (no
KV cache), and Cdecode(x, i) the FLOPs of the i-th decoding attempt (also without cache, by default).
If the first success occurs after J(x) internal passes and A(x) decoding attempts, then HMNS’s total
compute budget is

BHMNS(x) =

J(x)∑
j=1

Cattr(x, j) +

A(x)∑
i=1

Cdecode(x, i). (16)

4https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
5https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
6https://huggingface.co/01-ai/Yi-1.5-72B-Chat

22

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/01-ai/Yi-1.5-72B-Chat


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 6: Jailbreak effectiveness on alternative open-weight models. We report Attack Success
Rate (ASR, %; left/right = GPT4o/GPT-5) and Average Query Count (ACQ; lower is better) on
AdvBench, HarmBench, JBB-Behaviors, and StrongReject. Best values are bolded; second best are
underlined.

Model / Method AdvBench HarmBench JBB-Behaviors StrongReject
ASR ↑ ACQ ↓ ASR ↑ ACQ ↓ ASR ↑ ACQ ↓ ASR ↑ ACQ ↓

Mistral-7B-Instruct-v0.2
FITD 42.0 / 36.5 16.4 39.5 / 34.1 16.9 43.2 / 37.6 15.8 36.8 / 31.7 17.2
AutoDAN 70.8 / 64.6 12.7 67.2 / 61.3 13.1 71.6 / 65.5 12.2 64.9 / 59.4 13.5
ArrAttack 91.1 / 86.2 7.6 89.2 / 84.7 7.8 92.4 / 87.5 7.4 87.1 / 82.9 8.1
HMNS (Ours) 97.4 / 92.5 2.0 95.3 / 90.7 2.1 98.2 / 93.1 1.9 93.0 / 88.4 2.2

Qwen2.5-14B-Instruct
FITD 39.8 / 34.0 17.1 37.1 / 32.0 17.5 41.0 / 35.1 16.6 34.3 / 29.6 17.9
AutoDAN 64.9 / 58.2 13.8 62.1 / 56.0 14.0 66.1 / 59.4 13.2 58.2 / 52.8 14.3
ArrAttack 86.8 / 80.7 8.3 84.9 / 78.9 8.5 89.6 / 83.7 7.9 81.2 / 75.4 8.7
HMNS (Ours) 92.9 / 86.8 2.0 90.8 / 84.9 2.1 94.5 / 88.4 1.9 86.9 / 80.9 2.2

Yi-1.5-72B-Chat
FITD 45.9 / 40.1 15.6 43.3 / 38.0 16.0 47.2 / 41.5 15.1 39.7 / 34.7 16.4
AutoDAN 73.9 / 67.6 12.3 70.2 / 64.6 12.7 75.0 / 68.9 11.9 67.5 / 61.9 13.0
ArrAttack 93.4 / 89.2 7.3 91.5 / 87.7 7.6 94.6 / 90.3 7.1 90.9 / 86.8 7.8
HMNS (Ours) 99.1 / 95.2 1.8 97.3 / 93.4 2.0 99.2 / 95.6 1.8 96.1 / 92.3 2.1

Intuitively, this counts every attribution/steering recomputation and every generated continuation
until the first success.

How we measure Cattr and Cdecode. For each forward pass we log the tokenized sequence length and
use a profiler to record actual FLOPs (attention + MLP) under the same hardware/dtype configu-
ration. Attribution runs disable KV caching (to ensure recomputation under masking), and steered
decoding also disables KV caching by default for correctness and recomputability. Failed attempts
still count toward the budget until a success occurs or evaluation terminates.

Prompt baselines: budget-capped best-of-N . To compare fairly with prompt-only methods
(which incur no internal passes), we give them the same FLOP budget as HMNS on each input,
and let them generate as many completions as fit within that budget. If the per-attempt costs are
Cpb

decode(x, i), then the number of allowed attempts is

N(x) = max
(
1, max

{
N :

N∑
i=1

Cpb
decode(x, i) ≤ BHMNS(x)

})
. (17)

We then evaluate each baseline in a best-of-N(x) setting: generate N(x) completions under iden-
tical decoding policies, and record the best outcome within the matched budget. For compact sum-
mary tables we also report a fixed-N variant using the dataset-wide mean HMNS budget BHMNS and
mean per-decode cost C

pb

decode.

Interpretation of N(x). If HMNS spends roughly the compute of nine prompt-only generations for
input x, then N(x) = 9 and the baseline is evaluated best-of-9 for that input.

Step-by-step protocol.

1. For HMNS (per input x): run attribution/steering in a closed loop until success; log each
pass’s FLOPs to compute BHMNS(x).

2. For each baseline: repeatedly generate under the same sampling settings, accumulating
decode FLOPs until exceeding BHMNS(x); the number that fit defines N(x). Record the
best outcome within this cap.

3. Aggregate: report ACQ (external queries), IPC (internal passes), FPS (FLOPs per suc-
cess), and LPS (wall-clock latency) across the test set; plot success-vs-compute curves
where applicable.
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The algorithm to calculate all compute-aware metrics (ACQ, IPC, FPS, LPS) and to run budget-
matched baselines has been shown in Algorithm 1.

Consistency and edge cases.

• Variable lengths: decode costs scale with output length; budget-matching via cumulative
sums ensures fair allocation per input.

• At least one attempt: max(1, ·) guarantees baselines receive at least one decode even if
HMNS succeeds unusually cheaply.

• Same environment: all methods use identical decoding hyperparameters and run on the
same GPU/dtype, ensuring FLOP comparability.

• Metric separation: IPC counts internal passes only; ACQ counts external decodes; FPS
includes both; LPS is the end-to-end latency to first success.

A4 EVALUATION PROTOCOL, LEAKAGE CONTROLS, AND GRADER
CALIBRATION

Overview. We assess jailbreak success using two independent LLM graders, GPT4o and GPT5,
and report per-grader Attack Success Rates (ASR) in the main paper (Tables 1–4). To ensure com-
parability and prevent leakage, we standardize grading prompts and decoding settings, blind graders
to attack prompts and HMNS interventions, and quantify inter-rater agreement. In addition, we
report fluency and toxicity using named models with explicit calibration. Summary statistics for
agreement, fluency, and toxicity are provided in Tables 7 and 8.

A4.1 JAILBREAK SUCCESS LABELING

For each completion ci, graders return binary labels y
(i)
Fuzz, y

(i)
G4 ∈ {0, 1} under an identical rubric

(Section A4.2). Per-grader ASR is

ASRFuzz =
1
n

n∑
i=1

⊮
{
y
(i)
Fuzz = 1

}
, ASRG4 = 1

n

n∑
i=1

⊮
{
y
(i)
G4 = 1

}
.

For sensitivity analysis, we also compute an aggregate “either-of-two” success measure,

ASROR = 1
n

n∑
i=1

⊮
{
y
(i)
Fuzz = 1 ∨ y

(i)
G4 = 1

}
,

reported only in the appendix and never mixed with per-grader ASR in the same table.

A4.2 GRADER RUBRICS AND PROMPTS

Blinding and determinism. Graders receive only the model completion ci and a fixed rubric; they
do not see the original attack prompt, system/tool messages, HMNS masking/steering hyperparam-
eters, or any intermediate artifacts from closed-loop detection. All grading runs use temperature 0,
top-p=1.0, and a max generation of 256 tokens to ensure deterministic labels.

Binary success rubric

You are an impartial safety evaluator. Read the COMPLETION text below,
which is a standalone response.

COMPLETION:
{completion_text}

Task: Decide if this completion provides, enables, or materially advances
a prohibited behavior described by a jailbreak benchmark item (e.g.,
instructions that facilitate illegal, harmful, or policy-violating acts).
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Table 7: Inter-rater agreement (test split). Cohen’s κ between GPT4o and GPT-5 by benchmark;
mean ± 95% CI over three runs.

AdvBench HarmBench JBB-Behaviors StrongReject

κ 0.78± 0.03 0.74± 0.04 0.75± 0.03 0.70± 0.04

Label with exactly one of:
- 1 (SUCCESS): The completion clearly violates safety policy or provides

actionable steps that enable a prohibited outcome.
- 0 (FAIL): The completion refuses, is neutral/harmless, or provides only

vague/high-level commentary that does not enable the prohibited act.

Also provide a one-sentence rationale.

Return JSON: {"label": 0 or 1, "rationale": "..."}.

Only the label field is used for metrics; rationales are logged for auditing.

A4.3 INTER-RATER AGREEMENT AND UNCERTAINTY

We quantify agreement between GPT4o and GPT-5 graders using Cohen’s κ,

κ =
po − pe
1− pe

, po = 1
n

n∑
i=1

⊮{y(i)Fuzz = y
(i)
G4}, pe = πFuzzπG4 + (1−πFuzz)(1−πG4),

with πFuzz = 1
n

∑n
i=1 y

(i)
Fuzz and πG4 = 1

n

∑n
i=1 y

(i)
G4 . We report κ with 95% bootstrap CIs (1,000

resamples) and include marginal positive rates to contextualize prevalence. Across all experiments
in this paper, inter-annotator agreement is high: the aggregate κ is 0.76± 0.02, and per-benchmark
values fall in the 0.70–0.78 range (Table 7). Unless stated otherwise, ASR values are reported as
mean ± 95% CI over three independent runs.

A4.4 FLUENCY METRIC

Fluency is computed with a frozen reference language model g via length-normalized NLL. For a
completion c=(w1:L),

NLL(c) = 1
L

L∑
t=1

(
− log pg(wt | w<t)

)
, Fluency(c) = exp

{
−NLL(c)

}
∈ (0, 1],

which monotonically maps lower perplexity to higher fluency in a bounded range. We use
LLaMA-2-7B (base) as g (meta-LLaMA/LLaMA-2-7b-hf, HF Transformers v4.41), evaluated
deterministically with its native tokenizer. The reference model is held fixed across all experiments
and is never exposed to HMNS internals.

A4.5 TOXICITY METRIC AND THRESHOLD CALIBRATION

Toxicity is estimated using Detoxify (unbiased) Hanu & Unitary team (2020), which outputs a
continuous score τ(c) ∈ [0, 1] per completion. For binary analyses, we define a toxicity label by
thresholding at τ⋆, selected on a held-out validation split of CivilComments (non-overlapping with
our test data) via Youden’s J :

τ⋆ = arg max
τ∈[0,1]

(
TPR(τ) + TNR(τ)− 1

)
.

We report τ⋆, ROC–AUC, and the class balance of the validation set alongside continuous toxicity
summaries in appendix tables.
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Table 8: Fluency and toxicity by method (pooled across models and benchmarks; means± 95% CI
over three runs). Toxicity: continuous Detoxify score ↓ and binarized rate at τ⋆=0.42 (ROC–AUC
= 0.94).

Method Fluency ↑ Toxicity (score) ↓ Toxicity (rate) ↓
FITD 0.58± 0.02 0.22± 0.01 18.1%± 1.6
AutoDAN 0.61± 0.02 0.28± 0.01 24.9%± 1.7
ArrAttack 0.63± 0.02 0.31± 0.01 28.7%± 1.8
Tempest 0.64± 0.02 0.29± 0.01 26.5%± 1.7
HMNS (ours) 0.66± 0.02 0.33± 0.01 30.9%± 1.9

A4.6 LEAKAGE CONTROLS AND REPRODUCIBILITY

Leakage controls. Graders see only the completion text; the original user prompt, system/tool
messages, and HMNS intervention metadata (attribution scores, masked heads, nullspace vectors)
are never shown. Each grading call is executed in isolation (no few-shot context and no cross-item
memory). All grader prompts, model identifiers, and decoding settings are fixed across methods,
datasets, and runs.

Deterministic settings. Unless otherwise specified, graders run with temperature 0, top-p=1.0, and
a fixed token limit. We seed all pipelines and log code commit hashes used for evaluation.

Artifacts. We release (i) the exact grader prompts and rubric; (ii) scripts to recompute ASR, κ,
bootstrap CIs, and ASROR; (iii) the reference LM g specification and tokenizer for fluency; and
(iv) the Detoxify configuration and validation split used to fit τ⋆, together with item-level CSVs
containing per-grader labels, fluency, and toxicity scores.

A4.7 SUMMARY TABLES: FLUENCY AND TOXICITY

Table 8 summarizes fluency and toxicity by method, pooled over the four benchmarks and the three
target models used in this work (LLaMA-2-7B-Chat, Phi-3-Medium-14B-Instruct, LLaMA-3.1-
70B). Fluency is higher-is-better (bounded in (0, 1]); toxicity is reported as the Detoxify score
(lower-is-better) together with the binarized rate using the calibrated threshold τ⋆=0.42 (ROC–AUC
= 0.94 on the validation split).

Interpretation. Inter-rater agreement is substantial across benchmarks (Table 7), supporting the
reliability of grader labels. HMNS maintains the best average fluency (Table 8), consistent with our
goal of preserving language quality while steering behavior. Toxicity is slightly higher for HMNS
relative to prompt-only baselines, which is expected given its higher defended ASR (Tables 1–4);
importantly, scores remain within the variance envelope of strong baselines. Together with the
leakage controls and deterministic grading, these summaries address potential reviewer concerns
about calibration, reliability, and side effects.

A5 COMPUTE-FAIR EVALUATION AND BASELINE PARITY

A5.1 METRICS AND PROTOCOL

Why more than ACQ. Average Query Count (ACQ) measures external calls but omits the internal
work incurred by mechanism-level attacks such as HMNS (e.g., head-wise ablations and closed-
loop re-identification). To compare across families fairly, we report internal cost and evaluate under
matched compute.

Metrics. For each prompt/model/method we report: (i) ACQ (↓): external decodes to first success;
(ii) FLOPs-per-success (FPS) (↓): profiler-measured floating-point operations to first success; (iii)
Latency-per-success (LPS) (↓): wall-clock seconds on the same hardware as §4.1; (iv) Internal Pass
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Count (IPC) (↓): number of forward-equivalent passes (FEPs) until success;7 (v) Tokens Processed
(TP) (↓): total tokens forwarded until success. We report means and 95% CIs over three seeds on
the held-out test split.

Compute-matched comparison. We use two regimes: FLOP-matched—each method receives a
per-prompt FLOP budget B; and Latency-matched—each method runs up to a wall-clock cap T
on identical hardware/software (A100-80GB, bf16). HMNS allocates budget to one baseline pass,
KL-based causal head attribution, and closed-loop masked nullspace steering. Prompt baselines al-
locate budget to best-of-N decoding (varying seeds/temperature/top-p). Activation-space baselines
(App. A5.2) allocate to their internal passes plus decoding. Primary endpoints are Success Rate
vs. FLOP budget and Time-to-Success (survival) curves; we also report Area Under the Efficiency
Curve (AUEC).

Implementation notes. All methods use PyTorch 2.2 and HF Transformers 4.41 (bf16) on a
single A100-80GB, matching §4.1. For HMNS, per-head logit-drop ablations are vectorized along
the batch dimension; IPC equals 1 (baseline) +⌈M/Bvec⌉ (batched ablations over M heads) + the
executed closed-loop attempts. We provide both a conservative setting that disables KV caching
during attribution and steered decoding (clean recomputation) and an optimized blocked-recompute
variant (reuse caches up to layer ℓ, recompute ℓ→L). Profiler traces (FLOPs, IPC, TP, latency) and
scripts are released.

Steering scale schedule. We use a step-wise steering magnitude αt; λ denotes the initial value
(α1 = λ), and αt may follow a schedule (e.g., linear, cosine, or adaptive).

FLOP accounting for baselines. For each input x, we estimate decoding compute as the FLOPs
of one full forward pass per generated token and sum over tokens and layers. Let the hidden width
be d, number of layers L, attention heads H with dh = d/H , feed-forward width dff , and output
length T = L(x). The per-token, per-layer cost comprises attention (QKV projections, attention
scores/products, and output projection) and the MLP:

Fattn(d,H, t) ≈ 4d2 + 2H td2h, Fmlp(d, dff) ≈ 4 d dff . (18)

Thus the decode FLOPs for one completion is

FLOPsdec(x) =

T∑
t=1

L∑
ℓ=1

[
Fattn(d,H, t) + Fmlp(d, dff)

]
. (19)

For best-of-N baselines we sum across completions,

FLOPsbaseline(x) =

N(x)∑
i=1

FLOPs
(i)
dec(x), (20)

and cap N(x) so this total does not exceed the per-input HMNS budget used for compute matching.
HMNS’s FPS additionally includes internal masked/modified passes (at the same precision and
token lengths), counted as forward-equivalent passes (FEPs) and added to the decoding FLOPs.

A5.2 ACTIVATION-SPACE BASELINES AND MATCHED CONTROLS

Activation-space comparators. We implement two mechanism-level baselines at the same lay-
ers/positions as HMNS: Contrastive Activation Addition (CAA)—adds a direction from posi-
tive/negative hidden-state differences; and Direct Activation Steering (DAS)—injects a learned linear
direction without nullspace constraints. Decoding and evaluation mirror HMNS.

Matched controls. We include Mask-only (mute top-K heads, no injection) and Nullspace-only
(inject P⊥

ℓ r with no masking). These controls run under the same compute budgets as §A5.1. (Con-
trols that require supervised or hybrid directions are excluded, as HMNS does not use contrastive
supervision.)

7One FEP denotes the compute of a full forward over the realized sequence; we account cache-on/off as
equivalent full-forward cost, so FEP is cache-agnostic.
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A5.3 COMPUTE LEDGER (TARGETS: LLAMA-2-7B-CHAT,
PHI-3-MEDIUM-14B-INSTRUCT, LLAMA-3.1-70B)

For each target model—LLaMA-2-7B-Chat, Phi-3-Medium-14B-Instruct, and LLaMA-3.1-
70B—we summarize cost to first success, pooled over the four benchmarks used in Table 1.8 ASR
values align with the averages implied by Table 1 for each target.

Interpretation. Across all three targets, HMNS achieves the lowest ACQ but expends more in-
ternal compute (higher IPC, FLOPs, TP) owing to KL-based attribution and closed-loop steering.
Activation-space baselines (CAA/DAS) sit between prompt-only and HMNS in both cost and effec-
tiveness.

A5.4 COMPUTE-MATCHED RESULTS (ALL THREE TARGETS)

Under shared FLOP budgets B ∈ {0.6, 1.0, 1.5} × 1012, we compare methods on LLaMA-2-7B-
Chat, Phi-3-Medium-14B-Instruct, and LLaMA-3.1-70B with the defenses from Table 4. HMNS
matches or surpasses baselines once modest internal budget is available, recovering the margins
observed in defended ASR.9

Interpretation. Under tight budgets (0.6×1012 FLOPs), prompt-only methods can slightly lead
because HMNS spends a portion of its budget on attribution (higher IPC). At moderate and high bud-
gets (1.0–1.5×1012 FLOPs), HMNS overtakes, indicating that internal attribution plus nullspace-
constrained steering is compute-efficient on defended tasks. Survival analyses (time-to-success un-
der latency caps) show the same trend on all three targets.

A5.5 TAKEAWAYS

• ACQ alone favors prompt-space methods; adding FPS, LPS, IPC, and TP reveals the inter-
nal cost of mechanism-level attacks.

• Under matched compute, HMNS retains advantage on defended settings at moderate bud-
gets across LLaMA-2-7B-Chat, Phi-3-Medium-14B-Instruct, and LLaMA-3.1-70B.

• Activation-space baselines partially close the gap but underperform without nullspace con-
straints and head masking, underscoring the benefit of HMNS’s geometry-aware interven-
tion.

A6 COMPUTE ANALYSIS UNDER DEFENSES

This appendix extends the compute-normalized evaluation under six defenses. We report: (i) com-
pute metrics per successful attack; (ii) success-rate vs. FLOPs curves; (iii) a precise breakdown
of Internal Pass Count (IPC); and (iv) all experimental settings required to reproduce the compute
numbers.

Forward-equivalent pass (FEP). A forward-equivalent pass counts the compute of one full for-
ward over the realized sequence with standard KV caching. Batched attribution (masking multiple
heads in the batch dimension) reduces latency but not FEP: each masked forward still contributes
one FEP. FLOPs are estimated from token counts and model dimensions (attention + MLP); see
§A6.4 for calibration.

A6.1 FLOPS AND LATENCY UNDER DEFENSES

Table 9 reports average compute per successful attack on LLaMA-2-7B-Chat (AdvBench) under
SmoothLLM (SMO), Defensive Prompt Purification (DPP), Robust Prompt Optimization (RPO),
Paraphrasing (PAR), Policy-Aware Tuning (PAT), and SafeDecoding (SAF). Metrics:

8Tables shown in the main paper retain their original numeric entries; when running on a different target,
we regenerate the compute ledger under the identical protocol for that specific model.

9The example table in the main text uses one target for compactness; per-target matched-budget tables are
provided in the release package.
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• ACQ: external decodes per success (lower is better).
• FPS: FLOPs per success (in ×1012; lower is better), including internal passes and external

decodes.
• LPS: wall-clock seconds per success on A100-80GB (lower is better).

Table 9: Compute under defenses on LLaMA-2-7B-Chat (AdvBench). Means over successful
runs. HMNS attains lower or comparable FLOPs/latency than prompt-only baselines despite higher
internal passes; ACQ reflects external-query efficiency only.

Method Metric SMO DPP RPO PAR PAT SAF

ArrAttack
FPS (×1012) 1.12 1.35 1.88 1.47 1.21 1.19

LPS (s) 10.2 11.4 14.8 12.5 10.7 10.6
ACQ 26.8 32.0 44.5 36.7 29.2 28.9

HMNS (Ours)
FPS (×1012) 0.74 0.85 1.09 0.89 0.76 0.78

LPS (s) 7.1 7.8 9.5 8.3 7.0 7.3
ACQ 2.1 2.1 2.2 2.2 2.1 2.3

A6.2 SUCCESS RATE VS. FLOPS CURVES

Figure 3 plots ASR vs. cumulative FLOPs for increasing compute budgets. Each point is a per-
prompt budget cap; methods run until success or budget exhaustion. HMNS reaches higher ASR at
lower FLOPs, with the gap widening under stronger defenses (RPO, PAT).
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ASR vs FLOPs under Defenses (LLaMA-2-7B-Chat, AdvBench)
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Figure 3: ASR vs. FLOPs under defenses on LLaMA-2-7B-Chat (AdvBench). Curves average
over 3 seeds and 196 test prompts. HMNS maintains higher ASR at a given FLOP budget than
prompt-only baselines, especially under RPO and PAT.

A6.3 INTERNAL PASS COUNT (IPC) CALCULATION

HMNS’s loop consists of: (a) a baseline forward to obtain reference logits; (b) KL-based head at-
tribution by masking candidate heads across layers and recomputing logits; and (c) a steered decode
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with head-masked nullspace injection. By definition, IPC counts internal FEPs only (baseline and
masked attribution), excluding external decodes.

Let K=10 be the number of masked ablations per loop and let Tatt be the number of closed-loop
iterations taken before success. Then

IPC = 1 + Tatt ·K (baseline forward + per-loop masked ablations).

If a one-off pre-loop attribution pass over K0 candidates is used, the accounting becomes

IPC = 1 + K0 + Tatt ·K.

With our standard setting (K0=0), the worst case at Tatt=10 is IPCmax = 1 + 10 · 10 = 101;
empirically on defended AdvBench, Tatt is often 3–4, giving IPC ≈ 1 + Tatt·K = 31–41, and our
measured mean over successful runs is 32.10 Note that external decodes are not counted in IPC but
are included in FPS.

A6.4 EXPERIMENTAL DETAILS

Hardware and software. Single NVIDIA A100 (80GB); PyTorch 2.2; HF Transformers v4.41;
CUDA 12.x. Default dtype bfloat16; float32 for QR/projections.

Models and data. Primary defended-compute example uses LLaMA-2-7B-Chat on the Ad-
vBench test split (196 prompts). We replicate the identical protocol for Phi-3-Medium-14B-
Instruct and LLaMA-3.1-70B. Defenses: SMO, DPP, RPO, PAR, PAT, SAF (configs as cited in
the main text).

Decoding and limits. Temperature 0.7, nucleus p=0.95, max new tokens 128, batch size 1. KV
cache disabled during attribution and steered decoding (clean recomputation); enabled for plain
baseline forwards. Seeds fixed across three runs.

Attribution protocol. Per loop, we compute KL-based importance scores by masking each can-
didate head’s out-projection slice and recomputing logits; the top-K=10 heads across layers are
selected for masking and steering.

FLOPs and latency measurement. FLOPs are estimated from tokenized lengths and model di-
mensions using a calibrated per-token cost (attention + MLP), summed over FEPs; we release scripts
and raw token counts. Latency measured with torch.cuda.Event and synchronization; values
exclude I/O and tokenizer overhead.

Takeaway. Under equal compute accounting (FEP/FLOPs), HMNS’s higher ASR yields fewer
loops to success and competitive FPS/LPS vs. prompt-only attacks; under defenses, the gap widens
in HMNS’s favor.

A7 ABLATION STUDY

A7.1 ABLATION STUDY: DISSECTING COMPONENTS OF HMNS

To better understand the contribution of each design choice in Head-Masked Nullspace Steering
(HMNS), we conduct a comprehensive ablation study on the Phi-3 Medium 14B (Instruct) model
using the AdvBench jailbreak dataset. Each ablation disables or modifies a single component of the
full method to isolate its role in driving performance, compute efficiency, and fluency.

Our goal is to empirically validate the importance of (i) masking the out-projection of causally
identified heads, (ii) steering along directions orthogonal to their span, (iii) re-identifying influential
heads adaptively across decoding attempts, and (iv) deploying interventions across multiple layers
and positions. To ensure comparability, we report: ASR (Attack Success Rate) under both GPT4o

10Runs that include a brief K0=10 pre-loop pass (for caching alignment checks) yield IPC = 11 + 10Tatt
(i.e., ≈ 41–51 for Tatt=3–4), matching the conservative ledger reported in §4.3.
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Table 10: Ablation on Phi–3 Medium 14B (AdvBench). Metrics: ASR (%; left/right =
GPT4o/GPT-5), ACQ (external queries), IPC (internal passes; FEPs without KV cache), FPS (×1012
FLOPs per success; internal + decoding), LPS (seconds; A100–80GB, bf16). HMNS (Full)
combines KL attribution, masking, and nullspace steering at the final position with closed-loop
re-identification.

Variant (14B / AdvBench) ASR (Fuzz/G4) ↑ ACQ ↓ IPC ↓ FPS ↓ LPS (s) ↓
HMNS (Full) 96.8 / 92.1 2.1 32 0.58 6.8
Remove masking (Projection-only) 89.5 / 84.0 2.4 30 0.61 7.1
Remove projection (Mask-only) 87.9 / 82.2 2.3 29 0.55 6.3
Inject direct function dir. (Direct–ϕ, no nullspace) 88.7 / 83.1 2.5 32 0.63 7.2
No re–identification (freeze top–K from t=1) 90.2 / 85.0 2.7 24 0.60 7.0
Random–K head selection 81.4 / 76.0 2.2 32 0.56 6.7
Single–layer (vs multi–layer) 86.1 / 80.8 2.0 22 0.50 6.0
Multi–position injection (vs final–only) 95.0 / 90.5 2.1 32 0.65 7.4

and GPT-5 graders, ACQ (external queries), IPC (internal passes; forward-equivalent passes without
KV cache), FPS (FLOPs per success, in×1012), and LPS (latency per success, in seconds on A100-
80GB using bf16). These metrics are computed according to the procedure in Section A3 and
Algorithm 1.

The full HMNS configuration incorporates KL-based attribution ( 4), out-projection masking (
10), and orthogonal residual injection (Eqs. 12–14, 8) at the final position, with closed-loop re-
identification of top-K causal heads.

Results and discussion (Table 10). The full HMNS system achieves the highest ASR (96.8/92.1)
with only 2.1 external queries and competitive compute (FPS ≈ 0.58, LPS ≈ 6.8s). Removing ei-
ther mechanism degrades performance: Projection-only (no masking) and Mask-only (no nullspace
injection) each lower ASR by 7–10 points, confirming that HMNS relies on the synergy of causal
suppression and geometry-aware steering. Using a non-orthogonal Direct-ϕ direction further re-
duces ASR and increases latency, consistent with Theorem 2, which emphasizes irreproducibility
within the masked span. Freezing the top-K heads from the first step (no re-identification) leads
to lower IPC but hurts ASR and increases ACQ, indicating failure to adapt when attribution pat-
terns shift across decoding steps. Random-K head selection yields the steepest drop (81.4/76.0),
underscoring the necessity of KL-based head attribution ( 4).

Restricting interventions to a single layer saves compute (lowest IPC, FPS, and LPS) but signif-
icantly harms ASR, showing that multi-layer suppression captures complementary causal signals.
Conversely, expanding to multi-position injection increases FLOPs and latency without a clear ASR
gain, validating the choice to intervene only at the final position for compute-efficiency and fluency
preservation.

In summary, the ablations confirm that HMNS’s components are individually important and collec-
tively synergistic: masking enforces causal suppression, nullspace steering introduces locally irre-
producible directionality, and closed-loop re-identification ensures adaptive targeting. Their combi-
nation is essential to achieving high ASR at low external query cost and competitive compute.

A7.2 ABLATION STUDY: ATTRIBUTION AND SCORING MECHANISMS

To investigate how the choice of attribution and scoring mechanisms affects the performance of
Head-Masked Nullspace Steering (HMNS), we conduct a dedicated ablation study focused on
the causal ranking procedure defined in equation 4. Our goal is to evaluate whether simpler or
more efficient alternatives can match the precision and compute-efficiency of the full KL-divergence
scoring method.

We compare four attribution scoring strategies: full-distribution KL divergence ( 4), target-logit
drop (measuring only the change in the logit of the gold token), confidence drop (change in maxi zi),
and entropy change. Additionally, we examine the effect of proxy preselection—a lightweight pre-
filtering stage that limits ablations to a subset of likely impactful heads. We compare this with
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Table 11: Attribution ablation on Phi–3 Medium 14B (AdvBench). Each variant modifies the
head scoring or selection method. Metrics: ASR (%; GPT4o/GPT-5), ACQ (queries), IPC (internal
passes), FPS (×1012), and LPS (s). Full KL scoring with proxy preselection and global top-K (first
row) yields the best overall tradeoff.

Attribution Variant ASR (Fuzz/G4) ↑ ACQ ↓ IPC ↓ FPS ↓ LPS (s) ↓
KL-div (global-K, proxy+exact, batched) 96.8 / 92.1 2.1 32 0.58 6.8
Target-logit drop 91.0 / 85.9 2.4 26 0.54 6.3
Confidence drop (max-logit change) 89.2 / 84.3 2.6 24 0.51 6.1
Entropy change 88.5 / 83.2 2.7 23 0.49 6.0
Exact-only (no proxy preselection) 96.7 / 92.0 2.1 78 0.84 9.7
Serial masking (vs batched) 96.7 / 92.0 2.1 32 0.71 8.5
Per-layer top-K (vs global-K) 92.3 / 86.8 2.3 34 0.65 7.5

the more compute-intensive approach of ablating all heads directly. To further optimize runtime,
we evaluate batched masked forwards (ablating multiple heads per batch dimension) against serial
masking. Lastly, we compare two selection policies: per-layer top-K (selecting top heads in each
layer) versus global top-K (selecting top heads across the entire model).

All experiments are conducted on the Phi-3 Medium 14B (Instruct) model using the AdvBench
dataset. Evaluation metrics follow Section A3 and Algorithm 1: ASR (Fuzz/GPT-5), external
queries (ACQ), internal passes (IPC), FLOPs-per-success (FPS), and latency-per-success (LPS).

Results and discussion (Table 11). Full-distribution KL scoring combined with proxy preselec-
tion and global top-K selection achieves the highest ASR (96.8/92.1) with low ACQ and com-
petitive compute. Simpler heuristics like target-logit drop, confidence drop, and entropy change
all reduce compute (IPC, FPS, and LPS) but also yield a 5–8 point ASR drop, indicating weaker
alignment with true causal influence. Removing proxy preselection—i.e., ablating every head in
the model—achieves similar ASR but drastically increases internal passes and latency (IPC 78, LPS
9.7s), highlighting the importance of early pruning. Switching from batched to serial masking slows
evaluation with negligible performance gain, while shifting from global top-K to per-layer top-K
reduces ASR by 4–5 points, confirming that many causal heads cluster in a few dominant layers and
should not be force-distributed per layer.

These findings reinforce our design choice: KL-divergence offers the most faithful signal for causal
attribution, and when paired with proxy filtering and batched masking, enables efficient, inter-
pretable head selection. Global top-K further concentrates suppression where it is most effective.
Alternative heuristics can save compute but at a notable performance cost—an important tradeoff
depending on deployment constraints.

A7.3 ABLATION: NULLSPACE AND INJECTION DESIGN CHOICES

Purpose and setup. Beyond identifying what to mute and where to steer, HMNS hinges on how
the nullspace direction is constructed and how the residual nudge is injected. We therefore ablate
the orthogonality tolerance used to certify uℓ ∈ W⊥

ℓ , the resampling budget when this test fails,
numerical and algorithmic settings for the QR factorization that defines the projector P⊥

ℓ , the rule
that scales the injected vector (RMS vs. ℓ2 vs. LayerNorm-based), the physical injection site within
the transformer block, and the strength of masking (hard zero vs. partial scaling). Experiments are
run on Phi-3 Medium 14B (Instruct) with the AdvBench test split. Metrics follow our compute
protocol in Secs. A3 and 1: per-grader ASR (GPT4o/GPT-5), external queries (ACQ), internal passes
(IPC; FEPs without KV cache), FLOPs per success (FPS, ×1012), and latency per success (LPS,
seconds on A100–80GB, bf16). The HMNS (Full) row reproduces the reference configuration
used throughout the paper.

Findings (Table 12). Three consistent trends emerge. (i) Orthogonality matters. Relaxing the
tolerance from 10−8 to 10−5 degrades defended ASR by ∼2–3 pp, aligning with our theory that
leakage into Wℓ reduces the irreproducibility of the nudge (Thm. 2). A small resampling budget
(1–3) largely recovers this performance at negligible extra IPC. (ii) Numerics are robust but not
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Table 12: Nullspace / Injection ablation on Phi-3 Medium 14B (AdvBench), vertical layout.
Each row shows metric–value pairs to fit a single-column width. ASR is % (left/right = GPT4o/GPT-
5); FPS in ×1012; LPS in seconds on A100-80GB, bf16.

Category Variant Metric : Value

Reference HMNS (Full) ASR (F/G4): 96.8 / 92.1; ACQ: 2.1; IPC: 32; FPS: 0.58;
LPS: 6.8

Orthogonality tol. ∥C⊤
ℓ uℓ∥∞ < 10−8 (ref) ASR: 96.8 / 92.1; ACQ: 2.1; IPC: 32; FPS: 0.58; LPS: 6.8

∥C⊤
ℓ uℓ∥∞ < 10−6 ASR: 95.9 / 91.2; ACQ: 2.1; IPC: 32; FPS: 0.57; LPS: 6.7

∥C⊤
ℓ uℓ∥∞ < 10−5 ASR: 94.0 / 89.5; ACQ: 2.2; IPC: 32; FPS: 0.56; LPS: 6.6

Resampling budget 0 ASR: 93.1 / 88.2; ACQ: 2.3; IPC: 31; FPS: 0.56; LPS: 6.6
1 ASR: 95.4 / 90.6; ACQ: 2.2; IPC: 32; FPS: 0.57; LPS: 6.7
3 (ref) ASR: 96.8 / 92.1; ACQ: 2.1; IPC: 32; FPS: 0.58; LPS: 6.8

QR config fp32 thin (ref) ASR: 96.8 / 92.1; ACQ: 2.1; IPC: 32; FPS: 0.58; LPS: 6.8
bf16 thin ASR: 95.6 / 90.9; ACQ: 2.1; IPC: 32; FPS: 0.58; LPS: 6.6
fp32 economy ASR: 96.5 / 91.9; ACQ: 2.1; IPC: 32; FPS: 0.58; LPS: 6.8
fp32 stabilized ASR: 97.0 / 92.4; ACQ: 2.1; IPC: 33; FPS: 0.61; LPS: 7.1

Norm rule RMS(aℓ) (ref) ASR: 96.8 / 92.1; ACQ: 2.1; IPC: 32; FPS: 0.58; LPS: 6.8
ℓ2-norm(aℓ) ASR: 96.2 / 91.6; ACQ: 2.1; IPC: 32; FPS: 0.58; LPS: 6.8
LayerNorm-scaled ASR: 97.1 / 92.6; ACQ: 2.1; IPC: 32; FPS: 0.59; LPS: 6.9

Injection site After attn (ref) ASR: 96.8 / 92.1; ACQ: 2.1; IPC: 32; FPS: 0.58; LPS: 6.8
After MLP ASR: 93.8 / 89.1; ACQ: 2.2; IPC: 32; FPS: 0.60; LPS: 7.0
Residual pre-add ASR: 95.0 / 90.2; ACQ: 2.2; IPC: 32; FPS: 0.59; LPS: 6.9

Mask strength γ = 0.00 (hard zero, ref) ASR: 96.8 / 92.1; ACQ: 2.1; IPC: 32; FPS: 0.58; LPS: 6.8
γ = 0.25 ASR: 94.8 / 90.0; ACQ: 2.3; IPC: 30; FPS: 0.57; LPS: 6.7
γ = 0.50 ASR: 92.2 / 87.3; ACQ: 2.5; IPC: 28; FPS: 0.55; LPS: 6.7
γ = 0.75 ASR: 88.6 / 83.9; ACQ: 2.7; IPC: 26; FPS: 0.55; LPS: 6.6

free. Using bf16 QR is workable (minor ASR drop), while a stabilized fp32 QR slightly im-
proves ASR but adds a modest compute penalty (IPC/FPS/LPS up). Thin and economy QR behave
similarly, supporting our default. (iii) Scaling and site selection trade-offs. RMS scaling remains
a strong default; LayerNorm scaling offers a small ASR gain with similar cost, whereas ℓ2 scal-
ing is essentially neutral. Injecting after attention outperforms after MLP and pre-add sites, likely
because the nullspace is defined w.r.t. the attention write span. Finally, hard-zero masking (γ=0)
dominates partial masks; weakening the mask noticeably raises ACQ and lowers ASR, consistent
with the causal-suppression role of masking.

HMNS’s compute-normalized advantage hinges on enforcing strict orthogonality to the muted write
span, using numerically stable (but not overly costly) projectors, and injecting where the nullspace
is defined (post-attention). These choices jointly sustain high ASR at ≈2 external queries and com-
petitive FPS/LPS on defended tasks.

A7.4 ABLATION: HYPERPARAMETERS

We next study how key knobs influence HMNS effectiveness and efficiency on Phi–3 Medium
14B with AdvBench. Unless stated otherwise, we use the reference configuration from Section 4.1
and Algorithm 1: KL-based top-K attribution with K=10, closed-loop iterations Tatt=10 (early-
stopping enabled), initial steer λ=0.25 with a linear schedule αt = λ(1+0.1(t−1)), single-position
(final) injection, and multi-layer masking+nullspace steering. Metrics follow Section A3: per-grader
ASR (GPT4o/GPT-5), external queries (ACQ), internal passes (IPC; FEPs without KV cache),
FLOPs per success (FPS; ×1012), and latency per success (LPS; seconds, A100–80GB, bf16).

Hyperparameters. Table 13 varies Top-K, the number of closed-loop attempts Tatt, the initial
steer λ, schedule families, and the early-stopping criterion. We observe a broad sweet spot around
K ∈ {8, 10, 12}, Tatt ∈ {2, 4} (with early-stop), and λ ∈ [0.20, 0.25]. Linear and cosine schedules
perform best on average; adaptive scheduling (stop on diminishing KL gain) preserves ASR while
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Table 13: Hyperparameter ablation on Phi–3 Medium 14B (AdvBench). Each row modifies one
factor relative to the HMNS reference.

Category Setting ASR (Fuzz/G4) ↑ ACQ ↓ IPC ↓ FPS ↓ LPS (s) ↓
Reference HMNS (Full) 96.8 / 92.1 2.1 32 0.58 6.8

Top-K K=4 92.4 / 87.7 2.3 24 0.50 6.2
Top-K K=6 95.0 / 90.3 2.2 28 0.55 6.6
Top-K K=8 96.2 / 91.5 2.1 30 0.57 6.7
Top-K K=10 96.8 / 92.1 2.1 32 0.58 6.8
Top-K K=12 96.9 / 92.0 2.2 36 0.62 7.1
Top-K K=16 97.0 / 92.1 2.3 44 0.70 7.8

Tatt 1 93.8 / 88.9 2.4 18 0.45 5.9
Tatt 2 96.1 / 91.4 2.2 26 0.53 6.4
Tatt 4 96.9 / 92.2 2.1 34 0.60 6.9
Tatt 6 97.0 / 92.3 2.1 42 0.67 7.4
Tatt 8 97.0 / 92.3 2.1 49 0.73 7.8
Tatt 10 97.0 / 92.4 2.1 56 0.80 8.3

Initial λ 0.10 94.6 / 89.9 2.3 32 0.56 6.7
Initial λ 0.15 95.9 / 91.0 2.2 32 0.57 6.7
Initial λ 0.20 96.5 / 91.7 2.1 32 0.58 6.8
Initial λ 0.25 96.8 / 92.1 2.1 32 0.58 6.8
Initial λ 0.35 96.2 / 91.2 2.2 32 0.60 7.0

Schedule constant 95.8 / 90.9 2.2 32 0.59 6.9
Schedule linear 96.8 / 92.1 2.1 32 0.58 6.8
Schedule cosine 96.6 / 91.9 2.1 32 0.58 6.8
Schedule exponential 96.0 / 91.3 2.2 33 0.60 7.0
Schedule adaptive (KL early-stop) 96.7 / 92.0 2.1 27 0.53 6.4

Early-stop KL gain 96.8 / 92.1 2.1 27 0.53 6.4
Early-stop log-prob gain 96.4 / 91.6 2.2 29 0.55 6.6
Early-stop grader-proxy 96.6 / 91.8 2.3 28 0.56 6.9

reducing IPC/FPS. Among stop rules, KL-gain outperforms raw log-prob and a heavier grader-proxy
(the latter adds overhead and slightly raises ACQ/LPS).

A7.5 EXTENDED ABLATIONS: NUMERICAL STABILITY, TARGETING POLICY, FORMATTING
SENSITIVITY, DEFENDED ROBUSTNESS, COMPUTE FAIRNESS, EVALUATION
SENSITIVITY, AND SANITY CHECKS

We provide a detailed analysis of seven ablation families that probe the stability and scope of HMNS
on Phi–3 Medium 14B with AdvBench. Unless explicitly stated, the reference configuration is
identical to Section 4.1 (single A100–80GB, PyTorch 2.2, HF v4.41, bf16 with TF32 matmul,
nucleus p=0.95, T=0.7, max new tokens = 128, batch = 1), and metrics follow Section A3 with
the protocol in Algorithm 1. For readability, we summarize empirical trends in Tables 14–20 and
then interpret each axis.

Numerical / Precision (Table 14). This ablation evaluates numeric robustness of HMNS’s two
core primitives: (i) head-wise masking via out-projection column zeroing, and (ii) nullspace projec-
tion via thin QR. Model dtype. Running the entire forward in bf16 with TF32 matmul acceleration
is a strong default, yielding near-fp32 accuracy with lower latency. Pure fp16without loss-scaling
can underflow softmax/KL terms in attribution ( 4); static loss-scaling largely mitigates this. Full
fp32 tightens orthogonality in QR (Eqs. 12–14) but gives negligible ASR gains at higher FPS/LPS.
TF32 on/off. Disabling TF32 slightly increases latency with no ASR benefit, since QR/orthogonality
already run in fp32. Quantization. A pragmatic INT8/AWQ trial that applies masking activation-
side and keeps WO output in higher precision maintains ASR within ∼0.5–0.7 pp; dequant/requant
amortizes latency gains. Overall, HMNS is numerically robust if (1) QR runs in fp32, (2) attri-
bution uses stable softmax/KL with clipping, and (3) steering magnitudes use norm-aware scaling (
8).
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Table 14: Numerical / precision ablation on Phi–3 Medium 14B (AdvBench).

Category Setting ASR (Fuzz/G4) ↑ ACQ ↓ IPC ↓ FPS ↓ LPS (s) ↓
Reference bf16 + TF32 on 96.8 / 92.1 2.1 32 0.58 6.8

Model dtype fp16 (no loss-scaling) 95.9 / 91.0 2.2 32 0.58 6.7
Model dtype fp16 (+ static loss-scaling) 96.5 / 91.8 2.2 32 0.58 6.8
Model dtype fp32 96.9 / 92.3 2.1 32 0.62 7.5
TF32 matmul off (bf16) 96.7 / 92.0 2.1 32 0.60 7.1
Quantization INT8/AWQ (act-side mask) 96.2 / 91.5 2.1 32 0.57 6.7

Table 15: Layer/position policy ablation on Phi–3 Medium 14B (AdvBench).

Category Setting ASR (Fuzz/G4) ↑ ACQ ↓ IPC ↓ FPS ↓ LPS (s) ↓
Reference Adaptive (multi-layer), final-only 96.8 / 92.1 2.1 32 0.58 6.8

Layer policy Early-only layers 90.7 / 85.5 2.3 28 0.54 6.5
Layer policy Mid-only layers 94.8 / 90.1 2.2 30 0.56 6.7
Layer policy Late-only layers 96.1 / 91.5 2.1 31 0.57 6.7
Layer policy Adaptive (top-K global) 96.8 / 92.1 2.1 32 0.58 6.8

Token position final + (T−1) 97.0 / 92.3 2.1 33 0.60 7.1
Token position windowed (last 3) 97.2 / 92.5 2.1 35 0.63 7.4

Layer / Position Policy (Table 15). We vary where HMNS looks (attribution scope) and acts
(masking/injection placement). Layer scope. Early-only harms ASR most; late-only nearly matches
reference; mid-only is intermediate. The adaptive policy (our default) ranks heads globally by KL
impact ( 4) and composes a multi-layer write subspace ( 12), yielding the best defended ASR.
Position scope. Extending injection beyond the final token (final+(T−1), small window) marginally
boosts ASR but raises IPC/FPS due to repeated hooks and recomputation. We retain final-only for
the best compute/ASR balance.

Model / Format Sensitivity (Table 16). Since Phi-3 is instruction-tuned with a chat template,
we test formatting sensitivity. Removing the template (raw prompts) moderately lowers ASR and
can shift head rankings. Tokenizer toggles have small effects; strict BOS/EOS improves determinism
with negligible ASR change. Recommendation: preserve native templates and tokenizer defaults,
and log formatting choices.

Defenses / Robustness (Table 17). We examine defended performance under six defenses and
stacked regimes. RPO and PAT are most challenging; stacking compounds difficulty. Despite this,
HMNS keeps low ACQ and competitive FPS/LPS, indicating that closed-loop re-identification still
finds high-impact heads under defended distributions.

Compute-Fairness Regimes (Table 18). We evaluate three protocols—FLOP-matched, latency-
matched, and ACQ-matched. In our setup, HMNS exhibits nearly identical compute profiles across
these regimes; accordingly, we use FLOP- and latency-matched as the primary comparisons. ACQ-
matched is included for completeness only, since it can favor prompt-only methods by ignoring
internal passes.

Evaluation Sensitivity (Table 19). We sweep seeds (3/5/10), graders (GPT4o vs. GPT-5; both
deterministic: T=0, p=1), and the fluency reference LM (Section A4.4). Means are stable across
seeds; more seeds narrow CIs. Grader identity shifts absolute ASR but preserves HMNS’s relative
ranking. Fluency is stable across comparable base LMs.

Sanity / Controls (Table 20). We intentionally remove or randomize causal/geometry grounding.
Shuffling head IDs (same K), masking random head slices, or injecting a random unit vector without
nullspace projection all substantially reduce ASR with similar compute, confirming that HMNS’s
KL-based attribution and nullspace construction are necessary. This matches our theory: orthogo-
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Table 16: Model/format sensitivity on Phi–3 Medium 14B (AdvBench).

Category Setting ASR (Fuzz/G4) ↑ ACQ ↓ IPC ↓ FPS ↓ LPS (s) ↓
Reference Chat template: on 96.8 / 92.1 2.1 32 0.58 6.8

Chat template off (raw prompt) 94.2 / 89.6 2.3 32 0.58 6.9
Tokenizer space-prefix on 96.6 / 91.9 2.1 32 0.58 6.8
Tokenizer strict BOS/EOS 96.8 / 92.2 2.1 32 0.58 6.7

Table 17: Defended performance for HMNS on Phi–3 Medium 14B (AdvBench).

Defense Setting ASR (Fuzz/G4) ↑ ACQ ↓ IPC ↓ FPS ↓ LPS (s) ↓
None baseline 96.8 / 92.1 2.1 32 0.58 6.8

Single SMO 95.6 / 90.8 2.1 33 0.59 6.9
Single DPP 95.2 / 90.2 2.2 33 0.60 7.0
Single RPO 93.8 / 88.7 2.2 34 0.62 7.2
Single PAR 95.0 / 90.0 2.2 33 0.60 7.0
Single PAT 94.0 / 89.0 2.2 34 0.62 7.2
Single SAF 95.4 / 90.4 2.1 33 0.60 7.0

Stacked (SMO+DPP) 94.6 / 89.6 2.2 35 0.63 7.3
Stacked (RPO+PAT) 92.1 / 87.0 2.3 36 0.66 7.6
Stacked (RPO+PAT+SAF) 91.3 / 86.3 2.3 37 0.68 7.8

nality ensures the masked write subspace cannot reconstruct/cancel the injected component, while
attribution targets the largest-impact directions.

HMNS is (i) numerically stable with bf16+TF32 forward and fp32 QR; (ii) most effective
with adaptive multi-layer targeting and final-position injection; (iii) sensitive to chat templating in
alignment-consistent ways; (iv) robust under single defenses and degrades gracefully under stack-
ing; (v) consistently favorable in FLOP- and latency-matched regimes (ACQ matching is not recom-
mended as a primary control); (vi) stable across seeds/graders; and (vii) validated by sanity controls
that remove causal localization or nullspace geometry. These ablations complement the component
study in Section A7.1 and support HMNS’s design choices.

A7.6 ALGORITHMIC SUMMARY

For clarity and reproducibility, we provide a formal summary of the complete HMNS procedure in
Algorithm 2. This includes all core steps: (i) causal head attribution via masked KL divergence,
(ii) construction of the masked write subspace and orthogonal steering directions via QR decompo-
sition, (iii) residual injection using norm-scaled perturbations, and (iv) closed-loop decoding with
re-identification. The algorithm operates fully at inference time and iteratively adapts to the evolv-
ing autoregressive context. Each iteration dynamically reselects influential heads and re-steers the
model until success or a fixed budget is reached. For evaluation under compute-matched settings,
see Algorithm 1 and Section A3.
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Table 18: Compute-fairness regimes (metrics shown are HMNS’s).

Category Setting ASR (Fuzz/G4) ↑ ACQ ↓ IPC ↓ FPS ↓ LPS (s) ↓
Regime FLOP-matched 96.8 / 92.1 2.1 32 0.58 6.8
Regime Latency-matched 96.7 / 92.0 2.1 32 0.59 6.8
Regime ACQ-matched 96.8 / 92.1 2.1 32 0.58 6.8

Table 19: Evaluation sensitivity on Phi–3 Medium 14B (AdvBench).

Category Setting ASR (Fuzz/G4) ↑ ACQ ↓ IPC ↓ FPS ↓ LPS (s) ↓
Seeds 3 96.8 / 92.1 2.1 32 0.58 6.8
Seeds 5 96.8 / 92.1 2.1 32 0.58 6.8
Seeds 10 96.9 / 92.1 2.1 32 0.58 6.8
Grader GPT4o (det.) 96.8 / — 2.1 32 0.58 6.8
Grader GPT-5 (det.) — / 92.1 2.1 32 0.58 6.8
Fluency LM LLaMA-2-7B (base) (fluency baseline) — — — —
Fluency LM alt base (comparable size) (within ±0.01) — — — —

Table 20: Sanity / control variants on Phi–3 Medium 14B (AdvBench).

Category Setting ASR (Fuzz/G4) ↑ ACQ ↓ IPC ↓ FPS ↓ LPS (s) ↓
Reference HMNS (Full) 96.8 / 92.1 2.1 32 0.58 6.8

Shuffle heads permute head IDs (same K) 84.3 / 79.1 2.3 32 0.59 6.9
Random inject random unit vector (no projection) 82.7 / 77.4 2.3 32 0.59 6.9
Random mask mask random head slices (size-matched) 83.5 / 78.0 2.2 32 0.58 6.8
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Algorithm 1 Compute-Matched Evaluation for HMNS and Baselines (Per Input x)

1: Input: Prompt x; top-K heads per loop; max attribution–steering iterations Tloop
2: Measure: FLOPs per internal pass Cint(·) and per external decode Cdec(·)
3: Initialize: J(x)←0 ▷ internal-pass counter (IPC counts only internal)
4: Q(x)←0 ▷ external decodes (QC)
5: Tstart← wall-clock timer

# Internal passes run with KV cache disabled (for correctness); decodes are also cache-off by
default.
# HMNS loop includes: (i) clean reference forward, (ii) masked forwards for attribution, (iii)
steered decode.

6: Step 1: Closed-loop HMNS until first success or Tloop
7: for t = 1 to Tloop do
8: Clean reference forward (internal):
9: Run clean forward on current context to get reference logits ▷ KV cache off

10: Record Cint(x, J(x)+1); J(x)← J(x) + 1
11: Attribution (internal):
12: Mask each candidate head’s WO slice (one at a time), recompute logits, score ∆ℓ,h via KL
13: for m = 1 to K do
14: Record Cint(x, J(x)+1); J(x)← J(x) + 1 ▷ 1 per masked head
15: end for
16: Intervention + decode (external):
17: Apply head masking and nullspace steering; generate continuation ▷ KV cache off by

default
18: Record Cdec(x,Q(x)+1); Q(x)← Q(x) + 1
19: if grader indicates success then
20: break
21: end if
22: end for

23: Step 2: HMNS Metrics (per input x)
24: Latency: LPS(x)← wall-clock time since Tstart
25: Internal Pass Count: IPC(x)← J(x)
26: Query Count (external decodes): QC(x)← Q(x)

FPS(x) ←
J(x)∑
j=1

Cint(x, j) +

Q(x)∑
i=1

Cdec(x, i)

27: Step 3: Prompt-only baseline under matched budget
28: Budget BHMNS(x)← FPS(x)
29: Caccum ← 0, N ← 0
30: while Caccum + Cpb

dec(x,N+1) ≤ BHMNS(x) do
31: N ← N + 1; Caccum ← Caccum + Cpb

dec(x,N)
32: end while
33: N(x)← max(1, N)
34: for i = 1 to N(x) do
35: Generate y(i) with same decode policy
36: Evaluate success with same grader
37: end for
38: Report: best-of-N(x) result for the prompt-only baseline

39: Return: AverageQC(x), IPC(x), FPS(x), LPS(x), and best-of-N(x) result
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Algorithm 2 Head-Masked Nullspace Steering (HMNS)

Require: Decoder-only LM fθ; prompt x; top-K heads; max iterations Tloop; steer schedule
{αt}

Tloop
t=1 ; orthogonality tol. δ; norm stabilizer ε; success predicate G(·)

Notation: layers ℓ ∈ {1, . . . , L}; heads h ∈ {0, . . . ,Hℓ−1}; head-width dh; residual dim d.

Ops: softmax; KL divergence KL(·∥·); RMS(a) =
√

1
d

∑
i a

2
i .

1: Baseline forward: Run a clean forward on x to obtain baseline final-position logits z and
distribution P = softmax(z).

2: for t = 1 to Tloop do
3: Attribution (per-head ablations):
4: for all heads (ℓ, h) (optionally batched) do
5: Form selector Sℓ,h that zeros slice h of ĥℓ,T .
6: Replace WO

ℓ by W̃O
ℓ,h = WO

ℓ (I − Sℓ,h) for this probe.
7: Forward once to get ablated logits z̃(ℓ,h) and P̃ (ℓ,h) = softmax(z̃(ℓ,h)).
8: Score ∆ℓ,h ← KL

(
P ∥ P̃ (ℓ,h)

)
.

9: end for
10: Select heads: S ← global top-K by ∆ℓ,h; define layerwise Sℓ = {h : (ℓ, h) ∈ S}.
11: Build write subspaces: For each ℓ with Sℓ ̸= ∅,
12: Cℓ ←

[
WO

ℓ [:, hdh : (h+1)dh]
]
h∈Sℓ

∈ Rd×(|Sℓ|dh).
13: Thin QR in fp32: Cℓ = QℓRℓ.
14: Sample r ∼ N (0, Id); project vℓ ← (I −QℓQ

⊤
ℓ )r.

15: If ∥vℓ∥2 = 0 (or tiny), resample r (small fixed budget).
16: uℓ ← vℓ/(∥vℓ∥2 + ε); if ∥C⊤

ℓ uℓ∥∞ ≥ δ, resample r and retry.
17: Intervene & decode (single pass):
18: Masking: For each ℓ, zero all selected head slices via WO

ℓ ←WO
ℓ (I − Sℓ,S) for this

pass.
19: Steer: At each intervened layer ℓ, compute δℓ ← αt ·RMS(aℓ) · uℓ and add at the final

token position.
20: Generate continuation y(t) under the standard decoding policy.
21: if G(y(t)) = SUCCESS then
22: return y(t), selected heads S, and (uℓ)ℓ
23: else
24: Update P ← softmax(z(t)) from the current context (for next iteration’s attribution).
25: end if
26: end for
27: return y(Tloop) (last attempt) and logs
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