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Abstract

Named Entity Recognition (NER) in Few-Shot001
setting is imperative for entity tagging in low002
resource domains. Existing approaches only003
learn class-specific semantic features and inter-004
mediate representations from source domains.005
This affects generalizability to unseen target006
domains, resulting in suboptimal performances.007
To this end, we present CONTAINER, a novel008
contrastive learning technique that optimizes009
the inter-token distribution distance for Few-010
Shot NER. Instead of optimizing class-specific011
attributes, CONTAINER optimizes a general-012
ized objective of differentiating between token013
categories based on their Gaussian-distributed014
embeddings. This effectively alleviates overfit-015
ting issues originating from training domains.016
Our experiments in several traditional test do-017
mains (OntoNotes, CoNLL’03, WNUT ’17,018
GUM) and a new large scale Few-Shot NER019
dataset (Few-NERD) demonstrate that, on aver-020
age, CONTAINER outperforms previous meth-021
ods by 3%-13% absolute F1 points while022
showing consistent performance trends, even023
in challenging scenarios where previous ap-024
proaches could not achieve appreciable perfor-025
mance. The source code of CONTAINER will026
be available at: https://github.com/027
ANONYMOUS/container.028

1 Introduction029

Named Entity Recognition (NER) is a fundamental030

NLU task that recognizes mention spans in un-031

structured text and categorizes them into a pre-032

defined set of entity classes. In spite of its chal-033

lenging nature, recent deep-learning based ap-034

proaches (Huang et al., 2015; Ma and Hovy, 2016;035

Lample et al., 2016; Peters et al., 2018; Devlin et al.,036

2018) have achieved impressive performance. As037

these supervised NER models require large-scale038

human-annotated datasets, few-shot techniques that039

can effectively perform NER in resource constraint040

settings have recently garnered a lot of attention.041

The       Islands       lie       860       km       east       of       Christchurch
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Attraction Repulsion

Figure 1: Contrastive learning dynamics of a token (Is-
lands) with all other tokens in an example sentence from
GUM (Zeldes, 2017). CONTAINER decreases the em-
bedding distance between tokens of the same category
(PLACE) while increasing the distance between differ-
ent categories ( QTY. and O).

Few-shot learning involves learning unseen 042

classes from very few labeled examples (Fei-Fei 043

et al., 2006; Lake et al., 2011; Bao et al., 2020). 044

To avoid overfitting with the limited available data, 045

meta-learning has been introduced to focus on how 046

to learn (Vinyals et al., 2016; Bao et al., 2020). 047

Snell et al. (2017) proposed Prototypical Networks 048

to learn a metric space where the examples of a 049

specific unknown class cluster around a single pro- 050

totype. Although it was primarily deployed in com- 051

puter vision, Fritzler et al. (2019) and Hou et al. 052

(2020) also used Prototypical Networks for few- 053

shot NER. Yang and Katiyar (2020), on the other 054

hand, proposed a supervised NER model that learns 055

class-specific features and extends the intermediate 056

representations to unseen domains. Additionally, 057

they employed a Viterbi decoding variant of their 058

model as "StructShot". 059

Few-shot NER poses some unique challenges 060

that make it significantly more difficult than other 061

few-shot learning tasks. First, as a sequence label- 062

ing task, NER requires label assignment according 063

to the concordant context as well as the dependen- 064

cies within the labels (Lample et al., 2016; Yang 065

and Katiyar, 2020). Second, in NER, tokens that 066

do not refer to any defined set of entities are labeled 067

as Outside (O). Consequently, a token that is la- 068

beled as O in training entity set may correspond 069

to a valid target entity in test set. For prototypical 070

networks, this challenges the notion of entity exam- 071
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ples being clustered around a single prototype. As072

for Nearest Neighbor based methods such as Yang073

and Katiyar (2020), they are initially “pretrained"074

with the objective of source class-specific super-075

vision. As a result, the trained weights will be076

closely tied to the source classes and the network077

will project training set O-tokens so that they078

get clustered in embedding space. This will force079

the embeddings to drop a lot of useful features per-080

taining to its true target entity in the test set. Third,081

in few-shot setting, there are not enough samples082

from which we can select a validation set. This083

reduces the capability of hyperparameter tuning,084

which particularly affects template based methods085

where prompt selection is crucial for good perfor-086

mance (Cui et al., 2021). In fact, the absence of087

held-out validation set puts a lot of earlier few-shot088

works into question whether their strategy is truly089

"Few-Shot" (Perez et al., 2021).090

To deal with these challenges, we present a novel091

approach , CONTAINER that harnesses the power092

of contrastive learning to solve Few-Shot NER.093

CONTAINER tries to decrease the distance of to-094

ken embeddings of similar entities while increas-095

ing it for dissimilar ones (Figure 1). This enables096

CONTAINER to better capture the label depen-097

dencies. Also, since CONTAINER is trained with098

a generalized objective, it can effectively avoid the099

pitfalls of O-tokens that the prior methods strug-100

gle with. Lastly, CONTAINER does not require101

any dataset specific prompt or hyperparameter tun-102

ing. Standard settings used in prior works (Yang103

and Katiyar, 2020) works well across different do-104

mains in different evaluation settings.105

Unlike traditional contrastive learners (Chen106

et al., 2020; Khosla et al., 2020) that optimize sim-107

ilarity objective between point embeddings, CON-108

TAINER optimizes distributional divergence ef-109

fectively modeling Gaussian Embeddings. While110

point embedding simply optimizes sample dis-111

tances, Gaussian Embedding faces an additional112

constraint of maintaining class distribution through113

the variance estimation. Thus Gaussian Embedding114

explicitly models entity class distributions which115

not only promotes generalized feature representa-116

tion but also helps in few-sample target domain117

adaptation. Previous works in Gaussian Embed-118

ding has also shown that mapping to a density119

captures representation uncertainties (Vilnis and120

McCallum, 2014) and expresses natural asymme-121

tries (Qian et al., 2021) while showing better gen-122

eralization requiring less data to achieve optimal 123

performance (Bojchevski and Günnemann, 2017). 124

Inspired by these unique qualities of Gaussian Em- 125

bedding, in this work we leverage Gaussian Em- 126

bedding in contrastive learning for Few-Shot NER. 127

A nearest neighbor classification scheme dur- 128

ing evaluation reveals that on average, CON- 129

TAINER significantly outperforms previous SOTA 130

approaches in a wide range of tests by up to 13% ab- 131

solute F1-points. In particular, we extensively test 132

our model in both in-domain and out-of-domain ex- 133

periments as proposed in Yang and Katiyar (2020) 134

in various datasets (CoNLL ’03, OntoNotes 5.0, 135

WNUT ’17, I2B2) . We also test our model in 136

a large dataset recently proposed for Few-Shot 137

NER - Few-NERD (Ding et al., 2021) where CON- 138

TAINER outperforms all other SOTA approaches 139

setting a new benchmark result in the leaderboard. 140

In summary, our contributions are as follows: 141

(1) We propose a novel Few-Shot NER approach 142

CONTAINER that leverages contrastive learning 143

to infer distributional distance of their Gaussian 144

Embeddings. To the best of our knowledge we 145

are the first to leverage Gaussian Embedding in 146

contrastive learning for Named Entity Recognition. 147

(2) We demonstrate that CONTAINER represen- 148

tations are better suited for adaptation to unseen 149

novel classes, even with a low number of support 150

samples. (3) We extensively test CONTAINER in 151

a wide range of experiments using several datasets 152

and evaluation schemes. In almost every case, our 153

model largely outperforms present SOTAs estab- 154

lishing new benchmark results. 155

2 Task Formulation 156

Given a sequence of n tokens {x1, x2, . . . xn}, 157

NER aims to assign each token xi to its correspond- 158

ing tag label yi. 159

Few-shot Setting For Few-shot NER, a model 160

is trained in a source domain with a tag-set {Cs
(i)} 161

and tested in a data-scarce target domain with a 162

tag-set {Cd
(j)} where i, j are index of different tags. 163

Since {Cs
(i)} ∩ {Cd

(j)} = ∅, it is very challenging 164

for models to generalize to unseen test tags. In an 165

N-way K-shot setting, there are N tags in the target 166

domain |{Cd
(j)}| = N , and each tag is associated 167

with a support set with K examples. 168

Tagging Scheme For fair comparison of CON- 169

TAINER against previous SOTA models, we fol- 170

low an IO tagging scheme where I-type repre- 171
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Figure 2: Illustration of our proposed CONTAINER framework based on Contrastive Learning over Gaussian
Embedddings: (i) Training in source domains using training NER labels PER and DATE, (ii) Fine-tuning to target
domains using target NER labels ORG and LOCATION, (iii) Assigning labels to test samples via Nearest Neighbor
support set labels.

sents that all of the tokens are inside an entity, and172

O-type denotes all the other tokens (Yang and173

Katiyar, 2020; Ding et al., 2021).174

Evaluation Scheme To compare with SOTA175

models in Few-NERD leaderboard (Ding et al.,176

2021), we adpot episode evaluation as done by the177

authors. Here, a model is assessed by calculating178

the micro-F1 score over multiple number of test179

episodes. Each episode consists of a K-shot sup-180

port set and a K-shot unlabeled query (test) set to181

make predictions . While Few-NERD is explicitly182

designed for episode evaluation, traditional NER183

datasets (e.g., OntoNotes, CoNLL’03, WNUT ’17,184

GUM) have their distinctive tag-set distributions.185

Thus, sampling test episodes from the actual test186

data perturbs the true distribution that may not rep-187

resent the actual performance. Consequently, Yang188

and Katiyar (2020) proposed to sample multiple189

support sets from the original development set and190

use them for prediction in the original test set. We191

also use this evaluation strategy for these traditional192

NER datasets.193

3 Method194

CONTAINER utilizes contrastive learning to op-195

timize distributional divergence between different196

token entity representations. Instead of focusing197

on label specific attributes, this contradistinction198

explicitly trains the model to distinguish between199

different categories of tokens. Furthermore, mod-200

eling Gaussian Embedding instead of traditional201

point representation effectively lets CONTAINER 202

model the entity class distribution, which incites 203

generalized representation of tokens. Finally, it 204

lets us carefully finetune our model even with a 205

small number of samples without overfitting which 206

is imperative for domain adaptation. 207

As demonstrated in Figure 2, we first train our 208

model in source domains. Next, we finetune model 209

representations using few-sample support sets to 210

adapt it to target domains. The training and finetun- 211

ing of CONTAINER is illustrated in Algorithm 1. 212

Finally, we use an instance level nearest neighbor 213

classifier for inference in test sets. 214

3.1 Model 215

Figure 2 shows the key components of our model. 216

To generate contextualized representation of sen- 217

tence tokens, CONTAINER incorporates a pre- 218

trained language model encoder PLM. For proper 219

comparison against existing approaches, we use 220

BERT (Devlin et al., 2018) as our PLM encoder. 221

Thus given a sequence of n tokens [x1, x2, . . . , xn], 222

we take the final hidden layer output of the PLM as 223

the intermediate representations hi ∈ Rl′ . 224

[h1,h2, . . . ,hn] = PLM([x1, x2, . . . , xn]) (1) 225

These intermediate representations are then chan- 226

neled through simple projection layer for generat- 227

ing the embedding. Unlike SimCLR (Chen et al., 228

2020) that uses projected point embedding for con- 229

trastive learning, we assume that token embeddings 230
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follow Gaussian distributions. Specifically, we em-231

ploy projection network fµ and fΣ for producing232

Gaussian distribution parameters:233

µi = fµ(hi), Σi = ELU (fΣ(hi))+(1+ϵ) (2)234

where µi ∈ Rl,Σi ∈ Rl×l represents mean and235

diagonal covariance (with nonzero elements only236

along the diagonal of the matrix) of the Gaus-237

sian Embedding respectively; fµ and fΣ are imple-238

mented as ReLU followed by single layer networks;239

ELU for exponential linear unit; and ϵ ≈ e−14 for240

numerical stability.241

3.2 Training in Source Domain242

For calculating the contrastive loss, we consider243

the KL-divergence between all valid token pairs in244

the sampled batch. Two tokens xp and xq are con-245

sidered as positive examples if they have the same246

label yp = yq. Given their Gaussian Embeddings247

N (µp,Σp) and N (µq,Σq), we can calculate their248

KL-divergence as following:249

DKL[Nq||Np] = DKL[N (µq,Σq)||N (µp,Σp)]

=
1

2

(
Tr(Σ−1

p Σq)

+ (µp − µq)
TΣ−1

p (µp − µq)

− l + log
|Σp|
|Σq|

)
(3)

250

Both directions of the KL-divergence are calculated251

since it is not symmetric.252

d(p, q) =
1

2
(DKL[Nq||Np] +DKL[Np||Nq])

(4)253

We first train our model in resource rich source254

domain having training data Xtr. At each training255

step, we randomly sample a batch of sequences256

(without replacement) X ∈ Xtr from the training257

set having batch size of b. For each (xi, yi) ∈258

X , we obtain its Gaussian Embedding N (µi,Σi)259

by channeling the corresponding token sequence260

through the model (Algorithm 1: Line 3-6). We261

find in-batch positive samples Xp for sample p and262

subsequently calculate the Gaussian embedding263

loss of xp with respect to that of all other valid264

tokens in the batch:265

Xp = {(xq, yq) ∈ X | yp = yq, p ̸= q} (5)266

ℓ(p) = − log

∑
(xq ,yq)∈Xp

exp(−d(p, q))/|Xp|∑
(xq ,yq)∈X ,p ̸=q

exp(−d(p, q))
(6) 267

In this way we can calculate the distributional diver- 268

gence of all the token pairs in the batch (Algorithm 269

1: Line 7-10 ). We do not scale the contrastive loss 270

by any normalization factor as proposed by Chen 271

et al. (2020) since we did not find it to be beneficial 272

for optimization. 273

3.3 Finetuning to Target Domain using 274

Support Set 275

After training in source domains, we finetune our 276

model using a small number of target domain sup- 277

port samples following a similar procedure as in 278

the training stage. As we have only a few sam- 279

ples for finetuning, we take them in a single batch. 280

When multiple few-shot samples (e.g., 5-shot) are 281

available for the target classes, the model can effec- 282

tively adapt to the new domain by optimizing KL- 283

divergence of Gaussian Embeddings as in Eq. 4. 284

In contrast, for 1-shot case, it turns out challenging 285

for models to adapt to the target class distribution. 286

If the model has no prior knowledge about target 287

classes (either from direct training or indirectly 288

from source domain training where the target class 289

entities are marked as O-type), a single example 290

might not be sufficient to deduce the variance of the 291

target class distribution. Thus, for 1-shot scenario, 292

we optimize d′(p, q) = ||µp − µq||22, the squared 293

euclidean distance between mean of the embedding 294

distributions. When the model has direct/indirect 295

prior knowledge about the target classes involved, 296

we still optimize the KL-divergence of the distribu- 297

tions similar to the 5-shot scenario. 298

We demonstrate in Table 7 that optimizing with 299

squared euclidean distance gives us slightly better 300

performance in 1-shot scenario. Nevertheless, in 301

all cases with 5-shot support set, optimizing the 302

KL-divergence between the Gaussian Embeddings 303

gives us the best result. 304

Early Stopping Finetuning with a small support 305

set runs the risk of overfitting and without access 306

to a held out validation set due to data scarcity in 307

the target domain, we cannot keep tabs on the satu- 308

ration point where we need to stop finetuning. To 309

alleviate this, we rely on the calculated contrastive 310

loss and use it as our early stopping criteria with a 311

patience of 1. (Algorithm 1: Line 16-17, 24 ) 312
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Algorithm 1 Training and Finetuning of CON-
TAINER
Require: Training data Xtr , Support Data Xsup, Train loss

function dtr , Finetune loss function dft , fµ, fΣ, PLM
1: // training in source domain
2: for sampled (w/o replacement) minibatch X ∈ Xtr do
3: for all i ≡ (xi, yi) ∈ X do
4: µi = fµ(PLM(xi)) //[Eq. 1]
5: Σi = ELU(fΣ(PLM(xi))) + (1 + ϵ) //[Eq. 2]
6: end for
7: for all i ≡ (xi, yi) ∈ X do
8: Calculate ℓ(i) as in Eq. 5 and 6
9: end for

10: Ltr = 1
|X|

∑
i∈X

ℓ(i)

11: update fµ, fΣ, PLM by backpropagation to reduce Ltr

12: end for
13: // finetuning to target domain
14: Lprev = ∞
15: Lft = Lprev − 1 //Stable Initialization
16: while Lft < Lprev do
17: Lprev = Lft

18: for all i ≡ (xi, yi) ∈ Xsup do
19: Calculate µi and Σi using Eq. 1, 2 //Line 4,5
20: end for
21: for all i ≡ (xi, yi) ∈ Xsup do
22: Calculate ℓ(i) as in Eq. 5 and 6
23: end for
24: Lft =

1
|Xsup|

∑
i∈Xsup

ℓ(i)

25: update fµ, fΣ, PLM by backpropagation to reduce Lft

26: end while
27: return PLM and discard fµ, fΣ

3.4 Instance Level Nearest Neighbor313

Inference314

After training and finetuning the network with315

train and support data respectively, we extract the316

pretrained language model encoder PLM for infer-317

ence. Similar to SimCLR (Chen et al., 2020), we318

found that representations before the projection lay-319

ers actually contain more information than the final320

output representation which contributes to better321

performance, so fµ and fΣ projection heads are322

not used for inference. We thus calculate the repre-323

sentations of the test data from PLM and find near-324

est neighbor support set representation for infer-325

ence (Wang et al., 2019; Yang and Katiyar, 2020).326

327

The PLM representations hsup
j of each of the sup-328

port token (x
sup
j , y

sup
j ) ∈ Xsup can be calculated as329

in Eq. 1. Similarly for test data Xtest, we get the330

PLM representations htest
i where xtest

i ∈ Xtest. Here331

we assign xtest
i the same label as the support token332

that is nearest in the PLM representation space:333

ytest
i = argmin

y
sup
k where (x

sup
k ,y

sup
k )∈Xsup

||htest
i −h

sup
k ||22 (7)334

Viterbi Decoding Most previous works (Hou 335

et al., 2020; Yang and Katiyar, 2020; Ding et al., 336

2021) noticed a performance improvement by us- 337

ing CRFs (Lafferty et al., 2001) which removes 338

false predictions to improve performance. Thus 339

we also employ Viterbi decoding in the inference 340

stage with an abstract transition distribution as in 341

StructShot (Yang and Katiyar, 2020). For the tran- 342

sition probabilities, the transition between three 343

abstract tags O, I, and I-other is estimated by 344

counting their occurrences in the training set. Then 345

for the target domain tag-set, these transition prob- 346

abilities are evenly distributed into corresponding 347

target distributions. The emission probabilities 348

are calculated from Nearest Neighbor Inference 349

stage. Comparing domain transfer results (Table 350

2) against other tasks (Table 1,3,4) we find that, 351

interestingly, if there is no significant domain shift 352

involved in the test data, contrastive learning al- 353

lows CONTAINER to automatically extract label 354

dependencies, obviating the requirement of extra 355

Viterbi decoding stage. 356

4 Experiment Setups 357

Datasets For evaluation, we use datasets across 358

different domains: General (OntoNotes 5.0 359

(Weischedel et al., 2013)), Medical (I2B2 (Stubbs 360

and Uzuner, 2015)), News (CoNLL’03 (Sang and 361

De Meulder, 2003)), Social (WNUT’17 (Derczyn- 362

ski et al., 2017)). We also test on GUM (Zeldes, 363

2017) that represents wide variety of texts: inter- 364

views, news articles, instrumental texts, and travel 365

guides. The miscellany of domains makes it a chal- 366

lenging dataset to work on. Ding et al. (2021) argue 367

that the distribution of these datasets may not be 368

suitable for proper representation of Few-Shot ca- 369

pability. Thus, they proposed a new large scale 370

dataset Few-NERD that contains 66 fine-grained 371

entities across 8 coarse grained entities, signifi- 372

cantly richer than previous datasets. A summary of 373

these datasets is given in Table 5. 374

Baselines We compare the performance of CON- 375

TAINER with state-of-the-art Few-Shot NER mod- 376

els on different datasets across several settings. We 377

first measure the model performance in traditional 378

NER datasets in tag-set extension and domain trans- 379

fer tasks as proposed in Yang and Katiyar (2020). 380

We then evaluate our model in Few-NERD (Ding 381

et al., 2021) dataset that is explicitly designed for 382

Few-Shot NER, and compare it against the Few- 383

NERD leaderboard baselines. Similar to Ding et al. 384
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Model 1-shot 5-shot

Group A Group B Group C Avg. Group A Group B Group C Avg.
Proto 19.3 ± 3.9 22.7 ± 8.9 18.9 ± 7.9 20.3 30.5 ± 3.5 38.7 ± 5.6 41.1 ± 3.3 36.7
NNShot 28.5 ± 9.2 27.3 ± 12.3 21.4 ± 9.7 25.7 44.0 ± 2.1 51.6 ± 5.9 47.6 ± 2.8 47.7
StructShot 30.5 ± 12.3 28.8 ± 11.2 20.8 ± 9.9 26.7 47.5 ± 4.0 53.0 ± 7.9 48.7 ± 2.7 49.8
CONTaiNER 32.2 ± 5.3 30.9 ± 11.6 32.9 ± 12.7 32.0 51.2 ± 5.9 55.9 ± 6.2 61.5 ± 2.7 56.2

+ Viterbi 32.4 ± 5.1 30.9 ± 11.6 33.0 ± 12.8 32.1 51.2 ± 6.0 56.0 ± 6.2 61.5 ± 2.7 56.2

Table 1: F1 scores in Tag Set Extension on OntoNotes. Group A, B, C are three disjoint sets of entity types.
Results vary slightly compared to Yang and Katiyar (2020) since they used different support set samples (publicly
unavailable) than ours.

Model 1-shot 5-shot

I2B2 CoNLL WNUT GUM Avg. I2B2 CoNLL WNUT GUM Avg.
Proto 13.4 ± 3.0 49.9 ± 8.6 17.4 ± 4.9 17.8 ± 3.5 24.6 17.9 ± 1.8 61.3 ± 9.1 22.8 ± 4.5 19.5 ± 3.4 30.4
NNShot 15.3 ± 1.6 61.2 ± 10.4 22.7 ± 7.4 10.5 ± 2.9 27.4 22.0 ± 1.5 74.1 ± 2.3 27.3 ± 5.4 15.9 ± 1.8 34.8
StructShot 21.4 ± 3.8 62.4 ± 10.5 24.2 ± 8.0 7.8 ± 2.1 29.0 30.3 ± 2.1 74.8 ± 2.4 30.4 ± 6.5 13.3 ± 1.3 37.2
CONTaiNER 16.4 ± 1.7 57.8 ± 10.7 24.2 ± 2.9 17.9 ± 1.8 29.1 24.1 ± 1.9 72.8 ± 2.0 27.7 ± 2.2 24.4 ± 2.2 37.3

+ Viterbi 21.5 ± 1.7 61.2 ± 10.7 27.5 ± 1.9 18.5 ± 4.9 32.2 36.7 ± 2.1 75.8 ± 2.7 32.5 ± 3.8 25.2 ± 2.7 42.6

Table 2: F1 scores in Domain Extension with OntoNotes as the source domain. Results vary slightly compared to
Yang and Katiyar (2020) since they used different support set samples (publicly unavailable) than ours.

(2021), we take Prototypical Network based Pro-385

toBERT (Snell et al., 2017; Fritzler et al., 2019;386

Hou et al., 2020), nearest neighbor based metric387

method NNShot that leverages the locality of in-388

class samples in embedding space, and additional389

Viterbi decoding based Structshot (Yang and Kati-390

yar, 2020) as the main SOTA baselines.391

4.1 Tag-set Extension Setting392

A common use-case of Few-Shot NER is that new393

entity types may appear in the same existing text394

domain. Thus (Yang and Katiyar, 2020) proposed395

to experiment tag-set extension capability using396

OntoNotes (Weischedel et al., 2013) dataset. The397

eighteen existing entity classes are split in three398

groups: A, B, and C, each having six classes. Mod-399

els are tested in each of these groups having few400

sample support set while being trained in the re-401

maining two groups. During training, all test group402

entities are replaced with O-tag. Since the source403

and destination domains are the same, the train-404

ing phase will induce some indirect information405

about unseen target entities. So, during finetuning406

of CONTAINER, we optimize the KL-divergence407

between ouptut embeddings as in Eq. 4.408

We use the same entity class splits as409

used by Yang and Katiyar (2020) and used410

bert-base-cased as the backbone encoder for411

all models. Since they could not share the sampled412

support set for licensing reasons, we sampled five413

sets of support samples for each group and aver-414

aged the results, as done by the authors. We show415

these results in Table 1.416

4.2 Domain Transfer Setting 417

In this experiment a model trained on a source 418

domain is deployed to a previously unseen novel 419

text domain. Here we take OntoNotes (General) as 420

our source text domain, and evaluate the Few-Shot 421

performance in I2B2 (Medical), CoNLL (News), 422

WNUT (Social) domains as in (Yang and Katiyar, 423

2020). We also evaluate the performance in GUM 424

(Zeldes, 2017) dataset due to its particularly chal- 425

lenging nature. We show these results in Table 2. 426

While all the other domains have almost no inter- 427

section with OntoNotes, target entities in CoNLL 428

are fully contained within OntoNotes entities, that 429

makes it comparable to supervised learning. 430

4.3 Few-NERD Setting 431

For few-shot setting, Ding et al. (2021) pro- 432

posed two different settings: Few-NERD (IN- 433

TRA) and Few-NERD (INTER). In Few-NERD 434

(INTRA) train, dev, and test sets are divided ac- 435

cording to coarse-grained types. As a result, fine- 436

grained entity types belonging to People, Art, 437

Product, MISC coarse grained types are put in 438

the train set, Event, Building coarse grained 439

types in dev set, and ORG, LOC in test set. So, 440

there is no overlap between train, dev, test set 441

classes in terms of coarse grained types. On the 442

other hand, in Few-NERD (INTER) coarse grained 443

types are shared, although all the fine grained types 444

are mutually disjoint. Because of the restrictions 445

of sharing coarse-grained types, Few-NERD (IN- 446

TRA) is more challenging. Since, few-shot perfor- 447

mance of any model relies on the sampled support 448
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Model 5-way 10-way Avg.
1∼2 shot 5∼10 shot 1∼2 shot 5∼10 shot

StructShot 35.92 38.83 25.38 26.39 31.63
ProtoBERT 23.45 41.93 19.76 34.61 29.94
NNShot 31.01 35.74 21.88 27.67 29.08
CONTaiNER 40.43 53.70 33.84 47.49 43.87

+ Viterbi 40.40 53.71 33.82 47.51 43.86

Table 3: F1 scores in FEW-NERD (INTRA).

Model 5-way 10-way Avg.
1∼2 shot 5∼10 shot 1∼2 shot 5∼10 shot

StructShot 57.33 57.16 49.46 49.39 53.34
ProtoBERT 44.44 58.80 39.09 53.97 49.08
NNShot 54.29 50.56 46.98 50.00 50.46
CONTaiNER 55.95 61.83 48.35 57.12 55.81

+ Viterbi 56.1 61.90 48.36 57.13 55.87

Table 4: F1 scores in FEW-NERD (INTER).

set, the authors also released train, dev, test split449

for both Few-NERD (INTRA) and Few-NERD450

(INTER). We evaluate our model performance us-451

ing these provided dataset splits and compare the452

performance in Few-NERD leaderboard. All mod-453

els use bert-base-uncased as the backbone454

encoder. As shown in Table 3 and Table 4, CON-455

TAINER establishes new benchmark results in the456

leaderboard in both of these tests.457

5 Results and Analysis458

We prudently analyze different components of our459

model and justify the design choices made in the460

scheming of CONTAINER. We also examine the461

results discussed in "Experiments" section that462

gives some intuitions about few-shot NER in gen-463

eral.464

5.1 Overall Results465

Table 1-4 demonstrates that overall, in every sce-466

nario CONTAINER convincingly outperforms all467

other baseline approaches. This improvement is468

particularly noticeable in challenging scenarios,469

where all other baseline approaches perform poorly.470

For example, FEW-NERD (intra) (Table 3) is a471

challenging scenario where the coarse grained en-472

tity types corresponding to train and test sets do473

not overlap. As a result, other baseline approaches474

face a substantial performance hit, whereas CON-475

TAINER still performs well. In tag-set extension476

(Table 1), we see a similar performance trend -477

CONTAINER performs consistently well across478

the board. Likewise, in domain transfer to a very479

challenging unseen text domain like GUM (Zeldes,480

2017), baseline models performs miserably; yet481

CONTAINER manages to perform consistently482

outperforming SOTA models by a significant mar-483

gin. Analyzing these results more closely, we484

notice that while CONTAINER surpasses other 485

baselines in almost every tests, more prominently 486

in 5-shot cases. Evidently, CONTAINER is able 487

to make better use of multiple few-shot samples 488

thanks to distribution modeling via contrastive 489

Gaussian Embedding optimization. In this con- 490

text, note that StructShot actually got marginally 491

higher F1-score in 1-shot CoNLL domain adapta- 492

tion and 1∼2 shot FEW-NERD (INTER) cases. In 493

CoNLL, the target classes are subsets of training 494

classes, so supervised learning based feature extrac- 495

tors are expected to get an advantage in prediction. 496

On the other hand, Ding et al. (2021) carefully 497

tuned the hyperparameters for baselines like Struct- 498

Shot for best performance. We could also improve 499

performance in a similar manner, however for uni- 500

formity of model across different few-shot settings, 501

we use the same model architecture in every test. 502

Nevertheless, CONTAINER shows comparable 503

performance even in these cases while significantly 504

outperforming in every other test. 505

5.2 Training Objective 506

Traditional contrastive learners usually optimize 507

cosine similarity of point embeddings (Chen et al., 508

2020). While this has proven to work well in im- 509

age data, in more challenging NLU tasks like Few- 510

Shot NER, it gives subpar performance. We com- 511

pare the performance of point embeddings with 512

euclidean distance and cosine similarity to that of 513

CONTAINER using Gaussian Embedding and KL- 514

divergence in OntoNotes tag-set extension. We 515

report these performance in Table 8 in Appendix. 516

Basically, Gaussian Embedding leads to learning 517

generalized representation during training, which 518

is more suitable for finetuning to few sample target 519

domain. In Appendix E, we examine this aspect by 520

comparing the t-SNE representations from point 521

embedding and Gaussian Embedding. 522

5.3 Modeling Label Dependencies 523

Analyzing the results, we observe that domain 524

transfer (Table 2) sees some good gains in perfor- 525

mance from using Viterbi decoding. In contrast, 526

tag-set extension (Table 1) and FEW-NERD (Table 527

3,4) gets almost no improvement from using Viterbi 528

decoding. This indicates an interesting property of 529

CONTAINER. During domain transfer the text do- 530

mains have no overlap in train and test set. So, an 531

extra Viterbi decoding actually provides additional 532

information regarding the label dependencies, giv- 533

ing us some nice improvement. Otherwise, the train 534
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and target domain have substantial overlap in both535

tagset extension and FEW-NERD. Thus the model536

can indirectly learn the label dependencies through537

in-batch contrastive learning. Consequently, unless538

there is a marked shift in the target text domain,539

we can achieve the best performance even without540

employing additional Viterbi decoding.541

6 Related Works542

Meta Learning The idea of Few-shot learning543

was popularized in computer vision through Match-544

ing Networks (Vinyals et al., 2016). Subsequently,545

Prototypical Network (Snell et al., 2017) was pro-546

posed where class prototypical representations547

were learned. Test samples are given labels accord-548

ing to the nearest prototype. Later this technique549

was proven successful in other domains as well.550

Simple feature transformation has also been suc-551

cessfully used in Few-Shot Learning. (Wang et al.,552

2019; Geng et al., 2019; Bao et al., 2020; Han et al.,553

2018; Fritzler et al., 2019).554

Contrastive Learning Early progress was made555

by contrasting positive against negative samples556

(Hadsell et al., 2006; Dosovitskiy et al., 2014; Wu557

et al., 2018). Chen et al. (2020) proposed SimCLR558

by refining the idea of contrastive learning with the559

help of modern image augmentation techniques to560

learn robust sets of features. Khosla et al. (2020)561

leveraged this to boost supervised learning perfor-562

mance as well. In-batch negative sampling has also563

been explored for learning representation (Doer-564

sch and Zisserman, 2017; Ye et al., 2019). Storing565

instance class representation vectors is another pop-566

ular direction (Wu et al., 2018; Zhuang et al., 2019;567

Misra and Maaten, 2020).568

Gaussian Embedding Vilnis and McCallum569

(2014) first explored the idea of learning word em-570

beddings as Gaussian Distributions. Although the571

authors used RANK-SVM based learning objec-572

tive instead of modern deep contextual modeling,573

they found that embedding densities in a Gaussian574

space enables natural represenation of uncertainty575

through variances. Later, Bojchevski and Günne-576

mann (2017) leveraged Gaussian Embedding in577

Graph representation. Besides state-of-the-art per-578

formance, they found Gaussian Embedding to be579

surprisingly effective in inductive learning, gen-580

eralizing to unseen nodes with few training data.581

Moreover, KL-divergence between Gaussian Em-582

beddings allows explicit consideration of asym-583

metric distance which better represents inclusion, 584

similarity or entailment (Qian et al., 2021) and 585

preserve the hierarchical structures among words 586

(Athiwaratkun and Wilson, 2018). 587

Few-Shot NER For few shot NER, Fritzler et al. 588

(2019) leveraged prototypical network (Snell et al., 589

2017). Inspired by the potency of simple feature 590

extractors and nearest neighbor inference (Wang 591

et al., 2019; Wiseman and Stratos, 2019) in few- 592

Shot learning, Yang and Katiyar (2020) used super- 593

vised learner based feature extractors for Few-Shot 594

NER. Pairing it with abstract transition tag Viterbi 595

decoding, they achieved current SOTA result in 596

Few-Shot NER tasks. The role of data augmenta- 597

tion in low-resource NER has also been explored 598

(Ding et al., 2020). Huang et al. (2020) on the 599

other hand proposed noisy supervised pre-training 600

which requires access to a large scale noisy NER 601

dataset such as WiNER (Ghaddar and Langlais, 602

2017) for the supervised pretraining. Acknowl- 603

edging the shortcomings and evaluation scheme 604

disparity in Few-Shot NER, Ding et al. (2021) pro- 605

posed a large scale dataset specifically designed for 606

this task. Wang et al. (2021b) explored model distil- 607

lation for Few-Shot NER. Prompt based techniques 608

have also surfaced in this domain (Cui et al., 2021; 609

Ma et al., 2021; Chen et al., 2021; Wang et al., 610

2021a). However, the performance of these meth- 611

ods rely heavily on the chosen prompt. As denoted 612

by Cui et al. (2021), the performance delta can be 613

massive (upto 19% absolute F1 points) depending 614

on the prompt. Thus, in the absence of a large val- 615

idation set, their applicability becomes limited in 616

true few-shot learning (Perez et al., 2021). 617

7 Conclusion 618

We propose a contrastive learning based frame- 619

work CONTAINER that models Gaussian embed- 620

ding and optimizes inter token distribution distance. 621

This generalized objective helps us model a class 622

agnostic feature extractor that avoids the pitfalls 623

of prior Few-Shot NER methods. CONTAINER 624

can also take advantage of few-sample support data 625

to adapt to new target domains. Extensive evalu- 626

ations in multiple traditional and recent few-shot 627

NER datasets reveal that, CONTAINER consis- 628

tently outperforms prior SOTAs, even in challeng- 629

ing scenarios. While we investigate the efficacy of 630

distribution optimization based contrastive learning 631

in Few-Shot NER, it will be of particular interest 632

to investigate its potency in other domains as well. 633
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8 Ethics Statement634

With CONTAINER, we have achieved state-of-the-635

art Few-Shot NER performance leveraging Gaus-636

sian Embedding based contrastive learning. How-637

ever, the overall performance is still quite low com-638

pared to supervised NER that takes advantage of639

the full training dataset. Consequently, it is still not640

ready for deployment in high-stake domains (e.g.641

Medical Domain, I2B2 dataset), leaving a lot of642

room for improvement in future research.643
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A Implementation Details835

For all of our experiments in CONTAINER. we836

chose the same hyperparameters as in Yang and837

Katiyar (2020). Across all our tests, we kept Gaus-838

sian Embedding dimension fixed to l = 128. In839

order to guarantee proper comparison against prior840

competitive approaches, we use the same back-841

bone encoder for all methods in same tests, i.e.842

bert-base-cased was used for all methods843

in Tag-Set Extension and Domain Transfer tasks844

while bert-base-uncased was used for Few-845

NERD following the respective evaluation strate-846

gies. Finally, to observe the effect of Viterbi de-847

coding on CONTAINER output, we set the re-848

normalizing temperature τ to 0.1.849

Using an RTX A6000, we trained the network on850

OntoNotes dataset for 30 minutes. The finetuning851

stage requires less than a minute due to the small852

number of samples.853

B Datasets854

A summary statistics of the datasets used in our855

evaluation is given below in Table 5

Dataset Domain # Class # Sent

OntoNotes General 18 76K
I2B2’14 Medical 23 140K
CoNLL’03 News 4 20K
WNUT’17 Social 6 5K
GUM Mixed 11 3.5K
FEW-NERD Wikipedia 66 188K

Table 5: Summary Statistics of Datasets
856

C Effect of Model Fine-tuning857

Being a contrastive learner, CONTAINER can858

take advantage of extremely small support set859

to refine its representations through fine-tuning.860

To closely examine the effects of fine-tuning,861

we conduct a case study with OntoNotes tag-862

extension task using PERSON, DATE, MONEY,863

LOC, FAC, PRODUCT target entities.864

W/O Finetuning W/ Finetuning

1-shot 31.76 32.90
5-shot 56.99 61.48

Table 6: Comparison of F1-Scores with and without
support set finetuning of CONTAINER

As shown in Table 6, we see that finetuning in-865

deed improves few-shot performance. Besides, the866

effect of finetuning is even more marked in 5-shot 867

prediction indicating that CONTAINER finetun- 868

ing process can make the best use of few-samples 869

available in target domain. 870

D Fine-tuning Objective 871

During finetuning, if a model does not have any 872

prior knowledge about the target classes, directly or 873

indirectly, a 1-shot example may not give sufficient 874

information about the target class distribution (i.e. 875

the variance of the distribution). Consequently dur- 876

ing finetuning, for 1-shot adaptation to new classes, 877

optimizing euclidean distance of the mean embed- 878

ding gives better performance. Nevertheless, for 879

5-shot cases, KL-divergence of the Gaussian Em- 880

bedding always gives better performance indicating 881

that it takes better advantage of multiple samples. 882

We show this behavior in the best result of domain 883

transfer task with WNUT in Table 7. Since this 884

domain transfer task gives no prior information 885

about target embeddings during training, optimiz- 886

ing KL-divergence in 1-shot fineutuning actually 887

hurts performance a bit compared to euclidean fine- 888

tuning. However, in 5-shot, KL-finetuning again 889

gives superior performance as it can now adapt 890

better to the novel target class distributions.

KL-Gaussian Euclidean-mean

1-shot 18.78 27.48
5-shot 32.50 31.12

Table 7: F1 scores comparison in Domain Transfer
Task with WNUT with different finetune objectives.
While optimizing the KL-divergence of the Gaussian
Embedding gives superior result in 5-shot, optimizing
Euclidean distance of the mean embeddings actually
achieve better result in 1-shot. Note that in both cases
the model is trained on out-of-domain data using KL-
Gaussian.

891
892

E t-SNE Visualization: Point Embedding 893

vs. Gaussian Embedding 894

Figure 3 offers a deep dive into how Gaussian Em- 895

bedding improves generalization and takes better 896

advantage of few shot support set for target domain 897

adaptation. Here we compare the t-SNE visualiza- 898

tion of support set and test set of a sample few- 899

shot scenario in OntoNotes tag set extension task. 900

In Figure 3 (a) we can see that point embedding 901
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Point Embedding + Euclidean Gaussian Embedding + KL

Test
SupportSupport Test

After

FT

TestSupport Support Test

Before 

FT

(a) F1 Score: 37.05

(c) F1 Score: 21.96

(b) F1 Score: 46.59

(d) F1 Score: 57.46

Figure 3: t-SNE visualization of support set and test set representations in a sample few-shot task in OntoNotes tag
extension. We show both support and test set representation here before and after finetuning. Prior to finetuning,
(a) contrastive learner with point embedding and Euclidean distance objective gives intermixed class representations;
(b) Gaussian Embedding with KL-divergenece generates clusters for different unseen classes. After finetuning, (c)
point embedding overfits the support examples which further intermingles different class examples; (d) Gaussian
Embedding with KL-divergence cleans up the clusters offering better separation between different classes, which
results in higher F1-score.

paired with Euclidean distance metric has subopti-902

mal clustering pattern in both support and test sets.903

In fact, the support examples in different classes904

are intermixed implying poor generalization. When905

the point embedding model is finetuned with the906

support set (Figure 3 (c)), Euclidean distance ag-907

gressively optimizes them and tries to force the908

same class support examples to collapse into essen-909

tially a single point representation. In other words,910

the model quickly overfits the small support data911

which in fact hurts model performance. In compar-912

sion, Gaussian Embedding offers a better t-SNE913

representation prior to and after finetuning. Figure914

3 (b) shows the representation of support and test915

sets prior to finetuning with Gaussian Embedding916

paired with KL-divergence. In both support and917

test sets, we observe different class samples mostly918

clustered together. This indicates that even before 919

finetuning it shows good generalization to unseen 920

classes. While finetuning, the KL-divergence opti- 921

mization objective maintains the class distribution 922

letting the model generate separate support clus- 923

ters (Figure 3(d)). After finetuning, the clusters 924

get cleaner offering even better separation between 925

different class clusters, which is also reflected in 926

the performance uplift of the model. 927

F Comparison of Different Training 928

Objectives 929

Table 8 compares the performance of Gaussian 930

Embedding (KL-divergence) with that of point em- 931

bedding (Euclidean distance of cosine similarity) 932

in OntoNotes tag extension task. Since Gaussian 933

Embedding utilizes l dimensional mean and l di- 934
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Model 1-shot 5-shot

Group A Group B Group C Avg. Group A Group B Group C Avg.
Point Embedding + Cosine 7.73 11.27 15.57 11.52 17.33 30.08 22.51 23.31
Point Embedding + Euclidean 14.96 13.67 11.12 13.25 25.35 41.56 43.11 36.67
Gaussian Embedding + KL-div. 32.2 30.9 32.9 32.0 51.2 55.9 61.5 56.2

Table 8: OntoNotes Tag Set extension mean-F1 score comparison between Point Embedding (with Euclidean
distance and cosine similarity) and Gaussian Embedding (KL-divergence).

mensional diagonal covariance matrix, for a fair935

comaparison we show the results for 2l dimen-936

sional point embedding. As discussed in Section937

5.2, Gaussian Embedding with KL-divergence ob-938

jective largely outperforms point embedding irre-939

spective of distance metric used.940

G Embedding Quality: Before vs. After941

Projection942

Before Projection After Projection

1-shot 32.17 29.21
5-shot 51.19 49.78

Table 9: Comparison of F1-Scores on OntoNotes Group
A before and after the projection layer of CONTAINER

As explained in Section 3.4, the representation943

before the projection layer contains more informa-944

tion than that of after. In Table 9, we compare the945

performance of representations before and after the946

Gaussian projection layer. From the results it is947

evident that, representation before the projection948

indeed achieves higher performance, which also949

supports the findings of (Chen et al., 2020). This950

is because the representation after the projection951

head is directly adjacent to the contrastive objec-952

tive, which causes information loss in this layer.953

Consequently, the representation before projection954

achieves better performance.955

H NER Prediction Examples956

Table 10 demonstrates some predictions with CON-957

TAINER and StructShot using PERSON, DATE,958

MONEY, LOC, FAC, PRODUCT as target few-959

shot entities while being trained on all other entity960

types in OntoNotes dataset. A quick look at these961

qualitative examples reveal that StructShot often962

fails to distinguish between non-entity and entity963

tokens. Moreover, it also misclassifies non-entity964

tokens as one of the target classes. CONTAINER965

on the other hand has lower misclassifications and966

better entity detection indicating its stability and967

higher performance.968
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Gold CONTAINER StructShot

BMEC general director Dr.
Johnsee LeePER says that the ITRI
’s four-yearDATE R&D program in
biochip applications and technology is
now in its second yearDATE .
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Johnsee LeePER says that the ITRI
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biochip applications and technology is
now in its second yearDATE .

BMEC general director Dr.
Johnsee LeePER says that the ITRI
’s four-yearDATE R&D program in
biochip applications and technology is
now in its second year.

DR. Chip Bio-technology was set up in
September 1998DATE .

DR. Chip Bio-technology was set up in
September 1998DATE .

DR. Chip Bio-technologyPRODUCT

was set up in September 1998.

Wang Shin - hwanPER notes that tradi-
tional bacterial and viral cultures take
seven to ten days to prepare , and even
with the newer molecular biology test-
ing techniques it takes three daysDATE

to get a result .
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Pan Chao - chiPER states that at
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a " fever chip " with a wide range of
applications .
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ident of U - Vision Biotech , reveals
that U - Vision , which was set up
in September 1999DATE , has signed a
contract with the US company Zen -
Bio to jointly develop human adipocyte
cDNA microarray chips .
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Jerry Huang , executive vice president
of U - Vision Biotech , reveals that U -
Vision , which was set up in September
1999 , has signed a contract with the US
company Zen - Bio to jointly develop hu-
man adipocyte cDNA microarray chips.

HuangPER states that research in
recent yearsDATEhas revealed that
adipocytes -LR fat cells -RR are active
regulators of the energy balance in the
body , and play an important role in
disorders such as obesity , diabetes ,
osteoporosis and cardiovascular disease
.

HuangPER states that research in
recent yearsDATEhas revealed that
adipocytes -LR fat cells -RR are active
regulators of the energy balance in the
body , and play an important role in
disorders such as obesity , diabetes ,
osteoporosis and cardiovascular disease
.

Huang states that research in recent
years has revealed that adipocytes -LR
fat cells -RR are active regulators of the
energy balance in the body , and play
an important role in disorders such as
obesity , diabetes , osteoporosis and car-
diovascular disease .

Maybe a 30 year oldDATE man & a
15 year oldDATEboy doesn’t qualify .
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Charles ColsonPER became DeLay’s
personal guru.
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searched the fourth compartment of the
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SundayDATE , but they found too much
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recovering bodies .
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they found too much damage to proceed
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never had a specific terrorist threat .
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Zinni testifying after the attack on
the “USS Cole”PRODUCT – Aden
never had a specific terrorist threat .

Today , the enterovirus chip is in the
testing phase , and DR. Chip is collabo-
rating with Taipei Veterans General Hos-
pital to obtain samples with which to
establish the accuracy of the chip .

TodayDATE , the enterovirus
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TodayDATE , the enterovirus
chip is in the testing phase, and
DR. ChipPRODUCT is collaborating
with Taipei Veterans General Hospital to
obtain samples with which to establish
the accuracy of the chip .
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prised than some of the people running
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speech that the Homeland Security Sec-
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hour .
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We’re all getting , this news in from
the speech that the Homeland Security
Secretary Tom RidgePER is expected to
be delivering at the international press
clubFAC around 1:00 Eastern at the top
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YesterdayDATE American pilots
mechanics approved their share
$ 1.8 billionMONEY in labor conces-
sion .

YesterdayDATE American pilots
mechanics approved their share
$ 1.8 billionMONEY in labor conces-
sion .

Yesterday American pilots mechanics
approved their share $ 1.8 billion in la-
bor concession .

Table 10: NER Prediction Examples from OntoNotes with PERSON, DATE, MONEY, LOC, FAC,PRODUCT
as target few-shot entities
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