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ABSTRACT

Cross-domain federated fine-tuning (CD-FFT) has emerged as a promising
paradigm evolving from traditional federated learning (FL), with better alignment
to real-world data distributions and enhanced communication efficiency. How-
ever, the inherent domain shift and rapid local adaptation in CD-FFT substantially
amplify its susceptibility to backdoor attacks. Existing studies have just revealed
the vulnerability of CD-FFT to backdoor threats, but fall short of exploring robust
defense solutions. To bridge this gap, we first systematically evaluate the trans-
ferability of existing FL backdoor defenses to the CD-FFT setting, revealing their
limited effectiveness under this more challenging scenario. Motivated by this,
we propose BEACON, an innovative backdoor defense framework that decouples
gradient behaviors at a fine granularity to uncovers malicious signals. Specifi-
cally, we creates a novel Task-Deviation Orthogonal Disentanglement (TDOD)
module, which orthogonally decomposes client updates into consensus and devi-
ation components, enabling joint reasoning over benign contribution and suspi-
cious divergence. Furthermore, a Classification Head Inconsistency Forensics
module is designed to capture boundary-shifting artifacts by traversing per-class
gradients, thus identifying label-wise anomalies indicative of targeted tampering.
Consequently, BEACON enables effective, robust, and domain-adaptive backdoor
defense in CD-FFT. Extensive experiments across four cross-domain benchmarks
and three backdoor variants demonstrate that BEACON consistently suppresses at-
tack success rates to below 2%, while preserving main task accuracy, significantly
outperforming seven state-of-the-art defenses in this challenging setting.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017; Kairouz et al., 2021; Ye et al., 2023) is a distributed
learning paradigm designed to preserve data privacy, and has been widely adopted in various real-
world applications such as healthcare (Nguyen et al., 2022a), remote sensing (Moreno-Alvarez et al.,
2024), and personalized recommendation systems (Feng et al., 2024). However, as models scale up
and data distributions become increasingly complex, FL has progressively shifted toward settings
involving domain discrepancies across clients (Li et al., 2020; Zhang et al., 2023b; Chen et al., 2023),
while also has embracing parameter-efficient fine-tuning strategies (Hu et al., 2021; Jia et al., 2022;
Lian et al., 2022) to alleviate communication cost. Consequently, a growing line of research has
focused on collaborative fine-tuning under cross-domain data settings, referred to as cross-domain
federated fine-tuning (CD-FFT), which has demonstrated promising performance across diverse
tasks (Yang et al., 2023; Feng et al., 2023; Su et al., 2024; Bai et al., 2024).

Backdoor attacks (Gu et al., 2017), a stealthy and potent threat to deep learning models, have al-
ready shown significant impact in FL (Xie et al., 2019; Bagdasaryan et al., 2020; Wang et al., 2020;
Cheng et al., 2023; Zhang et al., 2023a; Nguyen et al., 2023; Liu et al., 2024). By compromising a
subset of clients, adversaries can poison local updates and manipulate the global model to misclas-
sify test samples containing specific triggers. Recent evidence further indicates that such attacks can
effectively transfer to CD-FFT systems (Huang et al., 2024a). Due to the inherent domain discrep-
ancies among clients and the rapid adaptability of fine-tuning, backdoor attacks can be injected into
CD-FFT in a more covert and efficient manner, thereby raising substantial security concerns.
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Existing backdoor defenses in FL can be broadly categorized into two classes: anomaly update
detection (Cao et al., 2020; Rieger et al., 2022; Nguyen et al., 2022b; Zhang et al., 2022a; Xu et al.,
2025) and robust aggregation (Blanchard et al., 2017; Yin et al., 2018; Fung et al., 2020; Pillutla
et al., 2022; Huang et al., 2024b). These approaches have proven effective in traditional FL or class-
imbalanced settings, primarily by measuring global gradient distances or employing coarse-grained
control to suppress anomalous updates. However, gradient updates become more intricate due to
domain shifts in CD-FFT, making such coarse-grained methods unreliable. They fail to capture the
subtle backdoor behaviors that arise under domain discrepancies, and thus struggle to generalize to
this more realistic scenario. This gap raises a key question: Is it possible to propose an innovative
defense mechanism for CD-FFT that enables fine-grained and robust backdoor mitigation?

In response, we propose BEACON (Behavioral gradient decoupling for cross-domain federated fine-
tuning), a novel backdoor defense framework tailored for CD-FFT. BEACON first creates Task-
Deviation Orthogonal Disentanglement (TDOD) to project each client gradient onto the global
task-consensus direction, thereby separating each update into task-aligned and deviation compo-
nents. This orthogonal separation disentangles domain-specific variations from potentially mali-
cious signals, enabling effective inter-client anomaly scoring. To further enhance defense capability,
BEACON designs Classification Head Inconsistency Forensics (CHIF), which inspects abnormal
behaviors in the fine-tuned classification head. By examining label-wise gradient patterns, CHIF
identifies subtle manipulations in decision boundaries indicative of backdoor intentions. In conjunc-
tion, TDOD and CHIF empower BEACON to thwart backdoor attacks in an interpretable manner.

We evaluate BEACON on four cross-domain benchmarks, including DomainNet (Peng et al., 2019),
PACS (Li et al., 2017), Office-Caltech-10 (Saenko et al., 2010) and OfficeHome (Venkateswara
et al., 2017), as well as against three representative backdoor variants: BadNets (Gu et al., 2017),
Neurotoxin (Zhang et al., 2022b), and contrastive backdoor injection (CBI) (Huang et al., 2024a).
Extensive experiments validate the effectiveness of BEACON in CD-FFT, consistently suppressing
attack success rates to below 2% while preserving main task accuracy with only negligible degrada-
tion. Our key contributions can be summarized as follows:

• We conduct the first comprehensive evaluation of transferring existing FL backdoor
defenses to CD-FFT, and reveal their ineffectiveness stemming from reliance on coarse-
grained criteria and neglect of domain discrepancies.

• To overcome these limitations, we propose BEACON, an innovative defense framework that
decouples gradient behaviors at fine granularity, effectively bypassing domain discrepan-
cies to expose backdoor injection and achieve robust backdoor thwarting.

• Unlike existing defenses that rely on coarse-grained similarity estimation, we design Task-
Deviation Orthogonal Disentanglement to decompose each gradient into consensus and
deviation components, enabling precise assessment of malicious behaviors. Furthermore,
we propose Classification Head Inconsistency Forensics to capture intra-client boundary
manipulations, thereby enhancing label-wise backdoor detection.

• Extensive experiments across four benchmarks and three backdoor variants demonstrate
that BEACON achieves superior robustness and stability over SOTA FL defenses, consis-
tently reducing attack success rates to below 2% while preserving main task performance.

2 RELATED WORK

2.1 CROSS-DOMAIN FEDERATED FINE-TUNING

Recent advances in FL have shifted from traditional settings that train models from scratch un-
der class-imbalanced distributions (Wang et al., 2021; Park et al., 2023; Wei & Han, 2024; Le
et al., 2024), toward more practical scenarios involving domain discrepancies across clients and
parameter-efficient adaptation of pre-trained foundation models, referred to as CD-FFT systems.
For instance, FedVPT (Yang et al., 2023) applies visual prompt tuning on each client and aggre-
gates client-specific prompts at the server, offering a simple yet effective solution that has gained
widespread adoption. FedIns (Feng et al., 2023) incorporates scaling-and-shifting feature (SSF) tun-
ing (Lian et al., 2022) with SSF pools, enabling instance-level test-time adaptation through dynamic
SSF vector selection. PromptFL (Li et al., 2023) distributes a frozen foundation model (e.g., CLIP
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(Radford et al., 2021)) and collaboratively trains soft prompts across clients to achieve personalized
adaptation. FedAPT (Su et al., 2024) further extends this line by using domain-specific keys to
generate adaptive prompts during inference, built upon CLIP backbones.

2.2 BACKDOOR ATTACKS IN FEDERATED LEARNING

Bagdasaryan et al. (Bagdasaryan et al., 2020) proposed the first backdoor attack in FL by con-
straining and scaling malicious gradients to replace the global model with a backdoored version.
Xie et al. (Xie et al., 2019) further developed a distributed backdoor attack, where multiple local
triggers are combined to form a global trigger, thereby amplifying the overall backdoor effect and
stealthiness. Neurotoxin (Zhang et al., 2022b) enhances stealth and persistence by injecting trig-
gers into parameters that exhibit minimal updates across training rounds. Contrastive Backdoor
Injection (CBI) (Huang et al., 2024a) extends these threats to CD-FFT by exploiting contrastive
learning principles, marking the first dedicated study of backdoor vulnerabilities in this setting. By
leveraging relationships between benign and poisoned samples, CBI significantly stregthens attack
effectiveness. Therefore, these findings highlight the pronounced vulnerability of CD-FFT systems
to backdoor attacks, underscoring the need for greater defensive attention.

2.3 BACKDOOR DEFENSES IN FEDERATED LEARNING

Existing defenses against backdoor attacks in FL can be broadly categorized into two groups: 1)
anomaly update detection (Rieger et al., 2022; Nguyen et al., 2022b; Huang et al., 2024b; Xu et al.,
2025), and 2) robust federated aggregation (Blanchard et al., 2017; Yin et al., 2018; Fung et al.,
2020; Xie et al., 2021; Pillutla et al., 2022; Zhang et al., 2024).

Anomaly Update Detection. DeepSight (Rieger et al., 2022) identified neurons strongly correlated
with backdoor behavior and applied HDBSCAN (McInnes et al., 2017) clustering to detect outliers.
FLAME (Nguyen et al., 2022b) measured cosine similarity between client updates and introduced
targeted noise to disrupt malicious gradients. AlignIns (Xu et al., 2025) proposed a direction align-
ment inspection mechanism that evaluates each client update based on its consistency with the global
update direction and the sign alignment of parameters, thereby filtering out malicious updates that
deviate from benign consensus.

Robust Federated Aggregation. Multi-Krum (Blanchard et al., 2017) selected client updates with
minimal pairwise divergence to mitigate adversarial influence. FoolsGold (Fung et al., 2020) main-
tained historical update trajectories for each client and detected collusion through long-term similar-
ity analysis. FLARE (Wang et al., 2022) leveraged latent representation distances to estimate client
reliability and rank contributions accordingly.

Although these defenses have proven effective in conventional FL settings, they largely neglect the
challenges introduced by domain shift and parameter-efficient fine-tuning. To fill this gap, our work
designs fine-grained gradient decoupling methods tailored for CD-FFT, addressing this critical yet
underexplored vulnerability.

3 PROBLEM FORMULATIONS

3.1 FEDERATED VISUAL PROMPT TUNING

We adopt federated visual prompt tuning (FedVPT) (Yang et al., 2023) as a representative framework
to study CD-FFT system. We consider a FL system comprising a central server S and N clients
{C1, C2, . . . , CN}, where each client Ci holds a private datasetDi sampled from a specific domain.
Each client fine-tunes a shared, frozen foundation model F by optimizing a small set of client-
specific parameters δi = {δpi , δhi }, where δpi and δhi denote prompt and classifier head parameters,
respectively.

During each communication round t, each client Ci initializes its local tuning parameters from the
global model δtG, and obtains updated parameters δti by minimizing the empirical loss on its private
dataset:

δti = argmin
δi

E(xi,yi)∼Di
[L (f(xi;F, δi), yi)] , (1)

3
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Figure 1: Illustration of the BEACON pipeline. We utilizes the TDOD and CHIF modules to com-
pute fine-grained anomaly scores, which are subsequently integrated into a trust-aware aggregation
strategy to defend against backdoor attacks and ensure the stability of the CD-FFT system.

whereL denotes the classification loss and f represents the inference function based on the backbone
F and the learnable tuning parameters δ. The server then updates the global tuning parameters by
aggregating the client updates as:

δt+1
G = δtG +

1

N

N∑
i=1

∆t
i. (2)

Where ∆t
i = δti − δtG denotes the local update, thus following the standard FedAVG (McMahan

et al., 2017) scheme to synchronize client-side adaptations into the global model.

3.2 ATTACK AND DEFENSE MODEL

We assume an adversary A capable of compromising up to 50% of the clients, either concentrated
within a single domain or distributed across multiple domains. These malicious clients can conduct
both data poisoning and model poisoning to maximize the effectiveness and stealthiness of the at-
tack. However, A has no knowledge of the benign clients’ data distributions, cannot interfere with
their training processes, and remains unaware of the defense strategies deployed on the server side.

The defender, i.e., the server S, aims to detect and thwart backdoor attacks while preserving the
utility and robustness of the CD-FFT system. Concretely, a practical defense should meet the fol-
lowing requirements: 1) substantially suppress the attack success rate to ensure system security; 2)
maintain high accuracy on the main task to guarantee stability and cross-domain generalization; 3)
operate without accessing clients’ raw data or domain-specific distributions; and 4) avoid reliance
on clean reference data or prior knowledge of poisoning triggers.

4 METHODOLOGY

4.1 OVERVIEW AND ADVANCES

The overall workflow of BEACON is illustrated in Alg. 1 and Fig. 1. Existing backdoor defenses
in FL, when transferred to CD-FFT settings, suffer from severe limitations. They primarily rely on
coarse-grained statistical anomaly detection in gradients, which becomes unreliable under domain-
induced feature discrepancies and parameter-efficient fine-tuning frameworks. In such conditions,
malicious manipulations are more subtle and entangled, preventing traditional defenses from gen-
eralizing to CD-FFT. To overcome these challenges, BEACON first decomposes each client update
into a task-consensus component and a domain-deviation component, enabling precise assessment
of suspicious behaviors. Moreover, it captures label-wise inconsistencies in classifier head acti-
vations, since malicious clients tend to manipulate specific decision boundaries to implant targeted
backdoors. Finally, BEACON integrates these signals into trust scores for clients and performs robust
trust-aware aggregation.

4
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4.2 TASK-DEVIATION ORTHOGONAL DISENTANGLEMENT

We design the Task-Deviation Orthogonal Disentanglement (TDOD) module to decouple gradi-
ent behaviors. As a first step, we filter out inactive dimensions to reduce noise from trivial up-
dates. Let each client update be denoted by ∆i ∈ Rd, we define the active dimension set as:
Γ = {j ∈ [1, d] | maxi |∆i,j | > ϵ}, where ϵ is a small threshold.

To extract per-client consensus, we adopt a leave-one-out strategy to compute a task-consensus
vector for each client based on the remaining population. Specifically, for client i, the task-consensus
update is defined as:

∆̄(−i) =
1

N − 1

∑
k ̸=i

∆k ∈ Rd′
, (3)

where d′ = |Γ| denotes the dimensionality of the selected active index set. Each client’s update ∆i

is then decomposed into orthogonal components: the task-alignment component ∆T
i aligned with

∆̄(−i), and the domain-deviation component ∆D
i orthogonal to it:

∆T
i =

⟨∆i, ∆̄(−i)⟩
∥∆̄(−i)∥2

· ∆̄(−i), (4)

∆D
i = ∆i −∆T

i . (5)
Here, ⟨·, ·⟩ denotes the inner product between two vectors, and ∥ · ∥ represents the ℓ2 norm. Then,
we define the task alignment score ϕTi and deviation anomaly score ϕDi as follows:

ϕTi =
∥∆T

i ∥
∥∆i∥

, ϕDi =

∣∣∣∣∥∆D
i ∥ − µSD

σSD

∣∣∣∣ , (6)

where the and µSD and σSD denote the mean and standard deviation of values given by SD =
{∥∆D

k ∥ | k = 1, . . . , N}. Finally, we compute the overall task-deviation anomaly score as:

Φi = (1− ϕTi ) + ϕDi , (7)
which jointly captures task misalignment and excessive domain deviation for client i.

4.3 CLASSIFICATION HEAD INCONSISTENCY FORENSICS

We observe that backdoor behaviors often cause targeted perturbations in the classifier head, espe-
cially along specific label dimensions. These manipulations are designed to alter decision bound-
aries, resulting in label-wise deviations that differ significantly from benign client patterns.

Let the update vector of fine-tuned classifier head for client i be denoted as ∆h
i ∈ RC×dh , where

C is the number of classes and dh is the feature dimension of the classifier head. For each class
c ∈ {1, . . . , C}, we define the class-wise average update from all other clients as:

Wc
(−i) =

1

N − 1

∑
k ̸=i

Wc
k, (8)

where Wc
k ∈ Rdh denotes the classifier head update vector for class c in client k. To quantify

potential tampering, we compute the classifier-head inconsistency score for each client i, which
captures label-wise behavioral deviations from the population mean. Specifically, for each target
class c ∈ {1, . . . , C}, we define a forensic score:

ψc
i = −s(Wc

i , W
c
(−i)) +

1

C − 1

∑
j ̸=c

s(Wj
i , W

j
(−i)), (9)

where s(u,v) = ⟨u,v⟩
∥u∥·∥v∥ denotes the cosine similarity between two vectors. We compute the worst-

case label-wise inconsistency as: ψ̃i = maxc∈{1,...,C} ψ
c
i . Then, to ensure comparability across

clients, We normalize the classifier-head inconsistency score as: ψi = ψ̃i

/∥∥∥∥{ψ̃j

}N

j=1

∥∥∥∥ .
A high value of ψi indicates suspicious concentration of classifier head updates toward a specific
class, which is characteristic of targeted backdoor injection.

4.4 ANOMALY DETECTION AND AGGREGATION DECISION

5
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Algorithm 1: BEACON

Input: Client updates {∆i}Ni=1, classifier
heads {∆h

i }Ni=1, thresholds τs, τm,
weights λ1, λ2

Output: Aggregated update ∆G

foreach client i ∈ {1, . . . , N} do
Compute Φi ← TDOD(∆i, ∆̄(−i));

Compute ψi ← CHIF(∆h
i );

Compute anomaly score:
Ωi ← λ1Φi + λ2ψi;

end
Initialize B ← ∅, S ← ∅;
foreach client i do

if Ωi > τm then
wi ← 0 ; // Malicious

else if Ωi > τs then
S ← S ∪ {i} ; // Suspicious

else
B ← B ∪ {i}; // Benign

end
end
foreach client i do

if i ∈ B then
wi ← 1

else if i ∈ S then
wi ← 1− Ωi/∥{Ωj}j∈B∪S∥

end
Aggregate global update:∆G ←

∑N
i=1 wi·∆i

N
return ∆G

We define a unified anomaly score Ωi for
each client Ci by linearly combining the task-
deviation score Φi and the inconsistency foren-
sic score ψi:

Ωi = λ1Φi + λ2ψi, λ1 + λ2 = 1. (10)

Based on the anomaly score Ωi, each client is
assigned a trust category: benign, suspicious,
or malicious, and corresponding aggregation
weights are applied. This classification en-
sures that malicious clients are excluded, while
the influence of suspicious clients is attenu-
ated. The final aggregation weight wi, which
replaces the uniform weight 1/N for client i, is
defined as:

wi =


0, Ωi > τm

1− Ωi

∥ΩB∪S∥
, τs < Ωi ≤ τm

1, Ωi ≤ τs,

(11)

where τs and τm denote the thresholds for sus-
picious and malicious clients, respectively. The
set ΩB∪S contains the anomaly scores of all
non-malicious clients, and ∥ · ∥ represents the
ℓ2 norm.

This aggregation strategy enables robust model
updates by strictly filtering high-risk clients and
proportionally reducing the influence of mod-
erately abnormal ones, while maintaining the
contributions of benign participants.

5 EXPERIMENTS

In this section, we comprehensively evaluate the transferability of existing FL defenses to CD-
FFT and demonstrate the superior performance of our proposed BEACON framework in suppressing
backdoors, preserving main task accuracy, and maintaining system stability. We further provide fine-
grained domain-wise results and ablation studies to assess the contributions of different modules. In
addition, we extend the analysis with runtime overhead evaluation (Appendix F), robustness under
dynamic attacks (Appendix G), and visualization of anomaly scores (Appendix I), offering a holistic
validation of BEACON.

5.1 EXPERIMENTAL SETUP

BEACON is deployed on a server with an Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz
CPU, 128GB RAM. Our experiments are implemented using Pytorch and conducted on an NVIDIA
RTX 3090 GPU.

Datasets and Model Settings. We conduct experiments on four widely used cross-domain bench-
marks: PACS (Li et al., 2017), DomainNet (Peng et al., 2019), Office-Caltech10 (Saenko et al.,
2010), and Office-Home (Venkateswara et al., 2017). We adopt ViT-Base/16 (Dosovitskiy et al.,
2020) as the backbone model and apply visual prompt tuning (Jia et al., 2022) for client adaptation.
Detailed dataset descriptions and model configurations are provided in the Appendix C.

Evaluation Metrics. Following AlignIns (Xu et al., 2025), we evaluate defense performance using
three metrics. Main Task Accuracy (MTA) is the standard classification accuracy on clean test
samples across all domains. Attack Success Rate (ASR) is the fraction of samples with triggers that
are classified into the target class specified by the adversary, and ASR reduction denotes the change
in ASR relative to the attack-only (no defense) setting. Robust Accuracy (RA) is the fraction of test

6
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DomainNet PACS Office-Home Office-Caltech-10Methods
MTA ASR RA MTA ↑ ASR ↓ RA ↑ MTA ↑ ASR ↓ RA ↑ MTA ↑ ASR ↓ RA ↑

Attack with Badnets
Clean 84.21 2.63 84.19 95.30 1.90 95.11 85.97 1.86 86.13 94.86 1.18 94.86

No defense 84.59 92.23 7.33 94.64 85.41 14.37 89.05 90.89 8.48 95.60 83.86 15.88
T-Mean 84.42 93.65 5.92 94.35 80.20 19.51 87.34 88.85 10.54 95.53 70.46 29.14
Median 84.28 93.38 6.20 94.35 80.89 18.81 88.07 87.33 11.60 94.15 70.35 29.25

Foolsgold 76.51 3.17 76.22 82.21 18.12 79.29 90.06 1.40 89.92 97.71 0.13 97.71
RFA 37.18 47.39 36.00 66.23 28.25 65.12 80.44 16.27 78.82 92.66 0.13 92.66

FLAME 82.11 30.54 63.76 90.67 4.97 90.47 91.86 2.10 91.89 97.87 0.13 97.13
Deepsight 84.16 93.33 6.28 93.98 74.42 25.28 88.95 87.11 12.27 96.26 28.73 70.08
AlignIns 84.03 92.30 7.38 88.55 29.67 68.74 92.86 0.52 92.68 98.34 0.14 98.34

Beacon 83.89 1.34↓1.83 93.68↑17.46 92.81 6.00 91.34↑0.87 92.93↑0.07 0.52 92.83↑0.15 98.23 0.00↓0.13 98.23
Attack with Neurotoxin

Clean 84.21 2.63 84.19 95.30 1.90 95.11 85.97 1.86 86.13 94.86 1.18 94.86
No defense 84.21 89.82 9.64 94.71 84.80 15.05 87.87 82.70 16.24 95.73 85.65 14.22

T-Mean 84.38 93.00 6.50 94.95 83.76 16.17 89.53 90.43 9.22 95.57 63.12 35.06
Median 84.74 93.51 6.13 94.99 84.15 15.77 89.70 90.16 9.49 95.58 61.37 36.81

Foolsgold 78.24 6.43 78.41 86.99 7.97 84.98 74.30 0.70 74.47 97.44 0.00 97.30
RFA 71.45 16.04 70.99 73.38 15.80 72.62 82.95 4.91 82.16 91.48 0.26 91.95

FLAME 80.95 4.22 80.91 85.68 6.17 84.86 90.41 1.43 89.96 98.50 0.00 98.50
Deepsight 83.98 92.86 6.69 94.50 80.43 19.35 88.47 90.82 7.94 96.78 88.63 14.36
AlignIns 83.64 97.77 1.68 93.35 74.51 25.11 93.78 0.87 92.98 98.11 0.00 98.11
Beacon 83.60 1.27↓2.95 83.86↑2.95 93.66 5.14↓1.03 86.35↑1.37 94.15↑0.37 1.26 94.08↑1.10 98.77↑0.22 0.00 98.64↑0.14

Attack with CBI
Clean 84.21 2.63 84.19 95.30 1.90 95.11 85.97 1.86 86.13 94.86 1.18 94.86

No defense 84.14 96.18 3.29 94.07 87.29 12.41 88.69 93.92 5.63 96.40 95.13 4.74
T-Mean 83.70 97.72 2.03 94.33 94.93 4.99 89.66 94.18 5.65 95.61 93.65 6.08
Median 83.15 95.68 3.98 94.64 94.32 5.60 90.17 94.83 5.00 94.25 94.12 5.60

Foolsgold 80.16 4.59 79.10 83.76 17.68 75.99 88.28 0.52 88.39 96.88 0.00 96.90
RFA 57.74 25.97 59.17 80.02 13.11 77.98 62.94 29.76 61.73 40.26 51.55 39.87

FLAME 9.73 88.18 9.41 90.68 5.01 80.61 91.83 1.05 91.31 97.59 0.00 97.72
Deepsight 84.04 97.57 2.14 94.29 91.24 8.53 87.89 95.34 4.15 96.53 94.56 5.30
AlignIns 83.23 95.56 4.06 93.43 2.14 93.45 94.88 97.43 2.23 98.35 0.00 98.35
Beacon 84.73↑0.69 1.65↓2.94 84.92↑5.82 94.91↑0.27 2.14 94.98↑0.53 93.91 3.45 89.44 98.50↑0.15 0.00 98.50↑0.15

Table 1: Comparison between BEACON and baselines across four cross-domain datasets under
three backdoor variants. Bold values indicate the best performance among all defense methods. ↑
and ↓ markers denote the relative improvement or degradation of BEACON compared to the second-
best defense method. All results are reported in percentage format (%).

samples with triggers that are still correctly classified into their true source class. An ideal defense
should maintain a high MTA and RA, while simultaneously reducing ASR.

Attack Settings and Defense Baselines. We consider three attack strategies: BadNet (Gu et al.,
2017), Neurotoxin (Zhang et al., 2022b), and Contrastive Backdoor Injection (CBI) (Huang et al.,
2024a). We compare BEACON with Trimmed Mean (T-Mean) (Yin et al., 2018), Median (Yin
et al., 2018), FoolsGold (Fung et al., 2020), FLAME (Nguyen et al., 2022b), RFA (Pillutla et al.,
2022), DeepSight (Rieger et al., 2022), and AlignIns (Xu et al., 2025). We adopt the default settings
for defense baselines, and integrate them into the CD-FFT system. Detailed descriptions of the
attack implementations and comparison defenses are provided in Appendix D and Appendix E.

Implementation Details. Before initiating any backdoor attack, we pretrain the global model on
each dataset for 50 rounds. We adopt a default setting of 3 clients per domain. In the main exper-
iments, we designate client 3 and client 6 as the malicious participants. During backdoor training,
the poisoning local epoch is set to 2, the poisoning learning rate to 0.01, and the default poisoned
data ratio γ = 0.25. The total number of communication rounds is 80. For our BEACON, we use
λ1 = 0.6 and λ2 = 0.4 by default. The thresholds for suspicious and malicious classification are set
to τs = 0.4 and τm = 0.8, respectively. The local training batch size for all clients is fixed at 32.

5.2 MAIN RESULTS

Backdoor Suppression. We first evaluate the effectiveness of our framework and baselines across
four cross-domain datasets under three backdoor variants. As shown in Tab. 1, BEACON consistently
suppresses the ASR to below 2% across nearly all settings. For instance, on the Office-Caltech10
dataset, BEACON reduces the ASR of all three attacks to 0%, indicating a complete thwarting of
the backdoor effect. In contrast, existing defenses such as Trimmed Mean (Yin et al., 2018), Me-
dian (Yin et al., 2018), and DeepSight (Rieger et al., 2022) fail almost entirely across all datasets.
Their ineffectiveness under the CD-FFT setting stems from their inability to adapt to domain shifts
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and the partial fine-tuning paradigm. While FoolsGold (Fung et al., 2020) demonstrates backdoor
suppression in some cases, it exhibits poor stability on the main task and fails to eliminate back-
door behavior on PACS. Moreover, AlignIns (Xu et al., 2025) and FLAME (Nguyen et al., 2022b)
perform inadequately on DomainNet, likely due to the complex feature distribution and severe do-
main shifts. These characteristics render coarse-grained defenses insufficiently expressive to capture
subtle backdoor signals.

Main Task and Robust Accuracy. As shown in Tab. 1, BEACON consistently achieves the highest
or near-highest RA across all datasets and attacks. This indicates that BEACON preserves strong
accuracy even on poisoned inputs, closely matching the behavior of the clean model. Regarding
MTA, BEACON demonstrates remarkable stability across all settings. While BEACON may not
attain the highest MTA in every case, such as its 83.89 on DomainNet under the BadNets attack
compared to 84.42 by Trimmed Mean, we find that methods with marginally higher MTA often fail
to effectively defend against backdoors. Although AlignIns successfully mitigates ASR in some
scenarios, its MTA and RA remain consistently lower than those of our BEACON.

Beacon

DomainNet PACS Office-Home

R
A

RFA AlignIns
A

S
R

 r
ed

u
ct

io
n 92.35

90.27

120.00

-20.00

Figure 2: Comparisons of BEACON and baselines in thwarting
ASR and maintaining RA across each fine-grained domain.

Overall, BEACON maintains both
strong main task performance and
robust generalization, outperform-
ing all baselines and supporting sta-
ble operation in the CD-FFT set-
ting.

Fine-grained Domain Results.
We present domain-wise results
on DomainNet, PACS, and Office-
Home in Fig. 2. Here, C denotes
the Clipart domain, with the
remaining symbols corresponding
to other domains in the datasets.
As shown, BEACON consistently
achieves superior performance
across domains, especially on
DomainNet and PACS. For in-
stance, in the Painting domain
of DomainNet, BEACON reduces
ASR by 92.35% while maintaining
a high RA of 90.27%. In contrast, methods such as RFA and AlignIns struggle to balance ASR
suppression and RA preservation, and in some domains, they fail to mitigate the backdoor effects at
all. BEACON achieves consistent and robust defense performance across diverse domains.

5.3 ABLATION STUDIES

Necessity of TDOD and CHIF Modules. Tab. 2 presents the ablation results of BEACON with
only the TDOD or the CHIF module under BadNets attack on DomainNet and PACS. We observe
that when equipped with only the CHIF module, BEACON occasionally fails to suppress the back-
door. For instance, on DomainNet, the ASR is only reduced by approximately half (from 92.23%
to 48.82%). In contrast, when using only the TDOD module, the main task performance degrades
significantly, as evidenced by an MTA of only 89.01% on PACS. By integrating both modules, BEA-
CON consistently achieves strong performance, effectively eliminating backdoors while maintaining
high MTA and RA. These results demonstrate the necessity of combining TDOD and CHIF for
robust and stable backdoor defense.

Number of Total Clients. We investigate the robustness of BEACON under varying numbers of
clients per domain, ranging from 1 to 5. As shown in Fig. 3, BEACON maintains strong defense
capabilities even under extreme conditions. Notably, when there is only one client per domain,
which means that nearly 50% of the participating clients are malicious, BEACON still reduces the
ASR by 96.29% on the PACS dataset. It is worth noting that when each domain contains two
clients, BEACON does not achieve the absolute best ASR reduction, suppressing approximately 70%
of the attack success. Nevertheless, this still represents a significant mitigation of backdoor effects,
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DomainNet PACSTDOD CHIF
MTA ASR RA MTA ASR RA

% % 84.59 92.23 7.33 94.64 85.41 14.37
% ! 83.46 48.82 49.12 93.87 13.27 84.06
! % 83.33 25.10 66.50 89.01 15.18 77.28
! ! 83.89 1.34 93.68 92.81 6.00 91.34

Table 2: Ablation Results on TDOD and CHIF
Components. BEACON equipped with both
TDOD and CHIF consistently achieves the best
ASR suppression and RA performance, while
maintaining high stability.

Poisoning RatioDataset&Metrics
0.125 0.250 0.375 0.500 0.625 0.750 0.875

DomainNet, Attack domain: I,P
MTA ↑ 83.73 83.89 83.02 84.64 84.65 82.48 82.72
ASR ↓ 2.14 1.34 1.29 3.04 21.60 36.62 2.59
RA ↑ 83.96 84.07 83.32 84.74 71.71 59.92 83.01

Office-Home, Attack domain: C,P
MTA ↑ 92.46 92.87 93.92 94.67 91.82 90.64 89.49
ASR ↓ 0.52 0.87 1.05 3.66 1.92 4.53 4.26
RA ↑ 92.46 92.70 93.12 92.11 91.86 90.19 90.04

Table 3: Ablation results on poisoning ratios.
BEACON accurately identifies backdoor attacks
across all poisoning ratios.

MTA

DomainNet PACS

M
T

A

A
S

R
 r

ed
u

ct
io

n
 /

 R
A

ASR reduction RA

Figure 3: BEACON’s stability under varying
numbers of participating clients per domain.
BEACON accurately identifies backdoor behav-
iors and maintains system stability in both large-
scale and small-scale client scenarios.

MTA ASR reduction

DomainNet PACS

RA ASR (no defense)

M
et

ri
cs

Figure 4: BEACON’s performance under vary-
ing numbers of malicious domains. Even multi-
domain collaborative attacks cannot evade
Beacon’s precise defense.

indicating that BEACON remains highly effective in alleviating attack pressure across various client
participation scenarios.

Number of Malicious Domains. To evaluate the robustness of BEACON against collaborative
backdoor attacks across multiple domains, we vary the number of malicious domains controlled
by the attacker. As shown in Fig. 4, BEACON consistently mitigates the backdoor effect on both Do-
mainNet and PACS datasets, reducing the ASR to nearly zero in most cases. When all three domains
in DomainNet contain malicious clients, the system’s RA slightly drops to 68.35. Nevertheless, the
MTA remains relatively high, indicating that the global model still retains task utility despite the
challenging setting.

Poisoning Ratio Sensitivity. We investigate the sensitivity of BEACON to different poisoning ratios
by varying the proportion of poisoned data in each local batch from 0.125 to 0.875. Tab. 3 reports the
results on the DomainNet and Office-Home datasets, demonstrating that BEACON exhibits strong
resilience across a wide range attack settings. A notable exception occurs on DomainNet when the
poisoning ratio is set to 0.625 or 0.750, where the ASR is not suppressed to the lowest possible level.
Nevertheless, an ASR of only 21.6% still reflects substantial mitigation.

Overall, BEACON demonstrates consistently robust performance under diverse and challenging con-
figurations, validating its generalization and reliability.

6 CONCLUSION

In this paper, we conduct the first comprehensive evaluation of transferring existing FL backdoor de-
fenses to CD-FFT settings and propose BEACON, the first defense framework tailored for this chal-
lenging scenario. BEACON decouples gradient behaviors through the Task-Deviation Orthogonal
Disentanglement (TDOD) and Classification Head Inconsistency Forensics (CHIF) modules, en-
abling fine-grained identification of malicious updates. We further integrate the anomaly signals into
a trust-aware aggregation to maintain system stability while suppressing backdoor threats. Exten-
sive experiments across four cross-domain datasets and three backdoor variants show that BEACON
reduces ASR to below 2% in almost all cases, while preserving high MTA and RA. Compared to
seven state-of-the-art defenses, BEACON achieves the most consistent and stable performance under
various attack configurations.
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A APPENDIX OUTLINE

This appendix is organized as follows:

• Sec. B clarifies that large language models usage.

• Sec. C provides additional dataset and model details, including domain statistics, class
selections, and prompt tuning configurations.

• Sec. D describes the implementation details of the three representative backdoor attacks
(BadNets, Neurotoxin, and CBI) and illustrates the trigger settings used in our experiments.

• Sec. E summarizes the defense baselines considered in our comparisons and clarifies their
implementation settings in CD-FFT.

• Sec. F reports the runtime analysis of the TDOD and CHIF modules, showing their negli-
gible overhead and scalability with respect to client numbers.

• Sec. G investigates BEACON’s robustness under dynamic and colluding adversaries, in-
cluding constrain-and-scale based model replacement attacks.

• Sec. H discusses the limitations of the current framework and outlines directions for future
extensions.

• Sec. I presents additional visualization results of anomaly scores across different datasets
and attack variants.

B LLM USAGE STATEMENT

During the preparation of this manuscript, the authors used OpenAI ChatGPT-5 for proofreading and
improving the readability of the text. The LLM was not involved in generating technical content,
research ideas, or experimental results. Following its use, the authors carefully reviewed and revised
all outputs, and take full responsibility for the final publication.

C DATASET AND MODEL DETAILS

The details of the four cross-domain datasets used in our experiments are as follows.

• DomainNet (Peng et al., 2019) is a large-scale benchmark that comprises 345 object cat-
egories spanning six diverse domains, namely Clipart, Infograph, Painting, Quickdraw,
Real, and Sketch. Following Li et al. (2020), we select ten representative classes to conduct
our experiments.

• PACS (Li et al., 2017) consists of 7 object categories distributed across four visually dis-
tinct domains, including Artpainting, Cartoon, Photo, and Sketch, which are widely used
for evaluating cross-domain generalization.

• Office-Home (Venkateswara et al., 2017) contains 65 object categories collected from four
domains with significant appearance shifts, namely Art, Clipart, Product, and Realworld.
In our study, we utilize the first ten categories for evaluation.

• Office-Caltech10 (Saenko et al., 2010) is a domain adaptation benchmark that shares 10
common object categories across four domains, including Amazon, DSLR, Webcam, and
Caltech.

We use ViT-Base/16 (Dosovitskiy et al., 2020) as the backbone. Each client adopts visual prompt
tuning (Jia et al., 2022) in the VPT-Deep configuration: the ViT backbone is frozen and we update
only the inserted prompt tokens and the task-specific classification head. Concretely, we insert 15
prompt tokens (dimension 768) at each of the 12 transformer blocks.

D DETAILS OF THE BACKDOOR ATTACK IMPLEMENTATIONS

We summarize the three backdoor attacks used in our experiments.
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DomainNet 

(Real domain)

PACS

(Sketch domain)

Office-Home 

(Product domain)

Office-Caltech-10

(Amazon domain)

6×6 Trigger

Figure 5: Examples from the four datasets and visualizations of trigger patterns.

BadNets. We use the standard square-patch BadNets (Gu et al., 2017) with a fixed location and
color. This patch-based attack serves as our baseline.

Neurotoxin. Following (Zhang et al., 2022b), we inject parameter-level perturbations into the least-
active parameters. Concretely, we target parameters in the bottom 98% percentile of per-parameter
update magnitudes to maximize stealthiness.

Contrastive Backdoor Injection (CBI). We implement CBI (Huang et al., 2024a) as a model-
poisoning method that combines cross-entropy with a contrastive loss. The local objective is L =
LCE + 0.5 · Lcontrast (contrastive weight = 0.5).

Fig. 5 illustrates the trigger patterns and example poisoned samples for the four datasets.

E DETAILS OF THE COMPARISON DEFENSE METHODS

We briefly summarize the baseline methods included in our experiments.

FedVPT (Clean) (Yang et al., 2023). In the clean setting, we adopt federated visual prompt tuning,
where each client fine-tunes only the inserted prompt tokens and the classification head, while the
server aggregates updated parameters using FedAvg.

Krum (Blanchard et al., 2017). Krum selects a single client update that is closest to others in terms
of Euclidean distance, thereby filtering out potential outliers. This makes it resilient to a small
number of malicious updates but less scalable when many clients are compromised.

Trimmed Mean and Median (Yin et al., 2018). These aggregation rules reduce the influence of
extreme updates. The trimmed mean discards a fixed proportion of the largest and smallest parameter
values before averaging, while the coordinate-wise median takes the middle value for each parameter
dimension.

FoolsGold (Fung et al., 2020). FoolsGold monitors historical update directions and downweights
clients with overly similar updates, under the assumption that colluding adversaries submit aligned
gradients to reinforce the backdoor. By reducing their contribution, it limits the amplification effect
of coordinated malicious clients.

RFA (Pillutla et al., 2022). RFA applies the geometric median to aggregate client updates, which
minimizes the overall ℓ2 distance to all updates. This robust estimator diminishes the effect of
extreme values, making the global model less sensitive to poisoned contributions.

FLAME (Nguyen et al., 2022b). FLAME is a defense framework against backdoor attacks that
injects carefully calibrated noise to disrupt malicious behavior while preserving accuracy on clean
data. It combines model clustering with weight pruning to minimize the required noise, offering
strong robustness with little sacrifice of utility.

DeepSight (Rieger et al., 2022). DeepSight identifies neurons strongly associated with backdoor
behavior and leverages HDBSCAN clustering to detect and isolate outlier updates. This neuron-
level perspective enables more precise anomaly detection than coarse-grained statistics.
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AlignIns (Xu et al., 2025). AlignIns inspects the directional alignment of client updates by measur-
ing their consistency with the global update direction and the sign alignment of parameters. Updates
that deviate significantly from the benign consensus are flagged as suspicious and suppressed.

F RUNTIME ANALYSIS OF TDOD AND CHIF

We report the empirical time overhead of the two BEACON modules (TDOD and CHIF), and evaluate
scalability by varying the number of clients per domain. Tab. 4 summarizes the measured times: for
each dataset we list the average local training time observed for a malicious client and a benign
client, and the cost of TDOD and CHIF across 1–5 clients per domain.

Two key observations follow. First, the absolute cost of TDOD is tiny: across all datasets TDOD
incurs on the order of 10−3–10−2 seconds (e.g., up to ≈ 0.0185s on DomainNet for 5 clients per
domain). CHIF is more expensive but still lightweight, ranging from a few 10−3s up to a few 10−1s
depending on dataset and client count (DomainNet shows the largest CHIF cost, ≈ 0.3776s at 5
clients per domain). By contrast, a single round of local training on a selected client takes on the
order of 1–5 seconds in our measurements (see the table headers), so the combined TDOD+CHIF
overhead is negligible relative to local training time.

Second, the per-round inspection cost grows approximately linearly with the number of inspected
clients: doubling the number of clients roughly doubles the total inspection time, consistent with
O(N) complexity with respect to the number of participating clients. This linear behaviour, together
with the very small constant for TDOD, supports the practical scalability of BEACON when deployed
on the server side.

In short, BEACON adds only a few seconds of extra work per round in realistic settings. The small
and linear overheads confirm that BEACON can be deployed without materially slowing down fed-
erated training while providing robust, fine-grained backdoor detection.

Number of client per domainModule
1 2 3 4 5

DomainNet, Malicious training: 4.3297s, Benign training: 2.0654s
TDOD 0.0081 0.0111 0.0114 0.0167 0.0185
CHIF 0.0775 0.1550 0.2278 0.3088 0.3776

Office-Home, Malicious training: 3.5464s, Benign training: 1.3342s
TDOD 0.0037 0.0068 0.0075 0.0114 0.0140
CHIF 0.0542 0.0972 0.1511 0.1947 0.2732

Number of client per domainModule
1 2 3 4 5

PACS, Malicious training: 3.3830s, Benign training: 1.6895s
TDOD 0.0036 0.0051 0.0099 0.0116 0.0118
CHIF 0.0292 0.0506 0.0761 0.1015 0.1288

Office-Caltech-10, Malicious training: 1.0419s, Benign training: 0.8969s
TDOD 0.0029 0.0049 0.0073 0.0093 0.0125
CHIF 0.0487 0.0963 0.1445 0.1941 0.2435

Table 4: Runtime analysis of TDOD and CHIF across four datasets with varying numbers of clients
per domain. The overhead remains negligible compared to local training time, and scales linearly
with the number of clients, demonstrating the efficiency and scalability of BEACON.

G ROBUSTNESS UNDER DYNAMIC ATTACKS

We test BEACON in a stronger, dynamic threat model where adversaries combine Neurotoxin (Zhang
et al., 2022b) and a constrain-and-scale attack (Bagdasaryan et al., 2020). Our experimental setup
uses two colluding malicious clients and three clients per domain. Tab. 5 reports the resulting MTA,
ASR and RA across the four datasets.

Above all, BEACON consistently suppresses ASR and preserves RA in the majority of cases: on
DomainNet, Office-Home and Office-Caltech-10 we observe substantial ASR reduction and near-
clean RA, indicating that BEACON effectively exposes stealthy manipulations. Second, PACS is a
partial failure mode: under dynamic attacks malicious updates are sometimes labeled as suspicious
rather than malicious and therefore receive attenuated but non-zero weights. Over multiple rounds
these small contributions can gradually restore the backdoor. This behavior stems from the subtle,
multi-round accumulation strategy.

Importantly, this PACS failure mode is controllable. Tightening the thresholds τm and τs reduces
false negatives (i.e., suspicious updates that should be blocked) at the cost of slightly more conserva-
tive filtering. Overall, the experiments demonstrate that BEACON is robust to dynamic, coordinated

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

attacks in practical settings, and that any remaining corner cases can be addressed by small, inter-
pretable changes to the detection thresholds.

DomainNet PACSMethod
MTA ASR RA MTA ASR RA

Clean 84.21 2.63 84.19 95.30 1.90 95.11

No defense 84.36 97.76 1.89 94.93 83.74 16.03
Beacon 84.43 2.65 84.25 94.85 44.43 55.13

Office-Home Office-Caltech-10Method
MTA ASR RA MTA ASR RA

Clean 85.97 1.86 86.13 94.86 1.18 94.86
No defense 88.51 90.04 9.79 96.81 91.61 8.12
Beacon 92.94 0.52 92.77 98.37 0.13 98.37

Table 5: Robustness under dynamic attacks. BEACON consistently suppresses ASR and preserves
RA across datasets.

H LIMITATIONS AND FUTURE WORK

While BEACON demonstrates strong robustness against backdoor attacks in cross-domain federated
fine-tuning, it still has certain limitations. First, our evaluations are limited to image classification
tasks, leaving the extension to multimodal federated fine-tuning scenarios and diverse backbone ar-
chitectures (e.g., large vision–language models) as promising directions for future work. Second,
BEACON may occasionally misclassify benign clients as suspicious, which could reduce the diver-
sity of training updates and marginally impact model generalization. Future work will focus on
refining the anomaly scoring mechanism to further reduce false positives while maintaining strong
robustness.

I VISUALIZATION RESULTS OF ANOMALY SCORE

We further present visualization results of the scores computed by the TDOD and CHIF modules.
In all cases, clients 3 and 6 are the truly malicious clients, and we highlight the indices identified
by BEACON as malicious in red for comparison. As shown in Figs. 6–9 across different datasets
and three representative attack variants, both TDOD and CHIF consistently assign higher anomaly
scores to malicious clients, effectively separating them from benign ones. These visualizations
provide intuitive evidence that BEACON reliably detects outliers and captures the subtle behaviors
associated with backdoor manipulations.
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I.1 DOMAINNET
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Figure 6: TDOD (Φ) and CHIF (ψ) anomaly score visualizations on DomainNet. Clients 3 and 6
are the truly malicious clients. Indices identified by BEACON as malicious are highlighted in red.
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I.2 PACS
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Figure 7: TDOD (Φ) and CHIF (ψ) anomaly score visualizations on PACS. Clients 3 and 6 are the
truly malicious clients. Indices identified by BEACON as malicious are highlighted in red.
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I.3 OFFICE-HOME
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Figure 8: TDOD (Φ) and CHIF (ψ) anomaly score visualizations on Office-Home. Clients 3 and 6
are the truly malicious clients. Indices identified by BEACON as malicious are highlighted in red.
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I.4 OFFICE-CALTECH-10
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Figure 9: TDOD (Φ) and CHIF (ψ) anomaly score visualizations on Office-Caltech-10. Clients 3
and 6 are the truly malicious clients. Indices identified by BEACON as malicious are highlighted in
red.
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