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Abstract
Linguistic communication is prevalent in
Human-Computer Interaction (HCI). Speech
(spoken language) serves as a convenient yet
potentially ambiguous form due to noise and
accents, exposing a gap compared to text. In
this study, we investigate the prominent HCI
task, Referring Video Object Segmentation (R-
VOS), which aims to segment and track ob-
jects using linguistic references. While text
input is well-investigated, speech input is under-
explored. Our objective is to bridge the gap be-
tween speech and text, enabling the adaptation
of existing text-input R-VOS models to accom-
modate noisy speech input effectively. Specifi-
cally, we propose a method to align the seman-
tic spaces between speech and text by incorpo-
rating two key modules: 1) Noise-Aware Se-
mantic Adjustment (NSA) for clear semantics
extraction from noisy speech; and 2) Semantic
Jitter Suppression (SJS) enabling R-VOS mod-
els to tolerate noisy queries. Comprehensive ex-
periments conducted on the challenging AVOS
benchmarks reveal that our proposed method
outperforms state-of-the-art approaches.

1 Introduction

Recent advances in vision-language learning have
significantly advanced Human-Computer Interac-
tions (HCI). A demanding task within HCI is re-
ferring video object segmentation (R-VOS), which
involves segmenting and tracking objects in videos
based on textual references. The successful devel-
opment of R-VOS techniques has paved the way
for diverse real-world applications such as video
editing (Li et al., 2022d) and augmented reality
(Huang et al., 2022). Notably, recent R-VOS meth-
ods (Luo et al., 2023) have shown unprecedented
progress, propelled by the rapid advancement of
multimodal foundation models such as CLIP (Rad-
ford et al., 2021). These R-VOS models enable
various text-referred scenarios, allowing referring
segmentation for generalized textual expressions
even in complex visual scenes.
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Figure 1: (a) Referring video object segmentation (R-
VOS) employs text as a query for segmentation. (b)
Speech-referring video object segmentation. Compared
to written language (text), spoken language (speech) is
a more noisy form, potentially involving greater infor-
mation loss and disturbance due to background noises.
We propose a plug-and-play STBridge module, which
seamlessly extends a frozen text-conditioned R-VOS
model to accommodate noisy speech inputs.

However, a more challenging scenario arises
in the prevalent speech dialogue system, where
the aim is to refer to specific targets using spo-
ken language, i.e., speech. The inherent nature of
speech introduces vulnerabilities to disturbances
from background noises (sound except for the re-
ferring speech). Consequently, crucial information
within the spoken content can be distorted or even
lost, which poses extra challenges in maintaining
effective segmentation when referring to targets ver-
bally. Though previous R-VOS methods achieve
remarkable performance with textual queries, their
performance with real-world spoken language is
rarely discussed. Hence, it is crucial to develop
an effective approach to bridge the text and speech
to adapt well-trained R-VOS methods (frozen) for
speech inputs.

Yet, bridging speech to R-VOS methods intro-
duces new challenges. A straightforward solu-
tion involves utilzing automatic speech recogni-
tion (ASR) (Li et al., 2022a) to convert speech



to text, followed by text-conditioned referring seg-
mentation. However, this can result in suboptimal
performance for two primary reasons. (1) Noise in
language queries of R-VOS. Existing R-VOS mod-
els rely on clean text-video pairs, wherein the tex-
tual expression unambiguously identifies the target
object. Nonetheless, information extracted from
speech may be incomplete or distorted due to back-
ground noise and ASR errors, leading to inadequate
references to the target object. To maintain robust
segmentation quality, it is crucial to adapt R-VOS
models to handle perturbed referring queries. (2)
Noise in speech understanding. In practice, speech
and background noise are closely intertwined, mak-
ing it difficult to accurately comprehend semantic
information from speech. Considering the diverse
types of noise, an effective noise-tolerant speech
understanding approach is vital for achieving ro-
bust speech-referring video object segmentation.

In this paper, we present STBridge, a novel
approach that enables R-VOS models trained on
clean text-video pairs to adapt to noisy speech
as referring guidance, maintaining robust perfor-
mance even amidst background noises. As illus-
trated in Fig. 1, the proposed STBridge links the
well-trained R-VOS model with speech input, in-
corporating two core considerations to improve
the model’s robustness: (1) enhancing the well-
trained R-VOS model to accept incomplete guid-
ance, and (2) providing the noise-tolerant capabil-
ity for speech understanding. On the one hand, we
introduce a semantic-jitter suppression (SJS) mod-
ule to help the R-VOS model understand noisy
information from referring guidance. The SJS
module generates object queries with randomly jit-
tered textual features, allowing the model to learn
from incomplete referring guidance under proper
supervision. On the other hand, we introduce a
noise-aware semantic adjustment (NSA) module,
which generates noise-adaptive filters to enhance
the speech representation. This differs from tra-
ditional speech enhancement, as it focuses solely
on encoded semantics during speech understand-
ing, while discarding low-level information, i.e.,
waveforms.

We further introduce a slack semantic alignment
to align text and speech queries, enabling the inte-
gration of speech input with well-trained R-VOS
models. Notably, our method incorporates addi-
tional modules without any retraining of R-VOS
models, which is essential for numerous real-world

applications. In summary, our contributions are as
follows:

• We propose STBridge, a novel approach to
bridge speech input to referring segmentation
models, enabling segmenting objects with spo-
ken language.

• We introduce semantic-jitter suppression and
noise-aware semantic adjustment modules to
enable the noise-tolerant capability for speech
queries.

• We conduct extensive experiments on speech-
referring segmentation benchmarks and the
results of which show our approach performs
favorably over prior arts.

2 Related Works

Video segmentation. Video segmentation (Wang
et al., 2021c; Li et al., 2022b,c, 2023a; Yan et al.,
2023; Li et al., 2023c) is a fundamental task to
enable video editing. Semi-supervised video ob-
ject segmentation (VOS) which leverages a first-
frame mask to assign the target object is among
the most popular video segmentation tasks due
to its high segmentation quality. Some recent
works (Yang et al., 2020, 2021) propagate masks by
exploring matches among adjacent frames. Space-
Time-Memory networks (STM) (Oh et al., 2019)
builds a memory bank for matches. Several works
follow the paradigm used in STM and improve
the memory construction policy (Xie et al., 2021;
Liang et al., 2020; Wang et al., 2021a) or enhance
the memory reading strategy (Cheng et al., 2021a;
Seong et al., 2020; Hu et al., 2021; Cheng et al.,
2021b; Seong et al., 2021; Yang et al., 2021). Re-
cently, Yan et al.(Yan et al., 2023) introduced a
two-shot setting for VOS tasks which enables high-
performance segmentation with limited annotated
frames. Since the VOS task is primarily used for
video editing which requires human involvement,
to reduce the labor in assigning the target object,
referring video object segmentation (R-VOS) is in-
troduced. Specifically, R-VOS aims to segment
an object in a video sequence given a linguistic
description as the query. ReferFormer (Wu et al.,
2022) and MTTR (Botach et al., 2022) are two pio-
neering works that utilize transformers to decode
or fuse multimodal features. Recently, R2-VOS (Li
et al., 2023b) introduces a cyclic structural consis-
tency to enhance the robustness of R-VOS. And
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Figure 2: Overview of STBridge. We extend frozen R-VOS model (in blue) with trainable STBridge (in red)
modules to adapt to noisy speech as input. (I) Training: A speech encoder is utilized to extract noisy speech gns
and noise gn embeddings from noisy speech S. On one hand, a noise-aware semantic adjustment (NSA) module
is utilized to mitigate the noise influence, which derives the cleaner speech embedding gs. On the other hand, to
enhance the noise-tolerant capability of R-VOS model, we first generate perturbation to the text embedding gt
and then equip a semantic jitter suppression (SJS) module to suppress the noises. Moreover, semantic alignment
constraints are introduced to align the text gt and speech gs embeddings. (II) Inference: After aligning the text and
speech embeddings during training, we can directly discard the text branch and leverage speech embedding gs as
the input to the SJS module.

OnlineRefer (Wu et al., 2023) employs the query
propagation module to enable the online R-VOS.

Spoken language understanding. Spoken lan-
guage, i.e., speech, enables a more natural way
for humans to refer to a certain object than us-
ing text-based language. Thanks to the emer-
gence of datasets with paired images and speech,
e.g., Flicker8K (Harwath and Glass, 2015) and
AVOS (Pan et al., 2022), more works (Chrupała,
2022; Harwath et al., 2020; Kano et al., 2021;
Seo et al., 2023) started to research on the repre-
sentation of speech and explore the synergy be-
tween speech and other modalities, e.g., image
and video. For example, LAVISH (Lin et al.,
2023) incorporates a small set of latent tokens to
align the visual and audio representation, and Visu-
alVoice (Gao and Grauman, 2021) conducts speech
separation with the speaker’s facial appearance as
a conditional prior. Later, research on speech has
also moved towards finer granularity tasks. Some
works (Lei et al., 2021) focus on the mono-modal
impact of speech to study the subtle semantic infor-
mation of spoken language to better understand hu-
man speech, while others (Jiang et al., 2021) study
how to introduce the knowledge of speech under-
standing to create more natural human-computer
interaction applications, e.g. talking head (Hwang

et al., 2023; Li et al., 2023c; Qu et al., 2023).

3 Method

To ground objects verbally, we start from a frozen
text-referring video object segmentation (R-VOS)
model (shown as blue modules in Fig. 2), includ-
ing frozen video-text encoders and a mask decoder.
We introduce a speech encoder, a semantic jitter
suppression (SJS) module, a noise-aware semantic
adjustment (NSA) module, and a semantic align-
ment constraint to bridge text and speech (shown as
pink modules in Fig. 2). During training, STBridge
leverages video V , text T , and noisy speech S
triplets to align the query spaces between text and
speech. Thereafter, we can discard the text branch
and directly query the objects with speech during
inference.

3.1 Encoders

Frozen video and text encoders. We consider
a generic referring segmentation framework that
equips a video encoder Ev and a text encoder Et
to extract visual and textual features. Let us de-
note the extracted visual feature as f = Ev(V ) ∈
RCv×Lv×H×W and extracted text embeddings as
gt = Et(T ) ∈ RC×Lt , where Cv, C and Lv, Lt are
the channel and length of visual and text embed-
dings respectively. We freeze the video and text



encoders during both training and inference.

Speech encoder. We leverage a transformer-
based speech encoder, Wav2Vec2 (Baevski et al.,
2020) to extract speech features. We addition-
ally augment two linear layers on top of the last
hidden state of Wav2Vec2 to predict noise type.
Thereby, each speech embedding corresponds to
a noise embedding to describe the noise informa-
tion. We denote the extracted noisy speech em-
bedding as gns ∈ RC×Ls and noise embedding as
gn ∈ RC×Ls . C and Ls are the channel and length
of embeddings.

3.2 Semantic Jitter Suppression
To equip the R-VOS model, which is typically
trained on clean data samples, with the noise-
tolerance capability, we first mimic noisy text em-
beddings g′t by applying semantic jitters to the orig-
inal text embeddings gt. After that, we introduce a
learnable semantic jitter suppression block φ(·) to
suppress the jitter and generate proper object query
q for the following mask decoding.

Specifically, we implement the semantic jitter
with a linear perturbation function where g′t = m ◦
gt + δ. Here, m ∈ {0, 1}C×Lt is a binary masking
operation at either word-level (along Lt dimension)
or channel-level (along C dimension); δ ∈ RC×Lt

is a random noise; ◦ denotes the Hadamard product.
Besides, the jitter suppression block is constructed
by cascading a transformer encoder and a global
average pooling layer which pools along the word
dimension. Formally, the final object query q ∈
RC×1 can be generated as

q = φ(m ◦ gt + δ). (1)

3.3 Noise-aware Semantic Adjustment
We introduce noise-aware semantic adjustment
(NSA) to adjust inaccurate semantics introduced
by noises, which consists of two components: a
bi-directional cross-attention for noise-speech in-
teraction and a noise-guided modulation for speech
embedding adjustment.

Bi-directional cross-attention (BCA). In BCA,
Noise-to-Speech (N-S) and Speech-to-Noise (S-
N) cross-attention layers are involved to compute
noise-aware speech embeddings g′n and speech-
aware noise embedding g′n. Formally, they take the
form:

hn→s = Softmax
(
QT

nKs/
√
d
)
Vs (2)
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Figure 3: Illustration of Noise-aware Semantic Adjust-
ment. Noisy speech and noise embeddings, i.e., gns and
gn, first interact with each other via the bi-directional
cross-attention mechanism. Then, the fused noise em-
bedding g′n is used to modulate the fused speech embed-
ding g′ns to make it more noise-aware.

hs→n = Softmax
(
QT

s Kn/
√
d
)
Vn, (3)

where hn→s and hs→n are outputs of N-S and S-N
attention. K, Q, and V are derived by applying
linear projections on the original speech or noise
embedding. d is the dimension of K and Q. The
hn→s and hs→n are fused back to their paths with
residual connections (He et al., 2016). We denote
the fused embeddings as g′ns and g′n.

Noise-guided modulation (NGM). To incorpo-
rate noise information into speech embeddings, we
propose a noise-guided feature modulation with
channel-wise attention (Tian et al., 2020). Differ-
ent from attention in BCA acting along the time di-
mension, channel-wise attention directly acting on
feature channels is more efficient to exploit seman-
tically meaningful correlations (Wang et al., 2021b;
Tian et al., 2020), especially for instance-level cor-
relations (Tian et al., 2020; Cao et al., 2020; Bolya
et al., 2019). Given the speech-aware noise embed-
ding g′ns, we first apply a fully connected layer on
it to form the dynamic filters Θ = {θi}Ls

i=1. Here,
each filter θi ∈ RC×1 represents the noise informa-
tion for each timestep and modulates the speech
embeddings according to their category and am-
plitude. Then we utilize channel-wise attention to
modulate the noise-aware speech feature g′s, which
is given by:

gs|n = Θ ◦ g′ns (4)

where gs|n is the modulated speech embeddings
and ◦ represents Hadmard product. We fuse the
gs|n back to g′ns with a residual connection, which
derives the final output gs = g′ns + gs|n.

3.4 Frozen Mask Decoder
Referring segmentation methods typically leverage
a query-based mask decoder D(q, f) (Wu et al.,



2022; Botach et al., 2022) that takes an object
query q ∈ RC×1 encoding the object information
and a video feature f as inputs to predict the ob-
ject masks M ∈ RN×Lv×Ho×Wo , object bound-
ing boxes B ∈ RN×Lv×4 and confidence scores
S ∈ RN×Lv×1 across video frames. N is the ob-
ject candidate number. Here, we omit the detailed
structure (available in Appendix) for simplicity. It
is worth mentioning that the object query for the
decoder is simply an averaged text embedding for
recent popular R-VOS methods, which takes the
form: q = pool(gt). The well-trained mask de-
coder D keeps frozen in our method.

3.5 Training Objectives
We utilize a semantic alignment loss λalign to align
speech and text queries, a noise classification loss
Lnoise to facilitate speech understanding, and a
segmentation loss Lmatch to segment objects:

L = λalignLalign + λnoiseLnoise + Lmatch (5)

where λalign and λnoise are constants.

Semantic alignment. To bridge the text and
speech queries, we conduct semantic alignment
between text and speech embeddings. As the ob-
ject query q requires sentence-level semantics (each
sentence describes one object), it is not necessary
to enforce a tight sequence-to-sequence alignment
between text and speech embeddings (Tan et al.,
2023). Instead, we align text and speech embed-
dings with a loose constraint. Specifically, given
a text embedding gt and a speech embedding gs,
we first pool them among word and time dimen-
sions correspondingly. After that, an alignment
constraint is applied between them

Lalign = ∥pool(gt)− pool(gs)∥2 (6)

where ∥ · ∥2 is the L2-Norm.

Noise classification. We augment the clean
speech with different categories of audio, e.g., dog
barking, as noise. We apply a noise classification
head on top of noise embedding gn to predict noise
categories. Let us denote the predicted probabil-
ities as p ∈ RNc×1 and the ground truth class as
c, where Nc is the noise type number. The noise
classification loss Lnoise can be computed as

Lnoise = −logp[c] (7)

where p[c] denotes the probability of class c.

Object segmentation. Following the object seg-
mentation methods (Wu et al., 2022; Wang et al.,
2021c), we assign each mask prediction with a
ground-truth label and then apply a set of loss
functions between them to optimize the segmenta-
tion mask quality. Given a set of predictions y =
{yi}Ni=1 and ground-truth ŷ = {B̂l, Ŝl, M̂l}Lv

l=1

where yi = {Bi,l, Si,l,Mi,l}Lv
l=1, we search for an

assignment σ ∈ PN with the highest similarity
where PN is a set of permutations of N elements.
The similarity can be computed as

Lmatch(yi, ŷ) = λboxLbox + λconfLconf

+ λmaskLmask

(8)

where λbox, λconf and λmask are constant numbers
to balance the losses. Following previous works
(Ding et al., 2021; Wang et al., 2021c), we leverage
a combination of Dice (Li et al., 2019) and BCE
loss as Lmask, focal loss (Lin et al., 2017b) as
Lconf , and GIoU (Rezatofighi et al., 2019) and L1
loss as Lbox. The best assignment σ̂ is solved by
the Hungarian algorithm (Kuhn, 1955).

3.6 Inference

During inference, we only keep speech and video
as inputs. We first pool the speech embedding g′s
into a fixed size and then utilize it to replace the text
embedding gt. Thereby, noisy speech can replace
text to query the visual object. Please note that the
text branch stays functional as we froze the R-VOS
model during the training of STBridge.

4 Experiment

4.1 Datasets and Metrics

Datasets. We conduct experiments on the large-
scale speech-referring video object segmentation
dataset, AudioGuided-VOS (AVOS) (Pan et al.,
2022) which augments three R-VOS benchmarks
with speech guidance: Ref-YoutubeVOS (Seo
et al., 2020), A2D-sentences (Xu et al., 2015) and
JHMDB-sentences (Jhuang et al., 2013). Specifi-
cally, it involves 18,811 pairs of video sequences
and speech audio, which is divided into the training,
validation, and test set in a ratio of 0.75, 0.1, and
0.15, respectively. The AVOS test set only contains
Ref-YoutubeVOS samples. The A2D-sentences
and JHMDB-sentences test sets are evaluated on
their original test splits with speech as queries.
Based on the AVOS dataset, we synthesize noisy
speech by combining randomly picked audio from



Method Query
No Noise Noise (30 dB) Noise (20 dB) Noise (10 dB)
J F J F J F J F

Text-referring Video Object Segmentation (for reference)
ReferFormer (Wu et al., 2022) Text 66.3 68.1 - - - - - -
MTTR (Botach et al., 2022) Text 63.2 64.7 - - - - - -

Noisy Speech-referring Video Object Segmentation
ReferFormer (Wu et al., 2022) Text (ASR) 56.1 60.7 55.3 58.9 53.3 58.1 50.3 56.4
MTTR (Botach et al., 2022) Text (ASR) 52.4 56.8 51.8 56.5 49.4 55.4 47.8 53.4
STBridge (Ours) Speech 63.7 67.4 63.5 67.1 62.1 66.1 59.9 64.8

Table 1: Quantitative results for noisy speech-referring object segmentation in videos. The noise loudness (dB)
is measured by the signal-noise ratio (SNR) to the clean speech.

Audioset (Gemmeke et al., 2017). Specifically, a
noise ranging from 0 to 40 dB signal-noise ratio
(SNR) to the clean speech is sampled during train-
ing. For validation and testing, we create noisy
speech under 10 dB, 20 dB, and 30 dB SNR for
comprehensive evaluation.

Metrics. We leverage the region similarity J and
contour accuracy F (Pont-Tuset et al., 2017) met-
rics for the evaluation of speech-referring video
object segmentation. The overall evaluation metric
J&F is the average of J score and F score. Both
the J ↑ and F ↑ scores are the larger the better.

4.2 Implementation Details

We implement our method in PyTorch. Without
losing generality, we leverage ReferFormer (Wu
et al., 2022) as our frozen R-VOS model (can be
replaced with any query-based model). We train
our model for 2 epochs with a learning rate of 1e-4.
All experiments are run on 8 NVIDIA V100 GPUs.
We adopt batchsize 8 and an AdamW (Loshchilov
and Hutter, 2017) optimizer with weight decay 5×
10−4. Images are cropped to have the longest side
640 and the shortest side 360 during training and
evaluation. In Eq. 1, we utilize the random noise
δ ∼ Uniform(−0.5, 0.5) and a masking ratio of
0.1 for m as default. Please refer to the Appendix
for more details.

4.3 Quantitative Results

Segmentation with clean speech. Table 2 com-
pares the proposed STBridge with previous meth-
ods using the ResNet-50 (He et al., 2016) backbone.
To better analyze the performance of STbridge,
we introduce two popular R-VOS baselines (with
text query), i.e., ReferFormer (Wu et al., 2022)
and MTTR (Botach et al., 2022), and leverage
Wav2Vec (same as our speech encoder) (Baevski

Method Query J&F J F
Text-referring Video Object Segmentation (for reference)
ReferFormer Text 67.2 66.3 68.1
MTTR Text 64.0 63.2 64.7

Speech-referring Video Object Segmentation
ReferFormer Text (ASR) 58.4 56.1 60.7
MTTR Text (ASR) 54.6 52.4 56.8
STBridge (Ours) Speech 65.5 63.7 67.4

Table 2: Quantitative results for speech-referring
object segmentation in videos. Both the J ↑ and F ↑
scores are the larger the better. J&F is the average of
J and F as convention.

et al., 2020) to conduct ASR to adapt them to
speech input. We notice that ASR-converted text
will degrade the baseline models’ performance
even without noise impact. We consider this can
result from word errors in the converted text from
speech. For example, if the target object ‘cat’ is
wrongly recognized as ‘cap’ by ASR, the R-VOS
model will inevitably segment the wrong object.

Segmentation with noisy speech. As shown in
Table 1, we compare the performance of STBridge
to previous text-queried methods with noisy speech
as inputs. We modify the signal-noise ratio (SNR)
of noisy speech to comprehensively evaluate the
noise influence. We notice that ASR-based meth-
ods suffer severe performance drops compared to
clean speech. In contrast, STBrigde shows a more
robust performance with only slight degradation
when noise becomes loud.

4.4 Visualization

In Fig. 4, we show the qualitative comparisons be-
tween our method, i.e., STBridge, and a cascade
of Wav2Vec2 (Baevski et al., 2020) (ASR model)
and ReferFormer (Wu et al., 2022) (RVOS model).
Note that the ASR model is fairly chosen to have
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Figure 4: Qualitative comparison between STBridge (our speech-referring VOS model) and ASR-assisted Refer-
Former (an assembly of ASR (Baevski et al., 2020) and text-referring VOS (Wu et al., 2022) models).

(a) Original (b) Jittered (c) After SJS

Figure 5: (a) Original embedding. (b) Semantic-jitter-
injected embedding. (c) Jitter-suppressed embedding.

the same speech encoder as STBridge. Notably,
our method successfully refers to the correct ob-
ject while ASR-assisted ReferFormer fails to un-
derstand the speech input and predicts wrongly.

Fig. 5 demonstrates the function of the SJS mod-
ule. By comparing Fig. 5 (b) and Fig. 5 (c), we
can notice that SJS module effectively suppresses
noises in the jittered embeddings.

4.5 Ablation Experiments

We conduct ablation studies to show the impact of
different modules. Unless otherwise specified, all
experiments are conducted on the AVOS test set.

Module effectiveness. We conduct experiments
to validate the effectiveness of our proposed mod-
ules. We add the proposed modules step-by-step as
shown in Table 3. (1) With semantic alignment be-
tween textual and speech representation, STBridge
achieves 61.0 and 55.7 J&F with clean and noisy
speech queries, respectively. (2) After equipping
the SJS module, STBridge can better handle noises
thus boosting the performance with noisy speech
to 59.7 J&F while only marginal improvement
is achieved with clean speech queries. (3) The

equipping of NSA module benefits the performance
with both clean and noisy speech queries. We con-
sider the reason is that the two types of attention
in NSA better filter out irrelevant features and help
the speech embedding focus on the target object.
With all modules, STBridge achieves 65.6 and 62.4
J&F for clean and noisy speech correspondingly.

Semantic jitter type. During training, STBridge
generates semantic jitter and then learns to sup-
press it using the SJS module to enhance the noise-
tolerant capability of the R-VOS model. We con-
duct an ablation study to investigate the influence
of different semantic jitter types. Specifically, the
implemented semantic jitter on the text embedding
gt has a form of m ◦ gt + δ, where m and δ are
binary mask and random noise respectively. As
shown in Table 4, we notice masking among both
the word-level and channel-level shows an improve-
ment in performance. Random noise δ brings an
additional 0.5 J&F to the final performance.

Design choices. We conduct experiments to ab-
late the design choices in STBridge and their im-
pacts on the segmentation performance. (1) We
first study the effect of frame window size selected
from the entire video sequence during training. We
notice that the window size only shows a marginal
impact on the performance, which can be due to
the visual encoder and mask decoder being frozen
during training. As shown in Table 5a, we notice a
window size of 5 achieves the best performance. (2)
After that, we ablate on the loss type for semantic
alignment in Table 5b. We leverage L1, L2, and Co-
sine loss to align the text and speech embeddings.
We notice that L2 loss achieves the best perfor-



Module Clean Noisy
SA SJS NSA J&F J&F
! 61.0 55.7
! ! 61.3 59.7
! ! 63.9 61.4
! ! ! 65.5 62.4

Table 3: Module effectiveness with clean
and noisy speech as queries. SA: semantic
alignment. SJS: semantic jitter suppression.
NSA: noise-aware semantic adjustment.

Semantic Jitter Type J&F
Word Mask Channel Mask Random Noise
! 61.2

! 61.4
! ! 61.9
! ! ! 62.4

Table 4: Ablation on semantic jitter types. We conduct abla-
tions on the impact of created semantic jitter types in the SJS
module. We conduct this experiment with noisy speech (10 dB).

Lv 1 3 5 7

J&F 59.4 61.7 62.4 62.3

(a) Window size.

Type L1 L2 Cosine

J&F 62.1 62.4 60.9

(b) Alignment loss.

Ratio 0.05 0.1 0.2

J&F 61.7 62.4 60.3

(c) Masking ratio.

Amp. 0.1 0.5 1

J&F 61.1 62.4 62.0

(d) Noise amplitude.

Table 5: Design choices for STBridge. We report the performance with the noisy speech queries on AVOS test set.
(a) We ablate the window size (input frame number) during training. (b) We ablate the semantic alignment loss
types. (c) We ablate the making ratio for m in creating semantic jitters. The ratio is calculated by 1− sum(m)

C×Lt
. (d)

We ablate the amplitude of the random noise δ. The noise δ ∼ Uniform(−Amp,Amp).

𝒥	
&	
ℱ

Figure 6: Analysis of the impact of noise categories.

mance among them. (3) Semantic jitter suppression
is an essential component in STBridge for noise
tolerance. We conduct ablation studies to demon-
strate the impact of different masking ratios and
random noise amplitude. Table 5c demonstrates
the performance with different masking ratios of
m ∈ [0, 1]C×Lt (calculated as 1− sum(m)

C×Lt
). Small

masking ratios cannot provide enough perturbation
to the inputs while large ratios may lose the seman-
tics to the target object. We find a masking ratio of
0.1 is a good trade-off as shown in Table 5c. (4) We
ablate the amplitude of noise δ added as a semantic
jitter in Table 5d. We notice that an amplitude of
0.5 leads to the best performance.

Noise category. We conduct an experiment to in-
vestigate the impact of different noise categories.
We additionally synthesize noisy speech queries

by mixing clean speech from AVOS test set with
different categories of audio recordings from Au-
dioset (Gemmeke et al., 2017). As shown in Fig. 6,
we illustrate the results of queries with different
noise categories. We notice that sustained and loud
noises, e.g., ambulance siren, can lead to a severe
performance drop compared to short-lived and faint
noises, e.g., horse clip-clop.

5 Conclusion

In conclusion, this paper presents STBridge, a
novel approach that enables R-VOS models trained
on clean text-video pairs to adapt to noisy speech
as referring guidance, maintaining robust perfor-
mance. The approach incorporates semantic jitter
suppression (SJS) and noise-aware semantic adjust-
ment (NSA) modules to enhance noise tolerance in
speech queries. Experimental results demonstrate
the effectiveness of STBridge, outperforming pre-
vious methods on three benchmarks. STBridge ex-
pands the applicability of R-VOS models, enabling
robust speech-referred video object segmentation
in real-world scenarios.

Limitation. In spite of STBrdge’s high perfor-
mance on existing benchmarks, we only consider
the scenario that text and speech queries are in the
same language. Bridging text and speech in dif-
ferent languages can impose more challenges as
the semantic spaces may suffer more divergence,
which will be our future focus.
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A More Implementation Details

Training details. Following the previous refer-
ring segmentation methods (Wu et al., 2022; Bo-
tach et al., 2022; Kamath et al., 2021), we leverage
loss weight coefficients λdice and λfocal to bal-
ance Dice (Li et al., 2019) and focal (Lin et al.,
2017b) losses in Lmask. And λgiou and λL1 to
balance GIoU (Rezatofighi et al., 2019) and L1
losses in Lbox. During training, we set λnoise =
λalign = 1, λconf = λgiou = λdice = 2, and
λL1 = λfocal = 5. We set the layer number in
the transformer encoder in φ as 3. The frozen
ReferFormer (Wu et al., 2022) is pre-trained on
Ref-COCO/+/g (Kazemzadeh et al., 2014) for 12
epochs and then finetuned on the AVOS training
set while with text queries as input for 6 epochs.
For the text, speech, and video triplets used in
STBridge training, we only ensure the text and
speech describe the same object while the words in
the text and speech may differ slightly.

During STBridge training, the noisy speech in-
put is generated by mixing the original clean speech
with randomly picked audio, which is injected
as noise, from AudioSet with an SNR ranging
from 0 to 40. The noise categories include ’am-
bulance siren’,’ baby laughter’, ’gun shooting’, ’cat
meowing’, ’chainsawing trees’, ’coyote howling’,
’dog barking’, ’driving buses’, ’helicopter’, ’horse
clip-clop’, ’lawn mowing’, ’lions roaring’, ’bird
singing’, ’guitar’, ’glockenspiel’, ’piano’, ’tabla’,
’ukulele’, ’violin’, ’race car’, ’typing keyboard’.
The sampling probabilities for each category are
the same.

B Detailed Structure of Mask Decoder

We demonstrate the detailed mask decoding pro-
cess in Figure A. Except for the visual feature ft
and object query q as defined in the main paper, we
additionally enroll the prototype masks {Pt}Nt=1

and instance embedding {et}Tt=1. Given the object
query q ∈ RC×1 from STBridge, we first repeat it
N times to form the input to the transformer de-
coder TrD where N is the object candidate number
(the final output is selected from object candidates
based on confidence score). After that, we gen-
erate instance embedding {et}Tt=1 for each time
step separately using a shared transformer decoder
TrD with encoded memory {ft}Tt=1 from visual
encoder. The instance embedding here encodes
the instance information and is leveraged to guide
the mask decoding process. The mask prediction

Mt for each time step t is derived by a dynamic
convolution between prototype mask Pt and dy-
namic weights which are learned from instance
embedding et by two fully connected layers. The
prototype masks {Pt}Tt=1 is generated by feature
pyramid network (FPN) (Lin et al., 2017a) with
visual feature {ft}Tt=1.

C Inference Details of R-VOS models

To obtain the final segmentation result, we select
the mask (among N candidates) with highest confi-
dence throughout time as:

M̂t = Mŝ,t,

ŝ = argmax
i

{Si,1 + · · ·+ Si,T }Ni=1
(9)

where {M̂t}Tt=1 is the masks of referred object. Si,t

and Mi,t represent the i-th slot in St and Mt respec-
tively. ŝ is the slot with the highest confidence to be
the target object. Box predictions can help training
procedures but are not used during inference.

Frozen J&F J F
% 65.5 63.7 67.4
! 58.9 57.3 60.4

Table A: Ablation study on updating R-VOS parameters
during training.

D Training with Trainable R-VOS Model

We conduct additional ablation studies to show the
results of training with updating parameters in R-
VOS model. As shown in Table A, we notice that
updating R-VOS parameters during the adaptation
to noisy speech inputs will result in severe perfor-
mance degradation. We consider this because 1)
the information in noisy speech input is not enough
to accurately refer to the object resulting in noises
in the training process, and 2) the S-VOS dataset is
smaller than the R-VOS dataset leading to overfit-
ting.

E More Visualization.

As shown in Fig. B, we demonstrate more visual-
izations of the proposed method. We notice that
our method can correctly refer to the target object
and help the R-VOS model segment temporally
consistent object masks across frames.
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Figure A: Illustration of mask decoder, which derives mask predictions {Mt}Tt=1 from the visual features {ft}Tt=1

the object query q. Given the query feature q from STBridge, we first repeat it N times to form the input to the
transformer decoder TrD where N is the object candidate number (the final output is selected from object candidates
based on confidence score). After that, we generate instance embedding {et}Tt=1 for each time step separately using
a shared transformer decoder TrD with visual feature {ft}Tt=1 from visual encoder. The mask prediction Mt for
each time step t is derived by a dynamic convolution between prototype masks Pt and dynamic weights which are
learned from instance embedding et by two fully connected layers. The prototype masks {Pt}Tt=1 is generated by
feature pyramid network (FPN) (Lin et al., 2017a) with visual feature {ft}Tt=1.



a person grabbing a crocodile

a white and brown owl standing next to a white cat

a lizard in a small enclosure with two others outside and eat

the giraffe walking around

a zebra is standing to the left of view
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Figure B: More visualization of our method on AVOS test set.


