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Abstract001

In recent years, there has been significant in-002
terest in using Multi-modal Large Language003
Models (MLLMs) for OCR tasks, leading to004
the development of MLLMs specifically de-005
signed for the OCR domain. The majority006
of existing approaches focus on developing007
larger and more sophisticated models, which008
demand substantial computational resources for009
training and deployment. Furthermore, these010
methods often fail to achieve effective align-011
ment between text and its corresponding po-012
sitions within the image. Some approaches013
merely feed all text directly into the model,014
while others, despite incorporating coordinate015
information, still struggle to accurately cap-016
ture the precise location and contextual rela-017
tionships of text within images. In this paper,018
we propose a lightweight multi-modal language019
model called InstructOCR2, which achieves020
multi-scene and multi-task OCR recognition021
with fewer parameters. InstructOCR2 enhances022
the model’s comprehension of global and local023
text through fine-grained alignment of text and024
images, thereby improving the performance of025
downstream tasks such as Visual Question An-026
swering (VQA) and Key Information Extrac-027
tion (KIE).028

1 Introduction029

Optical Character Recognition (OCR) is a cru-030

cial technology in the fields of computer vision031

and natural language processing, with widespread032

applications in document digitization, automated033

data entry, and information retrieval. Traditional034

OCR methods typically focus on single tasks, each035

presenting unique challenges. For instance, Text036

Spotting (TS) requires handling complex back-037

grounds and diverse fonts, Visual Question Answer-038

ing (VQA) necessitates understanding text content039

and answering related questions, while Key Infor-040

mation Extraction (KIE) demands extracting spe-041

cific information. However, these single-task ap-042
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Figure 1: An overview of the capabilities of Instruc-
tOCR2 across various image understanding tasks is pro-
vided. The accompanying figure illustrates the applica-
tion of our proposed lightweight multi-modal language
model in Visual Question Answering (VQA), Key In-
formation Extraction (KIE), and Text Spotting (TS).

proaches often fall short in addressing the complex- 043

ities of real-world applications. 044

With the rapid development of Large Language 045

Models (LLMs) (Achiam et al., 2023; Bai et al., 046

2023; Yang et al., 2023; Touvron et al., 2023; 047

Brown et al., 2020; Zhang et al., 2022), a series 048

of Multi-modal Large Language Models (MLLMs) 049

have emerged (Alayrac et al., 2022; Li et al., 2023; 050

Liu et al., 2024b; Zhu et al., 2023; Zhang et al., 051

2023). These MLLMs, which integrate visual and 052

linguistic information, are better equipped to un- 053

derstand and process textual content within images, 054

examples of which include (Liu et al., 2024b; Chen 055

et al., 2023; Ye et al., 2023d; Li et al., 2024a). By 056

pretraining on large-scale image-text data, these 057

models can capture the complex relationships be- 058

tween images and text, enabling them to excel in 059

a wide range of general vision tasks. General- 060

purpose MLLMs emphasize task generalization, 061

whereas OCR tasks place greater importance on 062

resolution and corresponding training data. Con- 063

sequently, some MLLMs (Liu et al., 2024c; Feng 064
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et al., 2023b; Liao et al., 2024) specifically tailored065

for OCR tasks have emerged. These OCR-specific066

MLLMs enhance their performance through meth-067

ods such as expanding the input resolutions and068

utilizing MLLMs instruction tuning datasets.069

Despite the powerful capabilities of MLLMs in070

OCR tasks, their large parameter sizes and high071

demands for extensive image-text data pose signif-072

icant computational and resource challenges. To073

address these challenges, lightweight multi-modal074

models have gradually gained attention. These075

models (Wei et al., 2024b; Xiao et al., 2024; Wei076

et al., 2024a) aim to reduce computational and stor-077

age requirements while maintaining high perfor-078

mance by decreasing the number of parameters and079

optimizing architectural design. However, current080

lightweight multi-modal models often lag behind081

MLLMs in terms of accuracy and robustness when082

addressing complex OCR tasks. Moreover, there083

remains significant potential for further reduction084

in parameter sizes.085

In this paper, we propose InstructOCR2, a novel086

training framework for lightweight multi-modal087

language models, featuring 284M parameters. We088

enhance the model’s perception of OCR text by089

emphasizing alignment mechanisms, which is fun-090

damental to various downstream OCR tasks. The091

training of the InstructOCR2 consists of two stages.092

In the first stage, we use scene text spotting as a093

pretraining task. This task requires the model not094

only to recognize text in images but also to per-095

ceive the specific locations of the text within the096

images. Through this approach, the model learns097

the transformation relationship from image to se-098

quence, i.e., by extracting serialized text data from099

visual information, thereby better understanding100

the alignment between images and text.101

In the second stage, we train the model with102

a large amount of instruction data, enabling it to103

understand and execute various downstream tasks.104

This data includes instructions for different tasks105

along with corresponding input-output examples.106

Through this method, the model can not only rec-107

ognize text in images but also complete specific108

tasks based on the instructions, such as TS, VQA,109

as shown in Figure 1. This stage of training endows110

the model with greater task generalization and flex-111

ibility. Through the aforementioned two-stage pre-112

training, our InstructOCR2 framework significantly113

improves the accuracy and robustness of the model114

in OCR tasks while maintaining a small parameter115

size.116

In summary, the main contributions are three- 117

fold: 118

1. We propose a lightweight and efficient multi- 119

modal framework called InstructOCR2, fea- 120

turing only 284M parameters and supporting a 121

maximum output length of 4096 tokens. This 122

framework can accomplish various tasks of 123

multi-modal models, such as Text Spotting 124

(TS), Visual Question Answering (VQA), and 125

Key Information Extraction (KIE). 126

2. We propose a local-global alignment approach. 127

By performing an image-to-sequence genera- 128

tion task that simultaneously predicts the text 129

and its corresponding position within the im- 130

age, our approach achieves precise alignment, 131

and through full-document recognition, en- 132

ables the model to possess contextual capabil- 133

ities. 134

3. Experimental results on public datasets 135

demonstrate that InstructOCR2 exhibits out- 136

standing performance and surpasses existing 137

methods in a series of downstream tasks. It 138

is even competitive when compared to the re- 139

sults of MLLMs. 140

2 Related Work 141

2.1 Multi-modal Large Language Models 142

The rapid development and exceptional perfor- 143

mance of MLLMs have inspired researchers to ex- 144

plore the potential and applications of MLLMs 145

in Optical Character Recognition (OCR) tasks, 146

thereby driving a series of related works. 147

UniDoc (Feng et al., 2023b) begins with the data, 148

performing unified multi-modal instruction tuning 149

on the contributed large-scale instruction-following 150

datasets. Monkey (Li et al., 2024a) divides input 151

images into uniform patches and supports resolu- 152

tions up to 1344×896 pixels, which allows for a 153

more detailed capture of visuals. Textmonkey (Liu 154

et al., 2024c) adopts Shifted Window Attention 155

to incorporate cross-window connectivity while 156

expanding the input resolutions, and reduces the 157

token length through token compression. URe- 158

ader (Ye et al., 2023b) designs a shape-adaptive 159

cropping module to process high-resolution im- 160

ages and develops auxiliary tasks for text reading 161

and key points generation to enhance text recogni- 162

tion and semantic understanding capabilities. To 163

tackle the challenge of resolution, DocPedia (Feng 164
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Figure 2: The main framework of InstructOCR2 consists of two distinct input branches: an image encoder and a
text encoder. The image encoder is responsible for processing visual features, while the text encoder handles textual
features. These extracted features are then fed into the decoder to produce the final results.

et al., 2023a) processes visual input in the fre-165

quency domain rather than the pixel space to cap-166

ture a greater amount of visual and textual infor-167

mation. mPLUG-DocOwl (Ye et al., 2023a) and168

mPLUG-DocOwl1.5 (Hu et al., 2024a) are based169

on mPLUG-Owl (Ye et al., 2023d) and further170

strengthens the ability to understand OCR-free doc-171

uments.172

2.2 Document Understanding173

Document understanding methods can be broadly174

categorized into two types based on whether175

they use OCR systems for text extraction: OCR-176

dependent methods (Appalaraju et al., 2021; Huang177

et al., 2022; Powalski et al., 2021; Wang et al.,178

2023a; Xu et al., 2020) and OCR-free meth-179

ods (Davis et al., 2022; Lee et al., 2023). OCR-180

dependent methods achieve document understand-181

ing by inputting pre-extracted OCR text, layout,182

and other information into language models. For183

example, UDOP (Tang et al., 2023) inputs text,184

image, and layout modalities into the decoder, es-185

tablishing aligned representations of spatial and186

textual embeddings. However, this approach relies187

on OCR systems and is susceptible to errors from188

these OCR systems. Additionally, processing the189

entire document may lead to unnecessary compu-190

tation, as some tasks are only related to specific191

regions of the document.192

OCR-free methods do not require OCR input and193

perform document understanding tasks in an end-194

to-end manner. Donut (Kim et al., 2022) directly195

maps an input document image into a desired struc-196

tured output and can be trained in an end-to-end197

manner. VisFocus (Abramovich et al., 2024) pro-198

poses an OCR-free method to better exploit the vi-199

sion encoder’s capacity by coupling it directly with 200

the language prompt. These OCR-free methods are 201

parameter-efficient; for example, VisFocus has a 202

total of 408M parameters, yet they exhibit limited 203

generalization and can lack the capability to han- 204

dle more downstream tasks. Although MLLMs is 205

versatile and can handle various downstream tasks, 206

the large number of parameters presents challenges 207

in both training and deployment. Our proposed In- 208

structOCR2 possesses the capabilities of MLLMs 209

while maintaining a reduced parameter count. And 210

InstructOCR2 supports a maximum output token 211

length of 4096, surpassing that of other models, 212

such as SCOB (Kim et al., 2023), which only out- 213

puts 512 tokens. 214

3 Method 215

We introduce InstructOCR2, an end-to-end docu- 216

ment understanding framework. The overall struc- 217

ture is shown in Figure 2. In the following sections, 218

we will detail the structure of our model. 219

3.1 Architecture 220

Text Encoder. The text encoder of InstructOCR2 221

adopts the T5 small model (Raffel et al., 2020), 222

with a maximum input length of 512 tokens. We 223

use the encoder of T5 to encode text features, con- 224

sisting of only 6 layers of transformers. 225

Image Encoder. The image encoder utilizes the 226

ResNet50 (He et al., 2016) architecture to extract 227

features from the input image, initialized with the 228

ODM (Duan et al., 2024a) weights. By applying 229

cross-attention between the extracted visual and 230

textual features, the model can better comprehend 231

and capture the contextual relationships between 232
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them. This enhancement of context leads to im-233

proved performance in multi-modal tasks.234

Decoder. The language model of InstructOCR2235

adopts LongT5 base (Guo et al., 2021), which is236

an extension of the T5 model that handles long se-237

quence inputs more efficiently, with a maximum238

processing length of 4096 tokens. To achieve pre-239

cise alignment of text and position through the240

image-to-sequence generation task, we introduce a241

custom token vocabulary. This includes a special242

separator token < sep > and 1000 position tokens.243

These additions enable the model to better manage244

and differentiate text and position within the input245

sequences.246

3.2 Training Strategy247

The training strategy of InstructOCR2 consists of248

two components: alignment and instruction tuning.249

Alignment. The image-to-sequence generation250

task is used to achieve precise alignment of text251

and position. In the sequence representation, each252

text instance is represented by a sequence consist-253

ing of three parts: [x, y, t], where (x, y) denotes254

the coordinates of the center point, and t represents255

the transcription text. Text instances are separated256

by the token < sep >. Additionally, the tokens257

< SOS > and < EOS > are inserted at the begin-258

ning and end of the sequence, respectively, to indi-259

cate the start and end of the sequence. In this stage260

of training, the input prompt to the text encoder261

remains as "Recognize text in the image, provide262

text coordinates and text recognition results".263

By employing the training strategy of image-to-264

sequence generation, InstructOCR2 is equipped265

with the ability to perform the text spotting task,266

capable of predicting all the text and corresponding267

positions in an image. While this training strategy268

provides the model with word-level sensitivity, it in-269

herently lacks comprehensive contextual predictive270

capabilities due to the absence of document-level271

context training. By incorporating document-level272

recognition, the model gains enhanced contextual273

capabilities. The dataset used for this purpose is274

DocGenome (Xia et al., 2024). During this train-275

ing stage, the input prompt to the text encoder is276

"Recognize all text in the image".277

Instruction tuning. In this stage, instruction278

tuning enables the model with VQA capabilities.279

InstructOCR (Duan et al., 2024b) proposes a set of280

instructions meticulously designed based on text281

attributes. This method facilitates the efficient ac-282

quisition of large amounts of VQA data without283

requiring manual annotation. We first apply this 284

method to train the model’s instruction-tuning ca- 285

pability. Then, we train the model using collected 286

public VQA datasets. Additionally, we consider 287

the text spotting task as a type of VQA task, with 288

the input prompt being "recognize text in the im- 289

age, provide text coordinates and text recognition 290

results". 291

3.3 Loss Function 292

In InstructOCR2, the training objective is to predict 293

tokens, and we utilize the standard cross-entropy 294

loss for model training. This loss function aims 295

to maximize the likelihood of the correct tokens 296

during training. The mathematical expression of 297

the cross-entropy loss is as follows: 298

Lseq = maximize
L∑
i=1

wi logP (s̃i|I, s1:i) (1) 299

where I is the input image, s is the input sequence, 300

s̃ is the output sequence, L is the length of the 301

sequence, and wi is the weight of the likelihood of 302

the i− th token, which is empirically set to 1. 303

4 Experiment 304

4.1 Datasets 305

Alignment. In this training stage, we use 306

text spotting data from both documents and 307

natural scenes, with a total training dataset of 308

2.44M. Specifically, for the document data, 309

we randomly sample 1.33M images from the 310

IIT-CDIP (Lewis et al., 2006) dataset and employ 311

PPOCRv3 (Li et al., 2022) to generate pseudo 312

labels (i.e., text and position in the image). 313

We also utilize training sets from the follow- 314

ing document datasets: DocVQA (Mathew 315

et al., 2021), InfoVQA (Mathew et al., 316

2022), and ChartQA (Masry et al., 2022). 317

The natural scene data includes the follow- 318

ing datasets: Total-Text (Ch’ng and Chan, 319

2017), SCUT-CTW1500 (Yuliang et al., 320

2017), ICDAR2015 (Karatzas et al., 2015), 321

ICDAR2013 (Karatzas et al., 2013), ICDAR2017 322

MLT (Nayef et al., 2017b), Curved Synthetic 323

Dataset 150k (Liu et al., 2020), TextOCR (Singh 324

et al., 2021), HierText (Long et al., 2022), and 325

OpenVINO (Krylov et al., 2021). For context 326

alignment training, we randomly sample 0.69M 327

images from the DocGenome (Xia et al., 2024) 328

dataset to enhance document-level recognition 329

capabilities. 330
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Model Size DocVQA InfoVQA DeepForm KLC ChartQA WTQ TabFact

DocPeida 7.1B 47.1 15.2 - - 46.9 - -
DocOwl 7.3B 62.2 38.2 42.6 30.3 57.4 26.9 67.6
UReader 7.1B 65.4 42.2 49.5 32.8 59.3 29.4 67.6
DocKylin 7.1B 77.3 46.6 - - 66.8 32.4 -
Qwen-vl 9.6B 62.6 - - - 66.3 - -
Monkey 9.8B 66.5 36.1 40.6 - 65.1 25.3 -

TextMonkey 9.7B 66.7 28.6 61.6 37.8 66.9 31.9 -
HRVDA 7.1B 72.1 43.5 63.2 37.5 67.6 31.2 72.3

DocLayLLM 8B 86.5 58.4 77.1 40.7 - 58.6 83.4
KOSMOS-2.5 1.3B 81.1 41.3 65.8 35.1 62.3 32.4 49.9

TextHawk2 7.4B 89.6 67.8 - - 81.4 46.2 78.1
InternVL2 8.1B 91.6 74.8 - - 83.3 - -

Dessurt 127M 63.2 - - - - - -
Donut 176M 67.5 11.6 61.6 30.0 41.8 18.8 54.6

Pix2Struct 282M 72.1 38.2 - - 56.0 - -
VisFocus 408M 72.9 31.9 - - 57.1 - -

InstructOCR2 284M 64.8 26.0 67.7 35.0 57.9 19.9 55.7

Table 1: Comparison with Multi-modal Large Language Models(MLLMs) and OCR-free document understanding
methods on various types of document image understanding tasks. All evaluation benchmarks use the officially
designated metrics. “size" refers to the number of parameters in the model. The MLLMs public benchmark includes
DocPeida (Feng et al., 2023a), DocOwl (Ye et al., 2023d), UReader (Ye et al., 2023c), DocKylin (Zhang et al., 2024),
Qwen-vl (Bai et al., 2023), Monkey (Li et al., 2024b), TextMonkey (Liu et al., 2024c), HRVDA (Liu et al., 2024a),
DocLayLLM (Liao et al., 2024), KOSMOS-2.5 (Lv et al., 2023), TextHawk2 (Yu et al., 2024), InternVL2 (Chen
et al., 2024). The OCR-free document understanding methods include Dessurt (Davis et al., 2022), Donut (Kim
et al., 2022), Pix2Struct (Lee et al., 2023), VisFocus (Abramovich et al., 2024)

Instruction tuning. In this training stage, we331

utilize a diverse set of datasets to enhance the332

model’s ability to understand and execute instruc-333

tions across various domains, with a total training334

dataset of 9.2M. These include Docmatix (Lau-335

rençon et al., 2024), DocReason25k (Hu et al.,336

2024a), Sujet-Finance (AI, 2025), ai2d (Hiippala337

et al., 2021), figqa (Liu et al., 2022), HME100k338

(Yuan et al., 2022), CROHME 2014 (Mouchere339

et al., 2014), CROHME 2016 (Mouchère et al.,340

2016), CROHME 2019 (Mahdavi et al., 2019),341

UniMER-1M (Wang et al., 2024), SPE, CPE,342

SCE, Latex-OCR (Blecher, 2022), IAM Handwrit-343

ing (Marti and Bunke, 2002), HCTR (Stamatopou-344

los et al., 2013), Synthdog-en (Kim et al., 2022),345

TableBench (Wu et al., 2024), TableVQA (Kim346

et al., 2024), TabMWP (Lu et al., 2023) and347

UniChart (Masry et al., 2023).348

After being trained on large-scale VQA data,349

the model gains the ability to accept instruc-350

tions in natural language. We then further fine-351

tune the model using the training sets of down-352

stream tasks. Additionally, we utilize another 353

dataset of 1.66M samples for training during 354

this stage. These include document datasets 355

such as DocVQA (Mathew et al., 2021), In- 356

foVQA (Mathew et al., 2022), DeepForm (Svetlich- 357

naya, 2020), OCR-VQA (Mishra et al., 2019), 358

KLC (Stanisławek et al., 2021), DocGenome (Xia 359

et al., 2024) and VisualMRC (Tanaka et al., 2021). 360

Table datasets such as TableFact (Chen et al., 361

2019) and WikiTableQuestions (Pasupat and Liang, 362

2015). Chart datasets include ChartQA (Masry 363

et al., 2022), ChartBench (Xu et al., 2023) and 364

DVQA (Kafle et al., 2018). Natural scene 365

datasets include TextVQA (Singh et al., 2019), 366

ST-VQA (Biten et al., 2019), ic13 (Karatzas 367

et al., 2013), ic15 (Karatzas et al., 2015), Total- 368

Text (Ch’ng and Chan, 2017), TextOCR (Singh 369

et al., 2021), Curved Synthetic Dataset 150k (Liu 370

et al., 2020), MLT-2017 (Nayef et al., 2017a), Hi- 371

erText (Long et al., 2022) and TextCaps (Sidorov 372

et al., 2020). KIE datasets include FUNSD (Jaume 373

et al., 2019), POIE (Kuang et al., 2023) and 374
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SROIE (Huang et al., 2019).375

4.2 Implementation Details376

The entire model is distributively trained on 32377

NVIDIA A100-80G GPUs. During the training378

process in the alignment stage, to enhance train-379

ing efficiency, the short side of the input image380

is randomly resized to a range from 704 to 1024381

(intervals of 32), and the maximum length of the382

image is set to 1024. The batch size per GPU is 5,383

and the model is trained for 150 epochs, with an ini-384

tial 5-epoch warm-up phase. We use the AdamW385

optimizer with a learning rate of 4.6×10−4. Subse-386

quently, the model is trained for another 50 epochs,387

with a fixed learning rate of 6 × 10−5, and the388

maximum length of image is set as 1920. Then,389

the model’s text reading capability is refined using390

the DocGenome dataset. And the model is further391

trained for another 30 epochs. For instruction tun-392

ing, we first fine-tune the model for 10 epochs on393

the text spotting data using the instructions from394

InstructOCR. Then, we use 9.2 million samples to395

equip the model with interaction capabilities, train-396

ing for 15 epochs in this stage. The model is then397

fine-tuned using downstream data, with training398

conducted for 40 epochs during this phase.399

4.3 Comparison with Results on Document400

Benchmarks401

InstructOCR2 can perform VQA tasks in scenarios402

such as documents, charts, and tables. Compared to403

previous OCR-free methods, our approach is more404

comprehensive. We compare our method with re-405

cent MLLMs and OCR-free document understand-406

ing methods. At the inference stage, the maximum407

input size is set to 1920 pixels, and the minimum408

input size is set to 1280 pixels. As shown in Table409

1, our method achieved 64.8% on the DocVQA410

dataset, surpassing MLLMs such as DocPeida, Do-411

cOwl, and Qwen-vl, as well as document under-412

standing methods like Dessurt. The metrics on the413

InfoVQA dataset surpass those of DocPeida and414

Donut. The DeepForm dataset achieves state-of-415

the-art (SOTA) performance among OCR-free doc-416

ument understanding methods, achieving a position417

just below DocLayLLM in comparison to MLLMs.418

The metrics for the KLC, ChartQA, WTQ, and Tab-419

Fact datasets also surpass those of previous OCR-420

free document understanding methods.421

Table 1 presents the results of the KIE task on the422

DeepForm and KLC datasets. Our method achieves423

state-of-the-art (SOTA) performance among OCR-424

free document understanding methods and sur- 425

passes several MLLMs, such as UReader and 426

HRVDA. To further demonstrate the effectiveness 427

of our approach in document understanding, we 428

evaluate the model on the FUNSD, SROIE, and 429

POIE datasets. As shown in Table 2, our method 430

is only slightly lower than Mini-Monkey on the 431

FUNSD and SROIE datasets, while achieving 432

SOTA performance on the POIE dataset, demon- 433

strating the effectiveness of our proposed method 434

for KIE tasks. 435

Model Size FUNSD SROIE POIE

DocOwl 7.3B 0.5 1.7 2.5
LLaVA1.5 7.3B 0.2 1.7 2.5
TGDoc 7B 1.4 3.0 22.2
InternVL 13B 6.5 26.4 25.9
DocPeida 7.1B 29.9 21.4 39.9
Monkey 9.8B 24.1 41.9 19.9
TextMonkey 9.7B 32.3 47.0 27.9
Mini-Monkey 2B 42.9 70.3 69.9

InstructOCR2 284M 37.2 73.2 78.8

Table 2: The results of our proposed method for Key
Information Extraction(KIE) are presented alongside
the public benchmark of MLLMs, which includes Do-
cOwl (Ye et al., 2023d), LLaVA1.5 (Liu et al., 2024b),
TGDoc (Wang et al., 2023b), InternVL (Chen et al.,
2024), DocPeida (Feng et al., 2023a), Monkey (Li et al.,
2024b), TextMonkey (Liu et al., 2024c), and Mini-
Monkey (Huang et al., 2024).

Model Size Overall

BLIP2-6.7B 6.7B 235
InstructBLIP 7B 276
mPLUG-Owl 7B 297

BLIVA 7B 291
InternLM-XComposer 7B 303

LLaVA1.5-13B 13B 331
TextMonkey 9.7B 561

MiniCPM-V2.6 7B 852

InstructOCR2 284M 357

Table 3: The results of our proposed method on
OCRBench are compared with the following methods:
BLIP2-6.7B (Li et al., 2023), InstructBLIP (Dai et al.,
2023), mPLUG-Owl (Ye et al., 2023d), BLIVA (Hu
et al., 2024b), InternLM-XComposer (Dong et al.,
2024), LLaVA1.5-13B (Liu et al., 2023a), TextMon-
key (Liu et al., 2024c), and MiniCPM-V2.6 (Yao et al.,
2024).
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Model Size ST-VQA TextVQAVal

BLIP2-OPT 6.7B 20.9 23.5
mPLUG-Owl 7.3B 30.5 34.0
DocPeida 7.1B 45.5 60.2
DocOwl 7.3B - 52.6
UReader 7.1B - 57.6
KOSMOS-2.5 1.3B - 40.7
Monkey 9.8B 67.7 67.6
TextMonkey 9.7B 61.8 65.6

Dessurt 127M 63.2 -
Donut 176M - 43.5
InstructOCR 78M 45.8 42.0

InstructOCR2 284M 51.5 41.8

Table 4: The results of our proposed method on scene
text VQA. The MLLMs public benchmark includes
BLIP2-OPT (Li et al., 2023), mPLUG-Owl (Ye et al.,
2023d), DocPeida (Feng et al., 2023a), DocOwl (Ye
et al., 2023d), UReader (Ye et al., 2023c), KOSMOS-
2.5 (Lv et al., 2023), Monkey (Li et al., 2024b),
TextMonkey (Liu et al., 2024c). The OCR-free doc-
ument understanding methods include Dessurt (Davis
et al., 2022), Donut (Kim et al., 2022), Instruc-
tOCR (Duan et al., 2024b).

4.4 Comparison with OCRBench Results436

To further evaluate the performance of our method437

in document understanding, we assess the results438

on OCRBench (a comprehensive benchmark en-439

compassing 29 OCR-related evaluations). This rep-440

resents a capability that prior OCR-free methods,441

including Dessurt, Pix2Struct, and VisFocus, have442

been unable to achieve. As shown in Table 3, our443

method even surpasses LLaVA1.5-13B, which has444

13 B parameters.445

4.5 Comparison with Scene Text Visual446

Question Answering Results447

InstructOCR2 is capable of comprehending both448

documents and natural scene images. Table 4449

presents the results on the ST-VQA and TextVQA450

datasets. As observed in the table, Instruc-451

tOCR2 surpasses MLLMs such as mPLUG-Owl,452

KOSMOS-2.5 and BLIP2-OPT.453

4.6 Comparison with Text Spotting Results on454

the VQA Task455

To demonstrate the extensive capabilities of Instruc-456

tOCR2, we evaluate its performance on text spot-457

ting datasets without fine-tuning. During the infer-458

ence stage, the prompt input to the text encoder is459

"Recognize text in the image, provide text coordi- 460

nates and text recognition results". The maximum 461

length of the image is shorter than 1920 pixels, and 462

the minimum is 1024 pixels. We evaluate the model 463

using the point-based metric proposed in SPTS. 464

Specifically, ICDAR2015 is a multi-oriented text 465

dataset, while Total-Text is an arbitrarily shaped 466

text dataset. 467

Table 5 shows the results of the text spotting 468

task. Compared to TextMonkey, we surpass it by 469

10.3% on the Total-Text and by 17.8% on the IC- 470

DAR2015, achieving better performance with our 471

lightweight model compared to the 9.7B model. 472

This demonstrates the superiority of our method in 473

position awareness. 474

Methods
Total-Text ICDAR2015

None Full S W G

TextMonkey 61.4 - - - 45.1

InstructOCR2 71.7 75.7 65.8 64.5 62.9

Table 5: Text spotting results on Total-Text and IC-
DAR2015 in the VQA task. ‘None’ means lexicon-free.
‘Full’ indicates that we use all the words that appeared
in the test set. ‘S’, ‘W’, and ‘G’ represent recognition
with ‘Strong’, ‘Weak’, and ‘Generic’ lexicons, respec-
tively. And we use the TextMonkey (Liu et al., 2024c)
for comparison.

4.7 Ablation Study 475

Ablation study on text spotting. We propose an 476

image-to-sequence generation task to achieve pre- 477

cise alignment of text and its corresponding posi- 478

tion within the image, which enables the model to 479

effectively execute the text spotting task. In this 480

section, we explore the effectiveness of the text 481

spotting task. Table 6 presents the performance of 482

the model on the text spotting task after the first 483

stage of pre-training. Following the training and 484

evaluation protocols of the scene text spotting task, 485

we fine-tuned the model for 170 epochs separately 486

on the Total-Text and ICDAR2015 datasets, and 487

subsequently evaluated its performance on these 488

datasets. 489

As observed in Table 6, our model achieves 490

SOTA performance on ICDAR2015 datasets using 491

a generic lexicon, demonstrating the robustness of 492

our pre-training stage, surpassing dedicated mod- 493

els for scene text spotting tasks. However, when 494

evaluated using a lexicon, the performance falls 495
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short of that achieved by scene text spotting meth-496

ods, suggesting that our model exhibits a reduced497

frequency of recognition errors, thereby offering498

limited scope for correction through the lexicon.499

This indicates that the model tends to accurately500

recognize entire words, as opposed to the internal501

character errors often observed in traditional scene502

text spotting methods.503

Methods
Total-Text ICDAR2015

None Full S W G

TOSS 65.1 74.8 65.9 59.6 52.4
SPTS 74.2 82.4 77.5 70.2 65.8
SPTS-v2 75.5 84.0 82.3 77.7 72.6
InstructOCR 77.1 84.1 82.5 77.1 72.1

InstructOCR2 76.1 80.1 77.9 76.1 74.0

Table 6: Text spotting results on Total-Text and IC-
DAR2015. ‘None’ means lexicon-free. ‘Full’ indicates
that we use all the words that appeared in the test set.
‘S’, ‘W’, and ‘G’ represent recognition with ‘Strong’,
‘Weak’, and ‘Generic’ lexicons, respectively. And we
use the following models for comparison: TOSS (Tang
et al., 2022), SPTS (Peng et al., 2022), SPTS-V2 (Liu
et al., 2023b), and InstructOCR (Duan et al., 2024b).

Ablation study on input resolution. The text504

within document images is often densely packed,505

and the images typically have a high resolution.506

Our model supports a maximum input size of 1920507

pixels; thus, we examine the impact of various508

input resolutions on the metrics. The results are509

presented in Table 7, with the minimum size set to510

1024 and the maximum size increased from 1024511

to 1920.512

The table indicates that as resolution increases,513

the metrics improve as well. However, different514

datasets have distinct requirements for high res-515

olution; for instance, the POIE dataset achieves516

optimal performance at a resolution of 1760 pixels,517

whereas TabFact necessitates a resolution of 1920518

pixels. This finding provides valuable guidance519

on input resolution for applications across various520

scenarios.521

5 Conclusion522

In this paper, we introduce InstructOCR2, a523

lightweight multi-modal language model specif-524

ically designed for Optical Character Recognition525

(OCR) tasks. Our model effectively addresses526

the limitations of existing multi-modal large lan-527

Resolution DF CQA TF TVQA POIE

1024 51.5 51.4 51.7 38.0 69.1
1280 62.1 53.2 53.6 38.0 72.6
1440 64.4 53.2 54.4 40.0 72.5
1760 64.2 53.7 54.9 40.5 74.1
1920 64.2 53.7 55.3 40.3 73.6

Table 7: Comparison of different input image sizes
in various types of document image understanding
tasks. The datasets used in this comparison in-
clude DF(DeepForm), CQA(ChartQA), TF(TabFact),
TVQA(TextVQA), and POIE.

guage models (MLLMs), which often require ex- 528

tensive computational resources and struggle with 529

aligning text to its corresponding positions within 530

images. By focusing on local-global alignment 531

mechanisms, InstructOCR2 enhances its positional 532

awareness, resulting in improved performance on 533

various downstream tasks. With only 284 million 534

parameters, it demonstrates that high performance 535

can be achieved with efficiency. The model em- 536

ploys a two-stage training process that enables it to 537

recognize text in images while understanding the 538

spatial relationships between text and visual con- 539

tent, which is essential for real-world applications 540

requiring both accuracy and contextual understand- 541

ing. 542

6 Limitation 543

Multi-modal models require large quantities and 544

diverse data during training. Generally, increas- 545

ing the amount and variety of data significantly 546

enhances model performance. In our pre-training 547

phase, we utilize data from natural scenes; however, 548

this dataset still has room for expansion. Increas- 549

ing the amount of training data, may lead to further 550

improvements in model performance. We employ 551

the IIT-CDIP dataset in the document domain. Al- 552

though this dataset offers a certain degree of di- 553

versity, we believe that the diversity of document 554

data still requires enhancement. Future research 555

will explore incorporating a broader range of docu- 556

ment types to enhance the model’s generalization 557

capabilities. 558
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