InstructOCR2: a lightweight and efficient multi-modal language model for
document understanding

Anonymous ACL submission

Abstract

In recent years, there has been significant in-
terest in using Multi-modal Large Language
Models (MLLMs) for OCR tasks, leading to
the development of MLLMs specifically de-
signed for the OCR domain. The majority
of existing approaches focus on developing
larger and more sophisticated models, which
demand substantial computational resources for
training and deployment. Furthermore, these
methods often fail to achieve effective align-
ment between text and its corresponding po-
sitions within the image. Some approaches
merely feed all text directly into the model,
while others, despite incorporating coordinate
information, still struggle to accurately cap-
ture the precise location and contextual rela-
tionships of text within images. In this paper,
we propose a lightweight multi-modal language
model called InstructOCR2, which achieves
multi-scene and multi-task OCR recognition
with fewer parameters. InstructOCR2 enhances
the model’s comprehension of global and local
text through fine-grained alignment of text and
images, thereby improving the performance of
downstream tasks such as Visual Question An-
swering (VQA) and Key Information Extrac-
tion (KIE).

1 Introduction

Optical Character Recognition (OCR) is a cru-
cial technology in the fields of computer vision
and natural language processing, with widespread
applications in document digitization, automated
data entry, and information retrieval. Traditional
OCR methods typically focus on single tasks, each
presenting unique challenges. For instance, Text
Spotting (TS) requires handling complex back-
grounds and diverse fonts, Visual Question Answer-
ing (VQA) necessitates understanding text content
and answering related questions, while Key Infor-
mation Extraction (KIE) demands extracting spe-
cific information. However, these single-task ap-
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Figure 1: An overview of the capabilities of Instruc-
tOCR?2 across various image understanding tasks is pro-
vided. The accompanying figure illustrates the applica-
tion of our proposed lightweight multi-modal language
model in Visual Question Answering (VQA), Key In-
formation Extraction (KIE), and Text Spotting (TS).

proaches often fall short in addressing the complex-
ities of real-world applications.

With the rapid development of Large Language
Models (LLMs) (Achiam et al., 2023; Bai et al.,
2023; Yang et al., 2023; Touvron et al., 2023;
Brown et al., 2020; Zhang et al., 2022), a series
of Multi-modal Large Language Models (MLLMs)
have emerged (Alayrac et al., 2022; Li et al., 2023;
Liu et al., 2024b; Zhu et al., 2023; Zhang et al.,
2023). These MLLMs, which integrate visual and
linguistic information, are better equipped to un-
derstand and process textual content within images,
examples of which include (Liu et al., 2024b; Chen
et al., 2023; Ye et al., 2023d; Li et al., 2024a). By
pretraining on large-scale image-text data, these
models can capture the complex relationships be-
tween images and text, enabling them to excel in
a wide range of general vision tasks. General-
purpose MLLMs emphasize task generalization,
whereas OCR tasks place greater importance on
resolution and corresponding training data. Con-
sequently, some MLLMs (Liu et al., 2024c; Feng



et al., 2023b; Liao et al., 2024) specifically tailored
for OCR tasks have emerged. These OCR-specific
MLLMs enhance their performance through meth-
ods such as expanding the input resolutions and
utilizing MLLMs instruction tuning datasets.

Despite the powerful capabilities of MLLMs in
OCR tasks, their large parameter sizes and high
demands for extensive image-text data pose signif-
icant computational and resource challenges. To
address these challenges, lightweight multi-modal
models have gradually gained attention. These
models (Wei et al., 2024b; Xiao et al., 2024; Wei
et al., 2024a) aim to reduce computational and stor-
age requirements while maintaining high perfor-
mance by decreasing the number of parameters and
optimizing architectural design. However, current
lightweight multi-modal models often lag behind
MLLMs in terms of accuracy and robustness when
addressing complex OCR tasks. Moreover, there
remains significant potential for further reduction
in parameter sizes.

In this paper, we propose InstructOCR2, a novel
training framework for lightweight multi-modal
language models, featuring 284M parameters. We
enhance the model’s perception of OCR text by
emphasizing alignment mechanisms, which is fun-
damental to various downstream OCR tasks. The
training of the InstructOCR2 consists of two stages.
In the first stage, we use scene text spotting as a
pretraining task. This task requires the model not
only to recognize text in images but also to per-
ceive the specific locations of the text within the
images. Through this approach, the model learns
the transformation relationship from image to se-
quence, i.e., by extracting serialized text data from
visual information, thereby better understanding
the alignment between images and text.

In the second stage, we train the model with
a large amount of instruction data, enabling it to
understand and execute various downstream tasks.
This data includes instructions for different tasks
along with corresponding input-output examples.
Through this method, the model can not only rec-
ognize text in images but also complete specific
tasks based on the instructions, such as TS, VQA,
as shown in Figure 1. This stage of training endows
the model with greater task generalization and flex-
ibility. Through the aforementioned two-stage pre-
training, our InstructOCR2 framework significantly
improves the accuracy and robustness of the model
in OCR tasks while maintaining a small parameter
size.

In summary, the main contributions are three-
fold:

1. We propose a lightweight and efficient multi-
modal framework called InstructOCR?2, fea-
turing only 284M parameters and supporting a
maximum output length of 4096 tokens. This
framework can accomplish various tasks of
multi-modal models, such as Text Spotting
(TS), Visual Question Answering (VQA), and
Key Information Extraction (KIE).

2. We propose a local-global alignment approach.
By performing an image-to-sequence genera-
tion task that simultaneously predicts the text
and its corresponding position within the im-
age, our approach achieves precise alignment,
and through full-document recognition, en-
ables the model to possess contextual capabil-
ities.

3. Experimental results on public datasets
demonstrate that InstructOCR?2 exhibits out-
standing performance and surpasses existing
methods in a series of downstream tasks. It
is even competitive when compared to the re-
sults of MLLMs.

2 Related Work
2.1 Multi-modal Large Language Models

The rapid development and exceptional perfor-
mance of MLLMs have inspired researchers to ex-
plore the potential and applications of MLLMs
in Optical Character Recognition (OCR) tasks,
thereby driving a series of related works.

UniDoc (Feng et al., 2023b) begins with the data,
performing unified multi-modal instruction tuning
on the contributed large-scale instruction-following
datasets. Monkey (Li et al., 2024a) divides input
images into uniform patches and supports resolu-
tions up to 1344x896 pixels, which allows for a
more detailed capture of visuals. Textmonkey (Liu
et al., 2024c) adopts Shifted Window Attention
to incorporate cross-window connectivity while
expanding the input resolutions, and reduces the
token length through token compression. URe-
ader (Ye et al., 2023b) designs a shape-adaptive
cropping module to process high-resolution im-
ages and develops auxiliary tasks for text reading
and key points generation to enhance text recogni-
tion and semantic understanding capabilities. To
tackle the challenge of resolution, DocPedia (Feng
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Figure 2: The main framework of InstructOCR2 consists of two distinct input branches: an image encoder and a
text encoder. The image encoder is responsible for processing visual features, while the text encoder handles textual
features. These extracted features are then fed into the decoder to produce the final results.

et al., 2023a) processes visual input in the fre-
quency domain rather than the pixel space to cap-
ture a greater amount of visual and textual infor-
mation. mPLUG-DocOwl (Ye et al., 2023a) and
mPLUG-DocOwl1.5 (Hu et al., 2024a) are based
on mPLUG-Owl (Ye et al., 2023d) and further
strengthens the ability to understand OCR-free doc-
uments.

2.2 Document Understanding

Document understanding methods can be broadly
categorized into two types based on whether
they use OCR systems for text extraction: OCR-
dependent methods (Appalaraju et al., 2021; Huang
et al., 2022; Powalski et al., 2021; Wang et al.,
2023a; Xu et al., 2020) and OCR-free meth-
ods (Davis et al., 2022; Lee et al., 2023). OCR-
dependent methods achieve document understand-
ing by inputting pre-extracted OCR text, layout,
and other information into language models. For
example, UDOP (Tang et al., 2023) inputs text,
image, and layout modalities into the decoder, es-
tablishing aligned representations of spatial and
textual embeddings. However, this approach relies
on OCR systems and is susceptible to errors from
these OCR systems. Additionally, processing the
entire document may lead to unnecessary compu-
tation, as some tasks are only related to specific
regions of the document.

OCR-free methods do not require OCR input and
perform document understanding tasks in an end-
to-end manner. Donut (Kim et al., 2022) directly
maps an input document image into a desired struc-
tured output and can be trained in an end-to-end
manner. VisFocus (Abramovich et al., 2024) pro-
poses an OCR-free method to better exploit the vi-

sion encoder’s capacity by coupling it directly with
the language prompt. These OCR-free methods are
parameter-efficient; for example, VisFocus has a
total of 408M parameters, yet they exhibit limited
generalization and can lack the capability to han-
dle more downstream tasks. Although MLLMs is
versatile and can handle various downstream tasks,
the large number of parameters presents challenges
in both training and deployment. Our proposed In-
structOCR?2 possesses the capabilities of MLLMs
while maintaining a reduced parameter count. And
InstructOCR?2 supports a maximum output token
length of 4096, surpassing that of other models,
such as SCOB (Kim et al., 2023), which only out-
puts 512 tokens.

3 Method

We introduce InstructOCR2, an end-to-end docu-
ment understanding framework. The overall struc-
ture is shown in Figure 2. In the following sections,
we will detail the structure of our model.

3.1 Architecture

Text Encoder. The text encoder of InstructOCR?2
adopts the T5 small model (Raffel et al., 2020),
with a maximum input length of 512 tokens. We
use the encoder of TS5 to encode text features, con-
sisting of only 6 layers of transformers.

Image Encoder. The image encoder utilizes the
ResNet50 (He et al., 2016) architecture to extract
features from the input image, initialized with the
ODM (Duan et al., 2024a) weights. By applying
cross-attention between the extracted visual and
textual features, the model can better comprehend
and capture the contextual relationships between



them. This enhancement of context leads to im-
proved performance in multi-modal tasks.

Decoder. The language model of InstructOCR2
adopts LongT5 base (Guo et al., 2021), which is
an extension of the TS model that handles long se-
quence inputs more efficiently, with a maximum
processing length of 4096 tokens. To achieve pre-
cise alignment of text and position through the
image-to-sequence generation task, we introduce a
custom token vocabulary. This includes a special
separator token < sep > and 1000 position tokens.
These additions enable the model to better manage
and differentiate text and position within the input
sequences.

3.2 Training Strategy

The training strategy of InstructOCR2 consists of
two components: alignment and instruction tuning.

Alignment. The image-to-sequence generation
task is used to achieve precise alignment of text
and position. In the sequence representation, each
text instance is represented by a sequence consist-
ing of three parts: [z, y,t], where (z,y) denotes
the coordinates of the center point, and ¢ represents
the transcription text. Text instances are separated
by the token < sep >. Additionally, the tokens
< SOS > and < EOS > are inserted at the begin-
ning and end of the sequence, respectively, to indi-
cate the start and end of the sequence. In this stage
of training, the input prompt to the text encoder
remains as "Recognize text in the image, provide
text coordinates and text recognition results".

By employing the training strategy of image-to-
sequence generation, InstructOCR?2 is equipped
with the ability to perform the text spotting task,
capable of predicting all the text and corresponding
positions in an image. While this training strategy
provides the model with word-level sensitivity, it in-
herently lacks comprehensive contextual predictive
capabilities due to the absence of document-level
context training. By incorporating document-level
recognition, the model gains enhanced contextual
capabilities. The dataset used for this purpose is
DocGenome (Xia et al., 2024). During this train-
ing stage, the input prompt to the text encoder is
"Recognize all text in the image".

Instruction tuning. In this stage, instruction
tuning enables the model with VQA capabilities.
InstructOCR (Duan et al., 2024b) proposes a set of
instructions meticulously designed based on text
attributes. This method facilitates the efficient ac-
quisition of large amounts of VQA data without

requiring manual annotation. We first apply this
method to train the model’s instruction-tuning ca-
pability. Then, we train the model using collected
public VQA datasets. Additionally, we consider
the text spotting task as a type of VQA task, with
the input prompt being "recognize text in the im-
age, provide text coordinates and text recognition
results".

3.3 Loss Function

In InstructOCR?2, the training objective is to predict
tokens, and we utilize the standard cross-entropy
loss for model training. This loss function aims
to maximize the likelihood of the correct tokens
during training. The mathematical expression of
the cross-entropy loss is as follows:

L
Lseq = maximize Z wilog P(8;|1,s14) (1)
i=1
where [ is the input image, s is the input sequence,
§ is the output sequence, L is the length of the
sequence, and w; is the weight of the likelihood of
the ¢ — th token, which is empirically set to 1.

4 Experiment

4.1 Datasets

Alignment. In this training stage, we use
text spotting data from both documents and
natural scenes, with a total training dataset of
2.44M. Specifically, for the document data,
we randomly sample 1.33M images from the
IIT-CDIP (Lewis et al., 2006) dataset and employ
PPOCRv3 (Li et al., 2022) to generate pseudo
labels (i.e., text and position in the image).
We also utilize training sets from the follow-
ing document datasets: DocVQA (Mathew
et al., 2021), InfoVQA (Mathew et al.,
2022), and ChartQA (Masry et al.,, 2022).
The natural scene data includes the follow-
ing datasets: Total-Text (Ch’ng and Chan,
2017), SCUT-CTWI1500 (Yuliang et al,
2017), ICDAR2015 (Karatzas et al., 2015),
ICDAR2013 (Karatzas et al., 2013), ICDAR2017
MLT (Nayef et al., 2017b), Curved Synthetic
Dataset 150k (Liu et al., 2020), TextOCR (Singh
et al., 2021), HierText (Long et al., 2022), and
OpenVINO (Krylov et al., 2021). For context
alignment training, we randomly sample 0.69M
images from the DocGenome (Xia et al., 2024)
dataset to enhance document-level recognition
capabilities.



Model ‘ Size ‘ DocVQA InfoVQA DeepForm KLC ‘ ChartQA ‘ WTQ TabFact
DocPeida 7.1B 47.1 15.2 - - 46.9 - -
DocOwl 7.3B 62.2 38.2 42.6 30.3 57.4 26.9 67.6
UReader 7.1B 65.4 42.2 49.5 32.8 59.3 294 67.6
DocKylin 7.1B 77.3 46.6 - - 66.8 32.4 -
Qwen-vl 9.6B 62.6 - - - 66.3 - -
Monkey 9.8B 66.5 36.1 40.6 - 65.1 25.3 -

TextMonkey | 9.7B 66.7 28.6 61.6 37.8 66.9 31.9 -

HRVDA 7.1B 72.1 43.5 63.2 37.5 67.6 31.2 72.3

DocLayLLM 8B 86.5 58.4 77.1 40.7 - 58.6 83.4

KOSMOS-2.5 | 1.3B 81.1 41.3 65.8 35.1 62.3 324 49.9
TextHawk?2 7.4B 89.6 67.8 - - 81.4 46.2 78.1
InternVL2 8.1B 91.6 74.8 - - 83.3 - -

Dessurt 127M 63.2 - - - - - -

Donut 176M 67.5 11.6 61.6 30.0 41.8 18.8 54.6
Pix2Struct 282M 72.1 38.2 - - 56.0 - -
VisFocus 408M 72.9 31.9 - - 57.1 - -

InstructOCR2 | 284M |  64.8 26.0 67.7 350 | 579 | 199 557

Table 1: Comparison with Multi-modal Large Language Models(MLLMs) and OCR-free document understanding
methods on various types of document image understanding tasks. All evaluation benchmarks use the officially
designated metrics. “size" refers to the number of parameters in the model. The MLLMs public benchmark includes
DocPeida (Feng et al., 2023a), DocOwl (Ye et al., 2023d), UReader (Ye et al., 2023c), DocKylin (Zhang et al., 2024),
Qwen-vl (Bai et al., 2023), Monkey (Li et al., 2024b), TextMonkey (Liu et al., 2024c), HRVDA (Liu et al., 2024a),
DocLayLLM (Liao et al., 2024), KOSMOS-2.5 (Lv et al., 2023), TextHawk2 (Yu et al., 2024), InternVL2 (Chen
et al., 2024). The OCR-free document understanding methods include Dessurt (Davis et al., 2022), Donut (Kim
et al., 2022), Pix2Struct (Lee et al., 2023), VisFocus (Abramovich et al., 2024)

Instruction tuning. In this training stage, we
utilize a diverse set of datasets to enhance the
model’s ability to understand and execute instruc-
tions across various domains, with a total training
dataset of 9.2M. These include Docmatix (Lau-
rencon et al., 2024), DocReason25k (Hu et al.,
2024a), Sujet-Finance (Al, 2025), ai2d (Hiippala
et al., 2021), figqa (Liu et al., 2022), HME100k
(Yuan et al., 2022), CROHME 2014 (Mouchere
et al., 2014), CROHME 2016 (Mouchere et al.,
2016), CROHME 2019 (Mahdavi et al., 2019),
UniMER-1M (Wang et al.,, 2024), SPE, CPE,
SCE, Latex-OCR (Blecher, 2022), IAM Handwrit-
ing (Marti and Bunke, 2002), HCTR (Stamatopou-
los et al., 2013), Synthdog-en (Kim et al., 2022),
TableBench (Wu et al., 2024), TableVQA (Kim
et al., 2024), TabMWP (Lu et al., 2023) and
UniChart (Masry et al., 2023).

After being trained on large-scale VQA data,
the model gains the ability to accept instruc-
tions in natural language. We then further fine-
tune the model using the training sets of down-

stream tasks. Additionally, we utilize another
dataset of 1.66M samples for training during
this stage. These include document datasets
such as DocVQA (Mathew et al., 2021), In-
foVQA (Mathew et al., 2022), DeepForm (Svetlich-
naya, 2020), OCR-VQA (Mishra et al., 2019),
KLC (Stanistawek et al., 2021), DocGenome (Xia
et al., 2024) and VisualMRC (Tanaka et al., 2021).
Table datasets such as TableFact (Chen et al.,
2019) and WikiTableQuestions (Pasupat and Liang,
2015). Chart datasets include ChartQA (Masry
et al., 2022), ChartBench (Xu et al., 2023) and
DVQA (Kafle et al.,, 2018). Natural scene
datasets include TextVQA (Singh et al., 2019),
ST-VQA (Biten et al., 2019), ic13 (Karatzas
et al., 2013), ic15 (Karatzas et al., 2015), Total-
Text (Ch’ng and Chan, 2017), TextOCR (Singh
et al., 2021), Curved Synthetic Dataset 150k (Liu
et al., 2020), MLT-2017 (Nayef et al., 2017a), Hi-
erText (Long et al., 2022) and TextCaps (Sidorov
et al., 2020). KIE datasets include FUNSD (Jaume
et al., 2019), POIE (Kuang et al., 2023) and



SROIE (Huang et al., 2019).

4.2 Implementation Details

The entire model is distributively trained on 32
NVIDIA A100-80G GPUs. During the training
process in the alignment stage, to enhance train-
ing efficiency, the short side of the input image
is randomly resized to a range from 704 to 1024
(intervals of 32), and the maximum length of the
image is set to 1024. The batch size per GPU is 5,
and the model is trained for 150 epochs, with an ini-
tial 5-epoch warm-up phase. We use the AdamW
optimizer with a learning rate of 4.6 x 10~%. Subse-
quently, the model is trained for another 50 epochs,
with a fixed learning rate of 6 x 1075, and the
maximum length of image is set as 1920. Then,
the model’s text reading capability is refined using
the DocGenome dataset. And the model is further
trained for another 30 epochs. For instruction tun-
ing, we first fine-tune the model for 10 epochs on
the text spotting data using the instructions from
InstructOCR. Then, we use 9.2 million samples to
equip the model with interaction capabilities, train-
ing for 15 epochs in this stage. The model is then
fine-tuned using downstream data, with training
conducted for 40 epochs during this phase.

4.3 Comparison with Results on Document
Benchmarks

InstructOCR2 can perform VQA tasks in scenarios
such as documents, charts, and tables. Compared to
previous OCR-free methods, our approach is more
comprehensive. We compare our method with re-
cent MLLMs and OCR-free document understand-
ing methods. At the inference stage, the maximum
input size is set to 1920 pixels, and the minimum
input size is set to 1280 pixels. As shown in Table
1, our method achieved 64.8% on the DocVQA
dataset, surpassing MLLMs such as DocPeida, Do-
cOwl, and Qwen-vl, as well as document under-
standing methods like Dessurt. The metrics on the
InfoVQA dataset surpass those of DocPeida and
Donut. The DeepForm dataset achieves state-of-
the-art (SOTA) performance among OCR-free doc-
ument understanding methods, achieving a position
just below DocLayLLM in comparison to MLLM:s.
The metrics for the KLC, ChartQA, WTQ, and Tab-
Fact datasets also surpass those of previous OCR-
free document understanding methods.

Table 1 presents the results of the KIE task on the
DeepForm and KLC datasets. Our method achieves
state-of-the-art (SOTA) performance among OCR-

free document understanding methods and sur-
passes several MLLMs, such as UReader and
HRVDA. To further demonstrate the effectiveness
of our approach in document understanding, we
evaluate the model on the FUNSD, SROIE, and
POIE datasets. As shown in Table 2, our method
is only slightly lower than Mini-Monkey on the
FUNSD and SROIE datasets, while achieving
SOTA performance on the POIE dataset, demon-
strating the effectiveness of our proposed method
for KIE tasks.

Model | Size | FUNSD SROIE POIE
DocOwl 73B |05 17 25

LLaVAL.5 73B [02 17 25

TGDoc 7B |14 30 222
InternVL I3B | 65 264 259
DocPeida 7.1B [ 299 214 399
Monkey 98B [ 24.1 419 199
TextMonkey | 9.7B | 323 470 279
Mini-Monkey | 2B 429 703 699
InstructOCR2 | 284M| 372 732 78.8

Table 2: The results of our proposed method for Key
Information Extraction(KIE) are presented alongside
the public benchmark of MLLMs, which includes Do-
cOwl (Ye et al., 2023d), LLaVA1.5 (Liu et al., 2024b),
TGDoc (Wang et al., 2023b), InternVL (Chen et al.,
2024), DocPeida (Feng et al., 2023a), Monkey (Li et al.,
2024b), TextMonkey (Liu et al., 2024c), and Mini-
Monkey (Huang et al., 2024).

Model ‘ Size ‘ Overall
BLIP2-6.7B 6.7B 235
InstructBLIP 7B 276
mPLUG-Owl 7B 297
BLIVA 7B 291
InternLM-XComposer | 7B 303
LLaVA1.5-13B 13B 331
TextMonkey 9.7B 561
MiniCPM-V2.6 7B 852
InstructOCR2 | 284M | 357

Table 3: The results of our proposed method on
OCRBench are compared with the following methods:
BLIP2-6.7B (Li et al., 2023), InstructBLIP (Dai et al.,
2023), mPLUG-Owl (Ye et al., 2023d), BLIVA (Hu
et al., 2024b), InternLM-XComposer (Dong et al.,
2024), LLaVA1.5-13B (Liu et al., 2023a), TextMon-
key (Liu et al., 2024c), and MiniCPM-V2.6 (Yao et al.,
2024).



Model | Size | ST-VQA  TextVQAva
BLIP2-OPT 6.7B | 20.9 23.5
mPLUG-Owl | 7.3B | 30.5 34.0
DocPeida 7.1B | 45.5 60.2
DocOwl 7.3B | - 52.6
UReader 7.1B | - 57.6
KOSMOS-2.5 | 1.3B | - 40.7
Monkey 9.8B | 67.7 67.6
TextMonkey 9.7B | 61.8 65.6
Dessurt 127M| 63.2 -
Donut 176M | - 43.5
InstructOCR 78M | 45.8 42.0

InstructOCR2 | 284M| 51.5 41.8

Table 4: The results of our proposed method on scene
text VQA. The MLLMs public benchmark includes
BLIP2-OPT (Li et al., 2023), mPLUG-Owl (Ye et al.,
2023d), DocPeida (Feng et al., 2023a), DocOwl (Ye
et al., 2023d), UReader (Ye et al., 2023c), KOSMOS-
2.5 (Lv et al., 2023), Monkey (Li et al., 2024b),
TextMonkey (Liu et al., 2024c). The OCR-free doc-
ument understanding methods include Dessurt (Davis
et al., 2022), Donut (Kim et al., 2022), Instruc-
tOCR (Duan et al., 2024b).

4.4 Comparison with OCRBench Results

To further evaluate the performance of our method
in document understanding, we assess the results
on OCRBench (a comprehensive benchmark en-
compassing 29 OCR-related evaluations). This rep-
resents a capability that prior OCR-free methods,
including Dessurt, Pix2Struct, and VisFocus, have
been unable to achieve. As shown in Table 3, our
method even surpasses LLaVA1.5-13B, which has
13 B parameters.

4.5 Comparison with Scene Text Visual
Question Answering Results

InstructOCR?2 is capable of comprehending both
documents and natural scene images. Table 4
presents the results on the ST-VQA and TextVQA
datasets. As observed in the table, Instruc-
tOCR2 surpasses MLLMs such as mPLUG-OwI,
KOSMOS-2.5 and BLIP2-OPT.

4.6 Comparison with Text Spotting Results on
the VQA Task

To demonstrate the extensive capabilities of Instruc-
tOCR2, we evaluate its performance on text spot-
ting datasets without fine-tuning. During the infer-
ence stage, the prompt input to the text encoder is

"Recognize text in the image, provide text coordi-
nates and text recognition results". The maximum
length of the image is shorter than 1920 pixels, and
the minimum is 1024 pixels. We evaluate the model
using the point-based metric proposed in SPTS.
Specifically, ICDAR2015 is a multi-oriented text
dataset, while Total-Text is an arbitrarily shaped
text dataset.

Table 5 shows the results of the text spotting
task. Compared to TextMonkey, we surpass it by
10.3% on the Total-Text and by 17.8% on the IC-
DAR?2015, achieving better performance with our
lightweight model compared to the 9.7B model.
This demonstrates the superiority of our method in
position awareness.

Methods Total-Text ICDAR2015
None Full S W G

TextMonkey 614 - - - 45.1

InstructOCR2  71.7 75.7 658 64.5 62.9

Table 5: Text spotting results on Total-Text and IC-
DAR2015 in the VQA task. ‘None’ means lexicon-free.
‘Full’ indicates that we use all the words that appeared
in the test set. ‘S’, “W’, and ‘G’ represent recognition
with ‘Strong’, “Weak’, and ‘Generic’ lexicons, respec-
tively. And we use the TextMonkey (Liu et al., 2024c)
for comparison.

4.7 Ablation Study

Ablation study on text spotting. We propose an
image-to-sequence generation task to achieve pre-
cise alignment of text and its corresponding posi-
tion within the image, which enables the model to
effectively execute the text spotting task. In this
section, we explore the effectiveness of the text
spotting task. Table 6 presents the performance of
the model on the text spotting task after the first
stage of pre-training. Following the training and
evaluation protocols of the scene text spotting task,
we fine-tuned the model for 170 epochs separately
on the Total-Text and ICDAR2015 datasets, and
subsequently evaluated its performance on these
datasets.

As observed in Table 6, our model achieves
SOTA performance on ICDAR2015 datasets using
a generic lexicon, demonstrating the robustness of
our pre-training stage, surpassing dedicated mod-
els for scene text spotting tasks. However, when
evaluated using a lexicon, the performance falls



short of that achieved by scene text spotting meth-
ods, suggesting that our model exhibits a reduced
frequency of recognition errors, thereby offering
limited scope for correction through the lexicon.
This indicates that the model tends to accurately
recognize entire words, as opposed to the internal
character errors often observed in traditional scene
text spotting methods.

Methods Total-Text ICDAR2015
None Full S \W% G
TOSS 65.1 748 659 596 524
SPTS 742 824 775 70.2 65.8
SPTS-v2 755 84.0 823 777 72.6
InstructOCR 77.1 84.1 825 77.1 72.1
InstructOCR2  76.1 80.1 77.9 76.1 74.0

Table 6: Text spotting results on Total-Text and IC-
DAR2015. ‘None’ means lexicon-free. ‘Full’ indicates
that we use all the words that appeared in the test set.
‘S’, “W’, and ‘G’ represent recognition with ‘Strong’,
‘Weak’, and ‘Generic’ lexicons, respectively. And we
use the following models for comparison: TOSS (Tang
et al., 2022), SPTS (Peng et al., 2022), SPTS-V2 (Liu
et al., 2023b), and InstructOCR (Duan et al., 2024b).

Ablation study on input resolution. The text
within document images is often densely packed,
and the images typically have a high resolution.
Our model supports a maximum input size of 1920
pixels; thus, we examine the impact of various
input resolutions on the metrics. The results are
presented in Table 7, with the minimum size set to
1024 and the maximum size increased from 1024
to 1920.

The table indicates that as resolution increases,
the metrics improve as well. However, different
datasets have distinct requirements for high res-
olution; for instance, the POIE dataset achieves
optimal performance at a resolution of 1760 pixels,
whereas TabFact necessitates a resolution of 1920
pixels. This finding provides valuable guidance
on input resolution for applications across various
scenarios.

5 Conclusion

In this paper, we introduce InstructOCR2, a
lightweight multi-modal language model specif-
ically designed for Optical Character Recognition
(OCR) tasks. Our model effectively addresses
the limitations of existing multi-modal large lan-

Resolution| DF CQA TF  TVQA POIE
1024 51.5 514 517 380 69.1
1280 62.1 532 53.6 380 726
1440 644 532 544 400 725
1760 642 537 549 405 74.1
1920 642 53.7 553 403 73.6

Table 7: Comparison of different input image sizes
in various types of document image understanding
tasks. The datasets used in this comparison in-
clude DF(DeepForm), CQA(ChartQA), TF(TabFact),
TVQA(TextVQA), and POIE.

guage models (MLLMs), which often require ex-
tensive computational resources and struggle with
aligning text to its corresponding positions within
images. By focusing on local-global alignment
mechanisms, InstructOCR2 enhances its positional
awareness, resulting in improved performance on
various downstream tasks. With only 284 million
parameters, it demonstrates that high performance
can be achieved with efficiency. The model em-
ploys a two-stage training process that enables it to
recognize text in images while understanding the
spatial relationships between text and visual con-
tent, which is essential for real-world applications
requiring both accuracy and contextual understand-
ing.

6 Limitation

Multi-modal models require large quantities and
diverse data during training. Generally, increas-
ing the amount and variety of data significantly
enhances model performance. In our pre-training
phase, we utilize data from natural scenes; however,
this dataset still has room for expansion. Increas-
ing the amount of training data, may lead to further
improvements in model performance. We employ
the IIT-CDIP dataset in the document domain. Al-
though this dataset offers a certain degree of di-
versity, we believe that the diversity of document
data still requires enhancement. Future research
will explore incorporating a broader range of docu-
ment types to enhance the model’s generalization
capabilities.
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