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Abstract

Gradient-based causal discovery shows great potential for deducing causal structure from
data in an efficient and scalable way. Those approaches however can be susceptible to
distributional biases in the data they are trained on. We identify two such biases: Marginal
Distribution Asymmetry, where differences in entropy skew causal learning toward certain
factorizations, and Marginal Distribution Shift Asymmetry, where repeated interventions
cause faster shifts in some variables than in others. For the bivariate categorical setup
with Dirichlet priors, we illustrate how these biases can occur even in controlled synthetic
data. To examine their impact on gradient-based methods, we employ two simple models
that derive causal factorizations by learning marginal or conditional data distributions – a
common strategy in gradient-based causal discovery. We demonstrate how these models can
be susceptible to both biases. We additionally show how the biases can be controlled. An
empirical evaluation of two related, existing approaches indicates that eliminating competition
between possible causal factorizations can make models robust to the presented biases.

1 Introduction

Causal discovery is an increasingly popular research field since causal understanding enables more informed
decision-making and potentially better generalization to new settings and data distributions. Conditional
distributions of data can be expressed by Bayesian networks in the form of

P (X1, . . . , Xn) =
n∏

i=1
P (Xi|PaXi) . (1)

Eq. 1 expresses that each variable Xi depends on a set of parents PaXi
(this might also be the empty set)

and, conditioned on these parents, is independent of other variables. This is called a factorization and can be
represented as a directed acyclic graph (DAG), which has variables as vertices, while edges express dependence
relations. When the edges express causal dependence (meaning that the state of Xi is caused by the states of
parents PaXi), this is called a structural causal model (SCM) (Pearl, 2009; Schölkopf et al., 2021).

The simplest yet meaningful causal setup to investigate is that of only two, fully observed, variables. In
this case, if a causal relationship is assumed, data can either be generated through a process P (X1, X2) =
P (X1)P (X2|X1), or P (X1, X2) = P (X2)P (X1|X2). In the first case, X1 is the independent variable upon
which X2 depends, and in the second case, it is the other way around. As an example, consider the relationship
between weather and outfit choice: Sunny and warm weather will see people dress differently than rainy or
cold weather. From observational data alone, the causal relationship of the two variables cannot generally be
learned. Interventions are required to determine a causal effect (Pearl, 2009). In our example, a change in
weather will see people change their outfits, while a change in outfits will unfortunately not bring the sun out.

But how to derive these causal relations from data? Recent works improve upon discrete score-based
methods by using gradient-based approaches with differentiable score functions and models. These models are
commonly based on three components: (i) Neural networks with a capacity to learn distributions that relate
variables to their parents, (ii) a differentiable representation of the graph structure between the variables,
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and (iii) a regularization or constraint that enforces that the factorization represented by these distributions
is a valid DAG. These methods are trained on observational or interventional data, with known or unknown
interventions. They reconstruct input data based on conditional distributions, given what the model believes
are causal parents, and optimize a certain score function – commonly a maximum likelihood loss with
additional regularizations enforcing sparseness and DAGness (Bengio et al., 2020; Brouillard et al., 2020;
Lippe et al., 2022; Ke et al., 2023).

In this context, the regularization means that models have to decide between possible parents for variables
under the constraint of achieving a DAG structure. The distributions and factorizations to which the models
converge, based on their loss, are clearly influenced by differences and changes (due to interventions) in the
data distributions. As we show in this paper, such influences lead to two types of biases in joint and marginal
distributions: Bias 1: Marginal Distribution Asymmetry and Bias 2: Marginal Distribution Shift Asymmetry.

We define Bias 1 as the difference in entropy between marginal distributions and show how it can be controlled,
in the bivariate categorical setup, by parameterized deviations from a Bayesian Dirichlet equivalence (BDe)
prior. Likewise, we define Bias 2 as the difference of Kullback-Leibler Divergences between distributions
before and after interventions. We show how it can be controlled by adjusting the relative frequency of
interventions performed on the individual variables. These biases have the potential to significantly aid or
hinder correct learning of causal structure depending on the choice of model and training paradigm. To the
best of our knowledge, these biases – in particular for the setup of continuing interventions – have not been
investigated in the literature before.

In this work, we empirically show and discuss the influence of both biases on recovering causal structure using
two different simple models. We choose the common bivariate causal discovery problem with categorical data;
a simple setting that serves as a clear and illustrative example. For the same reason, it is also a common
distributional choice in related works, e.g. Bengio et al. (2020). Specifically, our contributions are:

1. We present two distributional biases that can affect convergence in gradient-based causal discovery
methods: Bias 1: Marginal Distribution Asymmetry and Bias 2: Marginal Distribution Shift
Asymmetry. We prove the existence of Bias 2 for the scenario where interventions are performed
exclusively on the causal (parent) variable.

2. We demonstrate how Bias 1 can be controlled through deviations from a BDe prior in the bivariate
categorical case,and how Bias 2 can be controlled by adjusting the relative frequencies of interventions.

3. We propose two simple models to empirically examine how these distributional biases affect gradient-
based learning of marginal or conditional distributions, and consequently, causal factorizations. Using
these models, we demonstrate the practical impact of both biases in a controlled bivariate categorical
setting.

4. We additionally evaluate two existing causal discovery approaches for the bivariate categorical setup
(Bengio et al., 2020; Lippe et al., 2022), and find that the models with direct competition between
possible factorizations are susceptible to the biases, while the model without this competition is not.

Overall, our study demonstrates how distributional biases in data – particularly in artificially generated data –
can influence gradient-based causal discovery, highlighting the need to consider such biases in causal inference
methods.

2 Related work

Discovering the graph structure of Bayesian Networks from samples of their joint distribution is called
structure learning. If the network represents cause-effect relationships between the variables, it is called
causal discovery. Approaches to this problem are either constraint-based or score-based.

Constraint-based methods try to recover the true causal graph by exploiting conditional independence between
the variables (Monti et al., 2019; Spirtes et al., 2000; Kocaoglu et al., 2019; Jaber et al., 2020; Sun et al.,
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2007; Hyttinen et al., 2014; Peters et al., 2016; Heinze-Deml et al., 2018). That is, they perform exhaustive
statistical tests of samples from subsets of variables. Identified independencies are used to remove causal
edges between variables to converge to an estimate of the causal structure. The downside of constraint-based
methods is their computational complexity and poor scaling with respect to the number of variables.

Score-based methods, on the other hand, optimize for a certain score (e.g. Bayesian Information Criterion)
to recover the causal structure. Those scores represent how well the discovered structure can model the
data, and incorporate further constraints (i.e. DAGness) and penalties (e.g. for the total number of edges in
the found graph). Traditionally, score-based methods search discretely through the space of possible graph
structures. Given the super-exponential number of such graphs, heuristic search methods need to be applied
(Tsamardinos et al., 2006; Meek, 2023; Hauser & Bühlmann, 2012; Wang et al., 2017; Yang et al., 2018).

To eliminate the need for combinatorial search through graph structures in score-based methods, more recently,
continuous methods for causal discovery and structure learning have been proposed. Those approaches use
differentiable score functions as well as differentiable causal models, where the functions predicting the causal
variables given their parents are often modeled using neural networks and a continuous relaxation of an
adjacency matrix representing the causal relationships between variables. Due to the differentiability of the
system, modern gradient-based methods can be applied. In this context, Zheng et al. (2018) introduce a
smooth constraint in learning a linear SCM that enforces the learned graph to be a DAG, an approach which
has been extended to the nonlinear case (Yu et al., 2019; Lachapelle et al., 2020). Wren et al. (2022) aim to
learn the true graph using discrete backpropagation and the same regularization as Zheng et al. (2018) to
enforce DAG-ness. Zhu et al. (2020) uses Reinforcement Learning to find the correct causal graph structure.
However, these methods only consider observational data, and hence can only recover graph structures in the
same Markov equivalence class as the true causal graph.

Several other approaches do take interventions into account. Bengio et al. (2020) propose to learn the causal
direction of two random variables, where one causes the other, by a meta-learning approach. First, they
independently learn models for all possible causal factorizations on a single observational distribution, which
is followed by joint learning of those model parameters alongside structural variables that encode the causal
direction on several interventional distributions. The authors show both empirically and analytically that
the structural parameters converge to the correct causal direction since this model requires updating fewer
parameters to adapt to a new interventional distribution.

The work of Bengio et al. (2020) is extended to more than two causal variables by SDI (Ke et al., 2023). In
this approach, the conditional and prior distributions are similarly modeled by MLP parameters θ, while the
causal structure is modeled by structural parameters γ. The model is trained in an alternating scheme, where
the functional parameters are fitted using the observational distribution, while the structural parameters are
fitted using interventional distributions. Each variable is represented by a single MLP, enabling the approach
to scale linearly with respect to the number of causal variables. As an enhancement to SDI, Lippe et al.
(2022) propose ENCO, which uses a new gradient estimator for the structural parameters and splits them into
parameters for edge existence and edge direction. A related approach for continuous distributions has also
been proposed (Brouillard et al., 2020). Ke et al. (2020) propose a model that is trained on many different
causal graphs and can predict new causal graphs given interventional samples, where the intervention target
is known. Their approach uses an attention mechanism to decide which variable is used to which extent to
predict another. Ng et al. (2022) learn a binary adjacency matrix representing the causal structure. They use
a Gumbel-Sigmoid to threshold the values of the adjacency matrix and approximate a discrete distribution.
However, they do not consider interventions but learn solely from observational data in cases where the
true causal graph is identifiable up to a super-graph. For a comprehensive summarization of continuous
optimization methods for causal discovery, we refer to the review by Vowels et al. (2022).

Reisach et al. (2021) highlight how varsortability – the tendency of marginal variances to increase along
causal directions in certain linear additive noise models – can inadvertently leak information about causal
structure. They demonstrate that typical random parameter choices in these models yield “varsortable” data
that artificially boosts performance for structure learning methods, even in purely observational scenarios.
Likewise, in our bivariate categorical setup, we also observe that imbalanced Dirichlet priors introduce

3



Under review as submission to TMLR

asymmetric observational distributions, which steer gradient-based algorithms toward one causal direction
without needing explicit causal constraints. Unlike their work, we investigate the interventional setting.

3 Biases

We identify two biases for the fully observable bivariate causal setup. In this section, we define both biases
before we empirically validate them in subsequent sections on a testbed of two categorical variables with
Dirichlet priors.

3.1 Marginal Distribution Asymmetry

While it is, in principle, impossible to determine causality from observational data alone (Pearl, 2009), a
causal relationship between variables often results in asymmetries between marginal distributions P (X1) and
P (X2) even in the observational case, before an intervention has taken place (Mooij et al., 2016). This leads
to a bias we call Bias 1: Marginal Distribution Asymmetry. We define it as follows:
Definition 1 (Bias 1: Marginal Distribution Asymmetry). We define the difference in entropy between
random variables Xi, Xj as

∆Hi,j = H(Xi) − H(Xj) .

We say there is a marginal distribution asymmetry when ∆Hi,j ̸= 0.

An asymmetry in distributions can lead to an asymmetry in the learning signals to a gradient-based causal
discovery method. In the bivariate categorical case we find that the spikier distribution with ∆Hi,j < 0 is
easier to learn. Distribution asymmetry can be controlled for by a suitable choice of conditional P (Xj |Xi),
at least in a synthetic setup. In the categorical case with Dirichlet prior, we present the Bayesian Dirichlet
equivalence prior (see Section 4.1) as an example. For clarity, we provide the definition for (conditional)
entropy in Section A.1 of the Appendix.

3.2 Marginal Distribution Shift Asymmetry

An intervention in a causal setup is commonly applied by fixing the distribution of a random variable (to
a specific value for hard interventions or a distribution over values for soft interventions Pearl (2009)) and
observing how this affects marginal distributions of other variables. Such interventions lead to shifts in
distributions, which generally happen at different speeds for different causally related variables. Unrelated
variables do not change at all (see ICM principle in Schölkopf et al. (2021)). We call the resulting bias
Bias 2: Marginal Distribution Shift Asymmetry and define it as follows:
Definition 2 (Bias 2: Marginal Distribution Shift Asymmetry). Let Xi ∼ Pi, Xj ∼ Pj be two random
variables, and X ′

i ∼ P ′
i , X ′

j ∼ P ′
j the same random variables after an intervention. Then, we define the

distribution shift1 of variable Xi with the Kullback-Leibler divergence as

Si = DKL(P ′
i ||Pi) .

The difference in distribution shift between variables Xi and Xj is then

∆Si,j = Si − Sj .

We say there is a marginal distribution shift asymmetry when ∆Si,j ̸= 0.

The definition of (conditional) Kullback-Leibler divergence is likewise provided in Section A.1 of the Appendix.

In a bivariate setup with factorization X1 → X2 (i.e. X1 causes X2) there are four intervention cases to
differentiate. The reason is that interventions momentarily change dependencies when fixing variables (e.g.
making X2 independent of X1), and ∆Si,j depends on causal dependencies before and after an intervention.
We visualize these cases in Figure 1 and outline their associated distribution shifts in Table 1 for marginal

1An alternative formulation based on Cross Entropy is given in Appendix A.3

4



Under review as submission to TMLR

as well as conditional distributions. Appendix Section A.4 contains an empirical verification on bivariate
categorical data. We assume continuous interventions, where a new intervention is applied immediately upon
undoing a previous intervention. Some other works undo interventions by restoring the original distributions
first. This, however, is a special case of the more general continuous interventions.

X2X1 X1 X2X1

X1

X2

X2

Case 4Case 1
Case 2

Case 3

Figure 1: Bivariate intervention cases for causal factorization X1 → X2, color-coded. An intervention,
signified by the little hammer, assigns a new independent distribution to a variable. The system can therefore
have two states: The default causally related one (left box), and a causally independent one (right box),
which is obtained by intervening on X2. In case 2, the underlying conditional P (X2|X1) is restored.

Table 1: Different intervention cases and their effect on marginals and conditionals. The M row describes
behavior of marginal distributions, the C row that of conditionals. Causal relationships in the assumed causal
setup X1 → X2 might not be present, if X2 was fixed through an intervention. Corresponding empirical data
of distribution shifts, for the bivariate categorical setup, is provided in Section A.4 of the Appendix.

Case 1• Case 2• Case 3• Case 4•
M P1 changes arbitrarily.

P2 can change at most
as much as P1 (see The-
orem 1 in Appendix).

P1 changes arbitrarily.
P2 also changes arbi-
trarily as it was arbi-
trary before interven-
tion.

P1 remains unchanged
as it is independent.
P2 changes arbitrarily.

P1 remains unchanged
as it is independent.
P2 changes arbitrarily.

C P2|1 stays constant,
P1|2 changes arbitrarily.

P2|1 changes arbitrarily,
as does P1|2.

P2|1 always changes
more than P1|2.

P2|1 changes arbitrarily.
P1|2 stays constant.

It follows that the order of interventions matters. In practice, it is often desirable to intervene in a random
order to avoid exacerbating the distribution shift bias.

A bias in the distribution shifts under intervention generally results in an asymmetric learning signal, because
the loss landscape changes more rapidly for the variable with the larger distribution shift. The distribution
shift bias can be controlled by empirically determining an appropriate ratio of interventions on X1 compared
to X2. To a limited extent, it can also be controlled by choosing a specific order of interventions to make
either case 1 or case 2 more frequent.

4 Methods

We investigate the problem of continuous score-based causal discovery from a similar perspective as recent
related work (Bengio et al., 2020; Ke et al., 2023). That is, we assume access to samples of discrete random
variables X1, X2 that are causally related without any further confounders, and try to recover the causal
direction between them. We repeatedly intervene on the distributions of these variables (I times), giving rise
to a set of different, related distributions S = {Pi(X1, X2)}I

i=1, called the interventional set.

We assume a differentiable score function, which quantifies how well a given (differentiable) model can predict
samples from the distributions in S. The model can then be trained using gradient-based learning to optimize
the given score function. The model is constructed in such a way that optimizing the score leads to a given
factorization of P (X1, X2) that aims to reflect the true causal structure.
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4.1 Bivariate Categorical Setup

For our investigation, we consider categorical distributions, which are themselves sampled from a Dirichlet
prior. The Dirichlet prior defines a distribution over probabilities for different categories. It is the conjugate
prior to categorical distributions and a natural choice, not only because it always returns normalized
probabilities, but also because it is versatile given its parameters.

Categorical distributions with Dirichlet prior We consider categorical random variables X1,
X2, with K categories each, respectively, defined by probability vectors π1 ∼ Dirichlet(K, α1),
πX1=x1

2 ∼ Dirichlet(K, α2), which are random variables themselves. Note that the different probabil-
ity distributions πX1=x1

2 are sampled independently for each value of X1 but from the same Dirichlet
distribution. The distributions of X1 and X2 are then given as

P (X1) = Categorical(π1) (2)
P (X2|X1 = x1) = Categorical(πX1=x1

2 ) (3)
That is, we use Dirichlet priors to generate categorical distributions for both variables. The Dirichlet
distributions, in turn, are specified by parameter vectors α1 and α2 that determine their shape. We set these
parameters to

α1 = 1K (4)

α2 = 1
εK

1K (5)

where 1K is a K-dimensional vector of ones and ε a parameter to control Bias 1.

Samples x1, x2 are generated using either ancestral sampling or independent sampling, depending on the
interventional context. Under ancestral sampling, a value x1 is first drawn from the marginal distribution
P (X1), after which a subsequent value x2 is sampled from the conditional distribution P (X2 | X1 = x1).
Alternatively, after intervention cases 2 or 4, x1 and x2 become momentarily independent and both variables
are sampled independently from respective marginal distributions.

The BDe prior To achieve symmetry of marginal distributions in our generated synthetic data, at least for
an observational case, we borrow the Bayesian Dirichlet equivalence (BDe) prior from the classical literature
of structure learning (Koller & Friedman, 2009, Section 18.3.6.3). This allows us to control the extent of
Bias 1: Marginal Distribution Asymmetry and investigate its effects in isolation. It requires that the values
of all α vectors of the various Dirichlets given different possible states x of PaXi

add up to the same total
value

∑
x α

PaXi=x

i , for all variables Xi. This sum is called the equivalent sample size, and the prior ensures
that all Dirichlet distributions have the same equivalent sample size. It is used in structure learning as an
initial unbiased assumption on the distribution of Dirichlet-distributed parameters; in fact, the only one that
ensures equivalent scores for possible factorizations (Koller & Friedman, 2009, Theorem 18.4).

To obtain unbiased distributions, we make use of this same principle for data generation. In our case, a BDe
prior is ensured by the factor 1/K in Eq. (5), because X1, the parent of X2, can take K possible values. The
factor ε is used to deviate from the BDe equivalence scenario in a controlled fashion and investigate its effect.
The BDe prior is obtained if ε = 1. If ε > 1, X1 has, on average, a higher entropy, or P (X1) is closer to a
uniform distribution, than X2. If ε < 1, the opposite is true.

Using the marginalized probability P (X2) =
∑

x1
P (X2|X1 = x1)P (X1 = x1) and the difference in entropy

∆H1,2 = H(X1) − H(X2) from Definition 1, this means that for our particular setup:

E[∆H1,2] =


> 0, if ε > 1,

0, if ε = 1,

< 0, if ε < 1.

In other words, ε = 1 yields symmetric marginals (in terms of entropy) on average (no bias), while ε > 1 or
ε < 1 biases the entropies of X1 vs. X2. Figure 3b in Section 5 confirms this empirically.
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Interventions Similar to Bengio et al. (2020), we consider soft interventions on the causing variable X1.
We also consider soft interventions on the dependent variable X2, and a mix of interventions on both variables
at varying rates.

An intervention on X1 means sampling a new π1 for P (X1), while leaving the conditional P (X2|X1) unchanged.
The marginal P (X2) thus also changes. An intervention on X2 means that X2 is fixed to a new distribution
and made independent of X1. In practice, we sample a π2 from Dirichlet prior Dirichlet(K, α1) using the
same prior as for P (X1) here. P (X1) remains unchanged. A later intervention on P (X1) will release the fix
of X2 and restore the conditional P (X2|X1), which remains unchanged.

To control the Bias 2: Marginal Distribution Shift Asymmetry, we vary the ratio at which we intervene on
X1 and X2. For this, we introduce a parameter λ ∈ [0, 1] as the proportion of interventions carried out on
variable X2. That means when λ = 0, we only intervene on X1, and when λ = 1 we only intervene on X2.
The fraction of interventions on X2 increases linearly as λ moves from 0 to 1. Interventions are always carried
out in random order. Figure 3a in Section 5 shows the empirical relationship between λ and ∆S1,2 for this
setup. Figures 12, 13 and 14 in Appendix section A.4 present a further analysis of how different intervention
cases contribute to ∆S1,2 for different λ.

4.2 Models

The goal of determining the correct causal direction between X1 and X2 is achieved by the surrogate goal of
learning the distributions (conditional or marginal) of X1, X2 from samples across interventional distributions.

We employ two illustrative models: A marginal model (MM) that can learn either marginal distribution
P (X1) or P (X2), and a conditional model (CM) that can learn either conditional distribution P (X1|X2) or
P (X2|X1). Both models are depicted in Figure 2. They have structural parameters c1 and c2, which are
weights that have to sum to one. These structural parameters encode how much the model prefers learning
one distribution over the other.

Both models serve the purpose to investigate how Bias 1: Marginal Distribution Asymmetry and Bias 2:
Marginal Distribution Shift Asymmetry affect convergence towards one (marginal or conditional) distribution
or the other learnable, i.e., one causal factorization or the other. In other words: Which factorization is easier
to learn under each bias?

Marginal Model (MM)

The marginal model only has one vector i ∈ RK of learnable parameters:

x̂1 = c2i (6)
x̂2 = c1i (7)

This model does not consider any input. However, it still learns through its loss and is at most able
to learn the marginal distribution of either X1 or X2. The order of factors ci is chosen for consistency
with CM, where a large ci corresponds to Xi being the independent variable.

Conditional Model (CM)

The model has a learnable matrix W ∈ RK×K that is multiplied with inputs:

x̂1 = c2W ex2 (8)
x̂2 = c1W ex1 (9)

The CM model is thus able to condition outputs on inputs, represented as one-hot encoded represen-
tations exi of data values xi. It is therefore able to learn a conditional distribution in W.

7



Under review as submission to TMLR

-0.09

-0.02 -0.16 -0.23 -0.28 0.19 -0.28 -0.15 -0.22 -0.23 -0.21

-0.07 -0.64 -0.91 -1.12 0.78 -1.10 -0.60 -0.86 -0.91 -0.82

-0.80 -1.14 -1.40 0.97 -1.38 -0.75 -1.07 -1.14 -1.03
Gumbel
Softmax

=

=

=

=

=

0.8
0.2 0.4

1.3

-0.95 -0.64 -1.23 -0.93 -0.77 0.74 -0.46 1.06 -1.16 0.43

0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0

learnable parameters

MM

CM

-0.02 -0.16 -0.23 -0.28 0.19 -0.28 -0.15 -0.22 -0.23 -0.21

Gumbel
Softmax

=

=

0.8
0.2 0.4

1.3

Figure 2: Exemplary visualization of the MM model (top) and CM model (bottom) from Section 4.2.

In both models, the structural parameters c1 and c2 are calculated from learnable logits z1, z2, given a
temperature hyper-parameter τ , as

c1, c2 = Gumbel-Softmax(z1, z2; τ) (10)

The Gumbel-Softmax is a variation of the softmax function where noise sampled from a Gumbel distribution
is added to the logits z1, z2 before evaluating their softmax values c1, c2. The Gumbel-Softmax is commonly
used as an approximation to represent samples from a discrete distribution in a differentiable way (Jang et al.,
2017). The noise introduced by the Gumbel-Softmax serves the role of exploring both possible directions
while raw logits are not too different, in order to not get stuck in one (possibly wrong) direction initially
(Brouillard et al., 2020). From a causal discovery point of view, the structural parameters c1, c2 can be viewed
as the causal factorization learned by each model: c1 > 0.5 or c1 < 0.5 denotes the case where X1 causes X2
or vice versa.

Details about initialization and hyperparameter values are provided in Appendix A.5.

Training Paradigm

The models are trained to minimize cross-entropy between predicted and ground-truth values of batches (of
size B) from an observational or interventional distribution:

L = − 1
B

B∑
j=1

2∑
i=1

exi,j · log(softmax(x̂i,j)) (11)

For the factorization presented in Eq. (1), the joint log-likelihood is equivalent to the sum over conditional
log-likelihoods of individual variables. If the x̂i can learn conditional distributions, L will thus minimize joint
log-likelihood. In our MM model, and generally in the absence of input to condition on, however, x̂i can at
most represent marginal distributions, meaning that L treats variables as independent without parents.
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5 Results

We explore how Bias 1 and Bias 2 influence the behavior of the MM and CM models to converge to the
correct factorization X1 → X2 (c1 = 1) or to the incorrect factorization X2 → X1 (c1 = 0). We investigate
the observational as well as the interventional case and whether related work is also susceptible to the Biases.

For all following experiments on the convergence behavior of the models, 100 independent runs were conducted
to gather expressive statistics. K is set to 5. We always perform interventions in random order. For the
related approach of Bengio et al. (2020) and Lippe et al. (2022), the corresponding implementation was
used23. For reproducibility of our experiments, our code is available online4.
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(a) Distribution asymmetry over ε.
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Figure 3: Bias 1 (Section 5.1) and Bias 2 (Section 5.2) for different values of ε and λ on the bivariate
categorical setup with Dirichlet priors. Interventions happen in random order in Figure 3b.

5.1 Bias 1: Marginal Distribution Asymmetry

Behavior with changing ε Figure 3a shows the behavior of Bias 1 under changes of ε. It shows that for
ε = 1, E [∆H1,2] is = 0, i.e., the bias does not exist, and the distributions of X1 and X2 are symmetric. For
ε < 1, E [∆H1,2] is negative and the entropy of X1 is smaller than that of X2. For ε > 1, E [∆H1,2] is positive
and the entropy of X2 is smaller. This demonstrates that the ε parameter can be used to control the second
bias and obtain distributions with specific values of E [∆H1,2]. Next, we examine how Bias 1 influences the
convergence of the MM and the CM to either of the possible causal factorizations.

Observational case Figure 4 shows the convergence behavior of the MM and CM model for different
values of ε in the observational case. Both the MM and the CM show a characteristic change in convergence.
For ε < 1, the models converge to c1 = 0, favouring to predict X1. For ε = 1, the models do not converge to
any direction, and for ε > 1, they favor predicting X2. In summary, when E [∆H1,2] = 0 (ε = 1), the models
do not display a convergence behavior, and if E [∆H1,2] ̸= 0, both models favor predicting the variable with
the lower entropy. These results are closely related to what Reisach et al. Reisach et al. (2021) report for
continuous distributions and show that gradient-based structure learning algorithms can be susceptible to
differences in the entropy of observed distributions in the observational case. Since many structure learning
algorithms only consider observational data, it is important to understand whether their convergence behavior
is due to learning conditionals or exploiting asymmetries in distributions.

2https://github.com/ec6dde01667145e58de60f864e05a4/CausalOptimizationAnon
3https://github.com/phlippe/ENCO
4Anonymized link: https://anonymous.4open.science/r/bias-based-causal-discovery-DC7A/
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Interventional case Bias 1 also exerts an effect on the convergence of both models in the interventional
case. Specifically, for certain intervention-rate scenarios (here, λ = 0.2), Bias 1 is capable of reversing the
direction toward which a gradient-based causal discovery model converges. As illustrated in Figure 5, the
proportion of independent runs converging to c1 = 1 increases with higher values of ε, mirroring the trend
observed in the observational case. This highlights that, depending on the magnitude of ∆S1,2 induced by
interventions, Bias 1 can still reverse the causal direction learned by gradient-based models.
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Figure 4: Bias 1 in the observational case: Value of c1 after 300 epochs, plotted over ε (log scale) for
conditional model and marginal model. The statistics are based on 100 runs per value of ε.
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Figure 5: Bias 1 in the interventional case: Value of c1 after 300 epochs, plotted over ε (log scale) for
conditional model and marginal model with λ = 0.2. The statistics are based on 100 runs per value of ε.

5.2 Bias 2: Marginal Distribution Shift Asymmetry

Influence of λ on distribution shift ∆S The second bias exclusively impacts the interventional setting.
To isolate its effect, we eliminate Bias 1 by setting ε = 1 throughout this section. Figure 3b presents
empirical measurements of ∆S1,2 across varying values of λ. We observe that as λ increases, ∆S1,2 strictly
monotonically decreases. This monotonic behavior aligns with expectations from Section 3.2: with larger

10
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λ, the frequency of second and third intervention types increases, gradually causing larger distributional
shifts in X2 on average. Additionally, achieving parity in distribution shifts (∆S1,2 = 0) requires a greater
proportion of interventions on X1 compared to X2. Further analysis of how different intervention scenarios
influence ∆S1,2 is available in Appendix Section A.4. Additionally, Appendix Section A.3, specifically Figure
11, demonstrates that employing cross entropy instead of Kullback-Leibler divergence yields a similar trend
for ∆SCE

1,2 .
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Figure 6: Bias 2: Value of c1 after 300 epochs, plotted over λ for conditional model and marginal model. The
statistics are based on 100 runs per value of λ.

Gradual change of model convergence with λ Figure 6 shows the convergence of the MM and
CM models under Bias 2 across different values of λ. Both models perceive the variable with the faster-
changing marginal distribution (indicated by ∆Si,j > 0) as the independent variable. For low values of
λ (predominantly interventions on X1), both models consistently converge to the factorization X1 → X2
(i.e., c1 ≈ 1). Conversely, for high values of λ, the models gradually shift toward the opposite factorization,
X2 → X1 (c1 ≈ 0). This gradual transition in model convergence closely follows the pattern of changes
observed in ∆S1,2, suggesting that the magnitude and direction of the distribution shift (∆S) directly steer
the convergence behavior of the models. Importantly, the observed changes in ∆S1,2 alone are sufficient to
fully reverse the direction toward which a gradient-based causal discovery model (whether learning conditional
distributions or marginals only) converges, even in the absence of differences in entropy (Bias 1).

Lastly, consistent with observations from Bias 1, the MM again more effectively exploits the asymmetry,
with its mean c1 value closely tracking the changes in ∆S1,2 shown in Figures 3b and 11. Although the CM
follows a similar general trend, it exhibits a flatter convergence curve. We further observe that the speed
and stability of model convergence depend significantly on each model’s ability to capture the underlying
distribution before interventions occur. Figure 15 in Appendix Section A.6 illustrates this dependency.

5.3 Effects of Distributional Biases in Previous Work

In this section, we explore how the two biases influence other gradient-based causal discovery methods that
consider the bivariate categorical setting.

Meta-transfer objective We first investigate how the meta-transfer objective model proposed by Bengio
et al. (2020) behaves with regard to Bias 1 and 2. As opposed to our illustrator models, this model first
learns the probabilities of both possible causal factorizations X1 → X2 and X2 → X1 independently on
observational data. Afterwards, both models achieve the same likelihood L on data sampled from the
observational distribution, i.e. LX1→X2 = LX2→X1 , because both have learned the correct joined distribution.
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the model that X1 → X2 is the correct factorization (if
σ(γ) > 0.5), or X2 → X1 (if σ(γ) < 0.5)

Figure 7: Log-likelihoods (left) and derived causal factorizations (right) of the approach presented by Bengio
et al. (2020), for different λ values. For all runs, we set ε = 1.
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Figure 8: Causal factorization of the approach presented by Bengio et al. (2020), for different ε values. The
intervention rate was kept at λ = 0.5 for all ε values.

In a second step, both pre-trained models are trained on interventional data. Their likelihoods now start to
differ, until they have converged to the new joint distribution, because one factorization can adapt faster to
the new interventional distributions than the other. The speed of adaptation depends on the distribution
shifts described in Bias 2. Note that LX1→X2 and LX2→X1 are the accumulated marginal and conditional
likelihoods.

While updating the models on interventional data, a scalar parameter γ, which encodes belief about the
causal direction, is simultaneously optimized to minimize the following meta-objective, the regret:

R = − log [σ(γ)LX1→X2 + (1 − σ(γ)) LX2→X1 ]

Its gradient is ∂R
∂γ = σ(γ) − σ(γ + log LX1→X2 − log LX2→X1), so the difference in likelihoods during model

adaptation directly determines whether σ(γ) converges to 0 or 1. In this paper, σ(·) is the sigmoid function.

Figure 7 shows the behavior of this approach for varying λ. Figure 7a shows the raw difference of the
log-likelihoods of both models, summed over the first s adaptation steps. It becomes apparent that the
adaptation speed of each factorization is correlated with the distribution shift asymmetry presented in Bias 2.
The convergence of σ(γ) in Figure 7b behaves accordingly, and the predicted causal direction changes with
increasing λ. This is in line with the results for our models presented in Figure 6 and shows the susceptibility
of the approach by Bengio et al. (2020) to Bias 2.
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We have further analyzed the susceptibility of the model proposed by Bengio et al. (2020) to Bias 1, which is
shown in Figure 8. For this analysis, we set λ = 0.5 to obtain unbiased interventions. This means that σ(γ)
never reaches values near 1, as it does in the original paper where λ is always 0. Although not as pronounced
as for our models above, we observe a similar trend: the convergence to the causal hypothesis X1 → X2
(σ(γ) = 1) generally increases for larger ε values.

ENCO We also investigate the susceptibility of the ENCO model by Lippe et al. (2022) to our proposed
biases. As explained above, this approach splits the belief about a causal relation between two variables
into a parameter σ(γij) that encodes the belief that an edge between Xi and Xj exists in the SCM, and a
parameter σ(θij) that encodes the direction of this edge. Figure 9 shows the behavior of those models for
changing values of λ and the edge X1 → X2. We find that the parameter coding for edge existence, σ(γ12),
slowly declines from 1 to 0.5 but always stays above 0.5, while the parameter encoding edge direction, σ(θ12),
stays near 1 for all values of λ. Together, this shows that the model is robust to the influences of Bias 2, as
for all values of λ < 1, the model correctly predicts with a confidence greater than 0.5 that the edge X1 → X2
exists. This robustness can be explained by looking at the gradients for both parameters. The gradient of the
overall loss L̃ for γ12 is per Lippe et al. (2022) given as:

∂L̃
∂γ12

= σ′(γ12) · σ(θ12) · E [LX1→X2(X2) − LX1 ̸→X2(X2) + λsparse] (12)

In the notation adopted by Lippe et al. (2022), LXi→Xj
(Xj) and LXi ̸→Xj

(Xj) denote the negative log-
likelihoods (a different notation than for the meta-transfer objective above!) for variable Xj , if the edge
Xi → Xj is included into the model (Xj is conditioned on Xi) or not (Xj is not conditioned on Xi),
respectively. λsparse is a regularization term to favor sparser causal graphs. Importantly, the gradient is
artificially suppressed for the intervened-upon variable, since it is by definition independent. The formula
explains why the model is robust to increasing values of λ: for λ = 0, in all samples the true causal direction
X1 → X2 holds, so including this edge should always yield a lower loss opposed to excluding it. As λ grows,
the causal relationship is present in fewer samples and the gradient is suppressed in more samples, so the
signal to push γ12 upwards (through gradient descent) becomes weaker, eventually moving to total uncertainty,
σ(γ12) = 0.5, at λ = 1.
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(a) The parameter σ(γ12) encodes the belief of the model
that an edge in the learned SCM, i.e. a causal relationship,
exists between X1 and X2.
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(b) The parameter σ(θ12) indicates the belief of the model
that X1 → X2 is the correct direction for the edge.

Figure 9: Edge existence belief (left) and edge direction belief (right) of the approach presented by Lippe
et al. (2022), for different λ values. For all runs, we set ε = 1.
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(a) The parameter σ(γ12) encodes the belief of the model
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that X1 → X2 is the correct direction for the edge.

Figure 10: Edge existence belief (left) and edge direction belief (right) of the approach presented by Lippe
et al. (2022), for different ε values. For all runs, we use λ = 0.5.

The robustness of θ12 can similarly be explained by looking at the corresponding gradient:

∂L̃
∂θ12

= σ′(θ12)
[

p(IX1) · σ(γ12) · E (LX1→X2(X2) − LX1 ̸→X2(X2))

− p(IX2) · σ(γ21) · E (LX2→X1(X1) − LX2 ̸→X1(X1))
]

(13)

This gradient comprises two main components, each driven by interventions on one of the two variables.
The relative influence of these components on the expected gradient is modulated by λ, i. e. the proportion
of interventions. In the first term, p(IX1) is the probability of intervening on X1, so has a high value
when λ is small and X1 is intervened upon often. If X1 → X2 is the true causal direction, modeling X2
as dependent on X1 leads to a better (smaller) negative log-likelihood than assuming independence, so
LX1→X2(X2) − LX1 ̸→X2(X2) is negative. Gradient descent then increases θ12. This gradient provides a direct
signal for the correct causal direction.

The second term is weighted by p(IX2), which has a high value when λ is large. If X1 → X2 is true, then X1
is invariant to interventions on X2. Consequently, attempting to model X1 conditioned on X2 should offer no
predictive improvement for X1. Thus, the difference LX2→X1(X1) − LX2 ̸→X1(X1) is expected to be zero or
even positive, because the conditioning introduces noise. Since this entire term is subtracted in the gradient
for θ12, it also contributes to pushing θ12 upwards.

Importantly, regardless of the value of λ, at least one of these mechanisms provides a signal (or at worst no
signal, but never a contradicting one) for the correct orientation. When λ is low, the direct causal signal
from the first term dominates. When λ is high, the invariance-based signal from the second term dominates.
For intermediate values of λ, both types of interventions contribute.

Further, Figure 10 shows that both edge parameters are robust to Bias 1. This can also be read directly
from the gradients above: the formulas do not compare likelihoods of variables themselves (which would
be susceptible to Bias 1) but compare likelihoods of the same variable with or without edges added. This
removes any influence of Bias 1.
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Hence, the ENCO model is robust to both biases. The reason for this is that, as explained, ENCO does not
find the correct causal graph by exploiting differences in distributions before and after interventions, but
rather by probing which additions to the causal structure yield improvements to the likelihood of the data
across interventions.

6 Conclusion

In this work, we inspect two different biases on the common choice of categorical distributions generated
using a Dirichlet prior, and their influence on the behavior of gradient-based causal discovery methods in the
bivariate case.

Bias 1 quantifies marginal distribution asymmetry and is measured through the difference in entropy between
distributions. We show how it can be controlled, in the bivariate categorical setup, by a parameter ε. Bias 2
quantifies the distribution shift asymmetry of causally related variables under interventions. We analyze these
changes and show how the intervention rate λ can affect Bias 2, depending on the rate of interventions on
each variable. This understanding of parameters ε and λ and their effect on the biases allows more rigorous
testing of the robustness of causal discovery approaches.

We find that gradient-based methods can be susceptible to both biases – in particular if their learning involves
a direct competition between different causal factorizations.

To illustrate this, we present two simple gradient-based models for causal discovery that transparently choose
between conflicting factorizations. We find that neither these illustrator models, nor the meta-transfer
objective approach by Bengio et al. (2020) are robust to the biases. Their predicted causal factorization
changes when the biases are removed or reversed, even if the underlying causal structure that generates
the data was unchanged. The approach by Lippe et al. (2022), on the other hand, is robust to both biases
because it analyzes causal dependencies separately for each variable.

We believe that the presented biases and methods to control them will help other researchers to better analyze
the robustness of their methods. We suggest to test methods on data that was generated for different values
of parameters ε and λ, and to consider their effect already in the design of new approaches.

Ethics Statement

All experiments in this paper are conducted on synthetic data; thus, no issues regarding privacy or human
subjects arise. Our work does not inherently facilitate harmful applications or negative societal impacts. The
code is publicly available to enable transparency and reproducibility. The authors declare no competing
interests.
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A Appendix

A.1 Definitions

To avoid ambiguity, we provide the common definitions of entropy and Kullback-Leibler divergence for discrete
variables that we use throughout this paper, in particular also those for conditional distributions.

The entropy of a variable Xi is defined as

H(Xi) = −
∑

xi∈Xi

P (xi) log P (xi) .

Conditional entropy is then defined as (Bishop & Bishop, 2024, Sec. 2.5.6)

H(Xi|Xj) = −
∑

xi∈Xi

∑
xj∈Xj

P (xi, xj) log P (xi|xj) .

The Kullback-Leibler divergence of two distributions P ′(Xi) and P (Xi) is defined as

DKL

(
P ′(Xi)

∥∥ P (Xi)
)

=
∑

xi∈Xi

P ′(xi) log P ′(xi)
P (xi)

.

The conditional Kullback-Leibler divergence, consequently, is defined as (Cover, 1999, Eq. 2.65)

DKL

(
P ′(Xi|Xj)

∥∥ P (Xi|Xj)
)

=
∑

xi∈Xi

∑
xj∈Xj

P ′(xi, xj) log P ′(xi|xj)
P (xi|xj) .

A.2 Relative Distribution Shift of Dependent Variable

Theorem 1 (Distribution shift asymmetry under intervention on causal variable). Consider a bivariate
causal model X1 → X2 with distributions

X1 ∼ P (X1), X2 ∼ P (X2 | X1).

An intervention on the cause variable X1 changes its distribution from P (X1) to P ′(X1) while leaving the
conditional mechanism P (X2 | X1) unchanged. Then, the induced marginal distribution P (X2) also changes
to P ′(X2). It holds that

DKL

(
P ′(X2)

∥∥ P (X2)
)

≤ DKL

(
P ′(X1)

∥∥ P (X1)
)

. (14)

Proof. Let p and q be any two probability distributions on a space X , and let K be any Markov kernel (i.e., a
stochastic mapping) from X to another space Y . Then the data-processing inequality for KL divergence (Cover,
1999, Theorem 2.8.1 and Eq. 11.145) states that

DKL

(
pK

∥∥ qK
)

≤ DKL(p ∥ q)

Setting p = P ′(X1), q = P (X1), K = P (X2|X1), marginalization by applying K to P ′(X1) and P (X1) (van
Erven & Harremos, 2014) yields

DKL

(
P ′(X1)K

∥∥ P (X1)K
)

≤ DKL

(
P ′(X1)

∥∥ P (X1)
)

, (15)

DKL

(
P ′(X2)

∥∥ P (X2)
)

≤ DKL

(
P ′(X1)

∥∥ P (X1)
)

. (16)

19



Under review as submission to TMLR

A.3 Distribution Shift or Loss Shift

The following is based on the assumption that the model has already converged to a distribution before the
intervention happens and changes that distribution.

For a cross entropy (CE) loss, the difference in loss shift becomes

∆SCE
i,j = H(X ′

i) + DKL(P ′
i ||Pi) − H(X ′

j) − DKL(P ′
j ||Pj) .

The empirical Bias 2 based on CE loss is depicted in Figure 11. Its curve is very similar, but slightly flatter
than the one based on Kullback-Leibler divergence (Figure 3b). Theorem 1 still applies if Bias 1: Marginal
Distribution Asymmetry is not present, because then H(X ′

i) = H(X ′
j).
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Figure 11: Plot of the empirical difference in cross entropy shift, as opposed to Kullback-Leibler divergence
shift presented in Figure 3b. Interventions happened in random order.

A.4 Intervention Cases in Practice

Figure 12 shows the ratios of intervention cases, as explained in Table 1, with increasing λ. Cases 1 and 2
result in causally related variables (see Figure 1), while cases 3 and 4 do not. Consequently, the proportion of
causal information in the data sinks with increasing λ – in fact linearly, because the sum of case 1 and case 2
ratios, and likewise case 3 and case 4 ratios, is linear. This is consistent with the convergence findings of
the marginal and conditional model as well as the related work in Section 5.3. Figure 13 and 14 provide
an empirical scatter plot of distribution shifts for different intervention cases in the bivariate categorical
setup described in Section 4. Figure 13 shows the marginal distirbution shifts. In case 1, DKL(P ′

1||P1) is
always smaller than DKL(P ′

2||P2), consistent with Theorem 1. Overall, the observations for both marginal
and conditional distribution shift empirically verify the descriptions in Table 1.

A.5 Model Details

This section details the hyperparameters and initializations for the MM and CM models. In both models,
the parameters of W are initialized using a Kaiming Uniform distribution, and the parameters z1 and z2
were initialized to 0.5 each. The parameter i of the MM was initialized to 1K/K. This ensures the value is
normalized to 1, as the input in the case of the CM, and additionally represents maximal uncertainty about
the data distribution. Both models are trained for 300 epochs with 32 batches of size 128 in each epoch,
using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.1. The temperature parameter of
the Gumbel-Softmax was fixed to τ = 2 throughout all experiments.
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Figure 12: Plot of the ratio in which intervention cases 1, 2, 3 and 4 from Section 3.2 occur depending on λ,
when interventions happen in random order. The ratios sum to 1 for each λ.
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Figure 13: Scatter plot of distribution shifts of P (X1) and P (X2) for different λ values. Cases 1, 2, 3, 4
of interventions are described in Section 3.2. Interventions are performed in random order. The diagonal
represents the case ∆S1,2 = 0. The ratios of points per case in each plot can be inferred from Figure 12.
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Figure 14: Scatter plot of distribution shifts of P (X1|X2) and P (X2|X1) for different λ values. Cases 1, 2, 3,
4 of interventions are described in Section 3.2. Interventions are performed in random order. The diagonal
represents the case ∆S1|2,2|1 = 0. The ratios of points per case in each plot can be inferred from Figure 12.

A.6 Fast Versus Slow Interventions

Figure 15 shows how the influence of Bias 2 differs depending on how frequently an intervention is performed.
The more batches the model is trained on before another intervention happens, the earlier the model switches
from c1 > 0.5 to c1 < 0.5 with respect to λ.
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(a) Convergence behavior MM.
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(b) Convergence behavior CM.

Figure 15: Value of c1 after 300 epochs, plotted over λ for conditional model and marginal model. The
statistics are based on 100 runs per value of λ.
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