
CLIPGraphs: Multimodal Graph Networks to Infer
Object-Room Affinities

Ayush Agrawal∗1, Raghav Arora∗1, Ahana Datta1, Snehasis Banerjee1,2, Brojeshwar Bhowmick2,
Krishna Murthy Jatavallabhula3, Mohan Sridharan4, Madhava Krishna1

Abstract—This work focuses on improving upon pre-trained
feature representations for learning functional and semantic
priors for embodied AI tasks. Specifically, we propose a GCN-
based training pipeline that fine-tunes the CLIP embeddings
to effectively estimate object-room affinities. Our approach,
CLIPGraphs, efficiently combines human commonsense domain
knowledge, multimodal information from language and vision
inputs(leveraging the strengths of CLIP); and a Graph Network
to encode these functional/semantic priors. We experimentally
demonstrate the effectiveness of our approach on a benchmark
dataset of object categories, showing a significant improvement
over state-of-the-art baselines. The learned embeddings from
our approach can be used as priors in downstream embodied
AI tasks such as object navigation and scene rearrangement,
demonstrating the broad applicability of our method.

I. INTRODUCTION

Imagine a robot being given a task of tidying up an
unfamiliar house. This task is a variant of the scene re-
arrangement challenge for embodied AI [1]. To perform
this task, the robot must first determine what tidying up
means in this specific house, which requires constructing a
representation of the current state of the house and inferring
a possible goal state (i.e., a configuration in which the
house is deemed as tidy). Any errors in this step can affect
downstream planning and control, resulting in irrecoverable
failure. Computing the most appropriate room location for
specific object categories is thus critical to the successful
completion of such tasks.

Human-inhabited environments such as homes and offices
are designed to be functional and aesthetically pleasing.
A key characteristic of such environments is the semantic
organization, i.e., objects are placed in locations based on
their purpose. This enables humans to adapt efficiently to
new environments designed to serve the same purpose. For
example, when a person enters a new home and wants to
find sugar to make a cup of coffee, they instinctively look in
the kitchen or pantry. We leverage this semantic organization
to enable robots to predict the likely locations of any given
object. Specifically, we leverage recent developments in
vision-language representation learning to propose a flexible
approach for learning object-room affinities, i.e., the relative
likelihood of any given object belonging to a particular room
in a house, based on image and text input.

*Denotes equal contribution
1Robotics Research Center, IIIT Hyderabad, India
2TCS Research, Tata Consultancy Services, India
3CSAIL, Massachusetts Institute of Technology, USA
4Intelligent Robotics Lab, University of Birmingham, UK

State-of-the-art methods have used Large Language Mod-
els (LLMs) as commonsense reasoning machinery for the tidy
up task [2]. These methods are limited to textual descriptors,
which can be challenging to ground to a specific scene.
Moreover, they use ground truth object labels for generating
object-room affinities, which limits their operation outside of
the training data distribution. Others have used reinforcement
learning (RL) to compute policies for related tasks such as
visual semantic navigation [3]–[6], and Multi-Object Nav-
igation [7]–[9], but do not fully leverage knowledge from
different sources in the learning process.

Our framework, CLIPGraphs, seeks to leverage the com-
plementary strengths of commonsense knowledge, data-
driven methods, and multimodal embeddings to estimate
object-room affinities with high precision. It does so by
incorporating:

(1) A knowledge graph that encodes human preferences of
the room location of objects in home environments;

(2) Joint embeddings of image and text features [10] to
support multimodal learning and queries involving either
object images or object name labels; and

(3) A graph network that learns object-room affinities
over a dataset of common household objects based on latent
embeddings of the knowledge graph that includes the image
and text feature embeddings.

We evaluate our framework’s ability to combine these
components and correctly estimate the best room location
for any given object, the key step in scene rearrangement.
We do so using a dataset of around 8000 image-text pairs
that we created by extracting images from the Web for 268
benchmark object categories [2]. We show experimentally
that our framework substantially improves performance in
comparison to state-of-the-art baselines comprising LLMs
and language embeddings encoding commonsense knowl-
edge of the location of objects.

II. RELATED WORK

To train embodied agents to perform human-like activities,
many common tasks have been explored recently like image
goal navigation [11]–[14], object navigation [3], [5], [7], [15],
embodied Question Answering [16]–[18], and scene rear-
rangement [1], [19], [20]. ALFRED [21], TEACh [22], and
[23] studies the ability of agents to perform actions based on
natural language instructions, and [24]–[26] use knowledge
graphs for visual classification and object detection. While
these works include explicit specification of the goal state

by a human agent, recent works [2], [27], [28] have started
the inclusion of reasoning with commonsense knowledge to
enable agents to perform these tasks intelligently.

III. PROBLEM FORMULATION AND FRAMEWORK

To perform tidying up or other scene rearrangement tasks,
a robot needs the key ability to accurately compute the
appropriate location for any given object. To explore this abil-
ity, we created the Images for Room-Object Nexus through
Annotations (IRONA) dataset of 30 RGB images from the
Web for each of the 268 categories of household objects used
by Housekeep [2] (See Appendix 2.2). For any such image,
the robot had to compute the likelihood that the object in the
image belongs to each of 17 room categories.

Our framework, called CLIPGraphs, trains a Graph Convo-
lutional Network (GCN) [29] to compute embeddings that are
used to estimate these object-room affinities. Figure 2 shows
the training pipeline. It uses a knowledge graph to encode
existing information of human preferences (of room location
of objects) for the object categories [2], and incorporates a
modified contrastive loss function to compute better latent
embeddings of the image and language encoder features
provided by CLIP [30] for the nodes of the knowledge
graph. The resultant node embeddings model the information
about the room location of various objects in the latent
space. During inference, the CLIP features generated for
any (test) RGB images are processed by the GCN, with
the cosine similarity between the embeddings of the rooms
and the image providing the desired estimate of object-
room affinities. We describe individual components of our
framework below.

Fig. 1: An illustration of the five types of edges in our
knowledge graph. The colored edges denote positive edge
weights whereas black ones denote negative weights. The
number on the edge denotes the type of edge.

A. Knowledge Graph

Our framework’s first step uses the human-annotated
preferences included in the Housekeep data [2]. For every
object-room pair, 10 human annotators ranked the receptacles
in that room based on the likelihood of the object being
placed there correctly or incorrectly. For each object-room-
receptacle tuple, there are thus 10 opinions that could be
positive, negative, or zero. We filter the dataset to ensure good
agreement amongst annotators. We calculate the positive
(negative) soft scores as the mean of the positive (negative)
reciprocal preference of all the receptacles for a given object-
room pair. To establish ground truth object-room mappings,

we use the object-room-receptacle scores, i.e., we select the
room with the highest positive-scored receptacle. Every other
room in the domain is assigned the mean negative soft score
of receptacles in that room. (See Appendix 3.2)

To use the available annotated information to populate a
knowledge graph, we partitioned the IRONA web-scraped
dataset into training, validation, and test sets in a ratio of
15:5:10 images per object category. The knowledge graph is
instantiated with each image of the training set as a node,
along with room names, i.e., there are 268*15 + 17 = 4037
nodes. We then considered five types of edges connecting
nodes (see Figure 1): (1) image self edge (edge weight=1);
(2) edge between images of same object (edge weight=1);
(3) edge between two objects in the same ground truth room;
(4) edge between object and its correct room node; and (5)
edge between object and its incorrect room nodes. Next,
we assigned weights for each type of edge. Weights for
edges of type 4 and 5 were based on the object-room soft
scores. Edges of type 3 were given a randomly chosen weight
between 0.5 to 0.7, and edges of type 1 and 2 were assigned
a weight of 1.

Once the basic knowledge graph is created, we initial-
ize the graph’s nodes using the pretrained CLIP model’s
high-dimensional embeddings. Specifically, each object node
is initialized with the corresponding CLIP image encoder
embedding, and each room node is initialized with the
corresponding CLIP language encoder embedding. This is
because we want to capture the appearance of the objects
and the known association between objects and rooms (based
on the large dataset used to train CLIP embeddings). In
particular, we considered three pretrained architectures of
CLIP in our experiments: Vision Transformer (ViT), ResNet-
50, and ConvNeXt. ViT-H/14 [31] is trained on LAION-
2B, which is a 2.3 billion subset of the LAION-5B [32]
dataset with English captions. ResNet-50 [33] uses OpenAI’s
pretrained weights [30], and ConvNeXt base [34] is pre-
trained on LAION-400m [35], which contains 400 million
image-text pairs. Once we have associated CLIP embeddings
with our knowledge graph’s nodes, we move to the next steps
of our training pipeline.

B. GCN Training

The next step of training feeds these node embeddings,
each of 512 or 1024 dimensions based on the CLIP architec-
ture chosen, and the adjacency matrix (of knowledge graph
structure) to a Graph Convolutional Network (GCN) [29] to
learn better latent space embeddings of our knowledge graph.
GCNs are able to capture non-linear relationships between
nodes, and learn from both local and global structures in a
graph. As a result, nodes that are more similar are mapped
to points that are closer in the latent embeddings space,
whereas nodes that are dissimilar are mapped to points
further away in the latent space. For example, the output
128-dimensional GCN (object) embedding for a microwave
will have a higher cosine similarity with the output 128-
dimensional GCN (language) embedding for the kitchen.

An important design decision during training is the choice
of the loss function. Prior work has devoted much attention to

Fig. 2: CLIPGraphs constructs a graph module (bottom-left) using CLIP encoders and passes that to a GCN Encoder(E)
module. The encoder is trained using contrastive loss to create better node embeddings that bring similar embeddings closer.
Visualization of final layer activations confirms the formation of well-defined node clusters.

functions such as contrastive loss [36], triplet loss [37], and
multi-class N-pair loss [38]. Recent work has demonstrated
the benefits of using the loss function introduced in the CLIP-
Fields method [39]. We modify this loss function to further
leverage the knowledge graph created using the IRONA
dataset and human preference annotations.
Loss Function. We train our GCN using a contrastive
loss function similar to that described in the CLIP-Fields
method [39] with the objective of clustering similar em-
beddings closer in the latent space and mapping dissimilar
embeddings to points that are further away in the latent space.
We adapt the basic loss function to our problem formulation
and use the additional information of edge weights.

L = −e−weight+• log

(
e(sim+•/T)∑K

i=1 e
(sim–•,i/T)

)
(1)

where weight+. is the edge weight between the positive node
and the anchor node, sim+• is the cosine similarity between
the anchor and a positive node embedding, and sim–•,i is
the cosine similarity between anchor node embedding and
ith negative node embedding. T is a temperature term that is
tuned over a validation set. We randomly select one of the 17
rooms as our anchor node, then choose a positive node (for
numerator in Equation 1) by picking an object within that
room at random, and finally sample k negative nodes for the
denominator of the loss function from objects located outside
the room. This formulation of the loss function minimizes the
distance between the anchor node and the positive node while
maximizing the distance with each of the negative nodes,
leading to distinct clusters in the graph embeddings. As stated
before, the training pipeline is outlined in Figure 2.

C. Testing

Once the GCN has been trained, the pipeline used for
testing (i.e., inference) is shown in Figure 3. Similar to the
process of training, we compute the CLIP image encoder
embedding for the test image, and the CLIP language encoder
embedding for the possible rooms. These embeddings are
passed to the GCN with only self-edges (in the absence

of a knowledge graph) to obtain the output (latent space)
embedding for the test image and the possible rooms. Next,
similarity scores are calculated between each image node x⃗
and each of the room(s) y⃗ using the cosine similarity function.
We then average the similarity scores over different images
of each object category to get the affinity score between that
object category and each of the candidate rooms.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

Object-room affinities have predominantly been deter-
mined by language-based embeddings or human input in
prior work. Since our work combines prior knowledge and
multimodal (vision, language) inputs, our chosen baselines
were off-shelf language encoders and the GPT-3 LLM. We
experimentally evaluated the following hypothesis:

H1: CLIP language embeddings result in better perfor-
mance than other language encoder embeddings;

H2: Multimodal CLIP embeddings, by themselves, do not
perform better than language-based embeddings;

H3: Our framework leads to better performance than (i)
the underlying CLIP embedding, (ii) just the language-based
encodings, and (iii) the GPT-3 LLM;

H4: Our framework provides robustness to previously
unseen noisy backgrounds.

We evaluated H1-H3 quantitatively and evaluated H4
qualitatively (see Appendix 7). The performance task was
to compute estimates of object-room affinities for all 268
object categories and 17 rooms in the test split of the IRONA
dataset. We considered two performance measures: mAP
(Mean Average Precision) [40], and Top k Hit Ratio.(See
Appendix 4)

B. Quantitative Results

To evaluate H1, we first compared two existing language
encoder embeddings (RoBerta [41], GloVE [42]) with just
the CLIP-based language embeddings with each of the three
CLIP architectures. As shown in Table I, the CLIP-based lan-
guage embeddings (particularly the ViT architecture) resulted
in better performance, supporting H1.

Fig. 3: Our inference pipeline processes input RGB images to generate CLIP image embeddings. These embeddings are
processed by the GCN Encoder to produce latent image embeddings. Cosine similarity between these latent embeddings
and previously learned room embeddings determines object-room affinities.

Lang Model Test mAP ⇑ Hit-Ratio ⇑

Top-1 Top-3 Top-5

ConvNeXt 0.405 0.223 0.472 0.632
ViT 0.456 0.256 0.576 0.710
RN50 0.453 0.275 0.546 0.643
RoBerta 0.417 0.238 0.491 0.636
GloVE 0.148 0.123 0.208 0.278

TABLE I: CLIP-based language embeddings perform better than other popular language
encoders; results support H1.

UnTuned-CLIP Test mAP ⇑ Hit-Ratio ⇑

Top-1 Top-3 Top-5

ConvNeXt 0.41 0.24 0.46 0.62
ViT 0.42 0.25 0.49 0.65
RN50 0.39 0.19 0.45 0.67

TABLE II: Multimodal CLIP embeddings, by themselves, do not improve performance
in comparison to CLIP-based language embeddings (see Table I). Results support H2.

Next, we compared the performance of the multimodal
(vision, language) CLIP embeddings for each of the three
CLIP architectures. As shown in Table II, performance is
comparable but slightly worse than that in Table I. These
results support H2 and motivate the use of GCNs.

Next, we computed the performance of our architecture,
i.e., with GCNs trained using the contrastive loss function
and the underlying multimodal CLIP embeddings, with the
corresponding results shown in Table III. The best perfor-
mance was (once again) with the ViT version of the CLIP
architecture. Also, performance was substantially better than
with the multimodal CLIP embeddings (Table II) or CLIP’s
language encoder embeddings (Table I). For example, there
is an ≈ 40% increase in mAP score compared with not using
the GCNs. These results partially support H3.

To further explore the benefits of a multimodal CLIP repre-

GCN-CLIP Test mAP ⇑ Hit-Ratio ⇑

Top-1 Top-3 Top-5

ConvNeXt 0.73 0.62 0.81 0.88
ViT 0.85 0.76 0.93 0.97
RN50 0.66 0.53 0.75 0.81

TABLE III: CLIPGraphs use of GCN embeddings of multimodal CLIP features and
commonsense knowledge results in substantially better performance compared with just
the CLIP embeddings in Tables I and II. Results support H3.

GCN-CLIP[Lang] Test mAP ⇑ Hit-Ratio ⇑

Top-1 Top-3 Top-5

ConvNeXt 0.64 0.53 0.69 0.76
ViT 0.77 0.68 0.77 0.83
RN50 0.59 0.46 0.63 0.74

TABLE IV: Using our GCN-based embedding with just the underlying language-
based CLIP encoding results in better performance than in the absence of the GCN
embedding, but performance is not as good as when GCNs are used with the multimodal
CLIP embeddings (in Table III).

sentation, we conducted experiments with our framework, but
with GCN embeddings of only the language-based encoding
of CLIP. The results reported in Table IV show the benefits
of using the multimodal CLIP embeddings.

The next experiment compared our framework’s perfor-
mance with the GPT-3 LLM and a state of the art language
encoder that provided the best performance among language-
based encoders. The results summarized in Table V show that
our framework provides substantially better performance by
fully leveraging prior commonsense knowledge and multi-
modal CLIP embeddings. These results strongly support H3.

Test mAP ⇑ Hit-Ratio ⇑

Top-1 Top-3 Top-5

Our[GCN-CLIP] [III] 0.85 0.76 0.93 0.97
GPT-3 0.66 0.52 0.76 0.81
Best Lang Encoder[I] 0.456 0.275 0.576 0.71

TABLE V: Our framework, with GCN and underlying multimodal CLIP embed-
dings, substantially improves performance compared with standalone GPT-3 LLM and
language-based encoders; hence, the results strongly support H3.

V. CONCLUSION

In conclusion, our proposed framework, CLIPGraphs, pro-
vides a novel approach for accurately estimating object-room
affinities by leveraging the complementary strengths of com-
monsense knowledge, data-driven methods, and multimodal
embeddings. We demonstrated significant improvement in
affinity estimation compared to state-of-the-art methods. Our
approach also provides robustness to previously unseen noisy
backgrounds.

REFERENCES

[1] D. Batra, A. X. Chang, S. Chernova, A. J. Davison, J. Deng, V. Koltun,
S. Levine, J. Malik, I. Mordatch, R. Mottaghi, M. Savva, and H. Su,
“Rearrangement: A challenge for embodied ai,” 2020.

[2] Y. Kant, A. Ramachandran, S. Yenamandra, I. Gilitschenski, D. Batra,
A. Szot, and H. Agrawal, “Housekeep: Tidying virtual households
using commonsense reasoning,” in European Conference on Computer
Vision, 2022.

[3] D. S. Chaplot, D. Gandhi, A. K. Gupta, and R. Salakhutdinov, “Object
goal navigation using goal-oriented semantic exploration,” ArXiv, vol.
abs/2007.00643, 2020.

[4] A. Majumdar, G. Aggarwal, B. Devnani, J. Hoffman, and D. Batra,
“Zson: Zero-shot object-goal navigation using multimodal goal em-
beddings,” ArXiv, vol. abs/2206.12403, 2022.

[5] N. Gireesh, D. A. S. Kiran, S. Banerjee, M. Sridharan, B. Bhowmick,
and M. Krishna, “Object goal navigation using data regularized q-
learning,” International Conference on Automation Science and Engi-
neering, pp. 1092–1097, 2022.

[6] S. Y. Gadre, M. Wortsman, G. Ilharco, L. Schmidt, and S. Song,
“Clip on wheels: Zero-shot object navigation as object localization
and exploration,” ArXiv, vol. abs/2203.10421, 2022.

[7] N. Gireesh, A. Agrawal, A. Datta, S. Banerjee, M. Sridharan,
B. Bhowmick, and M. Krishna, “Sequence-agnostic multi-object nav-
igation,” in IEEE International Conference on Robotics and Automa-
tion, 2023, (to be published).

[8] K. Ellis, D. Hadjivelichkov, V. Modugno, D. Stoyanov, and
D. Kanoulas, “Navigation among movable obstacles via multi-object
pushing into storage zones,” IEEE Access, vol. 11, pp. 3174–3183,
2023.

[9] P. Marza, L. Matignon, O. Simonin, and C. Wolf, “Teaching agents how
to map: Spatial reasoning for multi-object navigation,” International
Conference on Intelligent Robots and Systems, pp. 1725–1732, 2021.

[10] M. Cherti, R. Beaumont, R. Wightman, M. Wortsman, G. Ilharco,
C. Gordon, C. Schuhmann, L. Schmidt, and J. Jitsev, “Reproducible
scaling laws for contrastive language-image learning,” ArXiv, vol.
abs/2212.07143, 2022.

[11] E. Wijmans, A. Kadian, A. S. Morcos, S. Lee, I. Essa, D. Parikh,
M. Savva, and D. Batra, “Dd-ppo: Learning near-perfect pointgoal
navigators from 2.5 billion frames,” in International Conference on
Learning Representations, 2019.

[12] P. Anderson, A. X. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,
V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva, and A. R.
Zamir, “On evaluation of embodied navigation agents,” ArXiv, vol.
abs/1807.06757, 2018.

[13] N. Kim, O. Kwon, H. Yoo, Y. Choi, J. Park, and S. H. Oh, “Topological
semantic graph memory for image-goal navigation,” in Conference on
Robot Learning, 2022.

[14] O. Kwon and S. Oh, “Image-goal navigation algorithm using viewpoint
estimation,” 2021 21st International Conference on Control, Automa-
tion and Systems (ICCAS), pp. 689–692, 2021.

[15] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mottaghi,
M. Savva, A. Toshev, and E. Wijmans, “Objectnav revisited: On
evaluation of embodied agents navigating to objects,” ArXiv, vol.
abs/2006.13171, 2020.

[16] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra,
“Embodied question answering,” 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), pp. 2135–
213 509, 2017.

[17] D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox, and
A. Farhadi, “Iqa: Visual question answering in interactive environ-
ments,” 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4089–4098, 2017.

[18] C. Cangea, E. Belilovsky, P. Lio’, and A. C. Courville, “Videonavqa:
Bridging the gap between visual and embodied question answering,”
in British Machine Vision Conference, 2019.

[19] L. Weihs, M. Deitke, A. Kembhavi, and R. Mottaghi, “Visual room
rearrangement,” 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5918–5927, 2021.

[20] B. Trabucco, G. Sigurdsson, R. Piramuthu, G. S. Sukhatme, and
R. Salakhutdinov, “A simple approach for visual rearrangement: 3d
mapping and semantic search,” 2022.

[21] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi,
L. Zettlemoyer, and D. Fox, “Alfred: A benchmark for interpreting
grounded instructions for everyday tasks,” 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 10 737–
10 746, 2019.

[22] A. Padmakumar, J. Thomason, A. Shrivastava, P. Lange, A. Narayan-
Chen, S. Gella, R. Piramithu, G. Tur, and D. Z. Hakkani-Tür, “Teach:
Task-driven embodied agents that chat,” in AAAI Conference on
Artificial Intelligence, 2021.

[23] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf,
I. D. Reid, S. Gould, and A. van den Hengel, “Vision-and-language
navigation: Interpreting visually-grounded navigation instructions in
real environments,” 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3674–3683, 2017.

[24] X. Chen, L.-J. Li, L. Fei-Fei, and A. K. Gupta, “Iterative visual reason-
ing beyond convolutions,” 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7239–7248, 2018.

[25] K. Marino, R. Salakhutdinov, and A. K. Gupta, “The more you
know: Using knowledge graphs for image classification,” 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
20–28, 2016.

[26] X. Wang, Y. Ye, and A. K. Gupta, “Zero-shot recognition via semantic
embeddings and knowledge graphs,” 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6857–6866, 2018.

[27] G. Sarch, Z. Fang, A. W. Harley, P. Schydlo, M. J. Tarr, S. Gupta, and
K. Fragkiadaki, “Tidee: Tidying up novel rooms using visuo-semantic
commonsense priors,” in European Conference on Computer Vision,
2022.

[28] S. Y. Gadre, K. Ehsani, S. Song, and R. Mottaghi, “Continuous
scene representations for embodied ai,” 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 14 829–14 839,
2022.

[29] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning
Representations (ICLR), 2017.

[30] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
“Learning transferable visual models from natural language supervi-
sion,” in International Conference on Machine Learning, 2021.

[31] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” 2021.

[32] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wight-
man, M. Cherti, T. Coombes, A. Katta, C. Mullis, M. Wortsman,
P. Schramowski, S. Kundurthy, K. Crowson, L. Schmidt, R. Kaczmar-
czyk, and J. Jitsev, “Laion-5b: An open large-scale dataset for training
next generation image-text models,” 2022.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2015.

[34] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie,
“A convnet for the 2020s,” in CVPR, 2022.

[35] C. Schuhmann, R. Vencu, R. Beaumont, R. Kaczmarczyk, C. Mullis,
A. Katta, T. Coombes, J. Jitsev, and A. Komatsuzaki, “Laion-400m:
Open dataset of clip-filtered 400 million image-text pairs,” 2021.

[36] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal,
and S. Levine, “Time-contrastive networks: Self-supervised learning
from video,” 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1134–1141, 2017.

[37] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 815–823,
2015.

[38] K. Sohn, “Improved deep metric learning with multi-class n-pair loss
objective,” Advances in neural information processing systems, vol. 29,
2016.

[39] N. M. M. Shafiullah, C. Paxton, L. Pinto, S. Chintala, and A. D. Szlam,
“Clip-fields: Weakly supervised semantic fields for robotic memory,”
ArXiv, vol. abs/2210.05663, 2022.

[40] S. M. Beitzel, E. C. Jensen, and O. Frieder, MAP. Boston,
MA: Springer US, 2009, pp. 1691–1692. [Online]. Available:
https://doi.org/10.1007/978-0-387-39940-9 492

[41] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly
optimized BERT pretraining approach,” CoRR, vol. abs/1907.11692,
2019. [Online]. Available: http://arxiv.org/abs/1907.11692

[42] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Conference on Empirical Methods in
Natural Language Processing, 2014.

https://doi.org/10.1007/978-0-387-39940-9_492
http://arxiv.org/abs/1907.11692

CLIPGraphs: Appendix

Contents

1 Introduction 2
1.1 Traces of Utility in our decision-making process: . 2

2 Datasets 3
2.1 Human Preference Dataset . 3
2.2 IRONA Dataset . 3

2.2.1 Rooms . 3
2.2.2 Object Categories . 3

3 Knowledge Graph Creation 3
3.1 Nodes . 4
3.2 Edge Weights . 4

3.2.1 Correct Object-Room Mappings . 5
3.2.2 Incorrect Object-Room Mappings . 7

3.3 Overall . 7
3.4 Comments on node features . 7

4 Loss Function Ablations 8
4.1 vs existing loss functions . 8
4.2 Hyperparameters . 8

4.2.1 Batch Size . 8
4.2.2 Number of negatives . 9

5 Our Model: GCN 10

6 Baseline Predictions 10
6.1 GPT-3 . 10
6.2 Language Encoders . 10
6.3 Our Predictions . 10

7 Qualitative Results 11
7.1 Success Cases . 11
7.2 Failure Cases . 11

8 Some additional Plots 12
8.1 t-SNE . 12

1

1 Introduction

Humans have always been fond of arranging stuff. Over the course of the development of society, the
norms of how we arrange our houses have changed. Still, there are traces of common associations
that we as the Human race have managed to stick to.

When a human being is tasked to find us “Headphones” they would intuitively look for it in
places such as “Home Office”, “Living Room”, and “Entertainment Room”. This small thought
experiment gives us a good idea that subconsciously we have generated some associations between
the objects and the rooms they are supposed to be in. Let’s dig a bit deeper.

1.1 Traces of Utility in our decision-making process:

For some objects this mapping can be guided by “utility”, for example: if asked to find “an apple” in
an unknown house, you know it’s a perishable food item, and food items are meant to be consumed
but also stored appropriately. Thus you would first look for Kitchen, Pantry, or Dining Room
(Whatever is available in your house)
More familiar the object, the less the decision-making time to infer the associated room: One way we
could further comprehend our inference is by breaking down our thought process into steps. Let’s
take an example where the object to be found is an unknown name, you don’t know if it’s a stationery
item. a skin care product? or a species of whale? How would you react in such a situation? a logical
way to go about this is by asking questions. Your first thought while encountering an object category
you don’t know is to get to know its utility. Is it a consumable item? Is it cosmetic? Is it somewhat
related to electronics? and so on.. Once you are known of its utility, you have an estimate of where
different known objects belonging to similar utility are found. This gives you a reasonable amount
of confidence in the room you then choose to go search for your unknown object.
This thought experiment establishes 2 facts:

• By successfully answering some of these questions we humans can infer where that object
should be found in its correct orientation in any house.

• We humans not only have commendable Object-Room mappings in our brains, but we also
leverage the object-object relationships developed on the basis of the co-occurrence of these
objects, which is again influenced by their common utility.

In this work, we aim to use a graph network to cluster commonly occurring household objects
into room categories. The basic intuition behind using a Graph Convolutional Network is to make
use of Object-Room Relationships as well as Object-Object Relationships to generate latent rep-
resentations that are indicative of the categorization of objects into rooms on the basis of their
common feature(utility).

Graph Convolutional Networks not only use node features but also use the message passing
mechanism between neighboring nodes to generate node representations that take into account the
information of neighboring nodes in addition to the node features.

We make use of the Human Preference Dataset [1] to get to know what are some most prevalent
human-accepted correct object-room mappings and further use it along with multimodal CLIP [2]
features to learn such utility-based clustering using a graph network.

2

2 Datasets

We used object,room categories and Human annotations for those as provided by Housekeep [1].
Further we curated a visual counterpart to the 268 object categories.

2.1 Human Preference Dataset

This dataset was curated by Housekeep [1] to understand how humans prefer to put everyday
household objects in an organized and disorganized house. They ran a study on Amazon MTurk
with 372 participants. Here, for a given object-room pair, they asked each participant to classify
the available receptacles of that room into 3 categories:

• misplaced : subset of receptacles where the object is found in un-tidy houses

• correct : subset of receptacles where the object is found in tidy houses

• implausible: subset of receptacles where the object is unlikely to be found either in a tidy or
un-tidy house

They further asked them to rank all the receptacles present in that room. For how they collected
this data, filtered it out, and used it for Scene Rearrangement, we guide the interested readers to
their paper.

2.2 IRONA Dataset

We created a new dataset by scraping 30 images per object category. These were white background
catalog images of the same 268 object categories that Housekeep [1] used to benchmark the Scene-
Rearrangement task.

2.2.1 Rooms

We consider the same 17 room categories as used by Housekeep [1]:

Rooms
bathroom bedroom childs room
closet corridor dining room
exercise room garage home office
kitchen living room lobby
pantry room playroom storage room
television room utility room

2.2.2 Object Categories

The list of 268 object categories we used can be accessed here

3 Knowledge Graph Creation

An important step in learning Object-Room Affinities using our proposed multimodal model was
knowledge graph creation using our IRONA Dataset and Housekeep Human Preference Dataset [1]

3

https://github.com/CLIPGraphs/CLIPGraphs.github.io/blob/irona/objects.txt

Figure 1: Representative Image Of Our Web Scraped Dataset ; 1 image per object category

3.1 Nodes

There are currently 2 types of nodes in our knowledge graph

• Room Nodes: Since we have 17 room categories, there are 17 such nodes. For our proposed
method, the node features for these nodes are generated using the CLIP language encoders.

• Object Nodes: For each of the 268 object categories, 15 images are chosen for training, and
for each of the 268*15 nodes, we generate node features using the CLIP image encoders[2].
(In our proposed method) However, for baseline comparisons, we also create CLIP Language
Embeddings for these 268 Object Categories.

3.2 Edge Weights

For assigning edge weights to various edges between our nodes, we use the ranks provided by House-
keep Human Preference Dataset for each object-room-receptacle1 combination. We further calculate
soft scores using algorithm 1 which takes these ranks as input.

1”receptacle” was a categorization used by Housekeep [1] to define 128 flat horizontal surfaces in a household where
objects can be found - misplaced or correctly placed

4

For each object-room-receptacle combination, 10 annotators were given just 3 categories to clas-
sify the combinations. Therefore for each object-room-receptacle, there could either be a majority
of positive ranks, negative ranks, or implausible ranks:

1. For any object-room-receptacle combination if a majority of annotators (> 5) gave positive
ranks2; we calculate a positive score

2. For any object-room-receptacle combination if a majority of annotators (> 5) gave negative
ranks3; we calculate a negative score

3. However, if implausible ranks were in majority then we need to modify those a bit. According
to Housekeep [1] an implausible combination was such a combination that could neither occur
in an untidy house nor in atidy house. Therefore it accounts for the maximum negative
object-room-receptacle affinity, thus we assign −1 i.e. max possible negative score to such
object-room-receptacle pairs.

Thus finally we would have a dictionary that records whether the majority opinion for every
object-room-receptacle was positive, negative or implausible(-1)

Algorithm 1 Generating ORR Positive Soft Scores

1: for each object in objects do
2: for each room in rooms do
3: ranks← object− room− receptacle− ranks
4: score dict← {}
5: for each receptacle in the room do
6: combination score← []
7: for each rank given for the combination do
8: if rank > 0 then
9: combination score.append(1/rank)

10: end if
11: end for
12: if len(combination score) >= 5 then
13: score dict[combination] = sum(combination score)/max len pos4

14: else
15: score dict[combination] = 0
16: end if
17: end for
18: end for
19: end for

3.2.1 Correct Object-Room Mappings

To get the correct object-roommappings, we compare for a given object which object-room-receptacle
has the highest positive score. We assign that room as the correct object-room mapping.5

2A receptacle with ”+1” rank is a more appropriate for an object as compared to a receptacle with a ”+2” rank
for the same object-room pair.

3A receptacle with ”-1” rank is a receptacle where humans are more prone to keep objects in an untidy state of
the house as compared to a receptacle with a ”-2” rank for the same object-room pair.

4For a given object, max len pos/neg/imp is the maximum number of annotators that gave positive/negative/im-
plausible ranks across all room-receptacle pairs.

5Our future extension would be to extend this mapping to top-K correct rooms

5

Algorithm 2 Generating ORR Negative Soft Scores

1: for each object in objects do
2: for each room in rooms do
3: ranks← object− room− receptacle− ranks
4: score dict← {}
5: for each receptacle in the room do
6: combination score← []
7: min neg rank = min(all ranks for the ORR combination)
8: for each rank given for the combination do
9: if rank < 0 then

10: rank = rank +min neg rank + 1
11: combination score.append(1/rank)
12: end if
13: end for
14: if len(combination score) >= 5 then
15: score dict[combination] = sum(combination score)/max len neg4

16: else
17: score dict[combination] = 0
18: end if
19: end for
20: end for
21: end for

Algorithm 3 Generating ORR Implausible Soft Scores

1: for each object in objects do
2: for each room in rooms do
3: ranks← object− room− receptacle− ranks
4: score dict← {}
5: for each receptacle in the room do
6: combination score← []
7: for each rank given for the combination do
8: if rank == 0 then
9: combination score.append(−1)

10: end if
11: end for
12: if len(combination score) >= 5 then
13: score dict[combination] = sum(combination score)/max len imp4

14: else
15: score dict[combination] = 0
16: end if
17: end for
18: end for
19: end for

6

3.2.2 Incorrect Object-Room Mappings

Once we’ve created the correct object-room GT mapping, it still leaves the other 16 rooms’ edge
weights to be allotted. So for each such object-room pair; there can be 3 cases:

1. All/majority positive receptacles:we assign −ϵ as edge weights

2. All/majority negative receptacles: we assign the mean of all the negative scored recepta-
cles

3. All/majority implausible receptacles: we assign the mean of all the negative scored
receptacles. (since we had already assigned implausible receptacles with -1)

For example, for a particular object-room-receptacle combination, the calculation of positive soft
scores is shown:

knife-bottom cabinet ranks: − 1,−3, 0, 1, 3, 2,−2, 5,−1, 4
Filter the negative ranks: 1, 3, 2, 5, 4

Take the reciprocal of ranks:
1

1
+

1

3
+

1

2
+

1

5
+

1

4
= 2.367

Calculate the mean of reciprocal ranks: 2.283/5 = 0.45

For each object, the ground-truth room is decided by choosing the room containing the highest-
positively scored receptacle for that object. Every other room in the domain is assigned the mean
negative soft score(for a given object-room pair) of all the receptacles present in that room.

3.3 Overall

Table 1 summarizes various information about our knowledge graph that is being used for training
purposes.

Statistics About our Knowledge Graph Value
#Nodes 4020 Object Images Nodes & 17 Room Nodes
#Edges 7,66,649
Self Loops Yes
Train Images 268*15 Images
Test Images 268*10 Images
Val Images 268*5 Images
Types of edges weighted undirected

Table 1: Statistics for the Knowledge Graph created using the web scraped dataset

3.4 Comments on node features

For our proposed method we used 3 architectures of CLIP as given by OpenCLIP [3]: ViT-H/14, and
RN50 have dimensionality of 1024, and ConvNeXt-base has a dimensionality of 512 features. These
were chosen taking into consideration the datasets they were trained on and their performance in
other embodied AI tasks.

7

4 Loss Function Ablations

We considered two performance measures:

1. mAP: The mean average precision (mAP) is the average of precision scores at different recall
values for each instance of an object category, and the mean over all the object categories. For
a given object, Average Precision is calculated by:

AP =
∑
n

(Rn −Rn−1)Pn

Where, Pn and Rn are Precision and Recall values at the nth threshold. Taking a mean over
all the objects, gives us the final mean Average Precision.

2. Top k Hit Ratio: The average fraction of object categories for which the ground truth correct
room was among the Top k estimates from our framework.:

Top-k HR =
1

|O|
∑
o∈O

1(Ro ∩ To ̸= ∅)

where O is the set of objects, Ro is the set of top-k rooms recommended for object o, To is the
ground truth room for object o, and 1 is the indicator function that returns 1 if the condition
is true and 0 otherwise.

4.1 vs existing loss functions

Loss Fn mAP
Margin[4] 0.371
Triplet[5] 0.51
Ours 0.85

4.2 Hyperparameters

We chose a modified version of the loss function used by [6]. The effectiveness of our loss function
depended on our sampling technique. We tuned

1. Batch Size

2. Number of negative nodes sampled per batch for each epoch.

4.2.1 Batch Size

We experiment on the number of batches of anchor, positive and negative nodes sampled per epoch
for loss computation. As evident from the figure, we achieve the best performance at batch size =
15. Thus we continue our experiments with this value. The comparison is shown in Figure 3

8

Figure 2

Figure 3: Variation of testing metrics with number of batches used for contrastive loss

4.2.2 Number of negatives

We compare the performance of our model by changing the number of negative nodes sampled per
anchor point for computing the contrastive loss. The results are compiled in figure 4. As evident
from the figure, the best performance was observed at negative samples = 40. Thus we fix the total
number of negatives per anchor as 40.

Figure 4: Variation of testing metrics with different numbers of negative samples used per anchor.

9

5 Our Model: GCN

Table 2 shows the hyperparameters used for the model.

Hyperparameter Value
1 Node Feature Size 512(ConvNeXt) / 1024 (Others)
2 Output Node Embedding 128
3 GCN[7] Layers 3
4 Learning Rate 10−3

5 Learning Rate Schedule StepLR: step size=1000 , γ = 0.25
6 Temperature 0.01
7 Batch Size [Loss] 15
8 Negatives Per Batch 40
9 Epochs 5k

Table 2: Hyperparameter choices for our Graph Based Network to learn latent representations of
CLIP Visual Encoder Features

6 Baseline Predictions

6.1 GPT-3

To obtain baseline results, we query GPT-3 to rank the 17 rooms for each object like this:

Which of the following rooms would you expect to find a knife block in? Please rank in decreasing
order of likelihood: bathroom, bedroom, child room, closet, corridor, dining room, exercise room,
garage, home office, kitchen, living room, lobby, pantry room, playroom, storage room, television
room, utility room.

We use such queries to obtain room rankings for each of 268 objects and use that to obtain baseline
mAP and hit ratio for GPT-3, and the results are shown in Table 3

Test mAP ⇑ Hit-Ratio ⇑
Top-1 Top-3 Top-5

GPT-3 0.66 0.52 0.76 0.81

Table 3: Results for object-room mappings based on queries to GPT-3

The room rankings for each object category by querying GPT-3 is compiled in the file: gpt pred.txt

6.2 Language Encoders

The code for generating the statistic metrics as well as the object-room mappings corresponding the
each language baseline is available at CLIPGraphs GitHub Repository.

6.3 Our Predictions

Similar rankings for every object category based on our model can be generated by running the
script available at: CLIPGraphs GitHub Repository

10

https://github.com/CLIPGraphs/CLIPGraphs.github.io/blob/422eded6ae5a10458cc0e920ae7c12e437f7107e/gpt_pred.txt
https://github.com/CLIPGraphs/CLIPGraphs.github.io
https://github.com/CLIPGraphs/CLIPGraphs.github.io

7 Qualitative Results

Our model was trained on clean white background images to predict the most appropriate room.
To test its performance on real-world images we ran a few runs on a mobile phone by clicking a
photograph and feeding it to our model. We fed our model images of objects out of the training set
to see its generalization capabilities, we report some success and failure cases for the same.

7.1 Success Cases

Figure 5: Success of the model on unseen object category images (absent in the training set)6

7.2 Failure Cases

Figure 6 shows some specific limitations of our models. In Figure 6a when we input the image of
earpods (not a part of the training set) to the model, the top output prediction is utility room.
The model confuses the images of earpods to similar image of hair dryer, since it does not contain
knowledge of scale. Figure 6b shows the limitation of the model in identifying real objects with
similar category of toys.

(a) Failure to determine correct room for object cat-
egory earpods (not in our train set) because it was
structurally similar to hair dryer category that was
in our training set

(b) Failure with composite object categories; tools
was not a category in our training set, but they were
incorrectly associated with the play room because
they were structurally similar to the toy toolkit that
was in the training set.

Figure 6: Failure cases of our model

6Since these categories were unseen thus we didn’t have any ground truth available, thus we mention the expected
room on the basis of our commonsense

11

Apart from testing our model on unseen categories, we also try our model’s generalization ca-
pabilities on real-world noisy images. For this experiment, we generated 4 different scenarios. The
representative results for 3 object categories are shown below:

Figure 7: Qualitative result of using our framework with images of previously seen objects but in
noisy backgrounds. In each case, the object’s room association was estimated correctly demonstrat-
ing broad applicability of our method

8 Some additional Plots

8.1 t-SNE

Using t-SNE to visualize the high-dimensional embeddings, we observe initial random nodes in
Figure 8, where each color represents objects of a unique room. As the model trains, we observe
clustering in the embedding space to cluster objects belonging to the same room [Figure 9]

12

Figure 8: Untrained TSNE

Figure 9: t-SNE visualization of our embeddings on the test split of the Web Scraped Dataset. The
boxes show images of objects belonging to the same rooms getting clustered a

aFor a more interactive view of this figure, check out our website: https://clipgraphs.github.io
13

https://clipgraphs.github.io

Figure 10: Image showing objects that got
clustered in the t-SNE corresponding to
”Bathroom” room category

Figure 11: Image showing objects that got
clustered in the t-SNE corresponding to
”Pantry” room category

References

[1] Y. Kant, A. Ramachandran, S. Yenamandra, I. Gilitschenski, D. Batra, A. Szot, and H. Agrawal,
“Housekeep: Tidying virtual households using commonsense reasoning,” in European Conference
on Computer Vision, 2022.

[2] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning transferable visual models from
natural language supervision,” in International Conference on Machine Learning, 2021.

[3] M. Cherti, R. Beaumont, R. Wightman, M. Wortsman, G. Ilharco, C. Gordon, C. Schuhmann,
L. Schmidt, and J. Jitsev, “Reproducible scaling laws for contrastive language-image learning,”
ArXiv, vol. abs/2212.07143, 2022.

[4] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition
and clustering,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 815–823, 2015.

[5] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, and S. Levine, “Time-contrastive
networks: Self-supervised learning from video,” 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1134–1141, 2017.

[6] N. M. M. Shafiullah, C. Paxton, L. Pinto, S. Chintala, and A. D. Szlam, “Clip-fields: Weakly
supervised semantic fields for robotic memory,” ArXiv, vol. abs/2210.05663, 2022.

[7] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
in International Conference on Learning Representations (ICLR), 2017.

14

	Introduction
	Related Work
	Problem Formulation and Framework
	Knowledge Graph
	GCN Training
	Testing

	Experimental Setup and Results
	Experimental Setup
	Quantitative Results

	Conclusion
	References
	Introduction
	Traces of Utility in our decision-making process:

	Datasets
	Human Preference Dataset
	IRONA Dataset
	Rooms
	Object Categories

	Knowledge Graph Creation
	Nodes
	Edge Weights
	Correct Object-Room Mappings
	Incorrect Object-Room Mappings

	Overall
	Comments on node features

	Loss Function Ablations
	vs existing loss functions
	Hyperparameters
	Batch Size
	Number of negatives

	Our Model: GCN
	Baseline Predictions
	GPT-3
	Language Encoders
	Our Predictions

	Qualitative Results
	Success Cases
	Failure Cases

	Some additional Plots
	t-SNE

