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Abstract

This paper is concerned with the online bandit nonlinear control, which aims to learn the best
stabilizing controller from a pool of stabilizing and destabilizing controllers of unknown types
for a given nonlinear dynamical system. We develop an algorithm, named Dynamic Batch
Length and Adaptive Learning Rate (DBAR), and study its stability and regret. Unlike the
existing Exp3 algorithm requiring an exponentially stabilizing controller, DBAR only needs
a significantly weaker notion of controller stability, in which case substantial time may be
required to certify the system stability. Dynamic batch length in DBAR effectively addresses
this issue and enables the system to attain asymptotic stability, where the algorithm behaves
as if there were no destabilizing controllers. Moreover, adaptive learning rate in DBAR
only uses the state norm information to achieve a tight regret bound even when none of the
stabilizing controllers in the pool are exponentially stabilizing.

1 Introduction

The multi-armed bandit (MAB) problem aims to minimize the total cost of pulling a series of arms while
receiving immediate cost feedback for each arm pulled. Given a finite number of arms, the problem balances
between exploration and exploitation of arms without knowing the exact cost structure of each arm. On
the other hand, the online optimal control problem considers a transition dynamic xt+1 = f(xt, ut, wt) and
a set of cost functions ct(xt, ut) for t = 0, . . . , T , where the goal is to minimize the sum of costs over time,
while both f and ct are fully or partially unknown. Basically, MAB is a special type of the online optimal
control problem in the sense that MAB is stateless and simply selects an action each time, while the online
control problem has a countable or an uncountable number of states and selects a controller, acting as a
function from states into actions, each time without knowing the cost functions. Bandit algorithms can thus
be leveraged for online control, wherein the average cost incurred with a controller can be interpreted as the
bandit feedback of pulling the controller-arm (Lin et al., 2023; Li et al., 2023).

In this paper, we address the online non-stochastic control problem where both a transition dynamic f and
cost functions ct can be unbounded, nonlinear, and adversarially chosen. We only have knowledge about xt

and the bandit feedback ct(xt, ut) at time t, with adversarial disturbances wt injected at each time step as in
Gradu et al. (2020) and Cassel & Koren (2020). We operate the system with a single trajectory where the
system state cannot be reset. To overcome the difficulties of an unknown nonlinear system, we are given a
finite set of N controllers in advance, where we are not aware of whether each controller can stabilize the
system but we are allowed to alternate between these controllers within a single trajectory according to a
specific logic. We refer to this problem as the online bandit nonlinear control problem.
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To deal with this online bandit nonlinear control, Li et al. (2023) adopted their Exp3-ISS algorithm, which
uses the well-known Exp3 algorithm (Auer et al., 2002) with a mini-batch approach (Arora et al., 2012), while
successively removing destabilizing controllers when detected in terms of input-to-state stability (ISS). In this
paper, we aim to significantly relax the requirement on the controllers and yet guarantee asymptotic stability
of the closed-loop system and sharpen the regret bound by designing our algorithm DBAR (Dynamic Batch
Length and Adaptive Learning Rate).

Motivation and contribution. Our main contribution is to allow a broader class of controllers to qualify
as a stabilizing controller within a priori controller pool. For the motivation, consider a continuous-time
gradient flow in the vector space:

ẋ(t) = −∇F (x(t)), (1)

where F : Rn → R is a smooth function. A merely convex F can be extremely flat around its minimum,
leading to a slowly (asymptotically) converging trajectory unlike exponentially converging behavior achieved
for strongly convex F (Khalil, 2015). In fact, assuming that a minimizer x∗ of F exists, the decay rate
F (x(t)) − F (x∗) is O(1/(t log2 t)) if F is convex1 (Siegel & Wojtowytsch, 2023), and O(e−t) if F is strongly
convex. In the machine learning literature, a loss function l(g(x), y) of a gradient-based method is often
given as a convex function in g (e.g., mean-squared error or cross-entropy loss), but not necessarily strongly
convex since g is often over-parameterized and there could be a continuum of parameters corresponding to
the value of g. Analogous to this concept, one can consider F as f(xt, π(xt), wt), a dynamic governed by a
given controller π and its converging behavior as a (asymptotic or exponential) controller stability. Our work
merely requires the existence of at least one asymptotically stabilizing controller in the pool, which is far
weaker than exponentially stabilizing notions and represents a more realistic environment one may encounter.

The existing literature on online bandit control of linear dynamics with adversarial disturbance has intrinsically
assumed the existence of strongly stable controllers, which are exponentially stabilizing controllers in our
context, and achieves Õ(T 2/3) regret under general convex cost functions (Cassel & Koren, 2020; Chen &
Hazan, 2021; Ghai et al., 2023). In this paper, we will achieve the same Õ(T 2/3) regret bound even when
none of the stabilizing controllers are exponentially stabilizing.

Algorithm Design. The idea of our algorithm is two-fold:

1. We adopt a dynamic batch length instead of a fixed length to certify the stability of the system
without requiring exponentially stabilizing controllers and achieve both asymptotic system stability and a
sublinear regret bound. The batch length is scheduled to be non-decreasing and growing unboundedly over
time, but its growth amount eventually saturates. However, the strategy suffers from a resulting multiplicative
exponential regret in return.

2. To alleviate the multiplicative exponential regret without requiring the conservative notion of exponen-
tially stabilizing controllers, we adopt a novel adaptive learning rate scheme that relies on the system state
norm, instead of a fixed learning rate. While the conventional way to apply the Exp3 Algorithm is to use a
non-increasing learning rate, we decrease the learning rate if the state is unstable and subsequently increase
the learning rate if the state returns to a stable region. By implementing this approach, we can alleviate
the multiplicative exponential term in all cases. In particular, for a specific class of stabilizing controllers
beyond exponential notions, we attain a regret bound order [Õ(T 2/3) + Õ(T −1/3) · exp(O(|U|))] · (|U| + 1)α,
where α = 1/3 if |U| is known and α = 1/2 if |U| is unknown.

Table 1 shows a summary of our results with related works. Appendix A provides more details on the
intermediate step “Dynamic Batching”, which operates under asymptotically stabilizing controller assumptions,
and on how we devised DBAR algorithm to avoid the multiplicative exponential term.

1Note that O(1/(t log2 t)) is integrable at infinity. In the context of controllers, we also handle the challenging case where
f(xt, π(xt), wt) − infx∈Rn f(x, π(x), wt) may not be integrable at infinity. This corresponds to a convex function without
minimizers, such as a log-exp-type softmax loss function for classification.
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Table 1: Summary of required controllers and results: U is the set of destabilizing controllers and |U| denotes
its cardinality. n is the dimension of the state. Polynomial factors on N and |U| are hidden.

Algorithm Required Closed-loop system Regret BoundController asymptotic stability
Chen & Hazan (2021) Exponential N/A Õ(T 2/3) + exp(O(n))

Li et al. (2023) Exponential No Õ(T 2/3) + exp(O(|U|))
Dynamic Batching Asymptotic Yes Õ(T 2/3) + o(T 1/3) · exp(O(|U|))

Algorithm 1 (DBAR) Asymptotic Yes Õ(T 2/3) + o(1) · exp(O(|U|))

Related works. Optimal control problems have been widely leveraged in a variety of fields with the
influential dynamic programming approach (Bellman, 1957). Recent successes of reinforcement learning
(RL) in safety-critical systems, such as aircraft (Razzaghi et al., 2022), robotics (Ibarz et al., 2021), and
autonomous driving (Kiran et al., 2021), are also deeply rooted in optimal control methods (Bertsekas, 2019).
The common idea to gain system stability of optimal control problems is to falsify the detected destabilizing
controller, meaning that one can completely remove those controllers failing to satisfy certain stability criteria
from the controller pool (Baldi et al., 2010; Battistelli et al., 2010; Stefanovic & Safonov, 2011; Battistelli
et al., 2018; Li et al., 2023).

Online non-stochastic control considers a dynamical system with adversarial disturbances, which is more
challenging than having statistical noise. Early papers assumed full access to cost functions, enabling us to
leverage optimal policy structure with cost function gradients (Agarwal et al., 2019; Foster & Simchowitz,
2020; Hazan et al., 2020; Hazan & Singh, 2022). Later, studies were generalized to address the problem
without cost gradients information (Gradu et al., 2020; Cassel & Koren, 2020; Ghai et al., 2023; Sun et al.,
2023); instead, they estimated the cost gradients, using the history of scalar cost (bandit feedback) along the
trajectory. However, the above research restricts the system to linear transition dynamics. Instead, our work
considers the candidate controller pool to handle unknown nonlinear systems.

Multi-armed bandits with adversarial disturbances were first addressed in the pioneering work by Auer et al.
(2002) under bounded costs in their notable Exp3 algorithm. Arora et al. (2012) later improved the algorithm
using the same controller within a mini-batch, attaining a regret bound equivalent to the lower bound
presented in Dekel et al. (2014). As we have access to the candidate controller pool in our problem setting,
we adopt a bandit-related approach.

Dynamic batching gained considerable attention for training deep neural networks by increasing the batch size
over time and adaptively increasing the learning rate to maintain the ratio between the two (Devarakonda
et al., 2017; Bollapragada et al., 2018; Shallue et al., 2019; Ma et al., 2023). Although this has been widely
used in the machine learning literature, we adopt this idea to online control, progressively increasing the
batch length within a single trajectory to achieve asymptotic stability.

Adaptive learning rate in machine learning is generally determined by a set of gradients observed so far (Ruder,
2016). As we do not have access to the gradients in our problem, we focus on the learning rate for bandit
algorithms. Several works (van Erven et al., 2011; de Rooij et al., 2014) in hedge setting, an instance of
multi-armed bandit problem, suggested using decreasing learning rate as the batch length increases. Building
on this idea, Li et al. (2023) proposed to use a non-increasing learning rate over time, while no theoretical
guarantee was presented. To the best of our knowledge, this paper is the first work to provide theoretical
guarantees for the adaptive learning rate scheme based on the stability of state norm, where the rate is not
necessarily non-increasing.

Outline. The paper is organized as follows. In Section 2, we formulate the problem and provide necessary
definitions and assumptions. In Section 3, we propose our DBAR algorithm. In Section 4, we study the
stability of the algorithm, the regret bound, and its applications in switched systems. In Section 5, we present
numerical experiments on the DBAR algorithm with an ablation study on batch length and learning rate.
Finally, concluding remarks are provided in Section 6.
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Notation. For a vector z, ∥z∥ denotes the Euclidean norm of the vector. We use O(·) for the big-O notation,
o(·) for the small-o notation, and Õ(·) for the big-O notation hiding logarithmic factors. Let E denote the
expectation operator. For a set Z, we use |Z| for the cardinality and Zc for the complement of the set Z. For
a real number e, we use ⌈e⌉ for the ceiling of e. Let R denote the set of real numbers and Z+ denote the set
of nonnegative integers. For e1, e2 ∈ Z+ where e2 ≤ e1, let ie1:e2 denote the set {ie : e2 ≤ e ≤ e1, e ∈ Z+}.
For the notations used in the problem formulation and algorithm, see Appendix B.

2 Problem Formulation

Consider a general discrete-time dynamical system xt+1 = f(xt, ut, wt) for t = 0, . . . , T − 1, where xt ∈ Rn

is the system state at time t, ut ∈ Rm is the control input at time t to be designed via an algorithm. ut is
determined by selecting a controller from a priori finite number of controller pool consisting of πi : Rn → Rm

for i = 1, . . . , N . wt ∈ W ⊂ Rg is the adversarial noise at time t, where W = {w ∈ Rg : ∥w∥ ≤ wmax} and
the bounding constant wmax > 0 is assumed to be known. Each time instance t is associated with a cost
function ct : Rn × Rm → R. The state transition is governed by the dynamic f : Rn × Rm × Rg → R. We
have the following assumptions on the dynamic f .
Assumption 2.1 (Dynamic). The transition dynamic f is Lf -Lipschitz continuous with Lf ≥ 1; i.e.,
|f(x, u, w) − f(x̃, ũ, w̃)| ≤ Lf (∥x − x̃∥ + ∥u − ũ∥ + ∥w − w̃∥) for all x, x̃ ∈ Rn, u, ũ ∈ Rm, w, w̃ ∈ W. We let
f(0, 0, 0) = f0.

We adopt the notion of locally Lipschitz continuous cost functions ct given in Li et al. (2023), which contains
quadratic tracking costs along an arbitrary bounded state trajectory and action sequence.
Assumption 2.2 (Cost functions). There exist Lc1, Lc2 > 0 such that |ct(x, u) − ct(x̃, ũ)| ≤
(Lc1(max{∥x∥, ∥x̃∥} + max{∥u∥, ∥ũ∥}) + Lc2)(∥x − x̃∥ + ∥u − ũ∥) for all x, x̃ ∈ Rn, u, ũ ∈ Rm, t ∈ Z+.
There exists c0,max ≥ 0 such that |ct(0, 0)| ≤ c0,max for all t ∈ Z+.

Input-to-state (asymptotic) stability (ISS) is a classic notion of stability implying that the controller successfully
stabilizes the system under any bounded noises (Sontag, 2008; Khalil, 2015). Incremental (asymptotic) stability
extends the input-to-state stability to describe the asymptotic behavior of some trajectory towards a different
trajectory (Tran et al., 2016). It is worth noting that Li et al. (2023) also adopted these concepts under an
exponential stability assumption; i.e., they require some controllers to satisfy exponential ISS and exponential
incremental stability. However, in practice, general asymptotic concepts need to be considered for stabilizing
controllers. We will address this controller stability issue below.
Definition 2.3 (Input-to-state stable controller). A controller π is (asymptotically) input-to-state stable
(ISS) if there exists a non-increasing function β(·) : Z+ → R that satisfies β(0) = 12 with limt→∞ β(t) = 0
and γ > 0 such that for any x0 ∈ Rn and ∥wt∥ ≤ wmax for all t ≥ 0, the sequence {xt}t≥0 determined by
xt+1 = f(xt, π(xt), wt) satisfies ∥xt∥ ≤ β(t)∥x0∥ + γwmax.
Definition 2.4 (Incrementally stable controller). A controller π is (asymptotically) incrementally stable
if there exists a non-increasing function β(·) : Z+ → R that satisfies β(0) = 1 with limt→∞ β(t) = 0 such
that for any x0, x̃0 ∈ Rn and ∥wt∥ ≤ wmax for all t ≥ 0, it holds that ∥xt − x̃t∥ ≤ β(t)∥x0 − x̃0∥ for any two
sequences determined by xt+1 = f(xt, π(xt), wt) and x̃t+1 = f(x̃t, π(x̃t), wt).

Assumption 2.5 (Controller pool). Consider the candidate controller index set P0 = {1, . . . , N}, in which
there exists a controller satisfying Definitions 2.3 and 2.4. There exists π0,max ≥ 0 such that ∥πi(0)∥ ≤ π0,max
for all i ∈ P0. All candidate controllers are Lπ-Lipschitz continuous; i.e., ∥πi(x) − πi(x̃)∥ ≤ Lπ∥x − x̃∥ for all
x, x̃ ∈ Rn and i ∈ P0.

In Figure 1, we illustrate a concept of the controller pool for the unknown system, and how general the
requirement of asymptotically stable notion is. For future use, we define the relevant sets regarding controller
stability below.

2This assumption in Definitions 2.3 and 2.4 is to guarantee β(t)2 ≤ β(t) for all t, which can be overcome by a large γ. If we
relax Assumption 2.2 on ct to be Lipschitz continuous, we can remove the assumption β(0) = 1.
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(a) Controller Stability notions (b) Controller pool for unknown nonlinear systems

Figure 1: Illustration of Assumption 2.5: (a) Our work does not require exponentially stabilizing controllers,
which allow the learner to detect the stability in O(log(1/ϵ)) time. Instead, we only require an asymptotically
stabilizing controller of the true system, where the detectable time may be arbitrarily long. (b) One can
design stabilizing controllers for each parameter characterizing the nonlinear system. While we know that at
least one of them should work, we do not know which one works, since the learner is unaware of the true
parameter of the system. Assumption 2.5 is always satisfied if the given pool contains a rich set of controllers,
as long as the true system is stabilizable.

Definition 2.6 (Stabilizing and destabilizing controller). Let S denote an index set of stabilizing controllers
that satisfy both of Definitions 2.3 and 2.4. We also let U denote an index set of destabilizing controllers that
do not satisfy Definition 2.3. Thus, we have |S| ≥ 1 and S ⊆ Uc.
Remark 2.7. Definition 2.4 is a stronger notion than Definition 2.3 due to the triangle inequality. However,
for a special case of linear systems with additive noise; i.e., f(xt, π(xt), wt) = Axt + h(wt), where A ∈ Rn×n

and h : Rg → Rn, a controller π satisfying Definition 2.3 also satisfies Definition 2.4. In such a case,
Assumption 2.5 boils down to requiring at least one ISS controller in the pool.

Now, we define different notions of closed-loop system stability with bounded adversarial disturbances wt,
where ∥wt∥ ≤ wmax holds. Asymptotic stability and finite-gain stability both shed light on the connection
between the disturbance input and the state output, where none of them implies the other (Hill & Moylan,
1980). Hence, it is desirable to achieve both system stability notions.
Definition 2.8 (Asymptotic stability). A system is asymptotically stable if the sum of state norms satisfies
limT →∞

1
T

∑T
t=0 ∥xt∥ ≤ γwmax.

Definition 2.9 (Finite-gain stability). A system is finite-gain L1 stable if there exist constants A1, A2 > 0
such that for all T ∈ Z+, it holds that

∑T
t=0 ∥xt∥ ≤ A1 · wmaxT + A2.

Recall that xt and ut denote the state and action sequence for the system according to the algorithm. We
also let x∗

t and u∗
t denote the optimal state and action sequence generated by the best stabilizing controller

i∗ that satisfies both of Definitions 2.3 and 2.4; i.e., i∗ = arg mini∈S E[
∑T −1

t=0 ct(xt, πi(xt))] subject to the
dynamic f . Then, the regret of the algorithm is defined as follows.
Definition 2.10 (Regret). The regret of the algorithm implementing the policy πit at time t = 0, . . . , T − 1
is defined as RegretT = EiT −1:0

∑T −1
t=0 [ct(xt, ut) − ct(x∗

t , u∗
t )].

3 Algorithm Description

Denote the number of batches in the algorithm by B. Denote by tb the start time for each batch b =
0, 1, . . . , B − 1. We implement the same policy within the mini-batch.
Assumption 3.1 (Dynamic batch length). We design our batch length (τb)b≥0 as follows:

1. τb is non-decreasing in b and limb→∞ τb = +∞.

2. maxb≥0
τb+1

τb
= τ1

τ0
and limb→∞

τb+1
τb

= 1.
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For example, τb = z1(νb + z2)z3 for every b ≥ 0 with the constants z1, z2, z3, ν > 0 satisfy Assumption 3.1.
Specifically, z1 is a scaling factor, z2 provides an initial shift, z3 controls the polynomial growth rate, and
ν determines the rate at which the batch length increases with b. For future use, we refer to this type of
formulation as polynomial batches with (z1, z2, z3, ν).

Remark 3.2. As our dynamic batch length eventually grows unboundedly over time, excessively strict
controller stability criteria may result in most of the candidate controllers violating these criteria. Thus, it is
crucial to adopt (asymptotic) ISS and incremental stability as our criteria, instead of exponential notions in
Li et al. (2023) and the literature on linear dynamics (Cassel & Koren, 2020; Chen & Hazan, 2021; Ghai
et al., 2023). Figure 5 in Appendix A strongly supports the necessity of a growing batch length regardless
of the noise assumption. On the other hand, our batch length requires limb→∞

τb+1
τb

= 1, which means the
ratio of two consecutive batch lengths should approach 1 as time goes by (e.g., geometric sequences are not
acceptable). In other words, the batch length is designed to increase over time but eventually saturates,
which is used to ensure both asymptotic system stability and a sublinear regret. We formally present both
properties in Theorems 4.1 and 4.6.

Algorithm Description. We propose our DBAR algorithm in Algorithm 1 (see Appendix B for the
notations). Lines 3-9 generate the state trajectory based on the selected controller πib

for the current batch b,
and falsify the controller if it is found to violate Definition 2.3; i.e., ib ∈ U . Here, let U denote the number
of times that the Break statement in Line 7 is activated. In the rest of the paper, when we say the Break
statement is activated, it means that Line 7 of Algorithm 1 has been activated. As the controllers in Uc do
not suffer from the Break statement, they always remain in the controller pool. Accordingly, we have U ≤ |U|.

Lines 11-20 keep track of the state norm of xb+1 by determining αb+1 and sb+1 that indicates the magnitude
of the next batch’s initial state norm compared to ∥x0∥. Note that we keep adjusting the value of αb+1 to
avoid sb+1 > sb + 1 (Line 14), and the adjusted αb+1 is guaranteed to be bounded by some constant (see
Lemma C.5 in the Appendix). It is later discussed formally in Lemma 4.7 that these observations cause
sb ̸= 0 to occur at most O(U) times throughout the algorithm.

Lines 21-26 determine the weight Wb+1(k) for each controller k. In Line 21, we use the sum of costs at the
current batch b to add up to the weight in Line 25. In Lines 22-26, we reset the weight if sb+1 ̸= sb. This
resetting weight idea to forget the costs in the past is also proposed in van Erven et al. (2011). In the scenario
that the Lipschitz constant Lf is very large, it may help to forget the time-varying costs c0, . . . , ct−1 and
restart gathering the information from the outset. Line 22 reflects this case where the next batch’s state
norm significantly deviates from the current state norm.

Lines 27-29 calculate the adaptive learning rate ηb+1 = η0/(αb+1)sb+1 for the next batch b + 1 used to apply
the Exp3 algorithm to our problem. Since (αb+1)sb+1 increases when the state norm ∥xtb+1∥ is large, and
sb+1 resets to zero for sufficiently small state norm, the corresponding learning rate decreases in unstable
states and increases back to the initial value when the state norm returns to a stable region. Thus, the
learning rate fluctuates based on the state norm. However, it is essential to note that the effective learning
rate, determined by the ratio ηb

τb
, indeed decreases as the batch length increases even if sb+1 = sb. The only

plausible situation in which the effective rate may increase is sb+1 < sb with (αb+1)2 > τb+1
τb

. Apart from
this scenario, the effective learning rate experiences a polynomial decay with polynomial batches defined
in Assumption 3.1, which does not cause any contradiction with the polynomially decreasing learning rate
concept proposed in Aubert et al. (2023).

Our adaptive learning rate stabilizes the cost of current batch, alleviating the multiplicative exponential term
in the regret bound (see Table 1). Moreover, since we run the algorithm along a single trajectory with the
selection of the policy only relying on the state norm as a context, we obtain a linear-time algorithm by
harnessing a form of contextual bandit without requiring strict assumptions.

In the next section, we will provide a formal analysis and a proof sketch for the guaranteed system stability
(Definitions 2.8 and 2.9) and the attained regret bound (Definition 2.10) of Algorithm 1.
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Algorithm 1 DBAR
Input: Time horizon T ; Batch length (τb)b≥0; Controller parameters β(·) and γ; δ ≥ γwmax/(1 − β(τ0)).
Initial state x0 ̸= 0; Initial learning rate η0 > 0; Initial time t0 = 0; Initial weight W0(k) = 0 for all k ∈ P0.
Initial probability distribution p0(k) = 1

N for all k ∈ P0 (uniform); Initial parameters s0 = 0. α0 > 1.

1: for Batch b = 0, 1, 2, . . . , do
2: Sample ib from a distribution pb. Terminate

the algorithm if Pb is empty.
// Phase 1: Falsify a detected destabilizing controller

3: for t = tb, . . . , min(tb + τb − 1, T ) do
4: Implement πib

, observe xt+1.
5: if ∥xt+1∥ > β(t+1− tb)∥xtb

∥+γwmax then
6: Set Pb+1 = Pb − {ib}.
7: Break
8: end if
9: end for

10: Let tb+1 = t + 1.
// Record the magnitude of the state norm for Phase 2

11: if ∥xtb+1∥ ≥ αb∥x0∥ + δ then
12: Pick s ≥ 1 that satisfies

(αb)s∥x0∥ ≤ ∥xtb+1∥ − δ < (αb)s+1∥x0∥.
13: if s − sb > 1 then
14: Let αb+1 be any α > αb such that

αsb+1∥x0∥ ≤ ∥xtb+1∥ − δ < αsb+2∥x0∥
and let sb+1 = sb + 1.

15: else
16: Let sb+1 = s and let αb+1 = αb.
17: end if
18: else
19: Let sb+1 = 0 and let αb+1 = αb.
20: end if

// Phase 2: Set or reset weight for each controller
21: Let wb(ib) =

∑tb+1−1
t=tb

ct(xt, ut)
and w′

b(k) = wb(ib)
pb(k) I(ib=k) for k ∈ Pb.

22: if sb+1 ̸= sb then
23: Let Wb+1(k) = 0 for all k ∈ Pb.
24: else
25: Let Wb+1(k) = Wb(k) + w′

b(k) for k ∈ Pb.
26: end if
27: Let ηb+1 = η0/(αb+1)2sb+1 .
28: For all k ∈ Pb+1, let

pb+1(k) = exp(−ηb+1Wb+1(k))∑
i∈Pb+1

exp(−ηb+1Wb+1(i))

29: end for

4 Main Results

4.1 Stability

In this section, we will present the stability results of Algorithm 1.
Theorem 4.1 (Asymptotic stability). In Algorithm 1, suppose that τ1

τ0
β(τ0) < 1. Then, it holds that

lim
T →∞

1
T

T∑
t=0

∥xt∥ ≤ γwmax.

Theorem 4.2 (Finite-gain stability). In Algorithm 1, suppose that τ1
τ0

β(τ0) < 1. Assume that limt→∞ H(t) <
∞. Then, Algorithm 1 achieves finite-gain L1 stability; i.e., there exist constants A1, A2 > 0 such that

T∑
t=0

∥xt∥ ≤ A1 · wmaxT + A2, ∀T ≥ 0.

Lemma 4.3. Define H(t) :=
∑t−1

i=0 β(i), which determines the scope of stabilizing controllers throughout the
entire horizon. Under Assumption 3.1, we have limt→∞

H(t)
t = 0.

Proof sketch of Theorems 4.1 and 4.2: Let B denote the number of batches in Algorithm 1 and recall that U
denote the number of times that the Break statement in Line 7 is activated. By using Lemma 4.3 (see the
proof in Lemma C.1) with the non-decreasing property of both τb and H(τb), we obtain

lim
T →∞

∑B−1
b=0 H(τb)

T
≤ lim

B→∞

H(τB−1)
τB−1

·
B−2∏

b=B−U−1

τb+1

τb
= 0 · 1U = 0, (2)
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where the equalities stem from two important steps: limB→∞
H(τB−1)

τB−1
= 0, which follows from Lemma 4.3

with the unboundedly increasing batch length stated in Assumption 3.1, and limB→∞
∏B−2

b=B−U−1
τb+1

τb
= 1,

which follows from the saturating batch length stated in Assumption 3.1 (more detailed derivation can be
found in (17)). Moreover, Lemmas C.3-C.7 indicate that falsifying destabilizing controllers in Lines 5-8 result
in the existence of a constant M > 0 such that the following inequality holds for all T ≥ 0:

T∑
t=0

∥xt∥ ≤ M + γwmax·
(

O
( B−1∑

b=0
H(τb)

)
+ T

)
. (3)

Substituting (2) into (3) proves both Theorems 4.1 and 4.2 (see Appendix C for more proof details).
Remark 4.4. With a fixed batch length τ as presented in Li et al. (2023), the resulting closed-loop system
cannot achieve asymptotic stability since limT →∞

1
T

∑T
t=0 ∥xt∥ = γwmax(1 + O( 1

τ )) > γwmax. Thus, it is
intuitively desirable to design as limb→∞ τb = ∞ to achieve an asymptotic system stability, validating our
dynamic batch length strategy in Algorithm 1. This idea also results in having limT →∞ B/T = 0 (see
Lemma C.9 in the Appendix). It is crucial to note that we have achieved asymptotic stability even when
limt→∞ H(t) = ∞. In addition, finite-gain stability can be achieved for every β(·) that satisfies H(·) < ∞,
which incorporates exponentially stabilizing controllers.

4.2 Regret

In this section, we will present the regret bound of Algorithm 1, where the regret defined in Definition 2.10 is
equivalent to EiB−1:0

∑T −1
t=0 [ct(xt, ut) − ct(x∗

t , u∗
t )], considering that the policy at each time t is determined

by the policy πib
at the corresponding batch b.

Theorem 4.5 (Regret Bound). In Algorithm 1, suppose that τ1
τ0

(β(τ0))2 < 1
2

√
2 . Then, we have

RegretT = O(|U|) + Õ(|U| + 1)
η0

+ O(
B−1∑
b=0

H(τb)) + η0N

2 [exp(O(|U|))O(τB−1H(τB−1)) + O(
B−1∑
b=0

(τb)2)].

Theorem 4.6 (Regret bound with known |U|). Consider Algorithm 1 with polynomial batches defined in
Assumption 3.1 with proper parameters satisfying τ1

τ0
(β(τ0))2 < 1

2
√

2 . Then, with η0 = O( (|U|+1)2/3

T 2/3N1/3 ) and

T ≥ max{ |U|3/2

(N(|U|+1))1/2 , N(|U|+1)}, we achieve a sublinear regret bound. Moreover3, when H(t) ≤ O(
∑t

i=1
1
i )

for all t ≥ 1, we have

RegretT =
[
Õ(T 2/3) + Õ(T −1/3) exp(O(|U|))

]
N1/3(|U| + 1)1/3. (4)

Theorem 4.6 follows from Theorem 4.5 by substituting the relevant parameters, where the regret bound in
Theorem 4.5 deeply hinges on Lemma 4.7. For the lemma, define L := {0 ≤ b ≤ B − 1, b ∈ Z+ : sb+1 ̸= sb}
and Also, define V := {0 ≤ b ≤ B − 1, b ∈ Z+ : sb ≠ 0}. In other words, |L| is the number of transitions of sb

across the batches, and |V| is the number of batches whose sb is nonzero. It turns out that both quantities are
bounded in terms of the number of the Break statement activation U (see the proof details in Lemma D.3).
Lemma 4.7. In Algorithm 1, suppose that β(τ0) < 1 and let U denote the number of times that the Break
statement is activated. Then, it holds that |L| = O(U) and |V| = O(U).

Proof sketch of Theorem 4.5: Note that the expected total cost can be written as EiB−1:0 [Ek∼pb
[w′

b(k)]] due
to Lemma D.1. By adopting the analysis performed in previous works (Cesa-Bianchi & Lugosi, 2006; van
Erven et al., 2011; de Rooij et al., 2014), we divide the inner expectation of the total cost into two terms:

mix loss − 1
η0

log(Ek∼pb
exp(−ηbw′

b(k))), mixability gap Ek∼pb
[w′

b(k)] + 1
η0

log(Ek∼pb
exp(−ηbw′

b(k))).

3Among stabilizing controllers achieving Õ(T 2/3) regret bound, we also cover the case where H(t) can be of the order of a
harmonic series that is not summable at infinity.
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Unlike the previous analysis which has the same value for η0 and ηb, our approach uses different learning
rates for η0 and ηb since we use an adaptive learning rate given by the update rule in Line 27. The additional
terms introduced by using different rates are in |L| for the cumulative mix loss (see Lemma D.4) and |V| for
the cumulative mixability gap (see Lemma D.5). These terms are bounded in terms of U by Lemma 4.7 and
are reflected in the first two terms of Theorem 4.5 since U ≤ |U|.

After bounding the expected total cost with cumulative mix loss and mixability gap, we need to study
EiB−1:0

∑B−1
b=0

∑tb+1−1
t=tb

[ ct(xK
t (i∗),uK

t (i∗))
(αb)2sb

−ct(x∗
t , u∗

t )
]
, where xK

t (i) and uK
t (i) for t = tb, . . . , tb+1 −1 denote the

state and action sequence generated by selecting the controllers before batch b according to Algorithm 1, while
selecting the controller i at batch b. This does not produce any exponential term since the costs are regularized
with the factor (αb)2sb . The additional term introduced by regularization is in O(|V|) + O(

∑B−1
b=0 H(τb)) (see

Lemma D.7), where |V| is again bounded in terms of U . These terms are reflected in the first and the third
terms of Theorem 4.5. More proof details on the rest of the terms are provided in Appendix D.
Remark 4.8 (Lower bound). The regret bound Õ(T 2/3N1/3(|U| + 1)1/3) provided in Theorem 4.6 is similar
to the lower bound presented in Dekel et al. (2014), except that there is an extra term (|U| + 1)1/3, reflecting
the unbounded costs that cannot be mitigated by merely asymptotically stabilizing controllers. Moreover,
a stability-agnostic nature of the given controllers implies that any algorithm will normally encounter
destabilizing controllers and it is unavoidable to face the exponential term exp(O(|U|)) in regret. To illustrate,
the work Chen & Hazan (2021) provides the lower bound involving an exponential term in the state dimension
n (see Theorem 3 in their work), which is analogous to |U| in our setting in the sense that the magnitude of
both quantities explains the difficulty of controlling the system. They showed that any algorithm must observe
at least O(n) states to learn every mode of the system and arrive at a stabilizing controller, during which it
inevitably experiences a regret bound of exp(O(n)). Similarly, in our setting with a finite set of controllers,
any algorithm should observe the behaviors of |U| number of destabilizing controllers before consistently
applying a stabilizing controller, and exp(O(|U|)) is unavoidable as a result. While Chen & Hazan (2021)
assumed linear dynamics, our work deals with nonlinear dynamics for which finding an optimal controller is
NP-hard, and thus the discrepancy between the lower bounds exp(O(n)) and exp(O(|U|)) is indeed necessary
to reduce some of the complexity. Due to our case of the lower bound, the exponentially increasing term can
be tackled by reducing it by the inverse power term on T at best. Theorem 4.6 aligns with this idea since the
resulting regret bound involves the term Õ(T −1/3) · exp(O(|U|)) by factoring in every potential exponential
term to be multiplied with the initial learning rate η0 = O(T −2/3), which inherently serves as a mitigating
factor. Note that instead of dramatically reducing the regret bound, our main contribution is on significantly
relaxing the stability assumptions for required controllers (see Table 1 and Appendix A).
Remark 4.9 (Nonlinear control). Our approach is useful to extend the stability and regret analysis beyond
linear dynamics, but if |U| is too large, it would be difficult to reach good enough performance as the regret
bound depends on exp(O(|U|)). This occurs because we have focused on a discrete set of controllers instead
of a connected set as in linear dynamics. Note that in the linear dynamics case, it is guaranteed that the set
of stabilizing controllers is connected. However, adopting a discrete set was inevitable to handle unknown
nonlinear systems since the set of stabilizing controllers may not be connected. To address this limitation,
we believe that this issue can be mitigated by the formulation where the problem of interest is |U| number
of connected sets, where |U| is not too large and each set is disjoint from the others. The agent can apply
techniques of continuous parameterization (e.g. gradient descent) within a set and also transition between
separate sets by leveraging our technique, where many real-world problems involve both types of decisions,
such as selecting a high-level strategy (discrete) and fine-tuning parameters within that strategy (continuous).
This mixture of algorithms for discrete and connected sets will be an interesting future work.

4.3 Regret with Unknown Number of Destabilizing Controllers

Now, a question arises as to what happens if |U| is not known in advance. With Algorithm 1, one can
leverage |U| + 1 ≤ N to upper-bound the regret in Theorem 4.6 and achieve Õ(T 2/3N2/3) at best (without
considering exponential terms) by determining η0 and (τb)b≥0 as if there were only one stabilizing controller.
It turns out that we can reduce the bound to Õ(T 2/3N1/3(|U| + 1)1/2) by adaptively changing the value of ηb

as in Algorithm 2, where we increase the value of µb if the Break statement in Algorithm 1 is activated and
keep it unchanged otherwise.
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Algorithm 2 DBAR-unknown |U|
Input: Add two more inputs µ0 = 0. y > 0.

// Modification 1: Add the following IF-ELSE Statement right after Line 9 in Algorithm 1.
if Pb+1 = Pb then µb+1 = µb. else µb+1 = µb + 1. end if

// Modification 2: Incorporate µb+1 to set ηb+1 in Line 27 in Algorithm 1.
ηb+1 = η0 · (µb+1 + 1)y/(αb+1)2sb+1 .

Theorem 4.10 (Regret bound with unknown |U|). Consider Algorithm 2 with polynomial batches defined in
Assumption 3.1 with proper parameters satisfying τ1

τ0
(β(τ0))2 < 1

2
√

2 . Then, with y = 1
2 , η0 = O( 1

T 2/3N1/3 ),

and T ≥ max{ |U|3/2

N1/2(|U|+1)3/4 , N}, we achieve a sublinear regret bound. Moreover, when H(t) ≤ O(
∑t

i=1
1
i )

for all t ≥ 1, we have

RegretT =
[
Õ(T 2/3) + Õ(T −1/3) exp(O(|U|))

]
N1/3(|U| + 1)1/2. (5)

Proof sketch: Define η0,r := η0
√

r + 1. It turns out that for every r = 0, . . . , U , Õ( 1
η0,r

) appears in the regret
instead of the integrated term Õ( |U|+1

η0
) in Theorem 4.5. The constant |U| + 1 is distributed among each

Õ( 1
η0,r

) term. Under the constraints given by the disintegration rule using Lemma 4.7 for each r, one can

establish an upper bound of Õ( (|U|+1)1/2

η0
) on the sum of Õ( 1

η0,r
) terms over r = 0, . . . , U by attaining the

coefficients of these terms with complementary slackness in Karush-Kuhn-Tucker (KKT) conditions. The
details are available in Appendix E.

Our DBAR algorithm can also be applied to scenarios such as those switched systems (Tousi et al., 2008;
Zhao et al., 2022) in which the transition dynamics and the associated controller pool change according to
either the detection of a destabilizing controller or pre-determined time instants (Battistelli et al., 2011), as
well as the ballooning problem (Ghalme et al., 2021) where the controller pool may expand. We proposed
Algorithm 3, the switching version of DBAR, in Appendix F.

5 Numerical Experiments

To demonstrate the main results of this paper, we provide illustrative examples on both linear and nonlinear
dynamics with adversarial disturbances.

Example 1 (Linear): Consider the following linear dynamical system with xt ∈ R10 and ut ∈ R10:

xt+1 = A∗xt + B∗ut + wt, t = 0, 1, . . . , (6)

where A∗ and B∗ are 10 × 10 matrices whose entries are randomly generated from Uniform[−1, 1]. We also set
x0 = [100, 200]′ ⊗ 15 and wt = [sin

(
t

5π

)
, sin

(
t

11π

)
]′ ⊗ 15, where ⊗ denotes Kronecker product and 1d denotes

a d × 1 vector of ones. We consider a linear policy ut = Kxt, where K ∈ R10×10. To construct a controller
pool, we first generate K∗ such that the absolute values of all eigenvalues of A∗ + B∗K∗ are less than 0.8.
K∗ is naturally an exponentially stabilizing controller. Then, we construct our controller pool to include K∗

along with 100 other controllers, each of which is a variation of K∗ obtained by selecting one entry of K∗

and multiplying it by 1.1. The constructed pool has |U| = 58 out of 101 candidate controllers. The goal is to
keep the state near the origin, where the cost function is quadratic at each time, namely ct(xt, ut) = ∥xt∥2.

Falsifying destabilizing controllers moderately stabilizes the state norm (Li et al., 2023). Compared to their
work, Figures 2(a) and 2(b) show that both integral components of our algorithm DBAR, dynamic batch
length and adaptive learning rate, further lowers the regret and stabilizes the system, where approximately 60%
of controllers in the pool are destabilizing the system. In this case, Figures 2(c) and 2(d) both demonstrate
that the two components of our algorithm mutually reinforce each other, where each component stabilizes
the state norm with or without time delay. This supports the observations in Appendix A. In Appendix G.1,
we also provide the experiment details and simulation results with noise terms generated by uniform random
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(a) Stability analysis (b) Regret analysis (c) Adaptive learning rate under
dynamic batch length

(d) Dynamic batch length under
adaptive learning rate

Figure 2: The stability and the regret in the linear system under sinusoidal noise. Fixed τ , fixed η represents
the algorithm in Li et al. (2023). Ablation study of the algorithm is presented.

(a) Ball-beam Leader-follower system (b) Stability analysis under β1(t) (c) Regret analysis under β1(t)

Figure 3: The stability and the regret in the leader-follower system under sinusoidal noise, where the leader
is represented by a ball-beam system. We selected β1(t) = min{10/t1.05, 1} and used squared sum of state
and action norms as the cost.

walk, where wt − wt−1 has a uniform distribution for t ≥ 1, as well as the results with truncated Gaussian
noise for sanity check.

Example 2 (Nonlinear): We now consider the 100-dimensional leader-follower system (Morbidi et al., 2011),
where the leader is represented by a ball-beam system, and the followers leverage the leader’s state to stabilize
themselves. Specifically, if the leader is controlled by destabilizing controllers, the followers may also fail to
stabilize. The leader is represented by a nonlinear noise-injected ball-beam system (Hauser et al., 1992):

ẍ = B(xθ̇2 − 9.81 sin θ) + 3wx, θ̈ = ux, B = 0.7143, (7)

where x is the ball position, θ is the beam angle, ux is the action, and wx(t) = sin
(

t
7π

)
. Also, consider the

followers’ system:

ż = A[x, ẋ, −9.81Bθ, −9.81Bθ̇]′ + Ãz + uz + 3wz, (8)

where [x, ẋ, θ, θ̇] ∈ R4 are the states of the leader given below in (7), z ∈ R96 are the states of the followers,
uz ∈ R96 is the action of the followers, wz = [sin

(
t

5π

)
, sin

(
t

11π

)
]′ ⊗ 148 ∈ R96, and A, Ã are relevant random

matrices. Note that the number of states in the entire system is 100.

For the action ux, we now adopt a broader notion of stabilizing controllers and choose the policy class to be
the nested saturating control (Teel, 1992), without considering exponentially stabilizing notions. For the
action uz, we consider a linear policy in z; however, the policy is inherently nonlinear with respect to the entire
state, as the leader’s system itself is nonlinear. In Figures 3(b) and 3(c), we observe that dynamic batching
does not necessarily stabilize the state norm by itself. However, if an adaptive learning rate is additionally

11



Published in Transactions on Machine Learning Research (05/2025)

(a) Robustness to batch length designs (b) Stability analysis under β2(t) (c) Regret analysis under β2(t)

Figure 4: Sensitivity analysis of hyperparameters. (a) For the linear system in Example 1, we report the
regret at time 2000 based on various initial batch lengths and batch length designs. (b), (c) For the nonlinear
system in Example 2, we selected β2(t) = min{10/t1.08, 1} to compare with β1(t) given in Figure 3.

applied, DBAR effectively stabilizes the explosion of the nonlinear system and enjoys the improved regret,
even when we use a polynomially stabilizing criterion β1(t) = min{10/t1.05, 1} = O(1/t1.05) to define the
stabilizing controllers (see Definition 2.3). More experiment details are available in Appendix G.2.

Sensitivity Analysis of Hyperparameters: We now provide the robustness of our algorithm under modifications
in hyperparameters. For the linear system in Example 1, we examine the hyperparameters associated with
the two important components of DBAR: the batch lengths (τb)b≥0 and the initial learning rate η0. Figure
4(a) presents the behavior of different batch length designs, and shows that any batch length τb yields a
desirable regret at time 2000, as long as the initial batch length τ0 is sufficiently large. This phenomenon
strongly supports Theorem 4.6, stating that τ1

τ0
(β(τ0))2 < 1

2
√

2 with polynomial batches defined in Assumption
3.1 ensures a regret given in (4). Note that a large τ0 will naturally satisfy the inequality since β(·) is a
non-increasing function and the polynomial batch structure ensures that τ1

τ0
remains constant regardless of τ0.

Meanwhile, we observed that the policy selection was not affected by the initial learning rate η0, resulting in
the same regret and demonstrating the robustness of our algorithm to η0.

For the nonlinear system in Example 2, we provide the robustness of our algorithm with respect to the
choice of β(t) defined in Definitions 2.3 and 2.4. We compare two polynomially decreasing functions:
β1(t) = min{10/t1.05, 1} (see Figures 3(b), 3(c)) and β2(t) = min{10/t1.08, 1} (see Figures 4(b), 4(c)). While
DBAR performs effectively in both cases, the behaviors of the two functions are slightly different in the sense
that the system already appears to be stabilized even without some components of DBAR based on β2(t).
This stems from the extent of destabilizing controller removal: β2(t) removes the controller based on criteria
more strict than β1(t) since 1.08 > 1.05. This prevents the explosion of the nonlinear system by eliminating
potential destabilizing controllers not yet seen in an unstable region in advance. However, in practice, if the
candidate controller pool had not included any controller satisfying the strict assumptions, the algorithm
would have terminated, failing to keep the system running. This finding illustrates why it is crucial to allow a
broader class of controllers and yet achieve a tight regret bound, which was the ultimate goal of our work.

6 Conclusion

In an online bandit nonlinear control problem, an agent makes decisions with the bandit feedback information,
while suffering from nonlinear dynamics and adversarial disturbances. To address such challenges, this paper
develops a novel Exp3-type algorithm with theoretical guarantees. The proposed algorithm uses a dynamic
batch length to achieve asymptotic stability of the system without requiring an exponential assumption on
stabilizing controllers in the pool. Our adaptive learning rate scheme observes the stability of state norm to
overcome the inherent multiplicative exponential term in the regret, thereby improving the overall regret.
Future directions include extending these results to problems with explicit safety constraints while selecting
the best stabilizing controller among a continuum of candidate controllers.
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A Necessity of DBAR under weaker stability notion of required controllers

To illustrate how significant the weaker controller stability notion is compared to the exponential notions,
let us further present a one-dimensional system, where the current system state is 1. The goal is to achieve
a state near 0, and we would like to detect this stability by observing whether one arrives at a state less
than 1 − ϵ, where ϵ is an arbitrarily small positive number. Exponentially stabilizing controllers guarantee
to detect the stability in O(log(1/ϵ)) time. However, with an asymptotically stabilizing controller, if the
controller is designed to keep the system state unchanged for an arbitrarily long time T and then collapse the
state towards 0 afterward, one cannot detect the stability before time T regardless of how small ϵ is. In such
a case, even though the controller ultimately achieves the goal, it may take a lot of time to learn whether a
closed-loop system would be stable or not.

Note that dynamic batch length is an important part of our work. If an exponentially stabilizing controller
is applied to a system, one can quickly certify the stability. However, if we only have the asymptotically
stabilizing controllers as in our problem setting, it may take a long time to observe any abnormal behavior in
the closed-loop system. Such an issue cannot be handled by a fixed batch length and in that sense dynamic
batch length is a necessary part of our work. In Table 1, we have stated the intermediate step “Dynamic
Batching” to achieve closed-loop system asymptotic stability, which was not achievable by the previous works.

Figure 5 also demonstrates the necessity of a dynamic batch length regardless of the noise assumption. The
blue and orange lines represent the state norms generated by a fixed batch length and a dynamic batch
length, respectively. With both relatively easier statistical noise and more challenging adversarial noise, the
blue line shows a larger state norm than the orange line. Moreover, the blue line occasionally has higher
values than the red line, which is our asymptotic stability bound γwmax = 1.5, while the orange line remains
below the red line after a certain time.

(a) Statistical Noise (b) Adversarial Noise

Figure 5: The state norm with a fixed batch length compared to that with a dynamic batch length.
xt+1 = xt + 0.15ut + wt with ut = Kxt where K ∈ [−3.0, −2.9, −2.8, . . . , 4.9, 5.0]. We use τ0 = 10, γ = 3, and
set wmax = 0.5. The noise wt is (a) i.i.d. sampled from Uniform[−0.2, 0.5], and (b) 0.15 + 0.35 sin( t

3π ).

However, it turns out that the resulting regret by dynamic batching contains the multiplicative term
o(T 1/3) · exp(O(|U|)), which is because a dynamic batch length induces H(τB−1) to be necessarily multiplied
with exp(O(|U|)). (see Corollary D.10). Thus, we came up with a careful switching strategy, an adaptive
learning rate, to address this issue. The multiplicative term can be resolved with splitting technique by
introducing an adaptive learning rate, achieving both closed-loop system asymptotic stability (by dynamic
batch length) and the improved regret (by adaptive learning rate), even though we have greatly relaxed the
assumption on controller stability (exponential to asymptotic). We developed this approach by factoring in
every potential exponential term to be multiplied with the initial learning rate η0 = O(T −2/3), which has
a negative exponent on T , thus inherently serving as a mitigating factor (see Theorem 4.6 and the term
η0N

2
∑B−1

b=0 Eib−1:0(wK
b (ib))2 in Lemma D.5). Due to Lemma 4.7, one can explain that the remaining terms

produced by the splitting can be bounded by O(|U|). More details can be found in Appendix D.
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B Glossary

Before formally presenting the proofs, we provide a glossary to help readers understand the notations of our
algorithm DBAR (see Algorithm 1).

Table 2: Glossary
Notation Meaning

xt state at time t in the algorithm
x∗

t optimal state at time t
ut action at time t in the algorithm
u∗

t optimal action at time t
ct(xt, ut) cost at time t

wmax the maximum norm of the noise
T the length of time in the algorithm
B the number of batches in the algorithm
tb the initial time for each batch b
τb the batch length at batch b
ηb learning rate at batch b
ib the controller selected at batch b
N the number of controllers in the candidate pool

Wb(k) the weight of controller k at batch b
pb(k) the probability of selecting controller k at batch b

Pb a set of available controllers at batch b
αb, sb (αb)sb indicates the magnitude of the state norm at tb compared to ∥x0∥

β(t), γ applying a stabilizing controller incurs ∥xt∥ ≤ β(t)∥x0∥ + γwmax
Lf Lipschitz constant for the dynamic f
Lπ Lipschitz constant for any controller π
U the number of times the Break statement is activated

b1, . . . , bU the next batch after the Break statement is activated

C Stability Proof

Let b1, . . . , bU denote the next batch after the Break statement is activated; i.e., ∥xtbu
∥ > β(tbu

−
tbu−1)∥xtbu−1∥ + γwmax for every u = 1, . . . , U . For future use, let b0 = 0 and bU+1 = B. Accordingly,
tb0 = t0 = 0 and tbU+1 = tB = T + 1.
Lemma C.1 (Restatement of Lemma 4.3). Define H(t) :=

∑t−1
i=0 β(i). Under Assumption 3.1, we have

lim
t→∞

H(t)
t

= 0.

Proof. Recall that we designed β(·) to be non-increasing and nonnegative. Then, we have β(i) ≤
∫ i

i−1 β(x)dx
for every integer i ≥ 1. Using the inequality, one can write

0 ≤ H(t) = β(0) +
t−1∑
i=1

β(i) ≤ β(0) +
∫ t−1

0
β(x)dx. (9)

If limt→∞ H(t) < ∞, clearly limt→∞
H(t)

t = 0 holds. If limt→∞ H(t) = ∞, we leverage L’Hôpital’s rule with
β(t) → 0 as t → ∞ to derive

lim
t→∞

H(t)
t

≤ lim
t→∞

β(0) +
∫ t−1

0 β(x)dx

t
= lim

t→∞

β(t − 1)
1 = 0,

where the first inequality follows from (9).
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Lemma C.2. For 0 ≤ j ≤ k, we have
H(τk)
H(τj) ≤ τk

τj
.

Proof. For 0 ≤ j ≤ k,

H(τk)
H(τj) ≤

H(τj) +
∑τk−1

i=τj
β(i)

H(τj) ≤ 1 + (τk − τj) · β(τj)
τj · β(τj) = τk

τj
,

where the last inequality is due to the non-increasing property of β(·). The equality holds when β(0) = · · · =
β(τk − 1).

Lemma C.3 (Sum of state norms in a single batch). In Algorithm 1, for each batch b = 0, 1, . . . , B − 1, the
following inequality holds:

tb+1−1∑
t=tb

∥xt∥ ≤ H(τb)∥xtb
∥ + γwmax(τb − 1)

Proof. For t = tb, we have ∥xt∥ ≤ β(0)∥xtb
∥ since β(0) = 1. For tb < t ≤ tb+1 − 1, we have

∥xt∥ ≤ β(t − tb)∥xtb
∥ + γwmax. (10)

Summing up all inequalities gives

tb+1−1∑
t=tb

∥xt∥ ≤ H(tb+1 − tb)∥xtb
∥ + γwmax(tb+1 − tb − 1).

Since Line 5 of Algorithm 1 is not satisfied, τb = tb+1 − tb. This completes the proof.

Lemma C.4 (Weighted sum of state norms between the two consecutive Break statements). In Algorithm 1,
suppose that τ1

τ0
β(τ0) < 1. For every next batch index after the Break statement u = 0, . . . , U , the following

inequality holds:

bu+1−1∑
b=bu

H(τb)∥xtb
∥ ≤ 1

1 − τbu+1
τbu

β(τbu
)
H(τbu)∥xtbu

∥ + γwmax

1 − β(τbu+1)

bu+1−1∑
b=bu+1

H(τb).

Proof. Since we designed (τb)b≥0 to have a non-decreasing τb and non-increasing τb+1
τb

, notice that we have
β(τb) ≤ τb+1

τb
β(τb) ≤ τb

τb−1
β(τb−1) ≤ τ1

τ0
β(τ0) < 1 for every b ≥ 1 since β(·) is non-increasing.

If bu+1 = bu + 1, the inequality clearly holds since 1
1−

τbu+1
τbu

β(τbu )
> 0. Otherwise, consider the following

inequality for bu < b ≤ bu+1 − 1:

H(τb)∥xtb
∥ ≤ H(τb)β(τb−1)∥xtb−1∥ + H(τb)γwmax

= H(τb)
H(τb−1)β(τb−1)H(τb−1)∥xtb−1∥ + H(τb)γwmax,

where the inequality holds since Line 5 of Algorithm 1 is not satisfied. Recursively applying this inequality,
one arrives at

H(τb)∥xtb
∥ ≤

b−1∏
a=bu

[H(τa+1)
H(τa) β(τa)

]
· H(τbu)∥xtbu

∥ + H(τb)γwmax(1 +
b−1∑

b′=bu+1

b−1∏
a=b′

β(τa))

≤
b−1∏

a=bu

[H(τa+1)
H(τa) β(τa)

]
· H(τbu)∥xtbu

∥ + H(τb)γwmax(1 +
b−1∑

b′=bu+1
[β(τbu+1)]b−b′

)

18



Published in Transactions on Machine Learning Research (05/2025)

≤
b−1∏

a=bu

[H(τa+1)
H(τa) β(τa)

]
· H(τbu

)∥xtbu
∥ + H(τb) γwmax

1 − β(τbu+1) (11)

≤
b−1∏

a=bu

[τa+1

τa
β(τa)

]
· H(τbu

)∥xtbu
∥ + H(τb) γwmax

1 − β(τbu+1)

≤
[τbu+1

τbu

β(τbu
)
]b−bu

· H(τbu
)∥xtbu

∥ + H(τb) γwmax

1 − β(τbu+1) ,

where the second inequality comes from the non-increasing property of β(·), the third inequality is by
β(τbu+1) < 1, the fourth inequality is due to Lemma C.2, and the last inequality comes from the non-increasing
property of τb+1

τb
β(τb). Since τbu+1

τbu
β(τbu

) < 1, summing up the above inequalities for bu < b ≤ bu+1 − 1
completes the proof.

Lemma C.5 (Next state norm after the Break statement). Define M1 := Lf (1 + Lπ)γwmax + Lf (π0,max +
wmax) + f0. Then, for every u = 1, . . . , U , we have

∥xtbu
∥ ≤ Lf (1 + Lπ)β(0)∥xtbu−1∥ + M1.

Proof. Suppose we picked a controller πt at time step t. Then, by Assumption 2.5, we have

∥ut∥ = ∥πt(xt) − πt(0) + πt(0)∥ ≤ ∥πt(xt) − πt(0)∥ + ∥πt(0)∥ ≤ Lπ∥xt∥ + π0,max. (12)

Combining the above inequality with Assumption 2.1, one can write

∥xt+1∥ = ∥f(xt, ut, wt) − f(0, 0, 0) + f(0, 0, 0)∥
≤ ∥f(xt, ut, wt) − f(0, 0, 0)∥ + ∥f(0, 0, 0)∥ ≤ Lf (∥xt∥ + ∥ut∥ + ∥wt∥) + f0

≤ Lf (∥xt∥ + Lπ∥xt∥ + π0,max + wmax) + f0

= Lf (1 + Lπ)∥xt∥ + Lf (π0,max + wmax) + f0.

Thus, for every u = 1, . . . , U , we obtain that

∥xtbu
∥ ≤ Lf (1 + Lπ)∥xtbu −1∥ + Lf (π0,max + wmax) + f0

≤ Lf (1 + Lπ)(β(tbu − tbu−1 − 1)∥xtbu−1∥ + γwmax) + Lf (π0,max + wmax) + f0

= Lf (1 + Lπ)β(tbu − tbu−1 − 1)∥xtbu−1∥ + M1

≤ Lf (1 + Lπ)β(0)∥xtbu−1∥ + M1,

where the second inequality holds since Line 5 of Algorithm 1 is not satisfied during tbu−1 ≤ t ≤ tbu − 1 and
the equality holds for the last inequality when tbu

= tbu−1 + 1. This completes the proof.

Lemma C.6 (Weighted sum of state norms along the Break statements). In Algorithm 1, suppose that
τ1
τ0

β(τ0) < 1. Define M2 := Lf (1 + Lπ)β(0) γwmax
1−β(τ1) + M1. Then, there exists a constant C ≥ 1 such that

U∑
u=0

H(τbu
)∥xtbu

∥ ≤ [Lf (1 + Lπ)β(0)C]U+1 − 1
Lf (1 + Lπ)β(0)C − 1 H(τ0)∥x0∥ + ([Lf (1 + Lπ)β(0)C]U − 1)M2

[Lf (1 + Lπ)β(0)C − 1]2 H(τbU
)

Proof. Since we designed τb+1
τb

to converge, there exists R > 0 such that τb+1
τb

≤ R for all b ≥ 0. Moreover,
since limb→∞

τb+1
τb

= 1 and β(τ0) < 1, there exists b∗ > 0 such that

b ≥ b∗ =⇒ τb+1

τb
<

1
β(τ0) . (13)
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Accordingly, for any two batches b′ > b ≥ 0, we have

τb′

τb
[β(τb)]b

′−b−1 ≤ [β(τ0)]b
′−b−1

b′−1∏
a=b

τa+1

τa
≤ Rb∗

β(τ0) , (14)

considering that b = 0 and b′ = b∗ yields the largest possible upper bound due to (13). Now, define C := Rb∗

β(τ0) .
Notice that we have C ≥ 1 since the left-hand side of (14) is greater than equal to 1 when b′ = b + 1. Then,
for every u = 1, . . . , U , one can write

H(τbu
)∥xtbu

∥ ≤ Lf (1 + Lπ)β(0) H(τbu
)

H(τbu−1)H(τbu−1)∥xtbu−1∥ + H(τbu
)M1

≤ Lf (1 + Lπ)β(0) H(τbu
)

H(τbu−1)

bu−2∏
a=bu−1

[H(τa+1)
H(τa) β(τa)

]
· H(τbu−1)∥xtbu−1

∥

+ Lf (1 + Lπ)β(0)H(τbu) γwmax

1 − β(τbu−1+1) + H(τbu)M1

≤ Lf (1 + Lπ)β(0) H(τbu)
H(τbu−1) [β(τbu−1)]bu−bu−1−1 · H(τbu−1)∥xtbu−1

∥ + H(τbu
)M2

≤ Lf (1 + Lπ)β(0) τbu

τbu−1

[β(τbu−1)]bu−bu−1−1 · H(τbu−1)∥xtbu−1
∥ + H(τbu

)M2

≤ Lf (1 + Lπ)β(0)C · H(τbu−1)∥xtbu−1
∥ + H(τbu

)M2

where the first inequality is due to Lemma C.5, the second inequality is by (11) in Lemma C.4, the fourth
inequality is due to Lemma C.2, and the last inequality is by (14). Recursively applying this inequality, one
arrives at

H(τbu
)∥xtbu

∥ ≤ [Lf (1 + Lπ)β(0)C]uH(τ0)∥x0∥ + M2 ·
u∑

i=1
[Lf (1 + Lπ)β(0)C]u−iH(τbi

)

≤ [Lf (1 + Lπ)β(0)C]uH(τ0)∥x0∥ + M2H(τbU
) · [Lf (1 + Lπ)β(0)C]u − 1

Lf (1 + Lπ)β(0)C − 1

< [Lf (1 + Lπ)β(0)C]u·
[
H(τ0)∥x0∥ + M2H(τbU

)
Lf (1 + Lπ)β(0)C − 1

]
,

where the second inequality comes from the non-decreasing property of H(·) and the equality holds when
H(τb1) = · · · = H(τbU

). Notice that for b′ > b ≥ 0, the case H(τb′) = H(τb) arises when τb′ = τb or
β(τb + 1) = · · · = β(τb′) = 0. Since Lf (1 + Lπ)β(0)C > 1, summing up the above inequality for u = 1, . . . , U
completes the proof.

Lemma C.7 (Sum of state norms). In Algorithm 1, suppose that τ1
τ0

β(τ0) < 1. Then, we have

T∑
t=0

∥xt∥ ≤ O([Lf (1 + Lπ)β(0)C]U (∥x0∥ + H(τbU
))) + γwmax · (O(

B−1∑
b=0

H(τb)) + T )

Proof. Applying Lemma C.3, C.4, and C.6 in turn, we have

T∑
t=0

∥xt∥ =
U∑

u=0

bu+1−1∑
b=bu

tb+1−1∑
t=tb

∥xt∥

≤
U∑

u=0

bu+1−1∑
b=bu

[
H(τb)∥xtb

∥ + γwmax(τb − 1)
]

≤
U∑

u=0

[
1

1 − τbu+1
τbu

β(τbu
)
H(τbu)∥xtbu

∥ + γwmax

1 − β(τbu+1)

bu+1−1∑
b=bu+1

H(τb) + γwmax(tbu+1 − tbu − 1)
]
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≤ 1
1 − τ1

τ0
β(τ0)

U∑
u=0

H(τbu)∥xtbu
∥ + γwmax

1 − β(τ1) (
B−1∑
b=0

H(τb) −
U∑

u=0
H(τbu

)) + γwmax(T − U)

≤ 1
1 − τ1

τ0
β(τ0)

U∑
u=0

H(τbu
)∥xtbu

∥ + γwmax

1 − β(τ1)

B−1∑
b=0

H(τb) + γwmaxT

≤ H(τ0)∥x0∥
1 − τ1

τ0
β(τ0)

[Lf (1 + Lπ)β(0)C]U+1 − 1
Lf (1 + Lπ)β(0)C − 1 + H(τbU

)
1 − τ1

τ0
β(τ0)

([Lf (1 + Lπ)β(0)C]U − 1)M2

[Lf (1 + Lπ)β(0)C − 1]2

+ γwmax

1 − β(τ1)

B−1∑
b=0

H(τb) + γwmaxT

= O([Lf (1 + Lπ)β(0)C]U (∥x0∥ + H(τbU
))) + γwmax · (O(

B−1∑
b=0

H(τb)) + T )

where the equality holds for the fourth inequality when Line 5 of Algorithm 1 is not satisfied for the entire
horizon.

Theorem C.8 (Restatement of Theorem 4.1, Asymptotic stability). In Algorithm 1, suppose that
τ1
τ0

β(τ0) < 1. Then, it holds that

lim
T →∞

1
T

T∑
t=0

∥xt∥ ≤ γwmax.

Proof. We mainly use Lemma C.1 to prove the asymptotic stability. First, we have

H(τbU
) ≤ H(τB−1) = o(τB−1) = o(T ), (15)

where the first equality is due to Lemma C.1 and τB−1 = T when there is only one batch over the entire
horizon. Now, consider the following relationship between the number of batch B and the time horizon T :

B−1∑
b=0

τb ≥ T ≥
B−U−1∑

b=0
τb + U, (16)

where the second inequality is due to the non-decreasing property of τb. Now, if
∑B−1

b=0 H(τb) < ∞, clearly∑B−1
b=0 H(τb) = o(T ). Otherwise, define H(τB) = H(τB−1). Then, we have

lim
T →∞

∑B−1
b=0 H(τb)

T
≤ lim

B→∞

∑B−1
b=0 H(τb)∑B−U−1

b=0 τb + U
≤ lim

B→∞

∫ B

0 H(τb)db

τ0 +
∫ B−U−1

0 τbdb + U

= lim
B→∞

H(τB−1)
τB−U−1

= lim
B→∞

H(τB−1)
τB−1

·
B−2∏

b=B−U−1

τb+1

τb

= 0 · 1U = 0 (17)

where the second inequality leverages the non-decreasing property of both τb and H(τb), the remaining
equalities leverage L’Hôpital’s rule, Lemma C.1, and limb→∞

τb+1
τb

= 1. Thus, with Lemma C.7, we have

T∑
t=0

∥xt∥ ≤ O([Lf (1 + Lπ)β(0)C]U (∥x0∥ + o(T ))) + γwmax · (T + o(T )).

This completes the proof.

Lemma C.9. In Algorithm 1, we have
lim

T →∞

B

T
= 0
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Proof. Recall the relationship stated in (16) between T and B. Using the second inequality, we have

0 ≤ lim
T →∞

B

T
≤ lim

T →∞

B∑B−U−1
b=0 τb + U

≤ lim
T →∞

B

τ0 +
∫ B−U−1

0 τbdb + U

= lim
T →∞

1
τB−U−1

= 0,

where the third inequality uses the non-decreasing property of τb, after which we use L’Hôpital’s rule. This
completes the proof.

Theorem C.10 (Restatement of Theorem 4.2, Finite-gain stability). In Algorithm 1, suppose that τ1
τ0

β(τ0) < 1.
Assume that limt→∞ H(t) < ∞. Then, Algorithm 1 achieves finite-gain L1 stability; i.e., there exist constants
A1, A2 > 0 such that for all T ∈ Z+,

T∑
t=0

∥xt∥ ≤ A1 · wmaxT + A2.

Proof. Since limt→∞ H(t) < ∞, there exists a constant q1 that upper-bounds H(t); i.e., H(t) ≤ q1 for all
t ≥ 0. Likewise, by Lemma C.9, there exists a constant q2 that upper-bounds B

T . Thus, with Lemma C.7,
one can write

T∑
t=0

∥xt∥ ≤ O([Lf (1 + Lπ)β(0)C]U (∥x0∥ + q1)) + γwmax · (O(Bq1) + T )

= O([Lf (1 + Lπ)β(0)C]U (∥x0∥ + q1)) + γ(1 + B

T
O(q1)) · wmaxT

≤ O([Lf (1 + Lπ)β(0)C]U (∥x0∥ + q1)) + γ(1 + O(q1q2)) · wmaxT.

This completes the proof.

D Regret Proof for Algorithm 1

Lemma D.1. In Algorithm 1, we have

EiB−1:0 [wb(ib)] = EiB−1:0 [Ek∼pb
[w′

b(k)]],

Proof. Given ib−1, . . . , i0, we have

Ek∼pb
[w′

b(k)] =
∑

k∈Pb

pb(k)wb(ib)
pb(k) I(ib=k) = wb(ib), (18)

which implies that w′
b(k) sampled from pb is an unbiased estimator of wb(ib).

Thus, for all b = 0, 1, . . . , B − 1, one can write

EiB−1:0 [wb(ib)] = Eib:0 [wb(ib)] = Eib−1:0Eib
[wb(ib) | ib−1:0]

= Eib−1:0Eib
[Ek∼pb

[w′
b(k)] | ib−1:0]

= Eib:0 [Ek∼pb
[w′

b(k)]] = EiB−1:0 [Ek∼pb
[w′

b(k)]],

where the first equality is because iB−1, . . . , ib+1 does not affect the value of wb(ib) and the remaining
equalities are by law of total expectation and (18).

Now, we let wK
b (i) denote the cost incurred at batch b if one selects the controllers for batch 0, . . . , b − 1

according to Algorithm 1, and the controller for batch b to be i.
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Lemma D.2. In Algorithm 1, for any i ∈ Pb, we have

EiB−1:0 [w′
b(i)] = EiB−1:0 [wK

b (i)]

and for some controller ib ∈ Pb, we have

EiB−1:0

[
η0

2
(wb(ib))2

pb(ib)

]
≤ η0N

2 Eib−1:0(wK
b (ib))2.

Proof. For all b = 0, 1, . . . , B − 1 and for all i ∈ Pb, we have

EiB−1:0 [w′
b(i)] = Eib:0 [w′

b(i)] = Eib−1:0 [Eib
[w′

b(i) | ib−1:0]]

= Eib−1:0 [
∑

ib∈Pb

pb(ib)wb(ib)
pb(i) I(ib=i)]

= Eib−1:0 [wK
b (i)] = EiB−1:0 [wK

b (i)]

where the first equality is because iB−1, . . . , ib+1 does not affect the value of w′
b(i) and the last equality is

because iB−1, . . . , ib does not affect the value of wK
b (i). Next, we can also obtain that

EiB−1:0

[
η0

2
(wb(ib))2

pb(ib)

]
= Eib:0

[
η0

2
(wb(ib))2

pb(ib)

]
= Eib−1:0Eib

[
η0

2
(wb(ib))2

pb(ib) | ib−1:0

]
= Eib−1:0

∑
ib∈Pb

[
η0

2 pb(ib) (wb(ib))2

pb(ib)

]
= Eib−1:0

∑
ib∈Pb

[
η0

2 (wb(ib))2
]

≤ η0N

2 Eib−1:0(wK
b (ib))2,

for the controller ib = arg maxi∈Pb
(wK

b (i))2. This completes the proof.

In Algorithm 1, define L := {0 ≤ b ≤ B − 1, b ∈ Z+ : sb+1 ̸= sb} and let b1, . . . , b|L| denote the batch
where Line 22 of Algorithm 1 is satisfied; i.e., sbl+1 ̸= sbl for l = 1, . . . , |L|. For convenience, we let b0 = 0,
b|L|+1 = B − 1, and sB = sB−1. Also, define V := {0 ≤ b ≤ B − 1, b ∈ Z+ : sb ̸= 0}.
Lemma D.3 (Restatement of Lemma 4.7). In Algorithm 1, suppose that β(τ0) < 1 and let U denote the
number of times that the Break statement is activated. Then, it holds that |L| = O(U) and |V| = O(U).

Proof. For every batch b = 0, . . . , B − 1, we have

∥xtb
∥ < (αb)sb+1∥x0∥ + δ (19)

by Lines 11-20. If the Break statement is not activated, since we designed δ ≥ γwmax
1−β(τ0) , it yields that

∥xtb+1∥ ≤ β(τb)∥xtb
∥ + γwmax ≤ β(τ0)(αb)sb+1∥x0∥ + β(τ0)δ + γwmax

≤ β(τ0)(αb)sb+1∥x0∥ + δ < (αb)sb+1∥x0∥ + δ,

where the second and the last inequalities are due to β(τb) ≤ β(τ0) < 1 and the third inequality is by the
formulation of δ. Then, sb+1 > sb cannot occur when the Break statement is not activated. Also, Line 14
avoids sb+1 > sb + 1. As a result, starting from s0 = 0, the event sb+1 = sb + 1 can occur at most U times.
Accordingly, the event sb+1 < sb also can occur at most U times, leading to |L| ≤ 2U .

Now, we observe the number of batches b̃ needed to stabilize the state norm; i.e., min{b̃ > 0 : sb+b̃ < sb}
when the Break statement is not activated. Starting from batch b and the corresponding sb, provided that
the Break statement is not activated, one can write

∥xtb+b̃
∥ ≤ β(τb+b̃−1)∥xtb+b̃−1

∥ + γwmax ≤ β(τ0)∥xtb+b̃−1
∥ + γwmax
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≤ (β(τ0))b̃∥xtb
∥ + γwmax

b̃−1∑
a=0

(β(τ0))a ≤ (β(τ0))b̃∥xtb
∥ + γwmax

1 − β(τ0)

≤ (β(τ0))b̃∥xtb
∥ + δ < (β(τ0))b̃[(αb)sb+1∥x0∥ + δ] + δ, (20)

where the first and third inequalities are due to not satisfying Line 5 iteratively when the Break statement is
not activated, the second and fourth inequalities are by β(τb) ≤ β(τ0) < 1, and the last two inequalities are
by the design of δ and (19). It is desirable to find the minimum value of b̃ that makes the right-hand side of
(20) smaller than (αb)sb∥x0∥ + δ:

(β(τ0))b̃[(αb)sb+1∥x0∥ + δ] + δ ≤ (αb)sb∥x0∥ + δ ⇐⇒ 1
(β(τ0))b̃

≥ αb + δ

(αb)sb∥x0∥
, (21)

where the right-hand side of (21) can be upper-bounded by αb + δ
∥x0∥ since αb > 1. Thus, if sb ̸= 0,

min{b̃ > 0 : sb+b̃ < sb} ≤

⌈
log(αb + δ

∥x0∥ )
− log β(τ0)

⌉
, (22)

when the Break statement is not activated. In other words, starting from a batch b where sb > 0, within the
number of batches on the right-hand side of (22), either the Break statement is activated or the value of sb

decreases.

More specifically, consider two sets of batches: B1 = {0 ≤ b ≤ B − 1, b ∈ Z+ : the Break statement activated}
and B2 = {0 ≤ b ≤ B − 1, b ∈ Z+ : sb+1 < sb}. Let B = B1 ∪ B2 be the set ordered by batch numbers. Then,
the batch interval between two consecutive batches in B is upper-bounded by (22). Thus, considering that
|L| ≤ 2U , we have

|V| ≤ (2U − 1)
⌈

log(αb + δ
∥x0∥ )

− log β(τ0)

⌉
,

which completes the proof.

Lemma D.4 (cumulative mix loss). In Algorithm 1, for any controller il ∈ Uc for l = 0, . . . , |L|, the
cumulative mix loss is upper-bounded as follows:

EiB−1:0

B−1∑
b=0

− 1
η0

log(Ek∼pb
exp(−ηbw′

b(k))) ≤ Õ(U + 1)
η0

+ EiB−1:0

|L|∑
l=0

bl+1−1∑
b=bl

wK
b (il)

(αb)2sb

Proof. Given l = 0, . . . , |L|, we can analyze a single mix loss for b = bl + 1, . . . , bl+1 − 1 as follows:

− 1
η0

log(Ek∼pb
exp(−ηbw′

b(k))) = − 1
η0

log(
∑

k∈Pb

pb(k) exp(−ηbw′
b(k)))

= − 1
η0

log(
∑

k∈Pb
exp(−ηbWb(k)) exp(−ηbw′

b(k))∑
i∈Pb

exp(−ηbWb(i)) )

= − 1
η0

log(
∑

k∈Pb
exp(−ηbWb+1(k))∑

i∈Pb
exp(−ηbWb(i)) ), (23)

while a mix loss for b = bl is as follows:

− 1
η0

log(Ek∼pb
exp(−ηblw′

bl(k))) = − 1
η0

log(
∑

k∈P
bl

pbl(k) exp(−ηblw′
bl(k)))

= − 1
η0

log( 1
|Pbl |

∑
k∈P

bl

exp(−ηblw′
bl(k)))
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≤ log N

η0
− 1

η0
log(

∑
k∈P

bl

exp(−ηblw′
bl(k))) (24)

= log N

η0
− 1

η0
log(

∑
k∈P

bl

exp(−ηblWbl+1(k))), (25)

where the last equality only holds when bl+1 > bl + 1. Now, notice that the batches b = bl, . . . , bl+1 − 1 share
the same learning rate; i.e., ηbl = · · · = ηbl+1−1 since the same sb yields the same αb, and thus the same ηb.
Thus, in the case where bl+1 > bl + 1, we have

bl+1−1∑
b=bl

− 1
η0

log(Ek∼pb
exp(−ηbw′

b(k))) ≤ log N

η0
− 1

η0
log(

bl+1−1∏
b=bl+1

∑
k∈Pb−1

exp(−ηblWb(k))∑
k∈Pb

exp(−ηblWb(k)) )

− 1
η0

log(
∑

k∈P
bl+1−1

exp(−ηblWbl+1(k)))

≤ log N

η0
− 1

η0
log(

∑
k∈P

bl+1−1

exp(−ηblWbl+1(k))), (26)

where the first inequality is by (23) and (25) and the second inequality comes from Pb ⊆ Pb−1. Considering
both cases (24) and (26), for any controller i0, . . . , i|L| ∈ Uc, one can write

B−1∑
b=0

− 1
η0

log(Ek∼pb
exp(−ηbw′

b(k))) ≤
|L|∑
l=0

[
log N

η0
− 1

η0
log(

∑
k∈P

bl+1−1

exp(−ηbl

bl+1−1∑
b=bl

w′
b(k)))

]

≤ (|L| + 1) log N

η0
−

|L|∑
l=0

1
η0

log(exp(−ηbl

bl+1−1∑
b=bl

w′
b(il)))

= Õ(U + 1)
η0

+
|L|∑
l=0

∑bl+1−1
b=bl w′

b(il)
(αbl)2s

bl
, (27)

where the first inequality considers Wbl+1(k) =
∑bl+1−1

b=bl w′
b(k) in (26), the second inequality is because any

controller il is an element of Pbl+1−1, and the last equality comes from the definition of ηbl = η0/(αbl)2s
bl and

|L| = O(U) by Lemma D.3. Finally, by Lemma D.2, taking the expectation of (27) with respect to iB−1:0
completes the proof.

Now, we consider the cumulative mixability gap.
Lemma D.5 (cumulative mixability gap). In Algorithm 1, there exists a set of controllers ib ∈ Pb for
b = 0, . . . , B − 1 such that the cumulative mixability gap is upper-bounded as follows:

EiB−1:0

B−1∑
b=0

Ek∼pb
[w′

b(k)] + 1
η0

log(Ek∼pb
exp(−ηbw′

b(k))) ≤ O(U)
2η0

+ η0N

2

B−1∑
b=0

Eib−1:0(wK
b (ib))2

Proof. Given the set V , we can analyze a single mixability gap for b /∈ V and b ∈ V , respectively. Since sb = 0
for b /∈ V, given ib−1, . . . , i0, we have

Ek∼pb
[w′

b(k)] + 1
η0

log(Ek∼pb
exp(−ηbw′

b(k))) = Ek∼pb
[w′

b(k)] + 1
η0

log(Ek∼pb
exp(−η0w′

b(k)))

≤ Ek∼pb
[w′

b(k)] + 1
η0

(Ek∼pb
exp(−η0w′

b(k)) − 1)

≤ Ek∼pb
[w′

b(k)] + 1
η0

(Ek∼pb

η2
0(w′

b(k))2

2 − η0w′
b(k))

25



Published in Transactions on Machine Learning Research (05/2025)

= η0

2 Ek∼pb
[(w′

b(k))2]

= η0

2
∑

k∈Pb

pb(k) (wb(ib))2

(pb(k))2 I(ib=k) = η0

2
(wb(ib))2

pb(ib) , (28)

where the first inequality uses log(x) ≤ x − 1 for all x ∈ R and the second inequality uses ex ≤ 1 + x + x2

2 for
all x ∈ R. Now, for b ∈ V, given ib−1, . . . , i0, we obtain that

Ek∼pb
[w′

b(k)] + 1
η0

log(Ek∼pb
exp( − ηbw′

b(k))) ≤ Ek∼pb
[w′

b(k)] + 1
η0

(Ek∼pb
exp(−ηbw′

b(k)) − 1)

≤ Ek∼pb
[w′

b(k)]

≤ Ek∼pb
[w′

b(k)] + 1
η0

(Ek∼pb

η2
0(w′

b(k))2

2 − η0w′
b(k) + 1

2)

= η0

2 Ek∼pb
[(w′

b(k))2] + 1
2η0

= η0

2
(wb(ib))2

pb(ib) + 1
2η0

, (29)

where the second inequality uses ex ≤ 1 for all x ≤ 0 and the third inequality uses x2

2 + x + 1
2 ≥ 0 for all

x ∈ R. Since |V| = O(U) by Lemma D.3, we have inequality (29) holding at most O(U) times and (28)
holding in the remaining batches among b = 0, . . . , B − 1. Finally, by Lemma D.2, taking expectation of (28)
and (29) with respect to iB−1:0 completes the proof.

We let xt and ut denote the state and action sequence in the algorithm depending on the context. We let
xK

t (i) and uK
t (i) for t = tb, . . . , tb+1 − 1 denote the state and action sequence generated by selecting the

controllers before batch b according to Algorithm 1, while selecting the controller i at batch b. Accordingly,
we have wK

b (i) =
∑tb+1−1

t=tb
ct(xK

t (i), uK
t (i)). We also let x∗

t and u∗
t denote the optimal state and action

sequence generated by the best stabilizing controller i∗ that satisfies both of Definitions 2.3 and 2.4; i.e.,
i∗ = arg mini∈S

∑T
t=0 ct(xt, πi∗(xt)) subject to the transition dynamics.

Lemma D.6. In Algorithm 1, suppose that τ1
τ0

(β(τ0))2 < 1
2

√
2 . For any controller ib ∈ Pb for b = 0, . . . , B −1,

we have
B−1∑
b=0

Eib−1:0(wK
b (ib))2 = exp(O(U))O(τB−1H(τB−1)) + O(

B−1∑
b=0

(τb)2).

Proof. By Assumption 2.2, for all x ∈ Rn and u ∈ Rm, we have

|ct(x, u)| = |ct(x, u) − ct(0, 0) + ct(0, 0)| ≤ |ct(x, u) − ct(0, 0)| + |ct(0, 0)|
≤ (Lc1(∥x∥ + ∥u∥) + Lc2)(∥x∥ + ∥u∥) + c0,max

= Lc1(∥x∥ + ∥u∥)2 + Lc2(∥x∥ + ∥u∥) + c0,max

≤ 2Lc1(∥x∥2 + ∥u∥2) + Lc2(∥x∥ + ∥u∥) + c0,max, (30)

where the last inequality is due to Cauchy–Schwarz inequality. Thus, we can upper-bound (wK
b (ib))2 for any

controller ib ∈ Pb for b = 0, . . . , B − 1 as follows:

(wK
b (ib))2 =

[ tb+1−1∑
t=tb

ct(xK
t (ib), uK

t (ib))
]2

≤
tb+1−1∑

t=tb

ct(xK
t (ib), uK

t (ib))2(tb+1 − tb)

≤ (tb+1 − tb)
tb+1−1∑

t=tb

(2Lc1(∥xK
t (ib)∥2 + ∥uK

t (ib)∥2) + Lc2(∥xK
t (ib)∥ + ∥uK

t (ib)∥) + c0,max)2

≤ 5(tb+1 − tb)
tb+1−1∑

t=tb

(4L2
c1

(∥xK
t (ib)∥4 + ∥uK

t (ib)∥4) + L2
c2(∥xK

t (ib)∥2 + ∥uK
t (ib)∥2) + c2

0,max) (31)

where the first and the third inequalities are due to Cauchy–Schwarz inequality.
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From (10), for tb < t ≤ tb+1 − 1, we have

∥xK
t (ib)∥2 ≤ 2[β(t − tb)]2∥xK

tb
(ib)∥2 + 2γ2w2

max (32)
∥xK

t (ib)∥4 ≤ 8[β(t − tb)]4∥xK
tb

(ib)∥4 + 8γ4w4
max, (33)

where the inequalities are by Cauchy-Schwarz inequality. Accordingly, we obtain that

tb+1−1∑
t=tb

∥xK
t (ib)∥2 ≤ 2H(tb+1 − tb)∥xK

tb
(ib)∥2 + 2γ2w2

max(tb+1 − tb − 1) (34)

tb+1−1∑
t=tb

∥xK
t (ib)∥4 ≤ 8H(tb+1 − tb)∥xK

tb
(ib)∥4 + 8γ4w4

max(tb+1 − tb − 1), (35)

where we use β(·) ≤ 1 to derive
∑tb+1−tb−1

t=0 [β(t)]p ≤
∑tb+1−tb−1

t=0 [β(t)] = H(tb+1 − tb) for p ≥ 1.

From (12), for tb ≤ t ≤ tb+1 − 1, we have

∥uK
t (ib)∥2 ≤ 2L2

π∥xK
t (ib)∥2 + 2π2

0,max (36)
∥uK

t (ib)∥4 ≤ 8L4
π∥xK

t (ib)∥4 + 8π4
0,max, (37)

where the inequalities are by Cauchy-Schwarz inequality. Now, we substitute (34), (35), (36), (37), and
tb+1 − tb ≤ τb into the right-hand side of (31) to upper-bound (wK

b (ib))2 as follows:

(wK
b (ib))2 ≤ 5τb[32L2

c1(1 + 8L4
π)H(τb)∥xK

tb
(ib)∥4 + 2L2

c2(1 + 2L2
π)H(τb)∥xK

tb
(ib)∥2]+

5τ2
b [32L2

c1((1 + 8L4
π)γ4w4

max + π4
0,max) + 2L2

c2((1 + 2L2
π)γ2w2

max + π2
0,max) + c2

0,max]
= M3τbH(τb)∥xK

tb
(ib)∥4 + M4τbH(τb)∥xK

tb
(ib)∥2 + M5τ2

b

= M3τbH(τb)∥xtb
∥4 + M4τbH(τb)∥xtb

∥2 + M5τ2
b , (38)

where M3, M4, M5 are constants determined by Lc1, Lc2, Lπ, γ, wmax, π0,max, and c0,max. The last equality
comes from xK

tb
(ib) = xtb

for any ib ∈ Pb.

Meanwhile, one can upper-bound both
∑B−1

b=0 τbH(τb)∥xtb
∥4 and

∑B−1
b=0 τbH(τb)∥xtb

∥2 by successively applying
Lemma C.3, C.4, and C.6 in the same fashion as presented in the proof of Lemma C.7. Since τ2

1
τ2

0
8(β(τ0))4 < 1,

by (32) and (33), there exists C1, C2 ≥ 1 such that

B−1∑
b=0

τbH(τb)∥xtb
∥4 = O([8L4

f (1 + Lπ)4β(0)4C1]U (∥x0∥4 + τbU
H(τbU

))) + 8γ4w4
max · O(

B−1∑
b=0

τbH(τb))

B−1∑
b=0

τbH(τb)∥xtb
∥2 = O([2L2

f (1 + Lπ)2β(0)2C2]U (∥x0∥2 + τbU
H(τbU

))) + 2γ2w2
max · O(

B−1∑
b=0

τbH(τb)).

Substituting the equalities into the summation of (38) for b = 0, . . . , B − 1 yields

B−1∑
b=0

(wK
b (ib))2 = exp(O(U))O(τbU

H(τbU
)) + O(

B−1∑
b=0

τbH(τb)) + O(
B−1∑
b=0

(τb)2). (39)

Notice that taking expectation of (wK
b (ib))2 with respect to ib−1:0 does not affect the inequality. Finally,

τbU
≤ τB−1 and H(τb) = o(τb) completes the proof.

Lemma D.7. In Algorithm 1, for the best stabilizing controller i∗ ∈ S, we have

EiB−1:0

B−1∑
b=0

tb+1−1∑
t=tb

[
ct(xK

t (i∗), uK
t (i∗))

(αb)2sb
− ct(x∗

t , u∗
t )

]
≤ O(U) + O(

B−1∑
b=0

H(τb)).
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Proof. Since x∗
t is generated by a stabilizing controller, we have

∥x∗
t ∥ ≤ β(t)∥x0∥ + γwmax ≤ β(0)∥x0∥ + γwmax

∥x∗
t ∥2 ≤ 2β(t)2∥x0∥2 + 2γ2w2

max ≤ 2β(0)2∥x0∥2 + 2γ2w2
max,

where the inequalities are by Cauchy-Schwarz inequality and the non-increasing property of β(·). Then, by
(12), (30), and (36), we have

ct(x∗
t , u∗

t ) ≤ 2Lc1(∥x∗
t ∥2 + ∥u∗

t ∥2) + Lc2(∥x∗
t ∥ + ∥u∗

t ∥) + c0,max

≤ 2Lc1((1 + 2L2
π)∥x∗

t ∥2 + 2π2
0,max) + Lc2((1 + Lπ)∥x∗

t ∥ + π0,max) + c0,max

≤ 4Lc1(1 + 2L2
π)(β(0))2∥x0∥2 + Lc2(1 + Lπ)β(0)∥x0∥ + 4Lc1(1 + 2L2

π)γ2w2
max

+ Lc2(1 + Lπ)γwmax + 4Lc1π2
0,max + Lc2π0,max + c0,max := M6. (40)

In Algorithm 1, one can write∥∥∥∥ xtb

(αb)sb

∥∥∥∥ ≤ (αb)sb+1∥x0∥ + δ

(αb)sb
≤ αb∥x0∥ + δ (41)∥∥∥∥ x∗

t

(αb)sb

∥∥∥∥ ≤ β(t)∥x0∥ + γwmax

(αb)sb
≤ β(0)∥x0∥ + γwmax, (42)

where the equalities hold for the last inequalities of (41) and (42) when sb = 0.

By Assumption 2.2, for the best stabilizing controller i∗ ∈ S and for tb ≤ t < tb+1, we have

1
(αb)2sb

|ct(xK
t (i∗), uK

t (i∗)) − ct(x∗
t , u∗

t )|

≤ 1
(αb)2sb

(Lc1(max{∥xK
t (i∗)∥, ∥x∗

t ∥} + max{∥uK
t (i∗)∥, ∥u∗

t ∥}) + Lc2)(∥xK
t (i∗) − x∗

t ∥ + ∥uK
t (i∗) − u∗

t ∥)

≤ 1
(αb)2sb

(Lc1((1 + Lπ) max{∥xK
t (i∗)∥, ∥x∗

t ∥} + π0,max) + Lc2)(1 + Lπ)∥xK
t (i∗) − x∗

t ∥

= (1 + Lπ)(Lc1(1 + Lπ) max{
∥∥∥∥xK

t (i∗)
(αb)sb

∥∥∥∥,

∥∥∥∥ x∗
t

(αb)sb

∥∥∥∥} + Lc1π0,max + Lc2

(αb)sb
)
∥∥∥∥xK

t (i∗) − x∗
t

(αb)sb

∥∥∥∥
≤ (1 + Lπ)(β(t − tb)Lc1(1 + Lπ) max{

∥∥∥∥xK
tb

(i∗)
(αb)sb

∥∥∥∥,

∥∥∥∥ x∗
tb

(αb)sb

∥∥∥∥}

+ Lc1(1 + Lπ)γwmax + Lc1π0,max + Lc2

(αb)sb
) · β(t − tb)

∥∥∥∥xK
tb

(i∗) − x∗
tb

(αb)sb

∥∥∥∥
≤ Lc1(1 + Lπ)2β(t − tb)2

(∥∥∥∥ xtb

(αb)sb

∥∥∥∥+
∥∥∥∥ x∗

tb

(αb)sb

∥∥∥∥)2

+ Lc1(1 + Lπ)γwmax + Lc1π0,max + Lc2

(αb)sb
(1 + Lπ)β(t − tb)

(∥∥∥∥ xtb

(αb)sb

∥∥∥∥+
∥∥∥∥ x∗

tb

(αb)sb

∥∥∥∥)
≤ Lc1(1 + Lπ)2β(t − tb)2((αb + β(0))∥x0∥ + δ + γwmax)2

+ (Lc1(1 + Lπ)γwmax + Lc1π0,max + Lc2)(1 + Lπ)β(t − tb)((αb + β(0))∥x0∥ + δ + γwmax)
≤ M7β(t − tb)2 + M8β(t − tb), (43)

where M7 and M8 are constants determined by Lc1, Lc2, Lπ, π0,max, β(0), δ, γ, wmax and maxb∈{0,1,...,B−1} αb.
Notice that αb in Line 14 of Algorithm 1 is upper-bounded by some constant by Lemma C.5. The second
inequality is by (12), the third inequality is due to Definition 2.4 and by leveraging the same stabilizing
controller i∗ from tb for both trajectories xK

t (i∗) and x∗
t , the fourth inequality uses xK

tb
(i∗) = xtb

, and the
fifth inequality is by (41) and (42). By combining (40) and (43), we have∣∣∣∣ct(xK

t (i∗), uK
t (i∗))

(αb)2sb
− ct(x∗

t , u∗
t )

∣∣∣∣ =
∣∣∣∣ct(xK

t (i∗), uK
t (i∗))

(αb)2sb
− ct(x∗

t , u∗
t )

(αb)2sb
− (αb)2sb − 1

(αb)2sb
ct(x∗

t , u∗
t )

∣∣∣∣
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≤ 1
(αb)2sb

|ct(xK
t (i∗), uK

t (i∗)) − ct(x∗
t , u∗

t )| + (αb)2sb − 1
(αb)2sb

ct(x∗
t , u∗

t )

≤

{
M7β(t − tb)2 + M8β(t − tb), if sb = 0,
M7β(t − tb)2 + M8β(t − tb) + M6, if sb ̸= 0.

Thus, one can conclude that

B−1∑
b=0

tb+1−1∑
t=tb

[
ct(xK

t (i∗), uK
t (i∗))

(αb)2sb
− ct(x∗

t , u∗
t )

]
≤ M6|V| +

B−1∑
b=0

(M7 + M8)H(tb+1 − tb)

= O(U) + O(
B−1∑
b=0

H(τb)), (44)

where the first inequality uses β(·) ≤ 1 to derive
∑tb+1−1

t=tb
[β(t − tb)]2 ≤

∑tb+1−1
t=tb

[β(t − tb)] = H(tb+1 − tb)
and the last equality uses tb+1 − tb ≤ τb and Lemma D.3. Taking expectation of (44) with respect to iB−1:0
completes the proof.

Theorem D.8 (Restatement of Theorem 4.5, Regret Bound). In Algorithm 1, suppose that τ1
τ0

(β(τ0))2 < 1
2

√
2 .

Then, the regret bound is as follows:

EiB−1:0

T∑
t=0

[ct(xt, ut) − ct(x∗
t , u∗

t )]

= O(|U|) + O(
B−1∑
b=0

H(τb)) + Õ(|U| + 1)
η0

+ η0N

2 [exp(O(|U|))O(τB−1H(τB−1)) + O(
B−1∑
b=0

(τb)2)].

Proof. By Lemma D.1, we have

EiB−1:0

T∑
t=0

ct(xt, ut) = EiB−1:0

B−1∑
b=0

tb+1−1∑
t=tb

ct(xt, ut) = EiB−1:0

B−1∑
b=0

[wb(ib)]

= EiB−1:0

B−1∑
b=0

[Ek∼pb
[w′

b(k)]]

≤ Õ(U + 1)
η0

+ η0N

2

B−1∑
b=0

Eib−1:0(wK
b (ib))2 + EiB−1:0

|L|∑
l=0

bl+1−1∑
b=bl

wK
b (i∗)

(αb)2sb

≤ Õ(U + 1)
η0

+ η0N

2 [exp(O(U))O(τB−1H(τB−1)) + O(
B−1∑
b=0

(τb)2)]

+ O(U) + O(
B−1∑
b=0

H(τb)) + EiB−1:0

T∑
t=0

ct(x∗, u∗),

where the first inequality is due to Lemma D.4 and D.5, and the last inequality is due to Lemma D.6 and
D.7. Using U ≤ |U| completes the proof.

Theorem D.9 (Restatement of Theorem 4.6, Regret bound with known |U|). In Algorithm 1, let τb =
( (νb+z)

N(|U|+1) )1/2 for every b ≥ 0 with the constants z, ν > 0 that satisfies τ0 > 0 and τ1
τ0

(β(τ0))2 < 1
2

√
2 . Also, let

η0 = O( (|U|+1)2/3

T 2/3N1/3 ). When T ≥ max{ |U|3/2

(N(|U|+1))1/2 , N(|U| + 1)}, we have

EiB−1:0

T∑
t=0

[ct(xt, ut) − ct(x∗
t , u∗

t )] = Õ(T 2/3N1/3(|U| + 1)1/3)) + o(1) exp(O(|U|)) + o(T ),
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which implies that we achieve a sublinear regret bound. Moreover, when H(t) ≤ O(
∑t

i=1
1
i ) for all t ≥ 1, we

have

EiB−1:0

T∑
t=0

[ct(xt, ut) − ct(x∗
t , u∗

t )] =
[
Õ(T 2/3) + Õ(T −1/3) exp(O(|U|))

]
N1/3(|U| + 1)1/3.

Proof. By the formulation of (τb)b≥0, we have

B−1∑
b=0

(νb + z)1/2

(N(|U| + 1))1/2 − 1 ≤
B−1∑
b=0

τb = T ≤
B−1∑
b=0

(νb + z)1/2

(N(|U| + 1))1/2 + (B − 1),

where we can further use non-decreasing property of (·)1/2 to arrive at

z1/2 + 2
3ν [(ν(B − 1) + z)3/2 − z3/2]

(N(|U| + 1))1/2 − 1 =
z1/2 +

∫ B−1
0 (νb + z)1/2db

(N(|U| + 1))1/2 − 1 ≤ T

≤
∫ B

0 (νb + z)1/2db

(N(|U| + 1))1/2 + (B − 1) =
2

3ν [(νB + z)3/2 − z3/2]
(N(|U| + 1))1/2 + (B − 1), (45)

thus we have B = O(T 2/3N1/3(|U| + 1)1/3) from the first inequality and T = O(B3/2N−1/2(|U| + 1)−1/2)
from the second inequality and T ≥ N(|U| + 1). Similarly, we can find the order of

∑B−1
b=0 (τb)2 as follows:

B−1∑
b=0

(τb)2 ≤
B−1∑
b=0

[
(νb + z)1/2

(N(|U| + 1))1/2 + 1
]2

≤
∫ B

0

[
(νb + z)

(N(|U| + 1)) + 2(νb + z)1/2

(N(|U| + 1))1/2 + 1
]
db

= O( B2

N(|U| + 1)) = O(T 4/3N−1/3(|U| + 1)−1/3), (46)

where the last equality is by B = O(T 2/3N1/3(|U| + 1)1/3). We also have

τB−1 = ((ν(B − 1) + z)
N(|U| + 1) )1/2 = O(B1/2N−1/2(|U| + 1)−1/2) = O(T 1/3N−1/3(|U| + 1)−1/3). (47)

Thus, we have

O(τB−1H(τB−1)) = o((τB−1)2) = o(T 2/3N−2/3(|U| + 1)−2/3) = o(1)
η0N

, (48)

where the first equality is due to Lemma C.1. With T ≥ |U|3/2

(N(|U|+1))1/2 , we have

η0N exp(O(|U|))O(τB−1H(τB−1)) = o(1) exp(O(|U|)) (49)
O(|U|) = O(T 2/3N1/3(|U| + 1)1/3). (50)

With (46), (48), (49), and (50), we can apply Theorem D.8 to derive

EiB−1:0

T∑
t=0

[ct(xt, ut) − ct(x∗
t , u∗

t )] = Õ(T 2/3N1/3(|U| + 1)1/3) + o(1) exp(O(|U|)) + O(
B−1∑
b=0

H(τb)).

Applying (17) to O(
∑B−1

b=0 H(τb)) achieves a sublinear regret bound.

Moreover, when limt→∞ H(t) < ∞, there exists a constant q1 that upper-bounds H(t); i.e., H(t) ≤ q1 for all
t ≥ 0. Then, we have

B−1∑
b=0

H(τb) ≤ q1B = O(B) = O(T 2/3N1/3(|U| + 1)1/3). (51)
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Also, (48) and (49) can be modified to

τB−1H(τB−1) ≤ q1τB−1 = O(T 1/3N−1/3(|U| + 1)−1/3),
η0N exp(O(|U|)))O(τB−1H(τB−1)) = O(T −1/3N1/3(|U| + 1)1/3) · exp(O(|U|)). (52)

Similarly, when H(t) = O(
∑t

i=1
1
i ) for all t ≥ 1, we have

B−1∑
b=0

H(τb) ≤ BH(τB−1) = O(B log τB−1) = Õ(T 2/3N1/3(|U| + 1)1/3), (53)

η0N exp(O(|U|)))O(τB−1H(τB−1)) = Õ(T −1/3N1/3(|U| + 1)1/3) · exp(O(|U|)). (54)

Using (51), (52), (53), and (54) completes the proof.

Small modification provides the regret bound for the intermediate step “Dynamic Batching” mentioned in
Appendix A.
Corollary D.10. Consider “Dynamic Batching” strategy without adaptive learning rate, i.e. sb = 0 for all
b = 0, . . . , B − 1 in Algorithm 1. Let τ0, . . . , τB−1 and η0 be the same quantity with Theorem D.9. When
T ≥ max{ |U|3/2

(N(|U|+1))1/2 , N(|U| + 1)}, the term o(1) exp(O(|U|)) in the regret bound of Theorem D.9 is replaced
by o(T 1/3) exp(O(|U|)).

Proof. Since sb = 0 for all b, we need to modify Lemma D.7. Equation (43) is modified to

|ct(xK
t (i∗), uK

t (i∗)) − ct(x∗
t , u∗

t )| ≤ Lc1(1 + Lπ)2β(t − tb)2(∥xtb
∥ + ∥x∗

tb
∥)2 + Lc1(1 + Lπ)γwmax

+ Lc1π0,max + Lc2(1 + Lπ)β(t − tb)(∥xtb
∥ + ∥x∗

tb
∥),

which incurs
tb+1−1∑

t=tb

|ct(xK
t (i∗), uK

t (i∗)) − ct(x∗
t , u∗

t )| ≤ O(H(τb)∥xtb
∥2) + O(H(τb)∥xtb

∥) + O(H(τb)).

Thus, it follows that
B−1∑
b=0

tb+1−1∑
t=tb

|ct(xK
t (i∗), uK

t (i∗)) − ct(x∗
t , u∗

t )| ≤ exp(O(|U|))(∥x0∥2 + ∥x0∥) + exp(O(|U|))H(τB−1)

= exp(O(|U|)) · o(T 1/3),

where the last equality is by the choice of τB−1 = O(B1/2) = O(T 1/3) and applying Lemma 4.3. This shows
that o(1) exp(O(|U|)) in Theorem D.9 should be replaced by o(T 1/3) exp(O(|U|)) in the algorithm without
adaptive learning rate.

E Regret Proof for Algorithm 2

Theorem E.1 (Restatement of Theorem 4.10, Regret bound with unknown |U|). In Algorithm 2, let
τb = ( (νb+z)

N )1/2 for every b ≥ 0 with the constants z, ν > 0 that satisfies τ0 > 0 and τ1
τ0

(β(τ0))2 < 1
2

√
2 . Also,

let η0 = O( 1
T 2/3N1/3 ) and y = 1

2 . When T ≥ max{ |U|3/2

N1/2(|U|+1)3/4 , N}, we have

EiB−1:0

T∑
t=0

[ct(xt, ut) − ct(x∗
t , u∗

t )] = Õ(T 2/3N1/3(|U| + 1)1/2) + o(1) exp(O(|U|))(|U| + 1)1/2 + o(T ),

which implies that we achieve a sublinear regret bound. Moreover, when H(t) ≤ O(
∑t

i=1
1
i ) for all t ≥ 1, we

have

EiB−1:0

T∑
t=0

[ct(xt, ut) − ct(x∗
t , u∗

t )] =
[
Õ(T 2/3) + Õ(T −1/3) exp(O(|U|))

]
N1/3(|U| + 1)1/2
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Proof. By the formulation of (τb)b≥0, as in (45), we can derive

B = O(T 2/3N1/3) and T = O(B3/2N−1/2)

when T ≥ N . We can also obtain
B−1∑
b=0

(τb)2 = O(T 4/3N−1/3) and O(τB−1H(τB−1)) = o(T 2/3N−2/3)

similar to (46) and (48). Now, define η0,r := η0(r + 1)y = η0
√

r + 1. Let Br denote the set of batches where
µb = r; i.e., Br = {0 ≤ b ≤ B − 1, b ∈ Z+ : µb = r}. Then, one can write

N

2

U∑
r=0

∑
b∈Br

η0,rEib−1:0(wK
b (ib))2 ≤ η0N

2

U∑
r=0

∑
b∈Br

√
U + 1Eib−1:0(wK

b (ib))2

=
√

U + 1 · O(T −2/3N2/3)[exp(O(U))O(τB−1H(τB−1)) + O(
B−1∑
b=0

(τb)2)]

≤
√

|U| + 1 · [o(1) exp(O(|U|)) + O(T 2/3N1/3)], (55)

where the first equality holds by Lemma D.6 and the second inequality holds by U ≤ |U|.

Recall the definition and the cardinality of L = {0 ≤ b ≤ B − 1, b ∈ Z+ : sb+1 ≠ sb} and V = {0 ≤ b ≤
B −1, b ∈ Z+ : sb ̸= 0} in Lemma D.3. We focus on the mix loss and the mixability gap with the denominator
η0,r; i.e., − 1

η0,r
log(Ek∼pb

exp(−ηbw′
b(k))) and Ek∼pb

[w′
b(k)] + 1

η0,r
log(Ek∼pb

exp(−ηbw′
b(k))). Considering

that ηb

η0,r
still remains to be 1

(αb)2sb
as in Algorithm 1, Lemma D.4 can be modified to

EiB−1:0

U∑
r=0

∑
b∈Br

− 1
η0,r

log(Ek∼pb
exp(−ηbw′

b(k))) ≤
U∑

r=0

ρl
r log N

η0,r
+ EiB−1:0

|L|∑
l=0

bl+1−1∑
b=bl

wK
b (il)

(αb)2sb
, (56)

where ρl
r denotes the number of batches in Br ∩ L. Similarly, considering that η0,r now depends on the value

of r, Lemma D.5 can be modified to

EiB−1:0

U∑
r=0

∑
b∈Br

Ek∼pb
[w′

b(k)] + 1
η0,r

log(Ek∼pb
exp(−ηbw′

b(k)))

≤
U∑

r=0

ρv
r

2η0,r
+ N

2

U∑
r=0

∑
b∈Br

η0,rEib−1:0(wK
b (ib))2, (57)

where ρv
r denotes the number of batches in Br ∩ V. Now, our goal is to upper-bound

∑U
r=0

ρl
r

η0,r
=

1
η0

∑U
r=0

ρl
r log N√

r+1 in (56) and
∑U

r=0
ρv

r

η0,r
= 1

η0

∑U
r=0

ρv
r√

r+1 in (57). It is straightforward to infer that
ρl

0 + ρl
1 + · · · + ρl

U ≤ 2U + 1 by Lemma D.3 and (27), which also leads to ρl
0 + ρl

1 + · · · + ρl
r ≤ 2r + 1

for r = 0, . . . , U . Similarly, we can infer that ρv
0 = 0 and ρv

1 + · · · + ρv
U ≤ (2U − 1)⌈

log(αb+ δ
∥x0∥ )

− log β(τ0) ⌉ by

Lemma D.3 and (29), which also leads to ρv
1 + · · · + ρv

r ≤ (2r − 1)⌈
log(αb+ δ

∥x0∥ )
− log β(τ0) ⌉ for r = 1, . . . , U . Define

M9 := ⌈
log(αb+ δ

∥x0∥ )
− log β(τ0) ⌉ and consider the following maximization problems to get the upper bound.

l∗ = max
ρl

0,...,ρl
U

U∑
r=0

ρl
r√

r + 1
v∗ = max

ρv
1 ,...,ρv

U

U∑
r=1

ρv
r√

r + 1

s.t. ρl
0 ≤ 1 s.t. ρv

1 ≤ M9

ρl
0 + ρl

1 ≤ 3 ρv
1 + ρv

2 ≤ 3M9

. . . . . .

ρl
0 + ρl

1 + · · · + ρl
U ≤ 2U + 1, ρv

1 + ρv
2 + · · · + ρv

U ≤ (2U − 1)M9.
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We can easily achieve an optimal point of each linear programming (LP) problem by the well-known
Karush-Kuhn-Tucker (KKT) conditions. There exist positive constants λ0, . . . , λU , κ1, . . . , κU such that

[1 1√
2

. . .
1√

U + 1
] = [

U∑
r=0

λr

U∑
r=1

λr . . . λU ] (58)

[ 1√
2

1√
3

. . .
1√

U + 1
] = [

U∑
r=1

κr

U∑
r=2

κr . . . κU ], (59)

which yields λU = κU = 1√
U+1 , λr = κr = 1√

r+1 − 1√
r+2 > 0 for r = 1, . . . , U − 1, and λ0 = 1 − 1√

2 . Since
every dual variable is positive, complementary slackness tells that there is no slack for every inequality at the
optimal solution. Thus, the optimal solutions are

ρl
0 = 1, ρl

r = 2, r = 1, . . . , U.

ρv
1 = M9, ρv

r = 2M9, r = 2, . . . , U,

where the corresponding optimal objective values are

l∗ = 1 +
U∑

r=1

2√
r + 1

≤ 1 +
√

2 + 2
∫ U

1

1√
r + 1

dr = O(
√

U + 1)

v∗ = M9√
2

+
U∑

r=2

2M9√
r + 1

≤ M9√
2

+ 2M9√
3

+ 2M9

∫ U

2

1√
r + 1

dr = O(
√

U + 1),

where we leverage the non-increasing property of 1√
r+1 for the inequalities. Thus, we have both

1
η0

∑U
r=0

ρl
r log N√

r+1 = Õ(T 2/3N1/3(U + 1)1/2) and 1
η0

∑U
r=0

ρv
r√

r+1 = O(T 2/3N1/3(U + 1)1/2). Combining (55),
(56), and (57) with Lemma D.7 and U ≤ |U|, one can write

EiB−1:0

T∑
t=0

[ct(xt, ut) − ct(x∗
t , u∗

t )]

= Õ(T 2/3N1/3(|U| + 1)1/2) + o(1) exp(O(|U|))(|U| + 1)1/2 + O(|U|) + O(
B−1∑
b=0

H(τb))

= Õ(T 2/3N1/3(|U| + 1)1/2) + o(1) exp(O(|U|))(|U| + 1)1/2 + O(
B−1∑
b=0

H(τb)),

where the second equality holds when T ≥ |U|3/2

N1/2(|U|+1)3/4 . Using (17) shows a sublinear regret bound. When
H(t) ≤ O(

∑t
i=1

1
i ) for all t ≥ 1, (51) and (52) are modified to

B−1∑
b=0

H(τb) ≤ O(BH(τB−1)) = Õ(T 2/3N1/3),

τB−1H(τB−1) ≤ τB−1O(log(τB−1)) = Õ(T 1/3N−1/3),
η0N exp(O(|U|)))O(τB−1H(τB−1)) = Õ(T −1/3N1/3) · exp(O(|U|)).

Applying this equality to re-derive (55) completes the proof.

F Applications: Switched systems

So far, we have used the best stabilizing controller i∗ ∈ S for all time steps t = 0, . . . , T as the baseline
of regret. However, the proofs of the theorems stated above imply one can even use any set of controllers
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{i0, i1, . . .} ⊆ S as a baseline, where the controller is switched from il to il+1 whenever the cumulative weight
W (·) resets. This motivates the application of our DBAR algorithm to scenarios such as the switched systems
(Tousi et al., 2008; Zhao et al., 2022) for which the transition dynamics and the associated controller pool
may undergo changes, as well as the ballooning problem (Ghalme et al., 2021) where the controller pool may
expand up to some finite set. We propose Algorithm 3, the switching version of DBAR, which resets the
weight whenever the system is faced with a finite number of O(U) switches. Here, we consider the regret
with switching costs where the unit cost d ≥ 1 is additionally incurred when the controller is switched; i.e.,
d

∑T
t=1 I(it ̸=it−1) done in Altschuler & Talwar (2018) and Arora et al. (2019).

For an event A, I(A) denotes an indicator function, where I(A) = 1 if an event A occurs and I(A) = 0 otherwise.
Pr(A) denotes the probability of an event A. Let x′

t and u′
t denote the state and action sequence generated

by our set of best stabilizing controllers {i′
0, . . . , i′

|L|} ⊆ S. We consider a regret with switching cost where the
unit switching cost is d ≥ 1; i.e., EiB−1:0

[ ∑T
t=0[ct(xt, ut) − ct(x′

t, u′
t)] + d

∑B−1
b=1 I(ib ̸=ib−1) − d

∑|L|
l=1 I(i′

l
̸=i′

l−1)
]
.

Algorithm 3 can easily be generalized to the situation where we have O(U) number of system switches or
controller pool switches. In fact, we can simply add i′

|L|+1, . . . , i′
|L|+O(U) ∈ S to the set of best stabilizing

controllers {i′
0, . . . , i′

|L|} ⊆ S, where |L| = O(U) by Lemma D.3. Thus, it suffices to derive the regret bound
of Algorithm 3, even in the context of general switched systems or ballooning problem. We first provide a
useful lemma to construct a regret bound.

Algorithm 3 DBAR-switching
// Modification: Use this IF-ELSE Statement to select the current policy in Line 2 in Algorithm 1.
if b > 0 and sb = sb−1 and Pb = Pb−1 then

Pick ib = ib−1 with probability exp(−ηbWb(ib−1))
exp(−ηb−1Wb−1(ib−1)) . Sample ib from a distribution pb with

probability 1 − exp(−ηbWb(ib−1))
exp(−ηb−1Wb−1(ib−1)) .

else
Sample ib from a distribution pb. Terminate the algorithm if Pb is empty.

end if

Lemma F.1. In Algorithm 3, let τb = ( (νb+z)
N(|U|+1) )1/2 for every b ≥ 0 with the constants z, ν > 0 that satisfies

τ0 > 0 and τ1
τ0

(β(τ0))2 < 1
2

√
2 . When T ≥ (o(1)exp(O(|U|)))3/2

(N(|U|+1))1/2 , we have

EiB−1:0

B−1∑
b=1

I(ib ̸=ib−1) = O(|U|) + O(η0NT ).

Proof. For all b = 1, . . . , B − 1 such that sb = sb−1, given ib−1, . . . , i0, we have

Pr(ib ̸= ib−1) ≤ 1 − exp(−ηbWb(ib−1))
exp(−ηb−1Wb−1(ib−1)) ≤ 1 − exp(−ηb−1Wb(ib−1))

exp(−ηb−1Wb−1(ib−1))
= 1 − exp(−ηb−1w′

b−1(ib−1)) ≤ 1 − exp(−η0w′
b−1(ib−1))

≤ η0w′
b−1(ib−1) = η0

wb−1(ib−1)
pb−1(ib−1) , (60)

where the second inequality is because ηb = ηb−1 when sb = sb−1, the third inequality uses η0 ≥ ηb for all
b ≥ 0, and the last inequality uses 1 + x ≤ ex for all x ∈ R. Now, given a set of controllers ib ∈ Pb for
b = 0, . . . , B − 1, we can upper-bound

∑B−2
b=0 wb(ib) by tb+1 − tb ≤ τb as follows:

B−2∑
b=0

wb(ib) =
B−2∑
b=0

tb+1−1∑
t=tb

ct(xt, ut) ≤
B−2∑
b=0

tb+1−1∑
t=tb

2Lc1(∥xt∥2 + ∥ut∥2) + Lc2(∥xt∥ + ∥ut∥) + c0,max

≤
B−2∑
b=0

tb+1−1∑
t=tb

2Lc1((1 + 2L2
π)∥xt∥2 + 2π2

0,max) + Lc2((1 + Lπ)∥xt∥ + π0,max) + c0,max
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≤
B−2∑
b=0

2Lc1(1 + 2L2
π)H(τb)∥xtb

∥2 + Lc2(1 + Lπ)H(τb)∥xtb
∥ + τb[4Lc1π2

0,max + Lc2π0,max + c0,max]

= O(exp(O(|U|))H(τbU
)) + O(

B−2∑
b=0

H(τb)) + O(
B−2∑
b=0

τb), (61)

where the first inequality is due to (30), the second inequality is by (12) and (36), the third inequality is
due to using β(·) ≤ 1 to derive

∑tb+1−tb

t=0 [β(t)]2 ≤
∑tb+1−tb

t=0 [β(t)] = H(tb+1 − tb), and the last equality can be
derived in the same fashion with (39). With T ≥ (o(1)exp(O(|U|)))3/2

(N(M+1))1/2 , we obtain by (47) that

O(exp(O(|U|))H(τbU
)) + O(

B−2∑
b=0

H(τb)) + O(
B−2∑
b=0

τb) ≤ O(T ). (62)

Thus, one can write

EiB−1:0

B−1∑
b=1

I(ib ̸=ib−1) =
B−1∑
b=1

Eib:0I(ib ̸=ib−1) =
B−1∑
b=1

Eib−1:0Eib
[I(ib ̸=ib−1) | ib−1:0]

=
B−1∑
b=1

Eib−1:0Pr(ib ̸= ib−1 | ib−1:0)

=
B−1∑
b=1

Eib−1:0 [Pr(sb = sb−1, Pb = Pb−1 | ib−1:0)Pr(ib ̸= ib−1 | sb = sb−1, Pb = Pb−1, ib−1:0)

+ Pr(sb ̸= sb−1 or Pb ̸= Pb−1 | ib−1:0)Pr(ib ̸= ib−1 | sb ̸= sb−1 or Pb ̸= Pb−1, ib−1:0)]

= |L| + U +
B−1∑
b=1

Eib−1:0 [Pr(sb = sb−1, Pb = Pb−1 | ib−1:0)Pr(ib ̸= ib−1 | sb = sb−1, Pb = Pb−1, ib−1:0)

≤ |L| + U +
B−1∑
b=1

Eib−1:0Pr(ib ̸= ib−1 | sb = sb−1, Pb = Pb−1, ib−1:0)

≤ |L| + U +
B−1∑
b=1

Eib−1:0η0
wb−1(ib−1)
pb−1(ib−1)

= |L| + U +
B−1∑
b=1

Eib−2:0Eib−1

[
η0

wb−1(ib−1)
pb−1(ib−1) | ib−2:0

]

= |L| + U +
B−1∑
b=1

η0Eib−2:0

∑
ib−1∈Pb−1

pb−1(ib−1)wb−1(ib−1)
pb−1(ib−1)

≤ |L| + U +
B−1∑
b=1

η0NEib−2:0wb−1(ib−1) (63)

for the controller ib−1 = arg maxi∈Pb−1 wb−1(i). The first equality is because iB−1, . . . , ib+1 does not affect
on I(ib ̸=ib−1) and the second inequality is by (60). Taking expectation of (61) with respect to ib−1:0 and
applying it to (63) yields

EiB−1:0

B−1∑
b=1

I(ib ̸=ib−1) = |L| + U + O(η0NT )

by (62). Using |L| = O(U) in Lemma D.3 and U ≤ |U| completes the proof.

Algorithm 3 uses the same distribution with Algorithm 1 if b = 0 or sb ≠ sb−1 or Pb ̸= Pb−1. It turns out
that even if sb = sb−1 and Pb = Pb−1, the distribution of policy from Algorithm 1 and 3 are indeed the same,
which is motivated by Anava et al. (2015). For the sake of completeness, we state the lemma in this paper.
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Lemma F.2. Let pb and p̃b denote the distribution of policy at batch b = 0, . . . , B −1 resulting from Algorithm
1 and 3, respectively. Then, p and p̃ are the same distribution.

Proof. For b = 0, p0(k) = p̃0(k) = 1
N for all k ∈ P0. For all b = 1, . . . , B −1 such that sb ≠ sb−1 or Pb ̸= Pb−1,

it holds that pb = p̃b. Thus, it suffices to prove the induction step for b = 1, . . . , B − 1 such that sb = sb−1
and Pb = Pb−1. Define Yb :=

∑
k∈Pb

exp(−ηbWb(k)) and suppose that pb−1 = p̃b−1. Thus, we have

p̃b(k) = p̃b−1(k) · exp(−ηbWb(k))
exp(−ηb−1Wb−1(k)) + pb(k) ·

∑
i∈Pb

(1 − exp(−ηbWb(i))
exp(−ηb−1Wb−1(i)) ) · p̃b−1(i)

= pb−1(k) · exp(−ηbWb(k))
exp(−ηb−1Wb−1(k)) + pb(k) ·

∑
i∈Pb

(1 − exp(−ηbWb(i))
exp(−ηb−1Wb−1(i)) ) · pb−1(i)

= exp(−ηb−1Wb−1(k))
Yb−1

· exp(−ηbWb(k))
exp(−ηb−1Wb−1(k))

+ exp(−ηbWb(k))
Yb

∑
i∈Pb

(1 − exp(−ηbWb(i))
exp(−ηb−1Wb−1(i)) )exp(−ηb−1Wb−1(k))

Yb−1

= exp(−ηbWb(k))
Yb−1

+ exp(−ηbWb(k))
Yb

∑
i∈Pb

exp(−ηb−1Wb−1(i)) − exp(−ηbWb(i))
Yb−1

= exp(−ηbWb(k))
Yb−1

+ exp(−ηbWb(k))
Yb

· Yb−1 − Yb

Yb−1
= exp(−ηbWb(k)) · Yb−1

Yb · Yb−1
= pb(k),

where the first equality is due to the law of total probability, the second equality is due to the induction
hypothesis, and the fifth equality is by Pb = Pb−1. Notice that sb = sb−1 yields ηb = ηb−1 and Wb(k) ≥
Wb−1(k), and thus 0 ≤ exp(−ηbWb(k))

exp(−ηb−1Wb−1(k)) ≤ 1; i.e., the probability distribution is properly defined for every
batch. This completes the proof.

Theorem F.3 (Regret with switching costs bound with known |U|). In Algorithm 3, let τb = ( (νb+z)
N(|U|+1) )1/2

for every b ≥ 0 with the constants z, ν > 0 that satisfies τ0 > 0 and τ1
τ0

(β(τ0))2 < 1
2

√
2 . Also, let η0 =

O( (|U|+1)2/3

T 2/3N1/3d1/3 ). When T ≥ max{ (o(1)exp(O(|U|)))3/2

(N(|U|+1))1/2 , |U|3/2d
(N(|U|+1))1/2 , N(|U| + 1)d}, we have

EiB−1:0

[
T∑

t=0
[ct(xt, ut) − ct(x′

t, u′
t)] + d

B−1∑
b=1

I(ib ̸=ib−1) − d

|L|∑
l=1

I(i′
l
̸=i′

l−1)

]
= Õ(T 2/3N1/3(|U| + 1)1/3d1/3) + o(T ),

which implies that we achieve a sublinear regret bound. Moreover, when limt→∞ H(t) < ∞ and T ≥
max{ exp(O(|U|))

d2/3 , |U|3/2d
(N(|U|+1))1/2 , N(|U| + 1)d}, we have

EiB−1:0

[
T∑

t=0
[ct(xt, ut) − ct(x′

t, u′
t)] + d

B−1∑
b=1

I(ib ̸=ib−1) − d

|L|∑
l=1

I(i′
l
̸=i′

l−1)

]
= Õ(T 2/3N1/3(|U| + 1)1/3d1/3).

Proof. The distribution of policy is the same for Algorithm 1 and 3 by Lemma F.2. Thus, we can use Theorem
D.8 with Lemma F.1 to achieve

EiB−1:0

[
T∑

t=0
[ct(xt, ut) − ct(x′

t, u′
t)] + d

B−1∑
b=1

I(ib ̸=ib−1) − d

|L|∑
l=1

I(i′
l
̸=i′

l−1)

]

≤ Õ(|U| + 1)
η0

+ η0N

2 [exp(O(|U|))O(τB−1H(τB−1)) + O(
B−1∑
b=0

(τb)2)]

+ O(
B−1∑
b=0

H(τb)) + O(d|U|) + O(dη0NT ), (64)
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since d ≥ 1 and
∑L

l=1 I(i′
l
̸=i′

l−1) ≥ 0. Notice that (τb)b≥0 is the same for Algorithm 1 and 3. Accordingly, we
still have B = O(T 2/3N1/3(|U| + 1)1/3) by (45) and T ≥ N(|U| + 1)d ≥ N(|U| + 1). We also still have (46)
and (47). Thus, with T ≥ (o(1)exp(O(|U|)))3/2

(N(|U|+1))1/2 and T ≥ |U|3/2d
(N(|U|+1))1/2 , we obtain that

η0N exp(O(|U|))O(τB−1H(τB−1)) = o(d−1/3) exp(O(|U|)) = O(T 2/3N1/3(|U| + 1)1/3d−1/3).
O(d|U|) = O(T 2/3N1/3(|U| + 1)1/3d1/3).

Also, with T ≥ N(|U| + 1)d, we have

O(dη0NT ) = O(T 2/3N1/3(|U| + 1)1/3d1/3).

Combining all the above equalities with (64), one can write

EiB−1:0

[
T∑

t=0
[ct(xt, ut) − ct(x′

t, u′
t)] + d

B−1∑
b=1

I(ib ̸=ib−1) − d

|L|∑
l=1

I(i′
l
̸=i′

l−1)

]

= O(T 2/3N1/3(|U| + 1)1/3d1/3) + O(
B−1∑
b=0

H(τb)).

Using (17) shows a sublinear regret bound. When limt→∞ H(t) < ∞, (52) is modified to

η0N exp(O(|U|))O(τB−1H(τB−1)) = O(T 2/3N1/3(|U| + 1)1/3d1/3),

only with T ≥ exp(O(|U|))
d2/3 . This completes the proof.

G Numerical Experiment Details

In the two following subsections, we will present experiment details on linear and nonlinear systems, respectively.
Since our Algorithm 1 only hinges on the system state norm as a context, we can avoid computational burden;
thus, Apple M1 Chip with 8-Core CPU is sufficient for the experiments. The error bars (shaded area) in
all the figures in the paper report 95% confidence intervals based on the standard error. We calculate the
standard error by randomly sampling 100 seeds to consider the variability of our experimental results. The
first factor of variability is the randomness of selecting the policy determined by the probability calculated
in Algorithm 1. The second factor is the randomness of adversarial disturbances stated in each experiment.
For example, sinusoidal noise does not involve any randomness but the uniform random walk contains the
randomness in the difference between two consecutive noises.

G.1 Experiments for the Linear system

In this subsection, we introduce the implementation details and present more experiments on the linear
system (6) discussed in Example 1 of Section 5. The random matrices A∗, B∗ ∈ R10×10 generated by seed 42
is as follows:

A∗ =



−0.250 0.901 0.463 0.197 −0.687 −0.688 −0.883 0.732 0.202 0.416
−0.958 0.939 0.664 −0.575 −0.636 −0.633 −0.391 0.049 −0.136 −0.417
0.223 −0.721 −0.415 −0.267 −0.087 0.570 −0.600 0.028 0.184 −0.907
0.215 −0.658 −0.869 0.897 0.931 0.616 −0.390 −0.804 0.368 −0.119

−0.755 −0.009 −0.931 0.818 −0.482 0.325 −0.376 0.040 0.093 −0.630
0.939 0.550 0.878 0.789 0.195 0.843 −0.823 −0.608 −0.909 −0.349

−0.222 −0.457 0.657 −0.286 −0.438 0.085 −0.718 0.604 −0.850 0.973
0.544 −0.602 −0.988 0.630 0.413 0.458 0.542 −0.851 −0.283 −0.768
0.726 0.246 −0.338 −0.872 −0.378 −0.349 0.459 0.275 0.774 −0.055

−0.760 0.426 0.521 0.122 0.541 −0.012 0.045 −0.144 −0.949 −0.784


,
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B∗ =



−0.937 0.272 −0.371 0.017 0.815 −0.501 −0.179 0.511 −0.542 −0.846
−0.420 −0.677 0.859 0.616 0.266 0.742 0.607 −0.626 0.785 0.078
0.614 0.792 −0.363 −0.779 −0.544 −0.145 0.636 0.721 −0.986 0.021

−0.165 −0.555 −0.760 −0.324 0.885 −0.353 0.037 0.406 −0.272 0.943
0.924 −0.496 −0.005 −0.398 −0.430 −0.926 0.219 0.005 −0.897 −0.442
0.816 −0.520 −0.710 −0.021 0.971 −0.515 0.344 0.523 −0.524 0.456

−0.264 0.264 0.267 0.071 −0.819 0.670 −0.358 −0.626 −0.918 0.181
0.355 −0.966 0.024 −0.547 0.290 −0.651 0.381 −0.226 0.873 −0.724

−0.317 −0.773 0.849 0.754 −0.484 0.319 0.634 0.110 0.059 −0.516
−0.813 0.794 0.800 0.266 −0.321 −0.301 0.451 0.794 0.774 0.559


.

The generated K∗ which renders the absolute values of all eigenvalues of A∗ + B∗K∗ less than 0.8 is

K∗ =



−40.748 12.262 −39.303 −4.808 −8.199 −20.971 16.954 17.300 61.898 −4.465
31.536 −10.692 27.743 3.956 6.884 15.973 −12.235 −13.553 −45.862 3.885

−142.210 43.435 −137.480 −17.793 −28.937 −73.009 61.443 60.575 218.313 −15.583
93.148 −30.162 88.110 11.829 19.573 48.086 −39.686 −40.256 −141.263 10.178

−64.436 18.536 −63.263 −8.220 −12.714 −32.839 28.580 27.373 98.987 −7.165
−67.582 21.285 −63.397 −7.021 −13.663 −33.861 27.655 28.119 100.042 −8.308
101.088 −32.099 95.308 12.523 21.119 51.371 −41.699 −42.555 −152.249 12.494
−94.335 29.944 −87.537 −10.944 −19.780 −47.585 38.049 39.530 139.826 −10.609
20.847 −6.058 20.699 2.767 3.727 10.752 −10.122 −8.425 −32.410 2.621
6.452 −1.620 5.426 0.085 0.618 2.488 −2.083 −2.061 −8.201 1.019


.

We construct a controller pool by selecting each entry from K∗ and multiplying it by 1.1. Among 101
controllers including K∗, 43 controllers are stabilizing controllers, and the others are destabilizing controllers.
We consider three different noises for the experiments. To perform a fair comparison, the bounding constant
wmax is set to 1.

(a) Sanity check: Gaussian noise with mean 0.3 and standard deviation 0.1, truncated to[−0.4, 1]

(b) Sinusoidal noise wt =
[

sin
( t

5π

)
, sin

( t

11π

)]′
⊗ 15

(c) Uniform random walk, where w0 = Uniform
[

1
3 − 2

3T
,

1
3 + 2

3T

]10

and wt − wt−1 follows Uniform
[

− 2
3T

,
2

3T

]10
,

where T is time horizon. One can easily see that for uniform random walk, |wT | ≤ 1 for any T . Notice that
we use statistical (Gaussian) noise for the sanity check, and the rest are the adversarial disturbances.

We perform the ablation study of Algorithm 1, which means that we consider four scenarios: (fixed, dynamic)
batch length and (fixed, adaptive) learning rate. For all the experiments implementing the algorithm, we use
T = 1200, η0 = 0.025, γ = 2.5, α0 = 1.01, and x0 = [100, 200]′ ⊗ 15. For the dynamic batch length, we consider
τ0 = 7 and τb = ⌈τ0 · ( b+10

10 )0.5⌉. It is well known that every (asymptotically) stabilizing controller in the
linear system is indeed exponentially stabilizing controller (Khalil, 2015). Hence, we use β(t) = 0.99t without
relaxing the assumptions on stabilizing controllers. Finally, we use δ = γwmax

1−β(τ0) . Since the sinusoidal noise
case is already presented in Figure 2, we only present truncated Gaussian noise case and uniform random
walk case here.

In Figures 2, 6, and 7, we observe that each component of DBAR, a dynamic batch length and an adaptive
learning rate, jointly improves both the stability and the regret regardless of the noise form. For example, a
dynamic batch length delays the time that large state norms occur during learning, but does not necessarily
stabilize that state norm by itself (see Figures 7(a) and 7(b)). However, when applied together with an
adaptive learning rate, a potential multiplicative exponential term is mitigated (see Remark 4.8) and the
state norm is thus stabilized. This can be observed in Figures 2(d), 6(d), and 7(d) when comparing fixed
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(a) Stability analysis (b) Regret analysis (c) Adaptive learning rate under
dynamic batch length

(d) Dynamic batch length under
adaptive learning rate

Figure 6: The stability and the regret in the linear system under truncated Gaussian noise. Ablation study
of the algorithm is presented.

(a) Stability analysis (b) Regret analysis (c) Adaptive learning rate under
dynamic batch length

(d) Dynamic batch length under
adaptive learning rate

Figure 7: The stability and the regret in the linear system under Uniform random walk. Ablation study of
the algorithm is presented.

and dynamic batch lengths under an adaptive learning rate. This results from using a non-decreasing batch
length where the increasing ratio between two consecutive batch lengths is determined to converge to 1 (see
Assumption 3.1). On the other hand, an adaptive learning rate effectively lowers the state norm at the time
that large state norms occur without delay, since the learning rate adaptively decreases whenever the agent
faces large state norm. This can be seen in 2(c), 6(c), and 7(c), the ablation study about the comparison
between fixed and adaptive learning rates under a dynamic batch length. Thus, DBAR effectively stabilizes
the state norm below γwmax and minimizes the regret, where the two components support each other.

G.2 Experiments for the Nonlinear system

In this subsection, we introduce the implementation details and present more experiments on the nonlinear
ball-beam system introduced in Example 2 of Section 5. To study this continuous-time nonlinear system,
we first derive the first-order state representation of the leader system (7) with the states (y1, y2, y3, y4) =
(x, ẋ, −9.81Bθ, −9.81Bθ̇) ∈ R4 and the action v = −9.81Bux:

ẏ1 = y2, ẏ2 = 9.81B sin
( y3

9.81B

)
+ y1y2

4
B(9.81)2 + 3w, ẏ3 = y4, ẏ4 = v,

where wx is a sinusoidal noise sin
(

t
7π

)
and wmax = 1. A nested saturating control policy is known to

successfully stabilize the leader ball-beam system if the correct parameters are given, but it does not
necessarily exponentially stabilize the system (Barbu et al., 1997). This necessitates our approach of
extending the notion of stabilizing controllers beyond exponential assumptions. In this experiment, we aim
to learn the parameters of the best stabilizing controller. We choose a nested saturating control policy v′
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determined by three positive parameters (p, k1, k2):

ϵ = 1√
1 + y2

1 + y2
2

, p1 = p, p2 = p

ϵ
, p3 = p

ϵ2 , p4 = p

ϵ3 ,

z1 = y1 + k1y2 + k1y3 + y4, z2 = y2 + k2y3 + y4, z3 = y3 + y4, z4 = y4,

v′ = σp4(z4 + σp3(z3 + σp2(z2 + σp1(z1)))),

where σp(z) is the saturating function defined as p if z > p, −p if z < −p, and z if |z| ≤ p. We consider the
controller pool

V ′ = {v′ : p ∈ {2, 16, 30, 44, 58, 72, 86, 100}, k1 ∈ {2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5},

k2 ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5}},

which has a total of 800 controllers. Moreover, the follower systems are formulated by generating A, Ã in
(8) as random matrices, where each entry is independently sampled from Unif[0, 1]. For the action uz of the
follower systems, we consider a linear policy as in Example 1. Then, the action is parameterized by uz = Kzz,
where Kz ∈ R96×96. We let Kz be a multiple of identity matrix, and the diagonal entry is selected from the
pool {−45, −47.5, −50, −52.5, −55, −60, −70, −80, −90, −100}. Thus, considering the actions of both leader
and followers, the controller pool contains 8000 controllers. Among them, we do not know if each controller
stabilizes the system.

For simplicity, we perform forward-Euler discretization on the system with a sampling time 0.01. The resulting
discrete-time states and actions are denoted by [yt, zt] and [vt

y, vt
z] at tth sampling time. We use the cost

function ct(yt, zt, vt
y, vt

z) = ∥yt∥2 + ∥zt∥2 + ∥vt
y∥2 + ∥vt

z∥2 to stabilize the ball position and the beam angle
towards 0. We again perform the ablation study of Algorithm 1. For the experiments implementing the
algorithm, we use T = 5000, η0 = 0.25, γ = 1.5, α0 = 1.01, y0 = [−32, 24, 5.6, 24], and z0 = [10, 10, . . . ] ∈ R96.
For the dynamic batch length, we consider τ0 = 9 and τb = ⌈τ0 · ( b+41

40 )0.5⌉.

Unlike the choice of β(t) in Section G.1, we select the stabilizing controller only to satisfy (asymptotic) ISS
in Definition 2.3, instead of exponential ISS. To deeply study this notion, we consider different polynomially
decreasing series (which is not exponentially decreasing) to be the candidates for β(t):

β1(t) = min
{

10
t1.05 , 1

}
, β2(t) = min

{
10

t1.08 , 1
}

.

Figures 3(b), 3(c),4(b), and 4(c) show the stability and regret analysis of the system under β(t) and β̃(t).
In our experiment, there are 3400 controllers out of 8000 controllers that induces the system to explode,
starting from the initial state. However, there exist far more destabilizing controllers within this pool, since
most of 5600 controllers are only locally stabilizing controllers, meaning that the system is stabilized only at
some initial states. With only few stabilizing controllers in the pool, Figures 3(b) and 3(c) illustrate that
a dynamic batch length by itself still suffers from a multiplicative exponential term regarding a series of
destabilizing controllers. However, for both β1(t) and β2(t), even though H(t) and O(

∑t
i=1

1
i ) are close, one

can observe from Figures 3(b), 3(c),4(b), and 4(c) that the combination of the two components of DBAR
effectively resolves this malignant term and the resulting closed-loop system enjoys both asymptotic system
stability and the improved regret (see Table 1).
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