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ABSTRACT

We present a generic image-to-image translation framework, Pixel2Style2Pixel
(pSp). Our pSp framework is based on a novel encoder network that directly gen-
erates a series of style vectors which are fed into a pretrained StyleGAN generator,
forming the extendedW+ latent space. We first show that our encoder can directly
embed real images into W+, with no additional optimization. We further intro-
duce a dedicated identity loss which is shown to achieve improved performance
in the reconstruction of an input image. We demonstrate pSp to be a simple archi-
tecture that, by leveraging a well-trained, fixed generator network, can be easily
applied on a wide-range of image-to-image translation tasks. Solving these tasks
through the style representation results in a global approach that does not rely on
a local pixel-to-pixel correspondence and further supports multi-modal synthesis
via the resampling of styles. Notably, we demonstrate that pSp can be trained to
align a face image to a frontal pose with no labeled data and generate multi-modal
results for ambiguous tasks such as conditional face generation from sketches and
segmentation maps.

1 INTRODUCTION

In recent years, Generative Adversarial Networks (GANs) have significantly advanced image syn-
thesis, particularly on face images. State-of-the-art image generation methods have achieved high
visual quality and fidelity, and can now generate images with phenomenal realism. Most notably,
StyleGAN (Karras et al., 2019; 2020) proposes a novel style-based generator architecture and attains
state-of-the-art visual quality on high-resolution images. Moreover, it has been demonstrated that it
has a disentangled latent space,W (Yang et al., 2019; Collins et al., 2020; Shen et al., 2020), which
may offer control and editing capabilities.

Recently, numerous methods have shown competence in controlling StyleGAN’s latent space and
performing meaningful manipulations inW (Jahanian et al., 2019; Shen et al., 2020; Tewari et al.,
2020; Härkönen et al., 2020). To perform such edits on real images, one needs to invert the image
into StyleGAN’s latent space, i.e., retrieve the latent code that reconstructs the image. However, it
has been shown that inverting a real image into a 512-dimensional vector w ∈ W does not lead to
an accurate reconstruction. Motivated by this, it has become common practice (Abdal et al., 2019;
2020; Baylies, 2019; Zhu et al., 2020a; Adbal et al., 2020) to encode real images into an extended
latent space,W+, defined by the concatenation of 18 different 512-dimensional w vectors, one for
each input layer of StyleGAN. Nevertheless, many methods resort to using per-image optimization
over W+, requiring several minutes for a single image. To accelerate this optimization process,
some methods (Baylies, 2019; Zhu et al., 2020a) have trained an encoder to infer an approximate
vector inW+ which serves as a good initial point from which additional optimization is required.
However, a fast, direct, and accurate learned inversion of real images intoW+ remains a challenge.

In this paper, we focus on the broader task of latent space embedding, which aims to retrieve the
latent vector that generates a desired, not necessarily known, image. We do so by introducing a
novel encoder architecture tasked with encoding an arbitrary image directly intoW+. The encoder
is based on a Feature Pyramid Network (Lin et al., 2017), where style feature vectors are extracted
from different pyramid scales and inserted directly into a fixed, pretrained StyleGAN generator in
correspondence to their spatial scales. Our encoder intoW+, together with the StyleGAN decoder,
form a generic encoder-decoder network that benefits many image-to-image translation tasks. Fo-
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cusing on face images, we first demonstrate our method’s ability to successfully reconstruct a given
image while preserving identity and other attributes. We then present numerous image-to-image
translation applications. In a sense, our method performs Pixel2Style2Pixel translation, as every
image is first encoded into style vectors and then into an image, and is therefore dubbed pSp.

While many previous approaches to solving image-to-image translations tasks involve dedicated
architectures specific for solving a single problem, we follow the spirit of pix2pix (Isola et al., 2017)
and define a generic framework able to solve a wide range of tasks, all using the same architecture.
Besides the simplification of the training process, as no adversary discriminator needs to be trained,
using a pretrained StyleGAN generator offers several intriguing advantages over previous works.
Many image-to-image architectures explicitly feed the generator with residual feature maps from
the encoder (Isola et al., 2017; Wang et al., 2018), creating a strong locality bias (Richardson &
Weiss, 2020). In contrast, our generator is governed only by the styles with no direct spatial input.
The advantage of such a global approach is most evident in the task of Face Frontalization, where
our encoder can be trained to align a given face image to a frontal pose with no labeled data. Another
notable advantage of the intermediate style representation is the inherent support for multi-modal
synthesis for ambiguous tasks such as face generation from sketches, segmentation maps, or low-
resolution images. In such tasks, the generated styles can be resampled to create variations of the
output image with no change to the architecture or training process.

The main contributions of this paper are: (i) a novel StyleGAN encoder able to directly encode real
face images into theW+ target latent domain; and (ii) a generic end-to-end framework for solving
image-to-image translation tasks.

2 RELATED WORK

Latent Space Embedding With the rapid evolution of GANs, many works have tried to under-
stand and control their latent space. A specific task that has received substantial attention is GAN
Inversion — where the latent vector from which a pretrained GAN most accurately reconstructs a
given, known image, is sought. Motivated by its state-of-the-art image quality and latent space se-
mantic richness, many recent works have used StyleGAN (Karras et al., 2019; 2020) for this task.
Generally, inversion methods either directly optimize the latent vector to minimize the error for the
given image (Lipton & Tripathi, 2017; Creswell & Bharath, 2018; Abdal et al., 2019; 2020), train an
encoder to map the given image to the latent space (Perarnau et al., 2016; Creswell & Bharath, 2018;
Pidhorskyi et al., 2020; Guan et al., 2020; Nitzan et al., 2020), or use a hybrid approach combining
both (Baylies, 2019; Zhu et al., 2020a). Typically, methods performing optimization are superior in
reconstruction quality to a learned encoder mapping, but require a substantially longer time. Unlike
the above methods, our encoder can accurately and efficiently embed a given face image into the
extended latent spaceW+ of a fixed, pretrained StyleGAN generator, with no further optimization.

Image-to-Image Image-to-Image translation techniques aim at learning a conditional image gen-
eration function that maps an input image of a source domain to a corresponding image of a target
domain. Isola et al. (2017) first introduced the use of conditional GANs to solve various image-
to-image translation tasks. Since then, their work has been extended for many scenarios: high-
resolution synthesis (Wang et al., 2018), unsupervised learning (Liu et al., 2017; Zhu et al., 2017a;
Katzir et al., 2019; Lira et al., 2020), multi-modal image synthesis (Zhu et al., 2017b; Huang et al.,
2018; Choi et al., 2020), and conditional image synthesis (Park et al., 2019; Li et al., 2019; Liu et al.,
2019b; Zhu et al., 2020b; Chen et al., 2020). The aforementioned works have constructed dedicated
architectures, which require training the generator network.

Latent-Space Manipulation Recently, numerous papers have presented diverse methods to learn
semantic edits of the latent code. A popular approach is finding linear directions that correspond
to changes in a given binary labeled attribute, such as young ↔ old, or no-smile ↔ smile (Shen
et al., 2020; Goetschalckx et al., 2019; Denton et al., 2019; Adbal et al., 2020). Tewari et al. (2020)
utilize a pretrained 3DMM to learn semantic face edits in the latent space. Jahanian et al. (2019) find
latent space paths that correspond to a specific transformation, such as zoom or rotation, in a self-
supervised manner. Härkönen et al. (2020) find useful paths in an unsupervised manner by using the
principal component axes (PCA) of an intermediate activation space. Finally, Collins et al. (2020)
perform local semantic editing by manipulating corresponding components of the latent code.
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Figure 1: Our pSp architecture. Feature maps are first extracted using a standard feature pyramid
over a ResNet backbone. For each of the 18 target styles, a small mapping network is trained to
extract the learned styles from the corresponding feature map, where styles (0-2) are generated from
the small feature map, (3-6) from the medium feature map, and (7-18) from the largest feature
map. The mapping network, map2style, is a small fully convolutional network, which gradually
reduces spatial size using a set of 2-strided convolutions followed by LeakyReLU activations. Each
generated 512 vector, is fed into StyleGAN, starting from its matching affine transformation, A.

3 THE PSP FRAMEWORK

Our pSp framework builds upon the representative power of a pretrained StyleGAN generator and
theW+ latent space. To utilize this representation one needs a strong encoder that is able to match
each input image to an accurate encoding in the latent domain. A simple technique to embed into
this domain is directly encoding a given input image intoW+ using a single 512-dimensional vector
obtained from the last layer of the encoder network, thereby learning all 18 style vectors together.
However, such an architecture presents a strong bottleneck making it difficult to fully represent the
finer details of the original image and therefore limiting the reconstruction quality.

In StyleGAN, the authors have shown that the different style inputs correspond to different levels
of detail, which are roughly divided into three groups — coarse, medium, and fine. Following this
observation, in pSp we extend an encoder backbone with a feature pyramid (Lin et al., 2017), gen-
erating three levels of feature maps from which styles are extracted using a simple intermediate net-
work — map2style — shown in Figure 1. The styles, aligned with the hierarchical representation,
are then fed into the generator in correspondence to their scale to generate the output image, thus
completing the translation from input pixels to output pixels, through the intermediate style repre-
sentation. Therefore, our architecture, pSp, is an end-to-end image-to-image translation framework.
The complete architecture is illustrated in Figure 1.

As in StyleGAN, we further define w to be the average style vector of the pretrained generator.
Given an input image, x, the output of our model is then defined as pSp(x) := G(E(x) + w) where
E(·) and G(·) denote the encoder and StyleGAN generator, respectively. In this formulation, our
encoder aims to learn the latent code with respect to the average style vector. We find that this results
in better initialization.

3.1 LOSS FUNCTIONS

While the style-based translation is the core part of our framework, the choice of losses is also
crucial. Our encoder is trained using a weighted combination of several objectives. First, we utilize
the pixel-wise L2 loss,

L2 (x) = ||x− pSp(x)||2.

In addition, to learn perceptual similarities, we utilize the LPIPS (Zhang et al., 2018) loss, which
has been shown to better preserve image quality (Guan et al., 2020) compared to the more standard
perceptual loss (Johnson et al., 2016):

LLPIPS (x) = ||F (x)− F (pSp(x))||2,

where F (·) denotes the perceptual feature extractor.
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To encourage the encoder to output latent style vectors closer to the average latent vector, we addi-
tionally define the following regularization loss:

Lreg (x) = ||E(x)− w||2.

Similar to the truncation trick introduced in StyleGAN, we find that adding this regularization in
the training of our encoder improves image quality without harming the fidelity of our outputs,
especially in some of the more ambiguous tasks explored below.

The Identity Loss One of the main challenges of face generation tasks is the ability to preserve
identity between the input and output images. Since identity preservation is a crucial part of face
reconstruction tasks, it is important to integrate this objective into the overall loss function. There-
fore, we incorporate a dedicated recognition loss measuring the cosine similarity between the output
image and its source,

LID (x) = 1− 〈R(x), R(pSp(x)))〉 ,

where R is a pretrained ArcFace (Deng et al., 2019) network for face recognition. The input, x, and
output, pSp(x), are cropped around the face and resized to 112× 112 before being fed into R.

In summary, the total loss function is defined as

L(x) = λ1L2(x) + λ2LLPIPS(x) + λ3LID(x) + λ4Lreg(x),

where λ1, λ2, λ3, λ4 are constants defining the loss weights. Constants and other implementation
details can be found in Appendix A.1.

3.2 THE BENEFITS OF THE STYLEGAN DOMAIN

The translation between images through the style domain differentiates pSp from many standard
image-to-image translation frameworks, as it makes our model operate globally instead of locally,
without requiring pixel-to-pixel correspondence. This is a desired property as it has been shown
that the locality bias limits current methods when handling non-local transformations (Richardson
& Weiss, 2020). Moreover, previous works (Karras et al., 2019; Collins et al., 2020) have demon-
strated that the disentanglement of semantic objects learned by StyleGAN is due to its layer-wise
representation. This ability to independently manipulate semantic attributes leads to another desired
property: the support for multi-modal synthesis. As some translation tasks are ambiguous, where a
single input image may correspond to several outputs, it is desirable to be able to sample these possi-
ble outputs. While this requires specialized changes in standard image-to-image architectures (Zhu
et al., 2017b; Huang et al., 2018), our framework inherently supports this by simply sampling style
vectors. In practice, this is done by randomly sampling a vector w ∈ R512 and generating a corre-
sponding latent code in W+ by replicating w. Style mixing is then performed by replacing select
layers of the computed latent with those of the randomly generated latent, possibly with an α pa-
rameter for blending between the two styles. This is illustrated in Figure 7a in Appendix A. There,
layers 1-7 are selected from the input latent while layers 8-18 are taken from the sampled vector
allowing one to obtain outputs with similar coarse and medium features, but varying fine features.

4 APPLICATIONS AND EXPERIMENTS

To explore the effectiveness of our approach we evaluate our pSp framework on numerous image-
to-image translation tasks.

4.1 STYLEGAN INVERSION

We start by evaluating the usage of the pSp framework for StyleGAN Inversion, that is, finding the
latent code of real images in the latent domain. We compare our method to the ALAE encoder (Pid-
horskyi et al., 2020) and to the encoder from IDInvert (In-Domain Invert) (Zhu et al., 2020a). The
ALAE method proposes a StyleGAN-based autoencoder, where the encoder is trained alongside the
generator to generate latent codes. In IDInvert, real images are embedded into the latent domain
of a pretrained StyleGAN by first encoding the image into W+ and then directly optimizing over
the generated image to tune the latent. For a fair comparison with our method, we compare with
IDInvert where no further optimization is performed after computing the encoding of a given image.
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Figure 2: Results of pSp for StyleGAN inversion compared to other approaches on CelebA-HQ.
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Figure 3: (a) Ablation of the pSp encoder over CelebA-HQ. (b) The importance of the identity loss.

Results Figure 2 shows a qualitative comparison between the methods. One can see that the
ALAE method, operating in theW domain, cannot accurately reconstruct the input images. While
IDInvert (Zhu et al., 2020a) better preserves the image attributes, it still fails to accurately preserve
identity and the finer details of the input image. In contrast, our method is able to preserve identity
while also reconstructing fine details such as lighting, hairstyle, and glasses.

Next, we conduct an ablation study to analyze the effectiveness of the pSp architecture. We compare
our architecture to two simpler variations. First, we define an encoder generating a 512-dimensional
style vector in the W latent domain, extracted from the last layer of the encoder network. We
then expand this and define an encoder with an additional layer to transform the 512-dimensional
feature vector to a full 18 × 512 W+ vector. Figure 3a shows that while this simple extension
intoW+ significantly improves the results, it still cannot preserve the finer details generated by our
architecture. In Figure 3b we show the importance of the identity loss in the reconstruction task.

Finally, Table 4a presents a quantitative evaluation measuring the different encoders examined
above. Our pSp model is able to better preserve the original images in terms of both perceptual
similarity and identity. To make sure the similarity score is independent of our loss function, we
utilize the Curricularface (Huang et al., 2020) method for evaluation.
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Method ↑ Similarity ↓ LPIPS ↓MSE ↓ Runtime

ALAE 0.06 0.32 0.15 0.207
IDInvert 0.18 0.22 0.06 0.032

W Encoder 0.35 0.23 0.06 0.064
NaiveW+ 0.49 0.19 0.04 0.064
pSp 0.56 0.17 0.03 0.105

(a)

Method ↑ Similarity ↓ Runtime
90◦ 70◦ 50◦ 30◦

R&R 0.34 0.56 0.66 0.7 1.5

pSp 0.32 0.52 0.60 0.63 0.1

(b)

Figure 4: (a) Quantitative results for image reconstruction on CelebA-HQ. (b) Results for Face
Frontalization on the FEI Face Database split by rotation angle of the face in the input image.
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Figure 5: Comparison of face frontalization methods.

4.2 FACE FRONTALIZATION

Face frontalization is a challenging task for image-to-image translation frameworks due to the
required non-local transformations and the lack of paired training data. RotateAndRender
(R&R) (Zhou et al., 2020) overcome this challenge by incorporating a geometric 3D alignment
process before the translation process. Alternatively, we show that our style-based translation mech-
anism is able overcome these challenges, even when trained with no labeled data.

Methodology and details For this task, training is the same as the encoder formulation with two
important changes. First, we randomly flip the target image, thus creating inconsistencies in terms
of pose compared to the input image. This guides the model towards generating a frontalized face,
as the true target pose is unknown. While this may seem minor, without this augmentation the
model would simply learn to encode the input image, matching its pose as well as identity. Next, in
frontalization, as we are less interested in the background region compared to the face region and
its identity, we also change the weights of the loss objective. In particular, we decrease the weights
of the LPIPS and L2 loss functions, and give more weight to the losses computed on the inner part
of the face, focusing the model on the inner region while reducing the importance of background
preservation. As shown below, these changes to the training objective are enough for the model to
generate realistic frontal faces, while also preserving identity.

Results Results are illustrated in Figure 5. When trained with the same data, pix2pixHD is unable
to converge to satisfying results as it is much more dependent on the correspondence between the
input and output pairs. Conversely, our method is able to handle the task successfully, generating
realistic frontal faces, which are comparable to the more involved RotateAndRender approach. This
shows the benefit of using a pretrained StyleGAN for image translation, as it allows us to achieve
visually-pleasing results even with weak supervision. Table 4b provides a quantitative evaluation
on the FEI Faces Database (Thomaz & Giraldi, 2010). While R&R outperforms pSp, our simple
approach provides an elegant alternative, without requiring specialized alignment steps.
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Input pix2pixHD DFD pSp

(a)

Input pix2pixHD SPADE CC FPSE pSp

(b)

(c)

Method Segmentation Sketch

pix2pixHD 94.72% 93.34%
SPADE 95.25% N/A
CC FPSE 93.06% N/A

(d)

Figure 6: (a) Comparison of sketches presented in DeepFaceDrawing. (b) Comparisons to other
label-to-image methods on CelebAMask-HQ. (c) Multi-modal outputs using pSp with style-mixing.
(d) Human evaluation results on CelebA-HQ for Conditional Image Synthesis tasks. Each cell
denotes the percentage of users who favored pSp over the listed method.

4.3 CONDITIONAL IMAGE SYNTHESIS

Conditional image synthesis aims at generating photo-realistic images conditioned on certain input
types. In this section, our pSp architecture is tested on two conditional image generation tasks:
generating high-quality face images from sketches and semantic label maps. We demonstrate that,
with only minimal changes, our encoder successfully utilizes the expressiveness of StyleGAN to
generate high-quality and diverse outputs. Additionally, an ideal mapping framework should be able
to generate multiple diverse outputs for a given input. To achieve this, we utilize the multi-modal
synthesis approach described in Section 3.2.

Methodology and details The training of the two conditional generation tasks is identical to that
of the encoder for StyleGAN inversion except for the omission of the identity loss and the addition
of the regularization loss. To generate multiple images at inference time, we perform style-mixing,
taking layers (1 − 7) from the latent code of the input image and layers (8 − 18) from a randomly
drawn w vector.

4.3.1 FACE FROM SKETCH

Common approaches for sketch-to-image synthesis incorporate hard constraints that require pixel-
wise correspondence between the input sketch and generated image, making them ill-suited when
given incomplete sketches. DeepFaceDrawing (Chen et al., 2020) address this using a set of dedi-
cated mapping networks. We show that pSp provides a simple alternative to past approaches.

Dataset Construction As there are currently no publicly available datasets representative of hand-
drawn face sketches, we elect to construct our own dataset, which we describe in Appendix A.2.
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Results Figure 6a compares the results of our method to those of pix2pixHD and DeepFaceDraw-
ing. As no code release is available for DeepFaceDrawing, we compare directly with sketches and
results published in their paper. Due to the hard constraints of pix2pixHD, they are unable to handle
the abstract sketches and obtain poor visual results. While DeepFaceDrawing obtain more visu-
ally pleasing results compared to pix2pixHD, they are still limited in their diversity. Conversely,
although our model is trained on a different dataset, we are still able to generalize well to their
sketches. Notably, we observe our ability to obtain more diverse outputs that better retain finer de-
tails (e.g. facial hair). Another limitation of DeepFaceDrawing is its focus on frontal images. We
therefore illustrate our model’s ability to generate high-fidelity outputs from non-frontal sketches in
Figure 13. As we are unable to directly evaluate DeepFaceDrawing on our constructed dataset, we
compare our results only to those of pix2pixHD, trained and evaluated with the same data.

4.3.2 FACE FROM SEGMENTATION MAP

Here, we evaluate using pSp for synthesizing face images from segmentation maps. In addition
to pix2pixHD, we compare our approach to two additional state-of-the-art label-to-image methods:
SPADE (Park et al., 2019), and CC FPSE (Liu et al., 2019b), both of which are based on pix2pixHD.

Results In Figure 6b we provide a visual comparison of the competing approaches on the
CelebAMask-HQ dataset containing 19 semantic categories. As the competing methods are based
on pix2pixHD, the results of all three are visually similar. Conversely, our approach is able to
generate high-quality outputs across a wide range of inputs of various poses and expressions. Ad-
ditionally, using our multi-modal technique, pSp can easily generate various possible outputs with
the same pose and attributes but varying fine styles for a single input semantic map or sketch image.
We provide examples in Figure 6c with additional examples in Appendix C.

4.3.3 HUMAN PERCEPTUAL STUDY

We additionally perform a human evaluation to compare the visual quality of each method presented
above. Here, each worker is given two images synthesized by different methods on the same input
and is given an unlimited time to select which output looks more realistic. Each of our three workers
reviews approximately 2, 800 pairs for each task, resulting in over 8, 400 human judgements for
each method. Table 6d shows that pSp significantly outperforms the other respective methods in
both synthesis tasks.

5 DISCUSSION AND CONCLUSIONS

Although our suggested framework for image-to-image translation achieves compelling results in
various applications, it has some inherent assumptions that should be considered. First, the high-
quality images that are generated by utilizing the pretrained StyleGAN come with a cost — the
method is limited to images that can be generated by StyleGAN. Thus, generating faces which are
not close to frontal, or have certain expressions may be challenging if such examples were not avail-
able when training the StyleGAN model. Also, the global approach of pSp, although advantageous
for many tasks, does introduce a challenge in preserving finer details of the input image, such as
earrings or background details. This is especially significant in tasks such as inpainting or super-
resolution where standard image-to-image architectures can simply propagate local information.
Figure 7b in Appendix A presents some examples of such reconstruction failures.

In this work, we proposed a novel encoder architecture that can be used to directly map a face
image into theW+ latent space with no optimization required. The encoder architecture, motivated
by StyleGAN, consists of a hierarchy of three levels that correspond to the coarse, medium, and
fine groupings of the 18 style vectors defining the input in the W+ latent space. Styles are then
extracted from the encoder in a hierarchical fashion and fed into the corresponding inputs of a fixed
StyleGAN generator. Notably, our network is trained with an ID similarity loss, which encourages
better preservation of identity compared to previous direct approaches. Combining our encoder
with a StyleGAN decoder, we present a general framework for solving various image-to-image
translation tasks. In contrast to previous methods, which tackle such tasks using a local ”pixel-to-
pixel” approach, our framework takes a global approach, which we show can be used to solve a wide
variety of image-to-image translation problems.
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Figure 7: (a) To generate multiple outputs for a single input image, style-mixing is performed over
pSp. (b) Challenging cases for StyleGAN Inversion.

A ADDITIONAL DETAILS

A.1 IMPLEMENTATION DETAILS

Training Details For our backbone network we use the ResNet-IR architecture from (Deng et al.,
2019) pretrained on face recognition, which accelerated convergence. We use a fixed StyleGAN2
generator trained on the FFHQ (Karras et al., 2019) dataset. That is, only the pSp encoder network is
trained on the given image-to-image translation task. For all applications, the input image resolution
is 256 × 256, where the generated 1024 × 1024 output is resized before being fed into the loss
functions. For training, we use the Ranger optimizer, a combination of Rectified Adam (Liu et al.,
2019a) with the Lookahead technique (Zhang et al., 2019), with a constant learning rate of 0.001.
Only horizontal flips are used as augmentations during training. All experiments are performed
using a single NVIDIA Tesla P40 GPU.

For the StyleGAN inversion task, the λ values are set as λ1 = 1, λ2 = 0.8, λ3 = 0.1. For face
frontalization, we increase the weight of the identity loss, setting λ3 = 1, and decrease the LPIPS
and L2 loss functions, setting λ1 = 0.01, λ2 = 0.8 over the inner part of the face and λ1 = 0.001,
λ2 = 0.08 elsewhere. Additionally, the constants used in the conditional image synthesis tasks are
identical to those used in the inversion task except for the omission of the identity loss (i.e. we set
λ3 = 0). Finally, λ4 is set to 0.005 in all applications except for the StyleGAN inversion task, which
does not utilize the regularization loss.

A.2 DATASETS

We conduct our experiments on the CelebA-HQ dataset (Karras et al., 2018), which contains 30,000
high quality images. We use a standard train-test split of the dataset, resulting in approximately
24,000 training images. The FFHQ dataset from (Karras et al., 2019), which contains 70,000 face
images, is used for the StyleGAN inversion and face frontalization tasks.

For the generation of face images from sketches, we construct a dataset representative of hand-
drawn sketches using the CelebA-HQ dataset (Karras et al., 2018). Given an input image, we first
apply a “pencil sketch” filter which retains most facial details of the original image while removing
the remaining noise. We then apply the sketch-simplification method by Simo-Serra et al. (2016),
resulting in images resembling hand-drawn sketches.

B ADDITIONAL APPLICATIONS

B.1 SUPER RESOLUTION

Here we show that our framework can be used to construct high-resolution (HR) facial images from
corresponding low-resolution (LR) input images. PULSE (Menon et al., 2020) approaches this
task in an unsupervised manner by traversing the HR image manifold in search of an image that
downsamples to the input LR image. In this work we focus on applying pSp in a supervised manner
as obtaining paired data is immediate. We show that our method achieves comparable results to
PULSE and other previous works.
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Methodology and details We train our model in a supervised fashion, where for each input we
perform random bi-cubic down-sampling of ×1 (i.e. no down-sampling), ×2,×4,×8, ×16, ×32
and set the original, full resolution image as the target.

Results Figure 9 demonstrates the visual quality of the resulting images from our method along
with those of the previous approaches. Although PULSE is able to achieve very high-quality results
due to their usage of StyleGAN to generate images, they are unable to accurately retain identity
even when performing down-sampling of ×8 to a resolution of 32 × 32. By learning a pixel-wise
correspondence between the LR and HR images, pix2pixHD is able to obtain satisfying results even
when down-sampled to a resolution of 16× 16 (i.e. ×16 down-sampling). However, visually, their
results appear less photo-realistic. Contrary to these previous works, we are able to obtain high-
quality results even when down-sampling to resolutions of 16× 16 and 8× 8. Finally, we generate
multiple outputs for a given LR image using our multi-modal technique by perform style-mixing on
layers (4-7) with an α value of 0.5 with a randomly sampled w vector, which alters medium-level
styles that mainly control facial features. Figure 10 illustrates the results.

B.2 EVEN MORE APPLICATIONS

To better show the flexibility of our pSp framework, We present three additional applications, which
are summarized in Figure 8.

Local Editing Our framework allows for a simple approach to local image editing where altering
specific attributes of an input sketch (e.g. eyes, smile) or segmentation map (e.g. hair) results in
local edits of the generated images.

Face Interpolation Given two real images one can obtain their respective latent codes w1, w2 ∈
W+ by feeding the images through our encoder. We can then naturally interpolate between the two
images by computing their intermediate latent code w′ = λw1 + (1 − λ)w2 for 0 ≤ λ ≤ 1 and
generate the corresponding image using the new code w′.

Inpainting Finally, we show the ability of our framework to reconstruct missing parts of an im-
age using a simple, symmetric triangular mask. Our approach is able to accurately reconstruct the
occluded areas while preserving the identity with respect to the original image.

Figure 8: Additional applications for the pSp framework.
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Original LR ×8 pix2pixHD PULSE pSp

(a)

Original LR ×16 pix2pixHD PULSE pSp

(b)

Original LR ×32 pix2pixHD pSp

(c)

Figure 9: Comparison of super-resolution approaches with (a) ×8 down-sampling, (b) ×16 down-
sampling, and (c) ×32 down-sampling.
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Figure 10: Multi-modal synthesis for super-resolution using pSp with style-mixing.

C ADDITIONAL RESULTS

Figure 11: Additional StyleGAN inversion results using pSp on the CelebA-HQ (Karras et al., 2018)
test set.
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Figure 12: Additional face frontalization results using pSp on the CelebA-HQ (Karras et al., 2018)
test set.
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Figure 13: Even for challenging, non-frontal face sketches, pSp is able to obtain high-quality, diverse
outputs.

Figure 14: Additional results using pSp for the generation of face images from sketches constructed
from the CelebA-HQ (Karras et al., 2018) test dataset.
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Figure 15: Additional results on the Helen Faces (Le et al., 2012) dataset using our proposed label-
to-image method.
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Figure 16: Additional results on the CelebAMask-HQ (Karras et al., 2018) test set using our pro-
posed label-to-image method.
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Figure 17: Conditional image synthesis results from sketches and segmentation maps displaying the
multi-modal property of our approach.
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