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Abstract
Given coupled sentence image pairs, Multimodal Aspect-based Sen-
timent Analysis (MABSA) aims to detect aspect terms and predict
their sentiment polarity. While existing methods have made great
efforts in aligning images and text for improved MABSA perfor-
mance, they still struggle to effectively mitigate the challenge of
the noisy correspondence problem (NCP): the text description is
often not well-aligned with the visual content. To alleviate NCP, in
this paper, we introduce Aspect-driven Alignment and Refinement
(ADAR), which is a two-stage coarse-to-fine alignment framework.
In the first stage, ADAR devises a novel Coarse-to-fine Aspect-driven
Alignment Module, which introduces Optimal Transport (OT) to
learn the coarse-grained alignment between visual and textual fea-
tures. Then the adaptive filter bin is applied to remove the irrelevant
image regions at a fine-grained level; In the second stage, ADAR
introduces an Aspect-driven Refinement Module to further refine the
cross-modality feature representation. Extensive experiments on
two benchmark datasets demonstrate the superiority of our model
over state-of-the-art performance in the MABSA task.
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• Information systems → Sentiment analysis; Multimedia
and multimodal retrieval.
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1 Introduction
Multimodal aspect-based sentiment analysis (MABSA) has attracted
increasing attention in recent years [9, 16, 29]. Typically, MABSA
includes three downstream tasks: Multimodal Aspect Term Ex-
traction (MATE), Multimodal Aspect-oriented Sentiment Classifi-
cation (MASC), and Joint Multimodal Aspect-Sentiment analysis
(JMASA) [12, 20, 27]. Specifically, MATE aims to identify aspect
terms from a text-image pair [39]; MASC aims to classify the senti-
ment of each aspect term [34]; while JMASA aims to jointly extract
the aspect terms and predict their sentiments. Therefore, JMASA
refers to the end-to-end solution combining MATE and MASC. For
example, as depicted in Figure 1, the target of JMASA is to ana-
lyze the multimodal information and output the aspect-polarity
pairs (Klay Thompson, POS), (Warriors, POS) and (TrailBlazers, NEG),
while MATE and MASC only focus on identifying the aspect terms
and classifying the sentiment, respectively.

Existing works [17, 38] propose to align the global image feature
with the text feature to derive cross-modality feature representa-
tion. Despite the performance improvement, they ignore the fact
that only some specific visual regions are relevant to the aspect
terms, and vice versa. Therefore, the information simply extracted
from the global features could introduce the noise correspondence
problem (NCP) [11], thereby limiting further performance improve-
ment. Motivated by this, the recent work AoM [41] firstly extracted
the aspects from the sentence, and achieved aspect-guided cross-
modal interaction to alleviate the NCP between image and text.
Although AoM has achieved improved performance, it still suffers
from two limitations: (i) Dependency on pre-trained tools: AoM
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Text
Klay Thompson Warriors
overwhelm TrailBlazers

110-99 go up 2-0 in series 
# NBAPlayoffs.

Aspects & Sentiment
(Klay Thompson , POS)

(Warriors, POS)
(TrailBlazers, NEG)

Figure 1: An example of the MABSA task from Twit-
ter2017 [34], including the text, aspects and sentiments.

highly depends on the pre-trained phrase parsing tool Spacy1 for
noun extraction. However, the model fails when it comes to extract-
ing nouns that are not well pre-trained. (ii) Noisy correspondence
misalignment: AoM may mistakenly align aspect terms with ir-
relevant visual elements because the relevant ones are missing in
the visual information, resulting in noisy correspondence misalign-
ment. Take the case in Figure 1 for example, the player in the middle
contributes to the correct detection of positive sentiment towards
‘Klay Thompson’ and ‘Warriors’. However, the negative aspect
term ‘TrailBlazers’ is not shown in the figure, which leads to the
failure of detection.

To effectively handle the challenge of NCP while avoiding the
aforementioned drawbacks, we propose Aspect-driven Alignment
and Refinement (ADAR). As shown in Figure 3, ADAR includes
two core modules: Coarse-to-fine Aspect-driven Alignment Module
(ADAM) and Aspect-driven Refinement Module (ADRM). We opt
for Optimal Transport (OT) at the coarse-grained level in-
stead of pre-trained tools to address the first limitation. As
a critical component in many downstream applications [1, 3, 38],
OT has been employed to facilitate cross-modal retrieval tasks in-
volving matching images with text descriptions and vice versa. As
depicted in Figure 2, by computing pairwise similarities and using
transport strategies, OT provides a robust tools-free framework to
align between visual and textual representations considering the
potential aspects as anchors. In ADAM, we first establish a flexible
coarse-grained alignment between image and text by optimizing
the goal of OT. To mitigate NCP, we directly project the visual
representations towards textual feature space by employing the
barycenter-based strategies [7], while previous work [22, 38] solve
the problem by optimizing different loss functions.

To address the second limitation, based on the output of
OT, we further introduce an adaptive filter bin that deals
with the case of noisy correspondence misalignment at the
fine-grained level. With the adaptive filter bin activated, each vi-
sual aspect can be aligned with relevant textual aspects or discarded
based on a pre-selected threshold, leading to a precise alignment of
existing visual elements instead of noisy correspondence misalign-
ment. Subsequently, in the ADRM module, textual representations
that already emphasize aspects can implicitly reason the comple-
mentary relations between images through meticulously crafted
cross-modal attention, leading to accurate predictions.
1https://spacy.io/

Optimal Transport
Projection

Visual
Representation

Textual
Representation

Anchors

Figure 2: An illustration of the optimal transport for mul-
timodal representations. Green and blue curves represent
distributions of different modal entities while corresponding
dots represent the embeddings.

Extensive experiments conducted on two benchmarks across
three tasks demonstrate the effectiveness and robustness of ADAR.
The comprehensive ablation analysis reveals how the proposed
modules and methods complement each other. For instance, ADAM
achieves a coarse-to-fine alignment by coupling the OT method
and the adaptive filter bin. Furthermore, our method demonstrates
superior performance compared to LLMs on MASC. Overall, our
main contributions in this work are three-fold:
• We present a novel two-stage framework to address NCP
under the guidance of aspects. To the best of our knowledge,
this is the first work that introduces Optimal Transport to
address NCP in MABSA.
• We design a coarse-grained aspect-driven alignment module
with a fine-grained adaptive filter bin mechanism and an
aspect-driven refinement module to effectively align and
refine features between images and texts.
• Extensive experiments on two benchmark datasets show that
ADAR significantly outperforms previous models. Further
analysis verifies the advantages of our model.

2 Related Work
Multimodal Aspect-based Sentiment Analysis As social me-
dia becomes increasingly richwithmultimodal user posts, researchers
have discovered that images provide valuable supplementary in-
formation for aspect term extraction [2] and sentiment analysis
[29, 40]. Consequently, Multimodal Aspect-based Sentiment Analy-
sis (MABSA) has garnered widespread attention and study. Within
MABSA, two distinct sub-tasks have emerged: Multimodal Aspect
Term Extraction (MATE) and Multimodal Aspect-oriented Senti-
ment Classification (MASC). MATE focuses on extracting all rele-
vant aspect terms from a sentence with cues from the accompanying
image, while MASC is concerned with predicting the sentiment
polarities associated with these aspects.

In MABSA, which targets the nuanced analysis of fine-grained
entities and their sentiments within a post, models are challenged to
accurately apply pertinent visual information to the targeted aspect
of each pair. To address cross-modal alignment, Ling et al. [17] devel-
oped a generative multimodal architecture grounded in BART. This
architecture is designed for both vision-language pre-training and



Aspects are Anchors MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia.

downstream MABSA tasks. Meanwhile, Yang et al. [33] introduced
a dynamic approach for controlling the influence of visual informa-
tion on different aspects. This approach is based on the principle
that the lower the confidence in text-only predictions, the greater
the reliance on visual inputs. Furthermore, Zhou et al. [41] crafted
an aspect-aware attention module coupled with a Graph Neural
Network, which is aimed at discerning aspect-relevant multimodal
content, considering both semantic and sentiment perspectives.

While existing methods make significant strides, they tend to
overlook the misalignment between the visual and textual features.
This oversight can lead to the introduction of irrelevant noise during
the modeling process, as these methods lack fine-grained aspect-
driven alignment.
Optimal Transport Originally, Optimal Transport was intro-
duced to quantify the distance between two probability distribu-
tions. Its application has recently garnered considerable attention
across various domains, such as sequence alignment [19], domain
adaptation [31] and document matching [37]. These applications
highlight OT’s capability in handling structured data and incor-
porating additional structural information beyond classic formula-
tions. This has proven particularly useful in NLP tasks [1, 3, 25, 38]
like unsupervised word translation, sentence similarity, domain
adaptation, ontology alignment, etc. However, it’s noteworthy that
while the potential of OT is significant, its application in aligning
images and text specifically for MABSA presents a novel challenge.
This is because MABSA requires not just traditional modalities
alignment but also a focus on aspect-driven alignment.

In this work, we propose a novel aspect-driven framework for
MABSA. This framework comprises two key components: the
Coarse-to-fine Aspect-driven Alignment Module and the Aspect-
driven Refinement Module. The former is designed to align modal-
ities through optimal transport, ensuring that the features align
closely with the relevant aspects. The latter is aimed at effectively
enhancing the interaction between the different modalities, ensur-
ing a more coherent and integrated multimodal modeling.

3 Method
3.1 Preliminaries
Task Definition Following previous work [17, 32, 41], we model
the three downstream tasks on the same BART-based framework.
Formally, when presented with a sample that encompasses an image
denoted as 𝑉 , and a sentence containing 𝑛 words, represented as
𝑳 = {𝑤1,𝑤2, . . . ,𝑤𝑛}, the outputs of JMASA, MATE, and MASC
are formulated as:

• 𝑌𝐽 𝑀𝐴𝑆𝐴 = {𝑎𝑠1, 𝑎
𝑒
1, 𝑠1, . . . , 𝑎

𝑠
𝑖
, 𝑎𝑒
𝑖
, 𝑠𝑖 , . . . , 𝑎

𝑠
𝑘
, 𝑎𝑒
𝑘
, 𝑠𝑘 },

• 𝑌𝑀𝐴𝑇𝐸 = {𝑎𝑠1, 𝑎
𝑒
1, . . . , 𝑎

𝑠
𝑖
, 𝑎𝑒
𝑖
, . . . , 𝑎𝑠

𝑘
, 𝑎𝑒
𝑘
},

• 𝑌𝑀𝐴𝑆𝐶 = {𝑎𝑠1, 𝑎
𝑒
1, 𝑠1, . . . , 𝑎

𝑠
𝑖
, 𝑎𝑒
𝑖
, 𝑠𝑖 , . . . , 𝑎

𝑠
𝑘
, 𝑎𝑒
𝑘
, 𝑠𝑘 },

where 𝑎𝑠
𝑖
, 𝑎𝑒
𝑖
, and 𝑠𝑖 denote the start index, the end index, and the

sentiment polarity of the 𝑖-th aspect term in the tweet. The variable
𝑘 indicates the total number of aspects. Specifically when dealing
with the MASC task, the start and end indexes are given during
inference.
Feature Extractor The initial word embeddings are derived from
the pre-trained BART [14], selected for its exemplary capabilities

in textual representation. For the visual units, we employ prepro-
cessing via ResNet [5] following Yu et al. [35].

3.2 Coarse-to-fine Aspect-driven Alignment
Module

Despite the efficacy of the hidden states in capturing the character-
istics of multimodal information, the correlations between different
modalities remain relatively weak because of the noisy correspon-
dence problem (NCP), thereby limiting performance. To address
this, we design a coarse-to-fine module to align visual features to
textual features by leveraging optimal transport with an adaptive
filter bin mechanism.
Coarse-grained Aspect-driven Transport To better utilize the
contextual information, we first transfer the visual space to the
textual space, driven by aspects from textual inputs. Let 𝑯𝑉 =

{𝒉𝑉1 , . . . ,𝒉
𝑉
𝑛 } ∈ R𝑛×𝑑 and 𝑯𝐿 = {𝒉𝐿1 , . . . ,𝒉

𝐿
𝑚} ∈ R𝑚×𝑑 denote the

visual and textual hidden states extracted from the multimodal
hidden states 𝑯 , respectively. The distance between 𝒉𝑉

𝑖
and 𝒉𝐿

𝑗
is

denoted as 𝑺𝑖 𝑗 , which is an element in 𝑺 ∈ R𝑛×𝑚 and calculated
with the Euclidean norm 𝑺𝑖 𝑗 = | |𝒉𝑉𝑖 ,𝒉

𝐿
𝑗
| |22. 𝑻 ∈ R

𝑛×𝑚
+ denotes the

transport assignment matrix where 𝑻𝑖 𝑗 represents the probability
of aligning 𝒉𝑉

𝑖
and 𝒉𝐿

𝑗
. Formally, the objective of OT is defined as

follows,
𝑶𝑻 (𝜇, 𝜈, 𝑺) = 𝑚𝑖𝑛

𝑻 ∈Π
⟨𝑻 , 𝑺⟩, (1)

where ⟨𝑻 , 𝑺⟩ = 𝑡𝑟 (𝑻⊤𝑺), Π = {𝑻 ∈ R𝑛×𝑚+ | 𝑻1𝑚 = 𝝁, 𝑻⊤1𝑛 =

𝝂} and 1 signifies an all-one vector. The terms 𝝁 and 𝝂 refer to
the probabilistic simplex measures corresponding to 𝑯𝑉 and 𝑯𝐿 ,
respectively. Considering that each image or text is independently
sampled, we adopt equal weighting approach for each instance
following Su and Hua [23], designated by 𝝁 = 1

𝑛 1𝑛 and 𝝂 = 1
𝑚 1𝑚 .

The optimal transport matrix, 𝑻 ∗, is then derived by minimizing
the overall cost by Sinkhorn fixed point iterations [6],

𝑻 ∗ = arg𝑚𝑖𝑛
𝑻 ∈Π

⟨𝑻 , 𝑺⟩. (2)

With the optimal transport matrix 𝑻 ∗ determined, we proceed
to map 𝑯𝑉 to �̂�𝑉 for better utilizing the contextual information,
which is facilitated by employing barycenter-based strategies,

�̂�𝑉 = diag(1/𝝂) ((𝑻 ∗)⊤ + Δ𝑇 )𝑯𝑉 , (3)

where Δ𝑇 is an adjustable transport parameter [21]. To facilitate the
projection of out-of-sample examples that were not encountered
during the learning process of 𝑻 ∗, we initialize Δ𝑇 using the Xavier
Uniform distribution [8] with the same dimensions of 𝑻 ∗.
Fine-grained Adaptive Filter Bin Although optimal transport
is capable of aligning modalities effectively, texts and images in
real-world scenarios often contain redundant or irrelevant infor-
mation. Such noise can impede the efficacy of optimal transport
in precisely aligning each visual unit with corresponding textual
aspects. Motivated by Sarlin et al. [22], we introduce an innovative
approach to noise reduction through the implementation of a fine-
grained Adaptive Filter Bin (AFB), which is seamlessly integrated
into the existing cost matrix 𝑺𝑖 𝑗 with simply one additional row
and column,

𝑺𝑖,𝑚+1 = 𝑺𝑛+1, 𝑗 = 𝑺𝑛+1,𝑚+1 = 𝑞, (4)
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‘Not a day goes by that 
I don't miss Disney's 
Jubilation Parade at 
Tokyo Disneyland.’

<eos>
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Figure 3: The overview of our proposed ADAR framework. During generation, similar to Yan et al. [32], we insert a special
token <bos> to indicate the beginning, and then insert a task-specific special token to indicate the task type. Specifically,
<JMASA> informs the current task is JMASA, while <MATE> and <MASC> refer to MATE and MASC task, respectively.

Algorithm 1 Aspect-driven optimal transport
INPUT: Distribution 𝜇 and 𝜈 supported by visual representation

𝑯𝑉 and textual representation 𝑯𝐿 , respectively.
OUTPUT: Aligned representation �̂�𝑉 .
INITIALIZE: The size of visual representation𝑛, the size of textual

representation𝑚 and the adjustable transport parameter Δ𝑇 .
1: 𝜇 = 1

𝑛 1𝑛
2: 𝜈 = 1

𝑚 1𝑚
3: 𝑺𝑖 𝑗 = | |𝒉𝑉𝑖 − 𝒉

𝐿
𝑗
| |22, ∀𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1,𝑚]

4: 𝑻 ∗ = arg𝑚𝑖𝑛⟨𝑻 , 𝑺⟩ # Derived from the Sinkhorn Algorithm
5: �̂�𝑉 = diag(1/𝝂) ((𝑻 ∗)⊤ + Δ𝑇 )𝑯𝑉

where 𝑺𝑖, 𝑗 = 𝑺𝑖, 𝑗 , 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1,𝑚]. The hyper-parameter
𝑞 is strategically set to correspond to the top 20% cost associated
with the original aligned image-text pairs. With the mechanism
activated, each visual aspect can be either aligned with the relevant
textual aspect or relegated to the bin. Consequently, 𝑞 effectively
functions as a threshold, serving to exclude elements that are not
alignable and thus maintaining a more noise-reduced environment
for the execution of the transport assignment, i.e., �̂� ∗ := �̂�1:𝑛,1:𝑚 .

Now, we update the multimodal features as follows,

�̂�𝑉𝑤 = 𝑯𝑉 + 𝜆1�̂�𝑉 , (5)

�̂� = [�̂�𝑉𝑤 ;𝑯𝐿], (6)

where 𝜆1 is the hyper-parameter to control the contribution from
OT and [; ] is the concatenation operator for matrices.

3.3 Aspect-driven Refinement Module
Upon achieving effective alignment of feature distributions across
various modalities through ADAM, the feature spaces still suffer
from NCP and await a fine-grained interaction between visual and
textual modality. To learn a refined cross-modality representation
that contains relevance-suppressing information and complements
language features, we introduce an Aspect-driven Refinement Mod-
ule (ADRM) to enhance the learning of a refined multimodal repre-
sentation.

Inspired by Liu et al. [18], we first utilize �̂�𝑉
𝑗
as the query, and

𝑯𝐿
𝑗
serves as both the key and value in this process. The interaction

is conducted as follows,

𝜸 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑸
𝑉 (𝑲𝐿)⊤√︁

𝑑𝑘

)

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
�̂�𝑉
𝑗−1𝑾𝑄𝑉 (𝑯𝐿

𝑗−1𝑾𝐾𝐿 )⊤√︁
𝑑𝑘

), (7)

where 𝑗 ∈ {1, 2},𝑾𝑄𝑉 and𝑾𝐾𝐿 are learnable parameters of linear

transformations. Specifically, we initialize 𝑯𝑟𝑒 𝑓 𝑖𝑛𝑒0 with �̂� , denoted
as 𝑯

𝑟𝑒 𝑓 𝑖𝑛𝑒

0 = �̂� . Subsequently, the cross-modality features are
updated as follows,

𝑯
𝑟𝑒 𝑓 𝑖𝑛𝑒

𝑗
= 𝑯

𝑟𝑒 𝑓 𝑖𝑛𝑒

𝑗−1 +𝜸 𝑗𝑽𝐿

= 𝑯
𝑟𝑒 𝑓 𝑖𝑛𝑒

𝑗−1 +𝜸 𝑗𝑯𝐿
𝑗−1𝑾𝑉 𝐿 , (8)

where 𝑾𝑉 𝐿 is a learnable parameter and 𝑯
𝑟𝑒 𝑓 𝑖𝑛𝑒

𝑗
denotes the 𝑗-

th ADRM layer output. After a fine-grained interaction between
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visual and textual modality through ADRM, we free the feature
representation from NCP and help the BART decoder to jointly
learn the multimodal input.

3.4 Joint Learning
Following previous works, all subtasks are designed as index gen-
eration tasks and predict the token probability distribution with
the BART decoder as below,

�̃� = 𝜆2�̂� + 𝜆3𝑯𝑟𝑒 𝑓 𝑖𝑛𝑒2 , (9)

𝒉𝑑𝑡 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (�̃� ;𝑌<𝑡 ), (10)

�̄�𝐿
= (𝑬 + �̃�𝐿)/2, (11)

𝑃 (𝑦𝑡 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( [�̄�𝐿 ; 𝑪𝑑 ]𝒉𝑑𝑡 ), (12)

where 𝜆2 and 𝜆3 are the hyper-parameters to control the contribu-
tion from the two modules. �̃�𝐿 is the textual part of �̃� . 𝑬 denotes
the embeddings of input tokens. 𝑪𝑑 means the embeddings of the
[positive, neutral, negative, <eos>]. Finally, the loss function is
defined as,

L = −E𝑋∼𝐷
𝑂∑︁
𝑡=1

𝑙𝑜𝑔𝑃 (𝑦𝑡 |𝑌<𝑡 , 𝑋 ), (13)

where 𝑂 is the length of Y, and X denotes the multimodal input.

4 Details of the Sinkorn Algorithm
The Sinkhorn algorithm, as introduced by [6], addresses this issue
by reinterpreting transport problems through a maximum-entropy
perspective. It introduces an entropic regularization term to the
classic OT problem, streamlining the process. This modification
not only maintains the optimal solution as a meaningful distance
measure but also significantly accelerates the computation. The
Sinkhorn algorithm achieves this by employing matrix scaling tech-
niques, offering a computation speed several orders of magnitude
faster than traditional transport solvers.

The original Sinkhorn distance is 𝑑𝑺 = ⟨𝑻 , 𝑺⟩. With the Sinkhorn
algorithm, for 𝜆 ∈ (0,∞), we consider a Lagrange multiplier for
the entropy constraint of Sinkhorn distances and obtain the dual-
Sinkhorn divergence 𝑑𝜆𝑺 as follow,

𝑑𝜆𝑺 = ⟨𝑻𝜆, 𝑺⟩, (14)

where 𝑻𝜆 = arg𝑚𝑖𝑛
𝑻 ∈Π

⟨𝑻 , 𝑺⟩ − 1
𝜆
ℎ(𝑻 ). The divergence 𝑑𝜆𝑺 can be com-

puted for a much cheaper cost than the original distance 𝑑𝑺 . Sub-
sequently, the optimal regularized transport 𝑻𝜆 is computed as
follow,

𝑻𝜆 = 𝒅 𝒊𝒂𝒈(𝜼1)𝑷𝒅𝒊𝒂𝒈(𝜼2), (15)

where 𝑷 = 𝑒−𝜆𝑺 . 𝜼1 ∈ R𝑛 and 𝜼2 ∈ R𝑚 are two non-negative
scaling vectors updated iteratively with Sinkhorn’s fixed point
iteration:

(𝜼1,𝜼2) ← (𝝁 ./(𝑷𝜼2),𝝂 ./(𝑷⊤𝜼1)) . (16)

Finally, we get optimal transport distance through ⟨𝑻𝜆, 𝑺⟩.

Twitter2015 Twitter2017
Train Dev Test Train Dev Test

Positive 928 303 317 1508 515 493
Neutral 1883 670 607 1638 517 573
Negative 368 149 113 416 144 168
Total Aspects 3179 1122 1037 3562 1176 1234
Sentences 2101 727 674 1746 577 587

Table 1: Statistics of Twitter2015 and Twitter2017.

5 Experiments
5.1 Settings
Datasets and Metrics Following previous works, Twitter2015
and Twitter2017 [34] are taken as testbeds.The statistics of the two
datasets are shown in Table 1. As for evaluation metrics, we adopt
Micro-F1 score (F1), Precision (P), and Recall (R) on both JMASA and
MATE tasks, while on MASC task we use Accuracy (Acc) and F1.
Implementation Details Our model is developed on the foun-
dation of BART [14]. Post an extensive hyper-parameter tuning on
the development set, we fixed these parameters for consistency in
our experiments. We conducted fine-tuning on downstream tasks
over 35 epochs, i.e., JMASA, MATE, and MASC. The model operates
with a batch size of 16 and a learning rate of 7e-5. The hidden size is
maintained at 768, aligning with the BART model’s specifications.
Additionally, the tradeoff hyper-parameters, 𝜆1, 𝜆2 and 𝜆3, are set
at 0.5, 1 and 0.5, respectively.

5.2 Comparative Baselines
In our experiments, we compare our proposed model with different
methods on three types of tasks.
Methods for Textual ABSA 1) SPAN [10] aimed to identify
opinion targets along with their corresponding sentiments. 2) D-
GCN [4] effectivelymodeled the dependency relations amongwords
by utilizing a dependency tree structure. 3) BART [32] addressesed
seven ABSA subtasks within a unified framework.
Methods for MATE 1) RAN [28] focused on aligning text with
corresponding object regions. 2) UMT [36] incorporated text-based
entity span detection as a supplementary task. 3) OSCGA [30]
emphasizes the alignment between visual objects and entities.
Methods for MASC 1) ESAFN [35] represented an entity-level
sentiment analysis approach that leverages LSTM technology. 2)
TomBERT [34] utilized BERT to derive aspect-sensitive textual rep-
resentations effectively. 3) CapTrBERT [13] is designed to convert
images into text and construct auxiliary sentences for enhanced
fusion.
Methods for JMASA 1) RpBERT-collapse [24] proposed a model
for MATE, utilizing collapsed labels to encapsulate aspect and sen-
timent pairs. 2) JML [12] stands as the pioneering joint model for
MABSA, featuring an auxiliary cross-modal relation detection mod-
ule. 3) VLP-MABSA [17] undertaked five task-specific pre-training
tasks to effectively model aspects, opinions, and their alignments.
4) CMMT [33] implemented a gating mechanism to regulate the
contributions of multimodal information during inter-modal inter-
actions. 5) DTCA [38] proposed a dual-encoder transformer with
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Method Twitter2015 Twitter2017
P R F1 P R F1

Text-based
SPAN♣ 53.7 53.9 53.8 59.6 61.7 60.6
D-GCN♣ 58.3 58.8 59.4 64.2 64.1 64.1
BART♣ 62.9 65.0 63.9 65.2 65.6 65.4

Multimodal
RpBERT-collapse♣ 49.3 46.9 48.0 57.0 55.4 56.2
JML 65.0 63.2 64.1 66.5 65.5 66.0
VLP-MABSA♣ 65.1 68.3 66.6 66.9 69.2 68.0
CMMT 64.6 68.7 66.5 67.6 69.4 68.5
DTCA 67.3 69.5 68.4 69.6 71.2 70.4
AoM 67.9 69.3 68.6 68.4 71.0 69.7
ADAR (Ours) 70.0† 71.5† 71.2† 71.6† 71.0 71.4†

Table 2: Results comparison for JMASA. We report the av-
erage results of three runs with different random seeds. ♣

denotes the results from Ling et al. [17]. The best results are
in bold and the second best ones are underlined. † denotes
our model significantly outperforms baselines with 𝑝 < 0.05
under t-test.

cross-modal alignment on two auxiliary tasks to enhance perfor-
mance. 6) AoM [41] designed an aspect-aware attention module
and an aspect-guided GNN to detect aspect-relevant multimodal
contents.

5.3 Main Results
The results of our ADAR and competitive baselines for the JMASA,
MATE and MASC are shown in Table 2, 3 and 4 respectively, from
which we have the following observations:
Results for JMASA (i) It is obvious that our proposed ADAR
surpasses all text-based models, primarily due to richer information
from different modalities. (ii) In terms of multimodal approaches,
AoM outstrips previous methods on Twitter2015, largely attributable
to its aspect-aware attention module. On Twitter2017, the DTCA,
with its dual auxiliary tasks of text-only extraction and text-patch
alignment via optimal transport, enhances cross-attention perfor-
mance and proves more effective. However, we focus on aspect-
driven transport and assignment instead of contrastive loss. Among
all evaluated methods, ADAR demonstrates superior performance
across both datasets, albeit with a marginal 0.2 absolute percentage
point deficit in Recall compared to DTCA on Twitter2017. This
notable performance gain is largely attributed to our aspect-driven
alignment and refinement method, which skillfully aligns disparate
modalities using aspect-driven optimal transport and augments
their synergy through a dual-layer refinement process.
Results for MATE and MASC Table 3 and Table 4 present the
outcomes for the MATE and MASC evaluations, respectively. Mir-
roring the pattern observed in the JMASA task, it is evident that
our ADAR approach consistently delivers superior performance on
both datasets, with the sole exception being the Recall metric for
Twitter2015. These findings further underscore the broad efficacy
of our methodology.

Methods Twitter2015 Twitter2017
P R F1 P R F1

RAN♣ 80.5 81.5 81.0 90.7 90.7 90.0
UMT♣ 77.8 81.7 79.7 86.7 86.8 86.7
OSCGA♣ 81.7 82.1 81.9 90.2 90.7 90.4
JML♣ 83.6 81.2 82.4 92.0 90.7 91.4
VLP-MABSA♣ 83.6 87.9 85.7 90.8 92.6 91.7
CMMT 83.9 88.1 85.9 92.2 93.9 93.1
AoM 84.6 87.9 86.2 91.8 92.8 92.3
ADAR (Ours) 86.5† 88.0 87.9† 93.0† 93.9† 93.8†

Table 3: Results comparison forMATE.We report the average
results of three runs with different random seeds. ♣ denotes
the results from Ling et al. [17]. The best results are in bold
and the second best ones are underlined. † denotes ourmodel
significantly outperforms baselineswith 𝑝 < 0.05 under t-test.

Methods Twitter2015 Twitter2017
ACC F1 ACC F1

ESAFN 73.4 67.4 67.8 64.2
TomBERT 77.2 71.8 70.5 68.0
CapTrBERT 78.0 73.2 72.3 70.2
JML 78.7 - 72.7 -
VLP-MABSA 78.6 73.8 73.8 71.8
CMMT 77.9 - 73.8 -
AoM 80.2 75.9 76.4 75.0
ADAR (Ours) 81.3† 77.1† 77.2† 76.6†

Table 4: Results comparison forMASC.We report the average
results of three runs with different random seeds. ♣ denotes
the results from Ling et al. [17]. The best results are in bold
and the second best ones are underlined. † denotes ourmodel
significantly outperforms baselineswith 𝑝 < 0.05 under t-test.

5.4 Ablation Study
To validate the efficacy of each component in ADAR, we conducted
a set of ablation experiments on JMASA task, and the results are
reported in Table 5.
Effect of ADAM On Twitter2015, disabling ADAM solely leads
to a significant reduction in performance. With a 7.44% drop on
F1, it underscores the critical role of the aspect-driven transport
method in effectively aligning different modalities for a further
settlement of NCP in ADRM.
Effect of ADRM Removing ADRM solely results in a substantial
decline of 5.06% on F1 in Twitter2015 performance. This highlights
the importance of the refinement process following alignment, as
it is essential for facilitating interaction between modalities and
enhancing feature information richness in an aspect-driven way.
Effect of AFB As an auxiliary module for ADAM, ablating AFB
highlights its proficiency as a simple yet effective approach to noise
reduction, thereby making a beneficial contribution to the overall
system’s performance.
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Method Twitter2015 Twitter2017
P R F1 P R F1

ADAR 70.0 71.5 71.2 71.6 71.0 71.4
w/o ADAM & ADRM 62.5 62.1 62.0 63.5 64.1 63.7
w/o ADRM & AFB 65.2 66.7 66.3 66.7 67.0 66.8
w/o ADRM 67.0 67.8 67.6 67.9 68.2 68.0
w/o ADAM 64.6 66.0 65.9 65.9 66.5 66.0
w/o AFB 68.8 70.2 69.6 69.1 69.9 69.5

Table 5: Results of ablation experiments.

5.5 Hyper-parameter Analysis
Layer Number of ADRM We carried out a series of experiments
to ascertain the optimal number of layers for the Aspect-driven
Refinement (ADRM) module. The performance outcomes associ-
ated with varying layer counts are detailed in Table 6. With a
single ADRM layer, we observed comparatively weaker perfor-
mance, attributed to insufficient fitting of cross-modality features.
Conversely, employing three ADRM layers resulted in overfitting,
paradoxically leading to lower performance than with a single layer.
Consequently, in light of our comparative analysis, we have opted
for a two-layer configuration for the ADRM module.
Hyper-parameter 𝜆1 and 𝑞 To effectively leverage the aligned
information following optimal transport, we conducted experi-
ments with different settings of the hyper-parameter 𝜆1 and 𝑞.
As depicted in Figure 4, a peak at 𝜆1 = 0.5 is observed in both
datasets. The performance is weak due to an underutilization of
aligned features at 𝜆1 = 0.25. As 𝜆1 increases beyond the optimal
value, there is also a performance decline, due to the introduction of
noise through excessive reliance on optimal transport. To mitigate
this, we implement an adaptive filter bin to eliminate irrelevant
information with a threshold 𝑞. The model achieves the best per-
formance on both datasets when 𝑞 is set to 0.2. We observe that
setting 𝑞 higher than 0.2 leads to a decline in performance, mainly
due to mistakenly filtering of relevant information. It is also worth
noting that the performance on the Twitter2017 dataset was not
as strong as on Twitter2015 when 𝑞 is set to 0.4 or 0.5. This can
be attributed to the greater number of aspects per image-text pair
in Twitter2017. When combined with a strict filtration policy, it
results in reduced effectiveness due to the increased interference
among aspects. The above analysis demonstrates the effectiveness
of our proposed coarse-to-fine aspect-driven alignment module.

# Layer number Twitter2015 Twitter2017
P R F1 P R F1

1 66.1 67.5 67.4 68.2 69.0 68.5
2 70.0 71.5 71.2 71.6 71.0 71.4
3 65.2 66.7 66.3 66.7 67.0 66.8

Table 6: Performance comparison of different layer numbers
of ADRM for JMASA.
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Figure 4: F1 comparisons of different hyper-parameters 𝜆1
and 𝑞 on JMASA.

VisualGLM-6B & GPT4V

‘Now you are an expert of aspect-based sentiment analysis. Please
analyze the sentiments of the aspects based on the context provided by
the image and text, then assign an appropriate sentiment label from
<POS, NEU, NEG> to each aspect, while <POS, NEU, NEG> indicates
<positive, neural, negative>. ’

TEXT:
Klay Thompson Warriors overwhelm 
TrailBlazers 110-99 go up 2-0 in series 
# NBAPlayoffs.

ASPECTS:
<Klay Thompson, Warriors, TrailBlazers>

OUTPUTS: 
Klay Thompson: POS, Warriors: POS, TrailBlazers: NEG

GPT3.5

‘Now you are an expert of aspect-based sentiment analysis. Please
analyze the sentiments of the aspects based on the context provided by
the text, then assign an appropriate sentiment label from <POS, NEU,
NEG> to each aspect, while <POS, NEU, NEG> indicates <positive, neural,
negative>. ’

TEXT:
Klay Thompson Warriors overwhelm TrailBlazers 110-99 go up 2-0 in
series # NBAPlayoffs.

ASPECTS:
<Klay Thompson, Warriors, TrailBlazers>

OUTPUTS: 
Klay Thompson: POS, Warriors: POS, TrailBlazers: NEG

Figure 5: An illustration of prompts for VisualGLM-6B,
GPT3.5 and GPT4V.

5.6 Comparison with LLMs on MASC
In recent advancements, Large LanguageModels (LLMs) have demon-
strated remarkable capabilities in various Natural Language Pro-
cessing (NLP) tasks, leveraging their advanced language under-
standing and generation skills [15, 26]. To ascertain the competitive
edge of our model on MABSA, comparative analyses were con-
ducted against prevalent LLMs, including VisualGLM-6B, GPT3.5,
and GPT4V. Considering the inherent design limitations of LLMs in
aspect identification and output structures, we confined the compar-
ison to the MASC task to maintain evaluative fairness. To conduct
the experiments, we design two prompt templates. As shown in
Figure 5, we setup the role for LLMs and define the task. Subse-
quently, we provide the image, text and aspects to acquire the
outputs. Specifically, when experimenting with GPT3.5, we provide
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Models Twitter2015 Twitter2017
ACC F1 ACC F1

ADAR (ours) 81.3 77.1 77.2 76.6
VisualGLM-6B 66.1 68.2 69.0 68.5
GPT3.5 65.2 66.7 67.0 66.8
GPT4V 75.3 74.2 76.0 75.5

Table 7: Comparison with LLMs on MASC.

only the text and aspects, owing to its absence of multimodal capa-
bilities. The comparative results, as depicted in Table 7, demonstrate
the superior performance of our ADAR, which achieves notable
performance despite utilizing fewer parameters than LLMs.

It is imperative to acknowledge the constraint of GPT3.5 that it
solely processes textual inputs. Despite its commendable generative
prowess, GPT3.5’s performance in multimodal tasks was compar-
atively subdued. This outcome reveals the significant potential
and necessity of integrating and leveraging cross-modal informa-
tion to enhance the accuracy and applicability in multimodal NLP
tasks. Thus, GPT4V shows a better performance on MASC with its
powerful multimodal capability. However, our ADAR with fewer
parameters and training time, while not reaching the same level of
complexity or depth as GPT4V, demonstrates a notable efficiency
on MASC.

5.7 Error Analysis
To better learn and improve future work on MABSA, we conduct
experiments on accuracy of sentences with different characteristics
for JMASA on Twitter2015 and Twitter2017 test set. As shown in
Table 8, the two test set are different in aspects and sentiments
distribution. Twitter2015 focus on one aspect and single sentiment
circumstance, while Twitter2017 contains more sentences with mul-
tiple aspects and sentiments. From Figure 6, we observe that the
trend appears to be similar for all three methods in both datasets.
The accuracy is higher when only one aspect is mentioned and tends
to decrease as the complexity of the sentence increases with multi-
ple aspects and multiple sentiments. For Twitter2015, our ADAR
generally outperforms DTCA and AoM across all three characteris-
tics, indicating it handles complexity better due to the aspect-driven
method. For Twitter2017, the same pattern holds, although the dif-
ferences in accuracy between ADAR and the other two methods are
less pronounced. ADAR shows a consistent performance advantage
over the other two methods, which indicates it has a better handling
of sentences with multiple aspects and sentiments.

Twitter2015 Twitter2017
# sentences 674 587
# one aspect 416 (61.72%) 188 (32.03%)
# multiple aspects 258 (38.28%) 399 (67.97%)
# multiple sentiments 104 (15.43%) 263 (44.80%)

Table 8: Detailed statistics of two test set. # x denotes the
count of sentences with the specified characteristic x.
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Figure 6: Accuracy of sentences with different characteristics
for JMASA on Twitter2015 and Twitter 2017.

5.8 Computation Efficiency
Additionally, we experimented to analyze our method’s computa-
tion efficiency compared to SOTA models. As shown in Table 9,
our method outperforms AoM and approaches VLP-MABSA in in-
ference time per step due to the Sinkhorn algorithm we use. As
described in Section 4, this algorithm reinterprets transport prob-
lems through a maximum-entropy perspective and introduces an
entropic regularization term to the classic OT problem, streamlin-
ing the process. Thus, while our method’s complexity only lies in
the theoretical aspects of optimal transport, it is easy and efficient
to apply in practice.

Latency/Inference Time per Step
VLP-MABSA 0.484s
AoM 0.563s
Ours 0.487s

Table 9: Comparison with SOTA baselines on computation
(inference) latency.

6 Conclusion
In this paper, we proposed the Aspect-driven Alignment and Re-
finement model crafted for the task of MABSA, which seamlessly
unifies the Coarse-to-fine Aspect-driven Alignment module and the
Aspect-driven Refinement module. Notably, our model addresses
NCP from the perspective of aspects. Empirical analysis on two
extensively utilized datasets substantiates the efficacy of our ap-
proach.

Limitations and Future Work
Despite the notable superiority of our proposed method over exist-
ing SOTA approaches, it is imperative to acknowledge and address
several challenges in future research endeavors. Firstly, predicting
emotions of tweet posts, which are related to contemporary issues,
is hindered by a lack of requisite external knowledge. Secondly, our
ADAM method exhibits limitations in dealing with missing visual
elements. Acting as a double-edged sword, the adaptive filter bin ef-
fectively removes irrelevant multimodal entities but also overlooks
the missing information. These limitations present a critical area
for further investigation in our subsequent research efforts.
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