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ABSTRACT

The application of 3D ViTs to medical image segmentation has seen remarkable
strides, somewhat overshadowing the budding advancements in Convolutional
Neural Network (CNN)-based models. Large kernel depthwise convolution has
emerged as a promising technique, showcasing capabilities akin to hierarchical
transformers and facilitating an expansive effective receptive field (ERF) vital for
dense predictions. Despite this, existing core operators, ranging from global-local
attention to large kernel convolution, exhibit inherent trade-offs and limitations
(e.g., global-local range trade-off, aggregating attentional features). We hypothe-
size that deformable convolution can be an exploratory alternative to combine all
advantages from the previous operators, providing long-range dependency, adap-
tive spatial aggregation and computational efficiency as a foundation backbone. In
this work, we introduce 3D DeformUX-Net, a pioneering volumetric CNN model
that adeptly navigates the shortcomings traditionally associated with ViTs and
large kernel convolution. Specifically, we revisit volumetric deformable convo-
lution in depth-wise setting to adapt long-range dependency with computational
efficiency. Inspired by the concepts of structural re-parameterization for convo-
lution kernel weights, we further generate the deformable tri-planar offsets by
adapting a parallel branch (starting from 1× 1× 1 convolution), providing adap-
tive spatial aggregation across all channels. Our empirical evaluations reveal that
the 3D DeformUX-Net consistently outperforms existing state-of-the-art ViTs and
large kernel convolution models across four challenging public datasets, spanning
various scales from organs (KiTS: 0.680 to 0.720, MSD Pancreas: 0.676 to 0.717,
AMOS: 0.871 to 0.902) to vessels (e.g., MSD hepatic vessels: 0.635 to 0.671) in
mean Dice. The source code with our pre-trained model is available at ****.

1 INTRODUCTION

Recent advancements have seen the integration of Vision Transformers (ViTs) Dosovitskiy et al.
(2020) into 3D medical applications, notably in volumetric segmentation benchmarks Wang et al.
(2021); Hatamizadeh et al. (2022b); Zhou et al. (2021); Xie et al. (2021). What makes ViTs unique
is their absence of image-specific inductive biases and their use of multi-head self-attention mecha-
nisms. The profound impact of ViTs has somewhat eclipsed the emerging techniques in traditional
Convolutional Neural Network (CNN) architectures. Despite the limelight on 3D ViTs, large kernel
depthwise convolution presents itself as an alternative for extracting features with a broad field of
view and scalability Lee et al. (2022). Unlike standard convolutions, depthwise convolution oper-
ates on each input channel separately, leading to fewer parameters and enhancing the feasibility of
using large kernel sizes. In comparing CNNs to ViTs, we observe that a key attribute for generat-
ing fine-grained dense predictions is extracting meaningful context with a large effective receptive
field (ERF). However, beyond leveraging large ERF, core operators like global-local self-attention
mechanisms and large kernel convolution each have their own sets of trade-offs. Local self-attention
in hierarchical transformers struggles to provide long-range dependencies, while global attention
in Vanilla ViTs exhibits quadratic computational complexity relative to the image resolution. Con-
currently, large kernel convolution computes features using static summations and falls short in
providing spatial aggregation akin to the self-attention mechanism. Given these observations, we
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can summarize these trade-offs specifically for volumetric segmentation in three main directions:
1) global-local range dependency, 2) adaptive spatial aggregation across kernel elements, and
3) computation efficiency. We further pose a question: “Can we design a core operator that
addresses such trade-offs in both ViTs and large kernel convolution for 3D volumetric seg-
mentation?”

Recent advancements, such as those by Ying et al. and Wang et al. Ying et al. (2020); Wang
et al. (2023), have enhanced deformable convolution design, offering a computationally scalable
approach that marries the benefits of Vision Transformers (ViTs) and CNNs for visual recognition
tasks. Drawing inspiration from these advancements, we revisit deformable convolution to explore
its capability in: (1) efficiently adapting long-range dependencies and offering adaptive spatial
aggregation with 3D convolution modules, (2) achieving state-of-the-art (SOTA) performance
across diverse clinical scenarios, including organs, tumors, and vessels, and (3) setting a novel
direction in the development of foundational convolution backbones for volumetric medical
image segmentation. Diverging from the likes of SwinUNETR Hatamizadeh et al. (2022a) and
3D UX-Net Lee et al. (2022), we introduce a pioneering architecture, termed 3D DeformUX-Net.
This model aims to address challenges from convolution to global-local self-attention mechanisms
and bolster the implementation of deformable convolution for 3D segmentation, ensuring robust
performance in variable clinical sceanrios. Specifically, we leverage volumetric deformable con-
volution in a depth-wise setting to adapt long-range dependency handling with computational effi-
ciency. Preceding the deformable convolution operations, we incorporate concepts from structural
re-parameterization of large kernel convolution weights Ding et al. (2022) and present a parallel
branch design to compute the deformable tri-planar offsets, ensuring adaptive spatial aggregation for
deformable convolution across all feature channels. We evaluate 3D DeformUX-Net on supervised
volumetric segmentation tasks across various scales using four prominent datasets: 1) MICCAI 2019
KiTS Challenge dataset (kidney, tumor and cyst) Heller et al. (2019), 2) MICCAI Challenge 2022
AMOS (multi-organ) Ji et al. (2022), 3) Medical Segmentation Decatholon (MSD) Pancreas dataset
(pancreas, tumor) and 4) hepatic vessels dataset (hepatic vessel and tumor) Antonelli et al. (2022).
3D DeformUX-Net consistently outperforms current transformer and CNN SOTA approaches across
all datasets, regardless of organ scale. Our primary contributions can be summarized as follows:

• We introduce the 3D DeformUX-Net, a pioneering approach that addresses the trade-offs
inherent in the global-local self-attention mechanisms and convolutions for volumetric
dense predictions. To the best of our knowledge, this represents the inaugural block de-
sign harnessing 3D deformable convolution in depth-wise setting, rivaling the performance
of established transformer and CNN state-of-the-art (SOTA) models.

• We leverage deformable convolution in depth-wise setting with tri-planar offsets computed
in a parallel branch design to adapt long-range dependency and adaptive spatial aggregation
with efficiency. To our best knowledge, this is the first study to introduce multi-planar
offsets into deformable convolution for medical image segmentation.

• We use four challenging public datasets to evaluate 3D DeformUX-Net in direct training
scenario with volumetric multi-organ/tissues segmentation across scales. 3D DeformUX-
Net achieves consistently improvement across all CNNs and transformers SOTA.

2 TIMELINE FOR SEGMENTATION NETWORK: FROM CNNS TO VITS

In the realm of medical image segmentation, 2D/3D U-Net is the starting point to demonstrate the
feasibility of performing dense prediction with supervised training Ronneberger et al. (2015); Çiçek
et al. (2016). A variety of network structure designs also propose (e.g., V-Net Milletari et al. (2016),
UNet++ Zhou et al. (2018), H-DenseUNet Li et al. (2018), SegResNet Myronenko (2018)) to adapt
different imaging modalities and organ semantics. Moreover, nnUNet is proposed to provide a com-
plete hierarchical framework design to maximize the coarse-to-fine capabilities of 3D UNet Isensee
et al. (2021). However, most of the networks only leverage the convolution mechanism with small
kernel sizes and limit to the learning of locality with small ERF. Starting from 2021, the introduc-
tion of ViTs provides the distinctive advantages of long-range dependecy (global attention) and large
ERF for different medical downstream tasks. There’s been a substantial shift towards incorporating
ViTs for enhanced dense predictions (e.g., TransUNet Chen et al. (2021), LeViT Xu et al. (2021),
CoTr Xie et al. (2021), UNETR Hatamizadeh et al. (2022b)). Due to the quadratic complexity of
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Figure 1: This figure compares our proposed block design with representative 3D medical image
segmentation designs. We leverage depth-wise deformable convolution in parallel with a multi-
layer perceptron (MLP), which generates the tri-planar offset to adapt long-range dependency and
adaptive spatial aggregation across for deformable convolution. Furthermore, the deformable con-
volution module is followed with a MLP to provide linear scaling similarly to the Swin Transformer
module.

multi-head self-attention mechanism in ViTs, it is challenging to adapt ViT as the foundation back-
bone for medical image segmentation with respect to high-resolution medical images. To tackle
the computation complexity in ViTs, the hierarchical transformers (e.g., swin transformer Liu et al.
(2021)) demonstrate notable contributions to extract fine-grain features with the concept of sliding
window. Works like SwinUNETR Hatamizadeh et al. (2022a) and nnFormer Zhou et al. (2021),
directly employ Swin Transformer blocks within the encoder to improve organ and tumor segmenta-
tion in 3D medical images. Some advancements, like Tang et al.’s self-supervised learning strategy
for SwinUNETR, highlight the adaptability of these frameworks Tang et al. (2022). Similarly, 2D ar-
chitectures like Swin-Unet Cao et al. (2021) and SwinBTS Jiang et al. (2022) incorporate the Swin
Transformer to learn intricate semantic features from images. Yet, despite their potential, these
transformer-based volumetric segmentation frameworks are bogged down by lengthy training times
and considerable computational complexity, especially when extracting multi-scale features. In par-
allel with hierarchical transformers, depthwise convolution demonstrates an alternative to adapt large
kernel sizes with efficiency. Notably, ConvNeXt by Liu et al. offers a glimpse of how one can blend
the advantages of ViTs with large kernel depthwise convolution for downstream visual recognition
tasks Liu et al. (2022). 3D UX-Net further bridges the gap to adapt large kernel depthwise convolu-
tion for volumetric segmentation with high-resolution medical images Lee et al. (2022). However,
such large kernel design is limited to address the clinical scenarios of segmenting multi-scale tissues
(e.g., tumors, vessels) Kuang et al. (2023) and additional prior knowledge may need to enhance
learning convergence for locality in the large kernel Lee et al. (2023). Yet, a gap still persists in
the literature regarding the feasibility and the optimal approach to adapt deformable convolution
in volumetric segmentation. Given the advantages offered by the deformable convolution, there is
potential to tackle most of the trade-offs across ViTs and CNNs with specific design.

3 3D DEFORMUX-NET: INTUITION

Inspired by Ying et al. (2020) and Wang et al. (2023), we introduce 3D DeformUX-Net, a purely
volumetric CNN that revisits the concepts of deformable convolution and preserves all advantages
across ViTs and CNNs mechanisms. We explore the fine-grained difference between convolution
and the self-attention from local-to-global scale and investigate the variability of block design in
parallel as our main intuition in Figure 1. With such observation, we further innovate a simple
block design to enhance the feasibility of adapting 3D deformable convolution with robustness for
volumetric segmentation. First, we investigate the variability across the properties of self-attention
and convolution as three folds:
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Figure 2: Overview of the deformable convolution mechanisms. Deformable convolutions introduce
an adaptable spatial sampling capability that transcends the rigid bounds of conventional 3× 3× 3
regions, achieved with the deformable offsets (light green arrows). Such offsets can demonstrate the
capability of generalizing various transformation such as scaling and rotation (as shown in x-z, y-z
offsets grid). The deformable offsets in our scenario are computed with a multi-layer perceptron.

• Global-to-Local Range Dependency: The concept of long-range dependency can be de-
fined as more portion of the image is recognized by the model with a large receptive field.
In medical domain, the de-facto effective receptive field for traditional segmentation net-
work (e.g., 3D U-Net) is relatively small with the convolution kernel sizes of 3×3×3. With
the introduction of ViTs, the idea of transforming a 16 × 16 × 16 patch into a 1-D vector
significantly enhances the ERF for feature computation and defines it as global attention.
While such global attention is limited to demonstrate the fine-grained ability for dense pre-
diction, hierarchical transformer (e.g., Swin Transformer) is further proposed to compute
local attention with large sliding window sizes specific for high-resolution segmentation.
Meanwhile, large kernel convolution starts to explore in parallel, which shows the similar
ability of hierarchical transformer and demonstrates the effectiveness of enlarging ERF in
downstream segmentation tasks. However, the segmentation performance becomes satu-
rated or even degraded when scaling up the kernel sizes. Therefore, an optimal ERF is
always variable depending on the morphology of the semantic target for downstream seg-
mentation.

• Adaptive Spatial Aggregation: While the weights computed from self-attention mech-
anism are dynamically conditioned by the input, a static operator is generated from the
convolution mechanism with high inductive biases. Such characteristic enhances the recog-
nition of locality and neighboring structure and leverages fewer training samples compared
to ViTs. However, summarizing the visual content into a static value is limited to provid-
ing element-wise importance in a convolution kernel. Therefore, we hypothesize that an
additional variant of prior information can be extracted within the visual context and may
benefit the element-wise correspondence of the kernel weights.

• Computation Efficiency: Compared to both ViTs and CNNs, global attention from the
traditional vanilla ViT demonstrates the lowest computation efficiency and it is challenging
to scale up with respect to the quadratic complexity from the input size. Although the hi-
erarchical transformers further reduce the feature dimensionality with sub-window shifting
to compute self-attention, the computation of shifted window self-attention is computa-
tional unscalable to achieve via traditional 3D model architectures. Therefore, the depth-
wise convolution with large kernel sizes demonstrates to be another efficient alternative for
computing features.

4 3D DEFORMUX-NET: COMPLETE BACKBONE

4.1 DEPTHWISE DEFORMABLE CONVOLUTION WITH TRI-PLANAR OFFSETS

To accommodate all trade-offs that we explored from both convolution and self-attention mecha-
nisms, the simplest way is to innovate a block design that can bridge the gap, adapting long-range
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dependency and adaptive spatial aggregation with efficiency. We hypothesize that a variant of con-
volution, deformable convolution, can provide the feasibility to address all trade-offs. Given a vol-
umetric input x ∈ RC×H×W×D and the current centered voxel v0 in the kernel, the operation of
deformable convolution can be formulated as:

y(v0) =

K∑
k=1

w(vk) · x(v0 + vk) (1)

where v0 represents an arbitrary location in the output feature y and vk represents the kth value in the
convolution sampling grid G = (−1,−1,−1), (−1,−1, 0), ..., (1, 1, 0), (1, 1, 1) with 3×3×3 con-
volution kernel as the foundation basis. K = 27 is the size of the sampling grid. w ∈ RC×C denotes
the projection weight of the k-th sampling point in the convolution kernel. To enlarge the receptive
field of a 3×3×3 convolution, adapting learnable offsets is the distinctive properties for deformable
convolution and enhance the spatial correspondence between neighboring voxels, as shown in Figure
2. Unlike the videos input in Ying et al. (2020), 3D medical images provide high-resolution tri-planar
spatial context with substantial variability organs/tissues morphology across patients’ conditions. To
adapt such variability, we propose to adapt tri-planar learnable offsets ∆vk ∈ R3K×H×W×D, which
has a channel size of 3K and each K channel represent one of axes (i.e., height, width and depth)
for 3D spatial deformation. Furthermore, we observe that the offset computation mechanism have
similar block design to the parallel branch design for structural re-parameterization to adapt large
kernel convolutions Ding et al. (2022). With such inspiration, instead of using standard deformable
convolution for both feature and offset computation, we propose to adapt deformable convolution
in depthwise setting to simulate the self-attention behavior. Furthermore, we adapt parallel branch
design to re-parameterize the offsets computation with either a Multi-Layer Perceptron (MLP) or
small kernel convolution, enhancing the adaptive spatial aggregation with efficiency. We define our
proposed deformable convolution mechanism at layer l as follows:

∆v0 = MLP (yl−1(v0))

yl(v0) =

G∑
g=1

K∑
k=1

wg(vk) · xg(v0 + vk +∆v0)
(2)

where G defines as the total number of aggregation groups in the depth-wise setting. For the g-
th group, wg ∈ RC×C′

denotes as the group-wise divided projection weight. Such deformable
convolution operator demonstrates the merits as follows: 1) it tackles the limitation of standard
convolution with respect to long-range dependencies and adaptive spatial aggregation; 2) it inherits
the inductive bias characteristics of the convolution mechanism with better computational efficiency
using less training samples.

4.2 COMPLETE ARCHITECTURE

To benchmark the effectiveness of each operation module fairly, inspired by 3D UX-Net, we follow
the step-by-step comparison to compare the effectiveness of each module and create the optimal
design with our proposed deformable operator. Given random patches pi ∈ RH×W×D×C are
extracted from each 3D medical images x, we follow the similar architecture with the encoder in
3D UX-Net, which first leverage a large kernel convolution layer to compute the partitioned feature
map with dimension H

2 × W
2 × D

2 and project to a C = 48-dimensional space. We then directly
substitute the main operator of large kernel convolution with our proposed Depth-wise Deformable
Convolution (DDC) using kernel size of 3× 3× 3. Furthermore, we further perform experiments to
evaluate the adeptness of linear scaling in standard (MLP) and depth-wise setting (scaling approach
in 3D UX-Net), considering MLP as the main scaling operator for DDC based on the performance
evaluation. We hypothesize such block design can tackle all trade-offs across ViTs and large kernel
convolution with robust performance and large ERF. Here, we define the output of the encoder
blocks in layers l and l + 1 as follows:

ẑl = DDC(LN(zl−1)) + zl−1

zl = MLP(LN(ẑl)) + ẑl

ẑl+1 = DDC(LN(zl)) + zl

zl+1 = MLP(LN(ẑl+1)) + ẑl+1

(3)
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Figure 3: Qualitative representations are showcased across the AMOS, MSD pancreas, and hepatic
vessels datasets. Selected areas are magnified to highlight the notable discrepancies in segmenta-
tion quality, with red arrows indicating areas of over-/under-segmentation. Overall, DeformUX-Net
demonstrates the best segmentation quality compared to the ground-truth.

where ẑl and ẑl+1 are the outputs from the DDC layer in different depth levels; LN denotes as
the layer normalization. Compared to the 3D UX-Net, we substitute the large kernel convolution
modules with two DDC layers. More details of the remaining architecture are provided in the sup-
plementary material.

5 EXPERIMENTAL SETUP

Datasets We conduct experiments on five public segmentation datasets across organs/tissues from
different scales (large (e.g., liver, stomach) to small (e.g., tumors, vessels), which comprising with 1)
MICCAI 2019 KiTS Challenge dataset (KiTS) Heller et al. (2019), 2) MICCAI 2022 AMOS Chal-
lenge dataset (AMOS) Ji et al. (2022), 3) Medical Segmentation Decathlon (MSD) pancreas dataset
and 4) hepatic vessel dataset Antonelli et al. (2022). For KiTS dataset, we employ 210 contrast-
enhanced abdominal computed tomography (CT) from the University of Minnesota Medical Center
between 2010 and 2018, with three specific tissues well-annotated (kidney, tumor, cyst). For AMOS
dataset, we employ 200 multi-contrast abdominal CT with sixteen anatomies manually annotated
for abdominal multi-organ segmentation. For MSD dataset, we employ in total of 585 abdominal
contrast-enhanced CT scans for both pancreas and tumor (282) segmentation, and hepatic vessels
and tumor (303) segmentation. More details of these four public datasets can be found in appendix
A.2.

Implementation Details We specifically evaluate on direct supervised training scenario with all four
datasets for volumetric segmentation. We perform five-fold cross-validations with 80% (train)/ 10%
(validation)/ 10% (test) split to MSD and KiTS datasets, while single fold is performed with 80%
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Table 1: Comparison of SOTA approaches on the three different testing datasets. (*: p < 0.01, with
Paired Wilcoxon signed-rank test to all baseline networks)

KiTS MSD

Methods #Params FLOPs Kidney Tumor Cyst Mean Pancreas Tumor Mean Hepatic Tumor Mean

3D U-Net Çiçek et al. (2016) 4.81M 135.9G 0.918 0.657 0.361 0.645 0.711 0.584 0.648 0.569 0.609 0.589
SegResNet Myronenko (2018) 1.18M 15.6G 0.935 0.713 0.401 0.683 0.740 0.613 0.677 0.620 0.656 0.638
RAP-Net Lee et al. (2021) 38.2M 101.2G 0.931 0.710 0.427 0.689 0.742 0.621 0.682 0.610 0.643 0.627
nn-UNet Isensee et al. (2021) 31.2M 743.3G 0.943 0.732 0.443 0.706 0.775 0.630 0.703 0.623 0.695 0.660

TransBTS Wang et al. (2021) 31.6M 110.3G 0.932 0.691 0.384 0.669 0.749 0.610 0.679 0.589 0.636 0.635
UNETR Hatamizadeh et al. (2022b) 92.8M 82.5G 0.921 0.669 0.354 0.648 0.735 0.598 0.667 0.567 0.612 0.635
nnFormer Zhou et al. (2021) 149.3M 213.0G 0.930 0.687 0.376 0.664 0.769 0.603 0.686 0.591 0.635 0.613
SwinUNETR Hatamizadeh et al. (2022a) 62.2M 328.1G 0.939 0.702 0.400 0.680 0.785 0.632 0.708 0.622 0.647 0.635
3D UX-Net (k=7) Lee et al. (2022) 53.0M 639.4G 0.942 0.724 0.425 0.697 0.737 0.614 0.676 0.625 0.678 0.652
UNesT-B Yu et al. (2023) 87.2M 258.4G 0.943 0.746 0.451 0.710 0.778 0.601 0.690 0.611 0.645 0.640

DeformUX-Net (Ours) 55.8M 635.8G 0.948 0.763 0.450 0.720 0.790 0.643 0.717 0.637 0.705 0.671

(train)/ 10% (validation)/ 10% (test) split for AMOS dataset. The complete preprocessing and train-
ing details are available at the appendix A.1. Overall, we evaluate 3D DeformUX-Net performance
by comparing with current volumetric transformer and CNN SOTA approaches for volumetric seg-
mentation in fully-supervised setting. We leverage the Dice similarity coefficient as an evaluation
metric to compare the overlapping regions between predictions and ground-truth labels. Further-
more, we performed ablation studies to investigate the best scenario of adapting the deformable
convolution and the variability of substituting different linear layers for feature extraction.

6 RESULTS

6.1 EVALUATION ON ORGAN/VESSEL & TUMOR SEGMENTATION

We initiated our study by evaluating the adaptability across different organ/tissue scales through
organ/vessel and tumor segmentation tasks. Table 1 provides a quantitative comparison against the
leading state-of-the-art (SOTA) transformers and CNNs. In our analysis of the KiTS and MSD pan-
creas datasets, hierarchical transformers utilizing local attention mechanisms, such as SwinUNETR,
outperformed the large kernel convolution mechanism employed by 3D UX-Net in MSD pancreas
dataset, while the large kernel operation demonstrates better performance in KiTS. Given that the
large kernel convolution statically summarizes features, the flexibility of local attention seems partic-
ularly advantageous when handling the sparsity within tumor regions. Our innovative convolution
design subsequently improved performance metrics, pushing the mean organ dice from 0.680 to
0.720 in KiTS and 0.676 to 0.717 in MSD pancreas datasets. Notably, UNesT-L achieved perfor-
mance metrics on par with our proposed block in the KiTS dataset, possibly due to its significant
model capacity and unique local attention mechanism (experiments shown in supplementary ma-
terial). Nevertheless, DeformUX-Net surpassed UNesT-B’s performance in KiTS, boasting an en-
hancement of 1.41% in mean dice, and also outperformed UNesT-L on the MSD pancreas dataset,
improving the Dice score from 0.701 to 0.717. As for vessel and tumor segmentation, where prior
research has highlighted the vulnerabilities of large kernel convolution, 3D UX-Net still show sig-
nificant strides over SwinUNETR. Our custom-designed block further elevated the performance,
registering an increase of 4.84% in mean dice over both 3D UX-Net and UNesT-B. Moreover, qual-
itative visuals presented in Figure 3 clearly showcase our model’s prowess in delineating organ
boundaries and reducing the propensity for over-segmentation across adjacent organ regions.

6.2 EVALUATION ON MULTI-ORGAN SEGMENTATION

Apart from segmenting tissues across scales, Table 2 presents a quantitative comparison between
the current SOTA transformers and CNNs for volumetric multi-organ segmentation. Employing our
novel deformable convolution block design as the encoder backbone, the DeformUX-Net consis-
tently outperforms its peers, showcasing a notable Dice score improvement ranging from 0.871 to
0.908. This enhancement is evident when compared to both SwinUNETR (which uses the Swin
Transformer as its encoder backbone) and the 3D UX-Net (that relies on large kernel convolution
for its encoder backbone). We also evaluate the effectiveness of DeformUX-Net against the most
recent hierarchical transformer model, UNesT, known for its unique hierarchical block aggregation
to capture local attention features. Remarkably, our deformable block design still outshined UNesT
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Table 2: Evaluations on the AMOS testing split in different scenarios.(*: p < 0.01, with Paired
Wilcoxon signed-rank test to all baseline networks)

Train From Scratch Scenario

Methods Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. Avg

nn-UNet 0.951 0.919 0.930 0.845 0.797 0.975 0.863 0.941 0.898 0.813 0.730 0.677 0.772 0.797 0.815 0.850

TransBTS 0.930 0.921 0.909 0.798 0.722 0.966 0.801 0.900 0.820 0.702 0.641 0.550 0.684 0.730 0.679 0.783
UNETR 0.925 0.923 0.903 0.777 0.701 0.964 0.759 0.887 0.821 0.687 0.688 0.543 0.629 0.710 0.707 0.740
nnFormer 0.932 0.928 0.914 0.831 0.743 0.968 0.820 0.905 0.838 0.725 0.678 0.578 0.677 0.737 0.596 0.785
SwinUNETR 0.956 0.957 0.949 0.891 0.820 0.978 0.880 0.939 0.894 0.818 0.800 0.730 0.803 0.849 0.819 0.871
3D UX-Net 0.966 0.959 0.951 0.903 0.833 0.980 0.910 0.950 0.913 0.830 0.805 0.756 0.846 0.897 0.863 0.890
UNesT-B 0.966 0.961 0.956 0.903 0.840 0.980 0.914 0.947 0.912 0.838 0.803 0.758 0.846 0.895 0.854 0.891

DeformUX-Net (Ours) 0.972 0.970 0.962 0.920 0.871 0.984 0.924 0.955 0.925 0.851 0.835 0.787 0.866 0.910 0.886 0.908*

Table 3: Ablation studies of variable block and architecture designs on AMOS, KiTS, and MSD
Pancreas datasets

Methods #Params (M) AMOS KiTS Pancreas
Mean Dice

SwinUNETR 62.2 0.871 0.680 0.708
3D UX-Net 53.0 0.890 0.697 0.676
UNesT-B 87.2 0.894 0.710 0.690

Use Standard Deformable Conv. 55.5 0.878 0.701 0.682
Use Depth-wise Deformable Conv. 53.0 0.908 0.720 0.717

Offset Kernel=1× 1× 1 52.5 0.908 0.720 0.717
Offset Kernel=3× 3× 3 52.7 0.894 0.713 0.698

x-y offset only Ying et al. (2020) 54.0 0.878 0.701 0.689
x-z offset only Ying et al. (2020) 54.0 0.893 0.694 0.681
y-z offset only Ying et al. (2020) 54.0 0.883 0.712 0.697
Tri-planar offset (Ours) 55.8 0.908 0.720 0.717

No MLP 51.1 0.879 0.659 0.661
Use MLP 55.8 0.908 0.720 0.717
Use Depth-wise Conv. Scaling Lee et al. (2022) 53.0 0.889 0.684 0.679

across all organ evaluations, registering a 1.11% uptick in mean Dice score, while operating at a fifth
of UNesT’s model capacity. Further reinforcing our claims, Figure 3 visually underscores the seg-
mentation quality improvements achieved by DeformUX-Net, illustrating its precision in preserving
the morphology of organs and tissues in alignment with the ground-truth labels.

6.3 ABLATION ANALYSIS

After assessing the foundational performance of DeformUX-Net, we delved deeper to understand
the contributions of its individual components—both within our novel deformable operation and the
overarching architecture. We sought to pinpoint how these components synergize and contribute to
the observed enhancements in performance. To this end, we employed the AMOS, KiTS, and MSD
pancreas datasets for comprehensive ablation studies targeting specific modules. All ablation studies
are conducted with kernel size 3× 3× 3.
Comparing with Different Convolution Mechanisms: We examined both standard deformable
convolution and depth-wise deformable convolution for feature extraction. To ensure a fair compari-
son between the experiments, we computed the deformable offset using a kernel size of 1×1×1. Uti-
lizing standard deformable convolution led to a notable decrease in performance across all datasets,
while simultaneously increasing the model parameters. Conversely, by employing deformable con-
volution in a depth-wise manner, we found that independently extracting features across each chan-
nel was the most effective approach for subsequent segmentation tasks.
Variation of Kernel Sizes for Offset Computation: We observed a notable decrease when varying
the method of offset computation. Using a MLP for offset calculation led to a significant perfor-
mance improvement compared to the traditional method, which computes offsets with a kernel size
of 3 × 3 × 3. Intriguingly, by drawing inspiration from the parallel branch design in structural
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re-parameterization, we managed to reduce the model parameters while maintaining performance
across all datasets.
Variability of Offset Directions: Our study, drawing inspiration from Ying et al. (2020), delves
into how the calculation of offsets in different directions impacts performance. Notably, the results
hinge dramatically on the specific offset direction. For instance, in vessel segmentation, offsets de-
termined for the x-z plane considerably outperform those in the other two planes. Conversely, offsets
in the x-y plane are found to be more advantageous for multi-organ segmentation tasks. Given these
findings, tri-planar offsets emerge as the most effective strategy for volumetric segmentation across
various organ and tissue scenarios.
Linear Scaling with MLP: In addition to the primary deformable convolution operations, we exam-
ined the interplay between the convolution mechanism and various linear scaling operators. Adapt-
ing an MLP for linear scaling yielded substantial performance improvements across all datasets. In
contrast, the gains from the depth-wise scaling, as introduced in 3D UX-Net, were more modest. To
further amplify the spatial aggregation among adjacent features, the MLP proved to be an efficient
and impactful choice.

7 DISCUSSION

In this work, we delve into the nuanced intricacies and associated trade-offs between convolution
and self-attention mechanisms. Our goal is to introduce a block-wise design that addresses the
shortcomings of prevailing SOTA operators, particularly large kernel convolution and global-local
self-attention. Taking cues from the 3D UX-Net, we integrate our design within a ”U-Net”-like ar-
chitecture using skip connections tailored for volumetric segmentation. Beyond merely broadening
the ERF for generic performance boosts, we discern that achieving excellence in dense prediction
tasks hinges on two pivotal factors: 1) Establishing an optimal ERF for feature computation,
and 2) Recognizing and adapting to the spatial significance among adjacent features. Sim-
ply enlarging convolution kernel sizes doesn’t invariably enhance segmentation; performance might
plateau or even regress without targeted guidance during optimization phases. Concurrently, the
hierarchical transformer revitalizes local self-attention by computing features within specific sliding
windows (e.g., 7×7×7), albeit at the cost of some long-range dependency. Our insights from Tables
1 & 2 underscore that while large kernel convolution excels in multi-organ segmentation, global-
local self-attention outperforms particularly in tumor segmentation. Traditional convolutions, being
static, don’t cater to spatial importance variations between neighboring regions in the way that self-
attention does. This aspect of self-attention is especially potent in addressing tumor region sparsity.
To address these challenges, we position deformable convolution as a promising alternative, dis-
tinguished by its inherent properties. Our adapted deformable mechanism emphasizes long-range
dependencies even with smaller kernels, and we’ve expanded this approach in a depth-wise setting
to emulate self-attention behavior. Drawing inspiration from structural re-parameterization’s paral-
lel branch design, we employ MLPs to compute deformable offsets. This facilitates discerning the
importance and inter-relationships between neighboring voxels, which, when incorporated into fea-
ture computation, bolsters volumetric performance. Consequently, our novel design offers marked
improvements over traditional designs employing standard deformable convolution.

8 CONCLUSION

We introduce DeformUX-Net, the first volumetric network tackling the trade-offs across CNNs to
ViTs for medical image segmentation. We re-design the encoder blocks with depth-wise deformable
convolution and projections to simulate all distinctive advantages from self-attention mechanism
to large kernel convolution operations. Furthermore, we adapt tri-planar offset computation with
a parallel branch design in the encoder block to further enhance the long-range dependency and
adaptive spatial aggregation with small kernels. DeformUX-Net outperforms current transformer
SOTAs with fewer model parameters using four challenging public datasets in direct supervised
training scenarios.
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A APPENDIX

A.1 DATA PREPROCESSING & MODEL TRAINING

We apply hierarchical steps for data preprocessing: 1) intensity clipping is applied to further enhance
the contrast of soft tissue (AMOS, KiTS, MSD Pancreas:{min:-175, max:250}; MSD Hepatic Ves-
sel:{min:0, max:230}). 2) Intensity normalization is performed after clipping for each volume and
use min-max normalization: (X −X1)/(X99 −X1) to normalize the intensity value between 0 and
1, where Xp denote as the pth percentile of intensity in X . We then randomly crop sub-volumes
with size 96 × 96 × 96 at the foreground and perform data augmentations, including rotations, in-
tensity shifting, and scaling (scaling factor: 0.1). All training processes with 3D DeformUX-Net are
optimized with an AdamW optimizer. We trained all models for 40000 steps using a learning rate
of 0.0001 on an NVIDIA-Quadro RTX A6000 across all datasets. One epoch takes approximately
about 9 minute for KiTS, 5 minutes for MSD Pancreas, 12 minutes for MSD hepatic vessels and 7
minutes for AMOS, respectively. We further summarize all the training parameters with Table 4.

Table 4: Hyperparameters for direction training scenario on four public datasets
Hyperparameters Direct Training
Encoder Stage 4
Layer-wise Channel 48, 96, 192, 384
Hidden Dimensions 768
Patch Size 96× 96× 96
No. of Sub-volumes Cropped 2

Training Steps 40000
Batch Size 2
AdamW ϵ 1e− 8
AdamW β 0.9, 0.999)
Peak Learning Rate 1e− 4
Learning Rate Scheduler ReduceLROnPlateau
Factor & Patience 0.9, 10

Dropout X
Weight Decay 0.08

Data Augmentation Intensity Shift, Rotation, Scaling
Cropped Foreground ✓
Intensity Offset 0.1
Rotation Degree −30◦ to +30◦

Scaling Factor x: 0.1, y: 0.1, z: 0.1
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A.2 PUBLIC DATASETS DETAILS

Table 5: Complete overview of Four public datasets
Challenge AMOS MSD Pancreas MSD Hepatic Vessels KiTS

Imaging Modality Multi-Contrast CT Multi-Contrast CT Venous CT Arterial CT
Anatomical Region Abdomen Pancreas Liver Kidney
Sample Size 361 282 303 300

Anatomical Label
Spleen, Left & Right Kidney, Gall Bladder,

Pancreas, Tumor Hepatic Vessels, Tumor Kidney, TumorEsophagus, Liver, Stomach, Aorta, Inferior Vena Cava (IVC)
Pancreas, Left & Right Adrenal Gland (AG), Duodenum

Data Splits 1-Fold (Internal) 5-Fold Cross-Validation
Train: 160 / Validation: 20 / Test: 20 Train: 225 / Validation: 27 / Testing: 30 Training: 242, Validation: 30 / Testing: 31 Training: 240, Validation: 30 / Testing: 30

5-Fold Ensembling N/A X ✓ X

A.3 FURTHER DISCUSSIONS COMPARING WITH UNEST-L AND REPUX-NET

Table 6: Evaluations on the AMOS testing split with UNesT-L and RepUX-Net.(*: p < 0.01, with
Paired Wilcoxon signed-rank test to all baseline networks)

Train From Scratch Scenario

Methods Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. Avg

SwinUNETR 0.956 0.957 0.949 0.891 0.820 0.978 0.880 0.939 0.894 0.818 0.800 0.730 0.803 0.849 0.819 0.871
3D UX-Net 0.966 0.959 0.951 0.903 0.833 0.980 0.910 0.950 0.913 0.830 0.805 0.756 0.846 0.897 0.863 0.890
UNesT-B 0.966 0.961 0.956 0.903 0.840 0.980 0.914 0.947 0.912 0.838 0.803 0.758 0.846 0.895 0.854 0.891
UNesT-L 0.971 0.967 0.958 0.904 0.854 0.981 0.919 0.951 0.915 0.842 0.822 0.780 0.842 0.890 0.874 0.898
RepUX-Net 0.972 0.963 0.964 0.911 0.861 0.982 0.921 0.956 0.924 0.837 0.818 0.777 0.831 0.916 0.879 0.902

DeformUX-Net (Ours) 0.972 0.970 0.962 0.920 0.871 0.984 0.924 0.955 0.925 0.851 0.835 0.787 0.866 0.910 0.886 0.908*

Table 7: Comparison of UNesT-L and RepUX-Net on the three different testing datasets. (*: p <
0.01, with Paired Wilcoxon signed-rank test to all baseline networks)

KiTS MSD

Methods #Params FLOPs Kidney Tumor Cyst Mean Pancreas Tumor Mean Hepatic Tumor Mean

SwinUNETR Hatamizadeh et al. (2022a) 62.2M 328.1G 0.939 0.702 0.400 0.680 0.785 0.632 0.708 0.622 0.647 0.635
3D UX-Net (k=7) Lee et al. (2022) 53.0M 639.4G 0.942 0.724 0.425 0.697 0.737 0.614 0.676 0.625 0.678 0.652
UNesT-B Yu et al. (2023) 87.2M 258.4G 0.943 0.746 0.451 0.710 0.778 0.601 0.690 0.611 0.645 0.640
UNesT-L Yu et al. (2023) 279.5M 597.8G 0.948 0.774 0.479 0.734 0.784 0.630 0.707 0.620 0.693 0.657

DeformUX-Net (Ours) 55.8M 635.8G 0.948 0.763 0.450 0.720 0.790 0.643 0.717 0.637 0.705 0.671

In Tables 6 and 7, we evaluate our proposed DeformUX-Net against two cutting-edge models: the
UNesT, a transformer with a larger model capacity, and RepUX-Net, which employs the substantial
3D kernel size of 21 × 21 × 21 for multi-organ segmentation. While UNesT-L surpasses both 3D
UX-Net and SwinUNETR in several tasks, it underperforms in pancreas and tumor segmentation.
This performance boost in UNesT-L could primarily be attributed to its unique ability to aggre-
gate local attention and its vast model capacity, at 279.5M parameters. However, DeformUX-Net
still excels in pancreas tumor and hepatic vessel tumor segmentation, improving mean organ dice
scores by 1.41% and 2.13%, respectively, despite utilizing five times fewer model parameters. For
kidney tumor segmentation, DeformUX-Net shows performance on par with UNesT-L. In multi-
organ segmentation contexts, DeformUX-Net decisively outshines UNesT-L, enhancing the Dice
score by 1.11% across all organs. RepUX-Net, meanwhile, exhibits performance closely aligned
with UNesT-L, achieving a mean organ Dice of 0.902. Notably, the surge in segmentation perfor-
mance from RepUX-Net arises from its innovative training strategy, which specifically addresses the
challenges of local learning when employing a vast kernel size. This strategy elucidates the balance
between global and local range dependencies essential for volumetric segmentation. Unlike RepUX-
Net, our newly crafted block does not rely on any prior knowledge during network optimization, yet
it consistently surpasses RepUX-Net with a mean organ Dice of 0.908 across most organs.

A.4 LIMITATIONS OF DEFORMUX-NET

While DeformUX-Net exhibits significant effectiveness across various segmentation scenarios when
compared to diverse state-of-the-art approaches, it’s not without limitations—both inherent to the
deformable convolution operation and our specific block design. In our research, we limited our
exploration to the efficacy of deformable convolution using a kernel size of 3×3×3. We hypothesize
that larger kernel sizes, such as 7×7×7 could further improve segmentation performance. However,
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enlarging the kernel brings challenges: both model parameters and computation scale exponentially
when deformable offsets are integrated, and current 3D deformable convolution implementations in
PyTorch are not as mature as their standard and depth-wise counterparts. Our work here is primarily
empirical, aiming to showcase how deformable convolution can be robustly adapted for medical
image segmentation. A potential future direction could delve into the engineering aspects of efficient
deformable convolution, inviting further investigation into convolutional variants.

Beyond the operator computation, we also identified challenges in the computation of deformable
offsets. Drawing from structural re-parameterization, our approach computes the offset using a
parallel branch of the MLP module. This design, however, compromises efficiency during both
training and testing phases. As kernel sizes for deformable convolution increase, the parallel branch
kernel size must also scale concurrently, as inspired by Ding et al. (2022). A potential solution might
lie in gradient re-parameterization, which could improve efficiency in both training and testing.
This method would allow for the adaptation of deformable convolution without the need for parallel
branch offset computation, as posited by Ding et al..
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