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ABSTRACT

We introduce CAN, a simple, efficient and scalable method for self-supervised
learning of visual representations. Our framework is a minimal and conceptually
clean synthesis of (C) contrastive learning, (A) masked autoencoders, and (N) the
noise prediction approach used in diffusion models. The learning mechanisms are
complementary to one another: contrastive learning shapes the embedding space
across a batch of image samples; masked autoencoders focus on reconstruction of
the low-frequency spatial correlations in a single image sample; and noise predic-
tion encourages the reconstruction of the high-frequency components of an image.
The combined approach results in a robust, scalable and simple-to-implement al-
gorithm. The training process is symmetric, with 50% of patches in both views be-
ing masked at random, yielding a considerable efficiency improvement over prior
contrastive learning methods. Extensive empirical studies demonstrate that CAN
achieves strong downstream performance under both linear and finetuning evalu-
ations on transfer learning and robustness tasks. For instance, when pre-training
ViT-B models on the curated ImageNet dataset, CAN achieves 74.8% top-1 linear
probing accuracy, an absolute improvement of 6.8% over MAE and 1.3% over
SimCLR with the same architecture and data augmentations. CAN is especially
useful for pre-training on larger uncurated datasets such as JFT-300M: for linear
probe on ImageNet, CAN achieves 75.4% compared to 73.4% for SimCLR and
64.1% for MAE. Finetuning our ViT-L model on ImageNet attains 86.1% top-1,
compared to 85.5% for SimCLR, and 85.4% for MAE. The overall FLOPs load
of SimCLR is 70% higher than CAN for ViT-L models1.

1 INTRODUCTION

Self-supervised learning promises continued advances in the state of the art by enabling the use of
increasingly large models and datasets. However, interest in larger datasets has precipitated an in-
creased reliance on web-scraped data collection processes, which result in heterogeneous and “uncu-
rated” datasets (Yu et al., 2022; Radford et al., 2021; Jia et al., 2021). Extreme image heterogeneity
has made scaling vision models to uncurated datasets a non-trivial challenge (Tian et al., 2021; Cole
et al., 2022). There are two families of self-supervised methods for images which have both proven
highly effective on curated datasets (e.g., ImageNet), and are therefore natural candidates for scal-
ing to large, uncurated data. First, masked image models such as the masked autoencoder (MAE)
(He et al., 2022) are a nascent set of methods based on a mask-and-reconstruct training mechanism.
This classical idea (Ballard, 1987) is enjoying a rejuvenation thanks to favourable efficiency when
combined with the vision transformer architecture (Dosovitskiy et al., 2021b). Second, contrastive
learning (van den Oord et al., 2018; Chen et al., 2020b; He et al., 2020) trains an encoder to dis-
tinguish between pairs of positive samples generated with data augmentations and negative pairs
sampled at random. Both approaches have proven to be very powerful self-supervised methods.

Contrastive learning and masked autoencoders (MAE) employ very different learning mechanisms:
the former train the encoder to be invariant to semantics-preserving data variations, while MAEs
learn spatial statistical correlations. Furthermore, MAE methods treat each sample independently in

1Code will be released soon.
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Figure 1: Left: CAN scales better than SimCLR since it uses masked inputs. Middle and right:
CAN outperforms SimCLR and MAE on ImageNet linear probe and finetune evaluations for ViT-L
models when pre-training on uncurated data such as JFT-300M.

the loss function, while contrastive methods explicitly look at the relationship between all samples
in the batch, by either reducing or increasing embedding distance. Given this, we hypothesize that
these two approaches are complementary, extracting different discriminative features for a given
input. If this hypothesis holds, then we expect to see improved performance on various downstream
tasks based on the extracted features. This motivates our exploration of a combined method.

Further, inspired by advances in diffusion models (Ho et al., 2020; Song et al., 2021), we introduce a
third loss based on noise prediction during the masked autoencoder reconstruction. We add Gaussian
noise to unmasked input patches, and train the model to predict the noise added to each patch.
Denoising encourages the encoder to extract higher-frequency information from the input, while
autoencoder reconstructions tend to focus on low-frequency information (Hou et al., 2017). This
additional loss has two purposes: it improves downstream performance; and it addresses a source of
wasted computation in MAE with a negligible impact on FLOPs: that reconstruction of unmasked
patches is thrown away unused.

Combining these ingredients we present CAN, a minimal fusion of contrastive learning, masked
autoencoders and denoising diffusion training loss. Our method enjoys stronger performance than
its constituent parts do on their own, especially pronounced benefits on more uncurated datasets such
as JFT-300M, which contains 300 million highly heterogeneous images, often containing artifacts
(e.g., watermarks). For instance, evaluating JFT-trained ViT-L models using the top-1 accuracy of
an ImageNet-trained linear probe, MAE achieves 64.1% and SimCLR achieves 73.4%, while CAN
achieves 75.4%. CAN masks 50% of patches in each view, making it significantly more scalable
than prior contrastive methods that use two full image views. Our contributions are:

1. We present CAN, a simple self-supervised learning algorithm with good scaling properties,
making it suitable for training on very large image datasets, such as the JFT-300M dataset.

2. CAN is much more efficient than SimCLR (Figure 1). For instance, SimCLR uses 70%
more FLOPs than CAN with ViT-L models.

3. CAN is more robust to distribution shifts than MAE or SimCLR, and performs better on a
wide range of few-shot and linear transfer tasks.

2 RELATED WORK

Masked image models with Vision Transformers. The advent of the Vision Transformer (ViT)
(Dosovitskiy et al., 2021b) provoked a focused effort to develop strong self-supervised learning
frameworks that use ViT backbones. Works such as DINO (Caron et al., 2021) and MoCo-v3 (Chen
et al., 2021b) demonstrated that techniques developed with ConvNet backbones in mind could also
perform competitively using ViTs after proper tuning to suit the new architecture. ViT-specific
methods have emerged since then, particularly masked image modelling (Bao et al., 2022; Chen
et al., 2022; Xie et al., 2022), which takes inspiration from pre-training methods used in NLP (Devlin
et al., 2018). Notably MAE (He et al., 2022) showed that classical masked autoencoding approaches
could be used to pre-train ViTs without passing masked tokens through the encoder. This provides
a significant efficiency boost; our method similarly takes advantage of this.
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Contrastive learning in computer vision. Self-supervision has received significant attention in
computer vision as it offers a way to extract general purpose features without supervision. In par-
ticular, contrastive learning (van den Oord et al., 2018; Hénaff et al., 2020; Chen et al., 2020b; He
et al., 2020; Tian et al., 2020; Chuang et al., 2020; Hénaff et al., 2021) has achieved state of the
art performance by enforcing invariance to augmentations, whilst using negative samples (Robinson
et al., 2021a; Ge et al., 2021) to avoid trivial solutions by spreading the embedding out uniformly
on the sphere (Wang & Isola, 2020). The contrastive pre-training task is conceptually very different
from masked image models such as MAE, which learn spatial statistical dependencies. Another
distinction is that autoencoders encourage information preservation in latent representations, whilst
contrastive learning could suppress features (Chen et al., 2021a; Robinson et al., 2021b). This leads
us to hypothesize that the two approaches learn different data features, and may therefore be com-
plementary learning mechanisms. This motivates us to combine contrastive learning and masked
image modelling so as to develop a reinforced pre-training task that enjoys the merits of each.

Denoising diffusion models. Denoising autoencoders (DAE) (Vincent et al., 2010) learn to recon-
struct clean data given a noisy input. By learning to map low-density data regions to high-density
regions, DAE learns the shape of the data manifold. This connection was made precise by Vincent
(2011), who showed that DAEs learn the score-function s(x) = ∇x log p(x). This key observation
underpins the significant recent advances in generative diffusion models, which use an estimate of
the score-function to generate samples (Ho et al., 2020; Song et al., 2021). The recent success of
DAEs in generative modelling has not yet translated to representation learning, with some excep-
tions (Asiedu et al., 2022; Zaidi et al., 2022). In this work we exploit a denoising autoencoder to
eliminate the MAE inefficiency of reconstructing unmasked patches but never using them.

Concurrent work. Several recent works propose approaches that combine ideas from masked im-
age modelling and Siamese self-supervised learning. For instance, Huang et al. (2022) propose a
combination of contrastive and masked reconstruction objectives using one masked view, and one
full (unmasked) view. Other recent works (Tao et al., 2022; Chen et al., 2022; Assran et al., 2022)
use similar asymmetric designs. The key distinction between CAN and concurrent work is that we
strike a different balance between simplicity, efficiency, and performance: we focus on developing a
simple, efficient and symmetric method: we use two masked views and no momentum encoder. We
hope the simplicity and efficiency of CAN will make it easy to adapt and modify in future work.

3 A SIMPLE CONTRASTIVE MASKED AUTOENCODER FRAMEWORK

Our approach is a minimal synthesis of contrastive learning, the masked autoencoder (He et al.,
2022), and the denoising loss used in the training of diffusion models. We focus on simplicity and
scalability, aiming to design a hybrid with as few complex or costly components as possible. We
also aim to minimize wasted computation: in particular, the MAE decoder requires reconstructions
of all patches, but only those of masked patches are used in the loss. Below, first we detail the basic
pipeline of generating views and passing masked inputs through the encoder and decoder. Then
we explain the three different objectives we use: contrastive, reconstruction, and denoising. The
penultimate section describes the combined objective, and the final section discusses scalability.

3.1 OVERVIEW OF METHOD

Given a batch of n images {x}ni=1, we generate two views x1
i ,x

2
i ∈ Rh×w×3 of each image without

supervision using the same data augmentations as Chen et al. (2020b). Each image is then split
into T = (h/p) × (w/p) patches of size p × p: x1

i,patch,x
2
i,patch ∈ RT×p×p×3 in preparation for

input to the ViT encoder. We always assume that p divides h and w. Two masks M1
i ,M

2
i ∈

{0, 1}T are independently generated, with a 1 in coordinate t ∈ {1, . . . T} indicating that the tth
patch is masked. Each patch is left unmasked independently with probability m, conditioned on
always having exactly T ′ = m · T patches unmasked, which we assume is an integer. In all CAN
experiments our default masking rate is m = 50% unless explicitly stated otherwise (for MAE we
use the default 75%). Following He et al. (2022), only the T ′ unmasked patches are passed to the
ViT encoder, which processes the two views in parallel. Masking a large fraction of patches from
both views make our method much more efficient (see Table 1) than contrastive methods that use
two full views, and recent works that use one full view and one masked view (Assran et al., 2022;
Huang et al., 2022). Finally, we collect the embeddings of unmasked tokens z1i , z

2
i ∈ RT ′×d and
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Figure 2: The CAN framework: Two views of an image are generated, 50% of patches randomly
masked in each, and noise is added to patches. An encoder is trained to solve three tasks: 1)
Reconstruction: encoded patches are passed to a decoder that reconstructs missing patches, 2)
Denoise: reconstructs the noise added to unmasked patches, and 3) Contrast: pooled patches are
passed to a contrastive loss, using in-batch samples as negatives (Chen et al., 2020b).

reshape into T×d tensors by adding a learned [M] embedding to positions corresponding to masked
tokens. The result is passed through a comparatively lightweight ViT decoder to produce outputs
x̂1
i , x̂

2
i in image space Rh×w×3.

3.2 CONTRASTIVE LEARNING OBJECTIVE

The embeddings z1i , z
2
i ∈ RT ′×d returned by the encoder are pooled via a simple mean along the

first dimension to form d-dimensional embeddings, which are passed through a lightweight MLP
projection head that maps into a lower dimension space Rr, r < d, and normalized to unit length to
produce embeddings u1

i ,u
2
i ∈ Rr for i = 1, . . . n. For the ith batch item we collect the other 2n−2

samples in-batch Ni = {u1
j ,u

2
j}j 6=i to use as negatives, and compute the InfoNCE loss:

LInfoNCE =
1

2n

∑
v=1,2

n∑
i=1

− log
eu

1
i
>
u2

i /τ

eu
1
i
>u2

i /τ +
∑

u−∈Ni
eu

v
i
>u−/τ

where τ > 0 is a temperature parameter, which we set to τ = 0.1 by default.

3.3 PATCH RECONSTRUCTION OBJECTIVE

The outputs x̂1
i , x̂

2
i , i = 1, . . . , n of the ViT decoder are trained to reconstruct the missing patches

of each image. Corroborating the findings of He et al. (2022), we find it best to only compute the
reconstruction loss on masked patches:

Lrec =
1

2n

∑
v=1,2

n∑
i=1

‖Mv
i ◦ (xvi − x̂vi )‖22

where ◦ multiplies all pixels in the tth patch of the residual image xvi − x̂vi by (Mv
i )t ∈ {0, 1}.

Whilst computing the loss only on masked patches gives better performance, it indicates wasted
computation since the decoder also produces reconstructions for unmasked patches. To avoid waste
we propose an alternative objective specifically for unmasked patches, which we discuss next.

3.4 DENOISING OBJECTIVE

Inspired by the significant advances in diffusion modelling using denoising training objectives (Ho
et al., 2020; Kingma et al., 2021) and their equivalent score-based counterparts (Song et al., 2021;
Vincent, 2011) we revisit the suitability of denoising for self-supervised learning. We add indepen-
dent isotropic Gaussian noise to each image xvi ← xvi + σvi e

v
i with evi ∼ N (0, I) and σvi uniformly
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sampled from an interval [0, σmax]. This noisy input is masked and passed to the encoder as de-
scribed in Section 3.1. When passing encoded patches to the decoder we make a small addition
to the method in Section 3.1 to provide the decoder with information on the noise level σvi to help
it separate noise from the ground truth image. This is motivated by denoising diffusion methods,
which pass both the noisy image and the noise level as inputs to the denoising model (Ho et al.,
2020). We achieve this by using σvi as a positional encoding in the decoder, similarly to Vaswani
et al. (2017). First we produce a sinusoidal embedding of σvi ∈ Rd, which is passed through a
lightweight 2 layer MLP with ReLU activations of constant width d to produce a (learnable) em-
bedding pvi ∈ Rd, whose dimension matches the latent dimension of zvi ∈ RT×d. We add the
result to each embedded token (including missing tokens [M]) to provide noise-level information:
(zvi )t ← (zvi )t + pvi for t = 1 . . . , T , and pass the result to the decoder producing xvi . We define
our denoising loss function, which is computed only on unmasked pixels:

Ldenoise =
1

2n

∑
v=1,2

n∑
i=1

‖(1−Mv
i ) ◦ (σvi evi − x̂vi )‖22

Figure 3: Denoising: Both the encoded patches and the
noise level σ are passed to the decoder by passing σ through
an MLP, and adding the result to each embedded token.

where, ◦ is as defined in Section
3.2. Note that this denoising loss
is extremely lightweight, introducing
only a very small overhead due to
the MLP. We emphasize that the re-
construction of noise patches comes
at zero additional cost since the de-
coder produces reconstructions of all
patches, both masked and unmasked,
even though only reconstructions of
masked patches are used in Lrec. Fi-
nally, it has often been observed in
the diffusion modelling literature that
although it is equivalent to train a denoising model to estimate the noise, or to estimate the clean in-
put itself (Vincent, 2011), there is a big empirical gap between the two, with noise prediction faring
better. While we do not pursue it further, our testing corroborates this.

None +noise +noise, +loss Full
67.9 68.6 68.4 68.9

Table 1: Ablating components of the de-
noising objective. “Full” denotes the entire
method as described in Section 3.4

Ablation: Table 1 studies the effect of each of the
components of the denoising method. We use ViT-B
models trained for 100 epochs on ImageNet, and con-
sider four settings, each adding in more parts of the
method: 1) CAN with no denoising, 2) adding noise to
the input only, 3) adding noise and using the denoising
loss, and 4) the full method with all of the described
components, including using σvi as a positional encoding in the decoder. Results show that simply
adding noise as a data augmentation improves performance by 0.7%, which can be improved to 1%
by adding a reconstruction loss with noise level passed as an argument. The noise level argument is
necessar: the reconstruction loss without noise level argument performs worse (68.4%) than noise
with no reconstruction at all (68.6%).

We emphasize that the improvement from denoising comes at minimal cost to run time and memory
during training, since it uses reconstructions produced by the decoder, which in the case of MAE are
simply thrown away unused. Denoising prediction encourages the encoder to extract high-frequency
features, which we hypothesize is complementary to reconstruction and contrastive tasks.

3.5 THE COMBINED OBJECTIVE FUNCTION

The overall CAN objective trains the encoder and decoder to optimize three losses combined:

LCAN = λInfoNCELInfoNCE + λrecLrec + λdenoiseLdenoise

where 0 ≤ λInfoNCE, λrec, λdenoise, and λInfoNCE +λrec +λdenoise = 1 weight the objectives. In practice
we parameterize the weights by eliminating one variable using the equality constraint, taking: λrec =
(1 − λInfoNCE) · λ and λdenoise = (1 − λInfoNCE) · (1 − λ) where 0 ≤ λ ≤ 1. This parameterization

5



Under review as a conference paper at ICLR 2023

makes it easy to control the relative weighting between the two reconstruction losses Lrec,Ldenoise on
the one hand, and the contrastive loss LInfoNCE on the other. Empirically we find that performance is
very robust to the choice of λ, and many choices of λInfoNCE also work well (see Section 5).

3.6 DISCUSSION ON EFFICIENCY

The goal of this work is to propose a conceptually minimal combined contrastive masked autoen-
coder approach, aiming to find better trade-offs between simplicity, efficiency, and performance.
Consequently, we choose to omit a number of commonly used self-supervised learning design com-
ponents. For instance, we do not use a momentum target network or multiple views (multi-crop),
since they both increase memory requirements and run time. Even without these commonly used
components, our minimal framework achieves very strong performance compared to prior work,
and importantly improves performance over its contrastive and autoencoder constituent parts. We
expect that a wide range of modifications, such as momentum target networks (He et al., 2020) and
multi-crop (Caron et al., 2020), will improve performance further on top of the core method.

4 RESULTS

4.1 PRE-TRAINING ON UNCURATED DATA: JFT-300M

Architecture Epochs IN-1K top-1
MoCLR (Tian et al., 2021) R50 5000 67.6
BYOL (Grill et al., 2020) R50 5000 67.9
DnC (Tian et al., 2021) R50 1000 67.9
DnC (Tian et al., 2021) R50 4500 70.7
MoCLR (Tian et al., 2021) R200×2 5000 74.2
DnC (Tian et al., 2021) R200×2 3000 77.3
MAE† (He et al., 2022) ViT-L 1600 50.5
MAE† (He et al., 2022) ViT-L 5000 64.1
SimCLR† (Chen et al., 2020b) ViT-B 800 65.8
SimCLR† (Chen et al., 2020b) ViT-L 800 72.6
SimCLR† (Chen et al., 2020b) ViT-L 1600 73.1
SimCLR† (Chen et al., 2020b) ViT-L 5000 73.4
CAN (ours) ViT-B 800 67.1
CAN (ours) ViT-L 800 72.8
CAN (ours) ViT-L 1600 74.3
CAN (ours) ViT-L 3000 75.3
CAN (ours) ViT-L 5000 75.4

Table 2: JFT-300M pre-training: Comparison to the
state of the art on ImageNet linear probe. CAN outper-
forms all methods except DnC, which uses a complicated
multi-stage training process. Computation is measured as
ImageNet-equivalent epochs. †Our implementation.

A key promise of self-supervised learn-
ing is to allow models to be trained
on extremely large scale image datasets
collected from the Web. Not only
is such data likely to be unannotated,
but also uncurated: images contain-
ing many objects, variable lighting, ar-
tifacts (e.g., watermarks) and so on.
The large variation in images found
online presents a major challenge to
self-supervised learning, and it is not
guaranteed that methods that work well
on curated (and comparatively smaller)
datasets such as ImageNet will work
equally well on less curated data. To
study how CAN scales to large datasets
we use JFT-300M (Sun et al., 2017), a
dataset of around 300 million images.

Setup. Training time is measured in
ImageNet-equivalent epochs: 1 epoch
equals 1281167/[batch size] steps, the
number of steps in one IN-1K epoch.
Models are evaluated using linear probe and finetuning on IN-1K. All hyperparameers were tuned
on IN-1K, besides learning rate and weight decay which we cut by a factor of 4 and 2 respectively
to stabilize training on JFT-300M. See Appendix C and Section 5 for details.

Results. Figure 1 compares CAN to SimCLR and MAE baselines using ViT-L models. CAN
achieves a much better trade-off between efficiency (measured in FLOPs) and performance using
ViT-L models for all three methods: CAN uses 41% fewer FLOPs than SimCLR and consistently
outperforms SimCLR and MAE: for training ViT-L models for 5000 epochs, CAN achieves an
IN-1K linear probe performance of 75.4%, compared to 71.8% for SimCLR and 64.1% for MAE.
The relatively poorer linear probe performance of MAE on JFT-300M highlights the non-triviality
of scaling from IN-1K to larger datasets and suggests that while MAE is scalable for model size,
scalability to larger datasets requires further study. Figure 1 (right) gives finetuning results. CAN
performs favourably: for a 5000 epoch pre-training schedule, CAN achieves an IN-1K linear probe
performance of 86.1%, compared to 85.5% for SimCLR and 85.4% for MAE. CAN also enjoys
better scaling with training schedule length than either MAE or SimCLR.
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Method Pre-training epochs Encoder No Additional params. Masked image Finetune Linear probe

from scratch† 100 ViT-B 3 7 79.1 —
from scratch 300 Swin-T 3 7 81.3 —
MoCo-v3 (Chen et al., 2021b) 300 ViT-B 7 7 83.0 76.7
DINO (Caron et al., 2021) 1600 ViT-B 7 7 82.8 78.2
EsViT (Li et al., 2021) 300 Swin-T 7 7 — 78.1
CIM (Fang et al., 2022) 300 ViT-B 7 7 83.1 —
CAE (Chen et al., 2022) 800 ViT-B 7 7 83.8 68.6
CAE (Chen et al., 2022) 1600 ViT-B 7 7 83.9 70.4
BEiT (Bao et al., 2022) 800 ViT-B 7 7 83.2 37.6∗
SimMIM (Xie et al., 2022) 800 ViT-B 3 7 83.8 56.7
MAE (He et al., 2022) 800 ViT-B 3 3 83.1 —
MAE (He et al., 2022) 1600 ViT-B 3 3 83.6 68.0
CAN (ours) 800 ViT-B 3 3 83.4 74.0
CAN (ours) 1600 ViT-B 3 3 83.6 74.8

SimCLR† (Chen et al., 2020b) 800 ViT-L 3 7 83.4 73.9
MAE (He et al., 2022) 800 ViT-L 3 3 84.9 73.5
MAE† (He et al., 2022) 800 ViT-L 3 3 83.7 71.4
CAN (ours) 800 ViT-L 3 3 84.7 76.2

Table 3: Pre-training on ImageNet-1K. †Our implementation. *Quoted from Chen et al. (2022).

We also compare CAN to the current state of the art on JFT-300M pre-training in Table 2. Our
best performance, 75.4% with ViT-L outperforms all methods besides DnC, with 77.3% (Tian et al.,
2021) with R200×2. However we note that CAN is considerably simpler than DnC, which involves
multiple training steps including training 10 separate “expert” models (each as large as the final
model), and then using MoCLR (an improvement of SimCLR that adds a momentum encoder and
more), and finally using distillation to produce a single model. Our calculations suggest that training
a ViT-L with CAN is about 3× faster than training the considerably smaller ResNet50 with DnC in
terms of wall clock time (see Appendix B for explanation). CAN on ViT-L outperforms MoCLR
with R200×2 backbone (similar parameter counts), where we note that MoCLR performs as well or
better than BYOL and MoCo-v3 on IN-1K (Tian et al., 2021).

4.2 PRE-TRAINING ON IMAGENET

Next we evaluate our method using ImageNet (IN-1K) pre-training to verify that it remains com-
petitive in this setting. Results in Table 3 record the top-1 accuracy on IN-1K classification of
finetuned models, and linear probes. Finetuning CAN achieves 83.6% with ViT-B, outperforming
other contrastive approaches such as MoCo-v3 (83.0%), and is competitive with other state-of-the-
art approaches such as CAE (83.9%). The linear probe performance of CAN is 74.8% using ViT-B,
beating all masked image modelling methods, the best of which is CAE with 70.4% (Chen et al.,
2022). CAN is only outperformed by MoCo-v3 and DINO, both of which use momentum encoders
and two full image views, and in the case of DINO a further 10 multi-crop views. Note that the
masked image column indicates whether a method uses one or more full image views as input to
the model, and the no additional parameters column indicates whether a method relies on other
parameters besides the main encoder, e.g., from a pre-trained tokenizer, or a momentum updated
target encoder. We also report results for our MAE implementation, which approximately matches
the original numbers reported by He et al. (2022), validating our MAE results on JFT-300M.

4.3 FEW-SHOT LEARNING

We use linear probes to evaluate suitability of CAN for few-shot learning, following the protocol
of Dosovitskiy et al. (2021a). We use the models pre-trained on JFT-300M for 5000 epochs whose
ImageNet performance is recorded in Figure 1. Results in Figure 4 for few-shot transfer learning
on 9 other datasets show that the superior performance on IN-1K translates to strong performance
on other tasks. We also note that our 25-shot ViT-L models beat full-shot both DnC and BYOL
ResNet50 models (also trained for 5000 epochs on JFT-300M) on 6 out of 8 datasets (Tian et al.,
2021). See Appendix A for many additional results for different training schedules and model sizes.

4.4 ROBUSTNESS TO DISTRIBUTION SHIFT

Finally, we consider the robustness of CAN to distribution shifts. We use ViT-L backbones trained
for 5000 epochs on JFT-300M, which have been finetuned on IN-1K. Model performance is evalu-
ated on a number of different validation sets with the same 1000 classes as IN-1K Mao et al. (2022).
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Figure 4: Few-shot: ViT-L models pre-trained on JFT-300M for 5000 epochs are evaluated on 9
datasets in few-shot setting (10-shot and 25-shot). CAN outperforms MAE and SimCLR.
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Figure 5: Robustness: Evaluating performance under distribution shifts with respect to models
finetuned on IN-1K. Validation performance of ViT-L models is reported on 7 different datasets.

Figure 5 reports results on the following 7 validation sets, which cover a large variety of distribu-
tion shifts: original IN-1K (Deng et al., 2009), IN-v2 (Recht et al., 2019), IN-ReaL (Beyer et al.,
2020), IN-Adversarial (Hendrycks et al., 2021b), IN-Rendition (Hendrycks et al., 2021a), Object-
Net (Barbu et al., 2019). CAN performs favourably under both JFT-300M and IN-1K pre-training,
beating SimCLR and MAE baselines in nearly all cases. See Appendix A for additional results.

5 HYPERPARAMETER ANALYSIS

We study the different components of CAN to better understand the effect of the different mecha-
nisms, and to determine optimal parameter configurations. All ablations use ViT-B models trained
for 100 epochs on IN-1K, unless explicitly said otherwise. We use the best loss weights and noise
level in these experiments for experiments in Section 4.
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Figure 6: CAN and SimCLR with different masking rates. ViT-B models are pre-trained for 100
epochs on IN-1K (left), and 800 epochs on JFT-300M (right).
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Figure 7: ViT-B models pre-trained on IN-1K for 100 epochs. Left: The best contrastive loss
weight is small but non-negative. Middle: A wide range of σmax values improve over no-noise.
Right: Performance is not sensitive to the denoising loss weight.

Complementarity of contrastive and reconstruction losses. A key hypothesis motivating our
work is that contrastive learning and masked autoencoder reconstruction may not only be compati-
ble training objectives, but are complementary ones. Table 4 compares the final training value of the
contrastive LInfoNCE and reconstruction Lrec when jointly trained (i.e., CAN) compared to only op-
timizing LInfoNCE (SimCLR) or only Lrec (MAE). The results support the hypothesis: joint training
achieves a lower loss on both objectives compared to individual training.

Method Contrastive loss ↓ Reconstruction loss ↓
SimCLR 9.157 —
MAE — 0.1658
CAN (ours) 9.143 0.1633

Table 4: Complementary training: All
methods use 50% masking for fair compar-
ison. CAN training achieves lower training
loss for both contrastive and reconstruction
than individual training.

Masking rate. Figure 6 reports the behavior of CAN
and SimCLR under different masking rates on IN-1K
and JFT-300M pre-training (for JFT-300M we use 800
epochs). The performance of SimCLR decreases as
the masking rate increases, suggesting that masking is
not an effective data augmentation. In contrast, perfor-
mance of CAN peaks at a non-zero masking rate, but
at a much lower rate than the 75% used by MAE on
IN-1K. This occurs since very low masking rates are
preferred by the contrastive part of CAN, but severely
damage the autoencoder part, which can learn trivial
solutions. The considerable efficiency improvement from masking 50% of patches more than com-
pensates for the small drop in performance for a fixed number of epochs.

Method ImageNet top-1 ↑
AN 42.8
CN 68.5
CA 67.9
CAN (ours) 68.9

Table 5: Ablating CAN: We
remove each of the three loss
terms in CAN one by one.

Contrastive loss weight. We vary the weighting λInfoNCE used to
weight the contribution of the contrastive and reconstruction losses.
Recall that larger λInfoNCE places higher weight on the contrastive
loss. Results in Figure 7 show that the best weight is λInfoNCE = 0.03,
which approximately balances the magnitudes of the two terms (see
Table 4).

Denoising loss weight and noise level. We study the noise level
interval [0, σmax] from which to sample input noise, and the weight
λ balancing the denoising and reconstruction losses. Results in Fig
7 show that the best maximum noise level is σmax = 0.05, and that
similar performance is attained for a number of different weights on
the denoising loss.

Ablating CAN: CAN is comprised of three components: (C) contrastive, (A) masked autoencoder,
and (N) de-noising losses. We ablate each of the three components in Table 5, setting the loss weight
to zero to “remove” a component. We use ViT-B models pre-trained for 100 epochs. Removing any
component leads to worse performance, with contrastive loss hurting the most.

6 DISCUSSION

We present CAN, a simple, efficient and scalable self-supervised method for visual representation
learning. CAN combines ideas from contrastive learning, masked autoencoding, and diffusion de-
noising into a single high-performing method. Extensive empirical results show that CAN scales
with minimal changes to the large uncurated datasets, providing a significant boost over SimCLR
and MAE methods on a wide range of downstream tasks and evaluations, including linear probes,
few-shot, robustness, and finetuning. Our results suggests that contrasting and reconstruction are
complementary principles that can mutually reinforce one another.
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A ADDITIONAL TRANSFER LEARNING RESULTS

We report additional results for few-shot learning and robustness.

Robustness: Sections 4.4 reports robustness results for ViT-L models pre-trained on JFT-300M for
5000 epochs, and ViT-L models pre-trained on IN-1K for 800 epochs. In both cases we report the
performance of the models after finetuning on IN-1K.

Here we report the same robustness results for ViT-L models trained on JFT-300M for 1600 and
800 epochs (Figure 8), and ViT-B models pre-trained for 800 epochs (Figure 9). Figure 9 also
compares our ViT-B model to ViT-B models trained from scratch on ImageNet. We find that our
model is considerably more robust than training with cross-entropy and Mixup from scratch, and
also outperforms PyramidAT (Herrmann et al., 2022), an adversarial training method that introduces
significant overheads compared to standard cross-entropy training. We emphasize that here there are
two differences in the training: a) the training algorithm itself, and b) the data seen by the model. Our
model sees extra JFT-300M data not seen by the other two approaches. This means that the methods
are not exactly comparable. It is, however, a realistic setting showing the benefits to robustness of
pre-training on large datasets.
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Figure 8: ViT-L models pre-trained on JFT-300M for 800 and 1600 epochs respectively, evaluated
on 7 datasets with distribution shifts from IN-1K.
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Figure 9: Top: ViT-B models pre-trained on JFT-300M for 800 epochs, evaluated on 7 datasets with
distribution shifts from IN-1K. Bottom: Comparison of our JFT-300M pre-trained ViT-B model to
training ViT-B from scratch on IN-1K. We compare to standard supervised cross-entropy training
with Mixup, and to PyramidAT (Herrmann et al., 2022), which uses an adversarial training method.
CAN considerably outperforms supervised training, and beats PyramidAT in 6 out of 7 cases without
requiring adversarial training.

Few shot: Section 4.3 reports 10- and 25-shot results for ViT-L models pre-trained on JFT-300M for
5000 epochs. Here we report 1- and 5-shot results for the same models in Figure 10. We additionally
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show the full set of {1, 5, 10, 25}-shot results for ViT-L models pre-trained on JFT-300M for 800
and 1600 epochs (Figures 11 and 12 respectively), ViT-B models pre-trained on JFT-300M for 800
epochs (Figure 13), and ViT-L models pre-trained on IN-1K for 800 epochs (Figure 14).
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Figure 10: Few shot: ViT-L models pre-trained on JFT-300M for 5000 epochs evaluated on 9 few-
shot learning tasks. Results accompany the 10- and 25-shot results in Figure 4.
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Figure 11: Few shot: ViT-L models pre-trained on JFT-300M for 800 epochs are evaluated on 9
few-shot learning tasks.
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Figure 12: Few shot: ViT-L models pre-trained on JFT-300M for 1600 epochs are evaluated on 9
few-shot learning tasks.
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Figure 13: Few shot: ViT-B models pre-trained on JFT-300M for 800 epochs are evaluated on 9
few-shot learning tasks.
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Figure 14: Few shot: ViT-L models pre-trained on IN-1K for 800 epochs are evaluated on 9 few-
shot learning tasks.

We make a number of observations.

1. Across all settings CAN generally performs the best on JFT-300M pre-training.

2. The situation is less consistent on IN-1K pre-training. For instance, although MAE has
comparatively poor few-shot performance on IN-1K, it is competitive on others for 25-shot
evaluation: in this setting CAN only beats MAE on 5 out of 9 datasets. However, on 10-shot
CAN outperforms MAE and SimCLR in 8 out of 9 cases, showing a subtle picture.

3. JFT-300M pre-training often outperforms IN-1K pre-training. Comparing Figures 11 and
14, JFT-300M yields better 25-shot CAN performance on 6 out of 9 datasets.

4. Model scale helps. Comparing Figures 13 and 11, ViT-L models perform best in nearly all
cases.

A.1 IMAGENET-21K PRE-TRAINING.

We also consider the performance of CAN on pre-training on ImageNet-21K (IN-21K), a publicly
available dataset of 14.2 million images, grouped into 21,000 different classes Deng et al. (2009).
We use the same hyperparamter settings as JFT-300M training to train ViT-L models on IN-21K for
800 (IN-1K equivalent) epochs.

We run a full set of evaluations on finetuning, linear probe, robustness (Figure 15), and few-shot
learning (Figure 16.
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Figure 15: Robustness: ViT-L models pre-trained on IN-21K for 800 (IN-1K equivalent) epochs are
first finetuned on IN-1K. The models are then evaluated on 7 test datasets with different distribution
shifts from IN-1K.
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Figure 16: Few shot: ViT-L models pre-trained on IN-21K for 800 (IN-1K equivalent) epochs are
evaluated on 9 few-shot learning tasks.

B RUNTIME OF CAN COMPARED TO DNC

In the main paper we estimate our method is significantly faster than DnC (Tian et al., 2021). We
determined this approximate comparison from the following two pieces of information: 1) DnC
reports that 3000 ImageNet epochs takes 29 hours on 512 TPUs for a ResNet-50 model ( 25M
parameters), and 2) 3000 ImageNet epochs of CAN take 78 hours on 64 TPUs for a ViT-L model
( 300M parameters). We assume a linear relationship between number of TPUs and runtime. Under
this assumption, we estimate that CAN would take approximately 10 hours to train with 512 TPUs,
compared to the 29 hours reported by Tian et al. (2021) for a model with 1/10th the number of
parameters. We emphasize that this is far from an exact comparison and is only intended as a very
approximate guide.

C HYPERPARAMETER SETTINGS

We list hyperparameters used for CAN pre-training in Table 6 and Table 7. For preprocessing we
closely follow SimCLR Chen et al. (2020b). We use the same hyperparameters for SimCLR pre-
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training. For MAE pre-training, we use the same hyperparameters as listed in He et al. (2022), except
for the use of Glorot uniform initialization instead of LeCun initialization as done in He et al. (2022).
We found that this provided better performance for our JAX-based MAE implementation. Table 10
lists the hyperparameters for finetuning evaluations. We use the same set of hyperparameters for
each finetuning each pre-training method, and for both ViT-B and ViT-L model sizes. For linear
probing we list the hyperparameters in Table 11 for which we followed the settings in He et al.
(2022). We use global average pool of the final representation instead of the cls token.

MAE longer training: MAE pre-training for longer training (5000 epochs) on JFT becomes un-
stable after about 500k steps (training loss oscillates); this results in poorer fine-tuning performance.
To overcome this, we decrease the base learning rate by 75% as shown in Table 9. However our
model CAN is more stable and we use the same hyperparameters across different numbers of epochs.

Few shot training: For few-shot learning we use the same hyperparameters and pipeline as Doso-
vitskiy et al. (2021a). We use the same pre-processing as was done in (Kolesnikov et al., 2020). We
use a base learning rate of 0.01 and train for 2500 steps, using an input resolution of 384× 384.

Hardware details: We use TPU-v4 for all of our experiments. CAN on ViT-B uses 64 TPUs for a
batch size of 4096. SimCLR, on the other hand, uses 128 TPUs for the same batch size, and is more
compute intensive than CAN.

Decoder architecture: Our decoder architecture is the same as He et al. (2022). We use standard
ViT with a decoder depth of 8 and decoder width of 512. We use 16 heads and 2048 as the dimension
of the MLP.

Projection head architecture: We use 2 hidden layers in our projection heads. Each layer has
a Fully-Connected (FC) layer (dim 4096) followed by BatchNorm (momentum=0.9) followed by
ReLU. After these 2 layers we have a FC layer which transforms the features to 128 dimensions.
We apply contrastive learning on top of these 128 dimensional features.

JFT-300M specific hyperparameters: All hyperparameters were determined by training on IN-
1K, and directly transferred with JFT-300M pre-training, with the exception of learning rate and
weight decay, which found needed to be at a lower level for JFT-300M. For all methods we divided
the learning rate by a factor of 4, and the weight decay by a factor of 2, except for MAE where we
found that the original weight decay tuned on ImageNet worked better. Specifically, for CAN and
SimCLR we used following parameter choices: wd = 0.1/2 = 0.05 and lr = 1.25 × 10−4/4 =
3.125× 10−5 and for MAE we used lr = 1.5× 10−4/4 = 3.75× 10−5 , and tried wd = 0.05/2 =
0.025, but found that the original wd = 0.05 worked better, so kept this value.
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C.1 CAN AND SIMCLR HYPERPARAMETERS

config value
optimizer AdamW (Loshchilov & Hutter, 2017a)
base learning rate(ViT-B) 2.5e-4
base learning rate (ViT-L) 1.25e-4
weight decay (ViT-B) 0.05
weight decay (ViT-L) 0.1
optimizer momentum β1, β2=0.9, 0.95 (Chen et al., 2020a)
batch size 4096
learning rate schedule cosine decay (Loshchilov & Hutter, 2017b)
warmup epochs (Goyal et al., 2017) 40
augmentation RandomResizedCrop, Color Jittering(strength=1.0),

GrayScale(probability=0.2), Gaussian Blurring
(probability=0.5)

Table 6: Hyperparameters for CAN pre-training on ImageNet. Note that we use lower learning rate
for ViT-L as compared to ViT-B, following Steiner et al. (2021). We use the same hyper-parameters
for SimCLR training.

config value
optimizer AdamW (Loshchilov & Hutter, 2017a)
base learning rate (ViT-B) 2.5e-4
base learning rate (ViT-L) 3.125e-5
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95 (Chen et al., 2020a)
batch size 4096
learning rate schedule cosine decay (Loshchilov & Hutter, 2017b)
warmup epochs (Goyal et al., 2017) 40
augmentation RandomResizedCrop, Color Jittering(strength=1.0),

GrayScale(probability=0.2), Gaussian Blurring
(probability=0.5)

Table 7: Hyperparameters for CAN pre-training on JFT-300M. Note that we use lower learning rate
for ViT-L as compared to ViT-B, following Steiner et al. (2021). We use the same hyper-parameters
for SimCLR pre-training.

C.2 MAE HYPERPARAMETERS

config value
optimizer AdamW (Loshchilov & Hutter, 2017a)
base learning rate (ViT-L) 1.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95 (Chen et al., 2020a)
batch size 4096
learning rate schedule cosine decay (Loshchilov & Hutter, 2017b)
warmup epochs (Goyal et al., 2017) 40
augmentation RandomResizedCrop, Color Jittering(strength=1.0),

GrayScale(probability=0.2), Gaussian Blurring
(probability=0.5)

Table 8: Hyperparameters for MAE pre-training on IN-1K. We follow the choices made by He et al.
(2022).

config value
optimizer AdamW (Loshchilov & Hutter, 2017a)
base learning rate (ViT-L) 3.75e-5
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95 (Chen et al., 2020a)
batch size 4096
learning rate schedule cosine decay (Loshchilov & Hutter, 2017b)
warmup epochs (Goyal et al., 2017) 40
augmentation RandomResizedCrop, Color Jittering(strength=1.0),

GrayScale(probability=0.2), Gaussian Blurring
(probability=0.5)

Table 9: Hyperparameters for MAE pre-training on JFT-300M with ViT-L models. The only differ-
ence from the IN-1K configuration is the learning rate, which we reduced since we found tarining
to be unstable.
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C.3 FUNETUNING AND LIENAR PROBE HYPERPARAMETERS

config value
optimizer AdamW (Loshchilov & Hutter, 2017a)
base learning rate 5e-4
weight decay 0.005
optimizer momentum β1, β2=0.9, 0.999 (Chen et al., 2020a)
batch size 1024
learning rate schedule cosine decay (Loshchilov & Hutter, 2017b)
warmup epochs (Goyal et al., 2017) 5
training epochs 100
label smoothing 0.1
drop path 0.1
layer-wise lr decay 0.65
augmentation RandomResizedCrop, Flip, RandAug(layers=2,

magnitude=9) (Cubuk et al., 2020), Random Erase
(Zhong et al., 2020)(probability=0.25)

Table 10: Hyperparameters for finetuning CAN pre-trained model on ImageNet. We use the same
hyperparameters for ViT-B and ViT-L, for both JFT-300M and ImageNet pre-trainined models.

config value
optimizer LARS (You et al., 2017)
base learning rate 0.1
weight decay 0
optimizer momentum 0.9
batch size 16384
learning rate schedule cosine decay (Loshchilov & Hutter, 2017b)
warmup epochs (Goyal et al., 2017) 10
training epochs 100
batch norm momentum 0.9
label smoothing 0
augmentation RandomResizedCrop

Table 11: Hyperparameters for linear probing for CAN pre-trained model on ImageNet. We use the
same hyperparameters for ViT-B and ViT-L, for both JFT-300M and ImageNet pre-trainined models.
Note that these hyperparamters are same as reported in He et al. (2022).
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