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ABSTRACT

We introduce integral performance approximation (IPA), a new continuous-time
reinforcement learning (CT-RL) control method. It leverages an affine nonlinear
dynamic model, which partially captures the dynamics of the physical environ-
ment, alongside state-action trajectory data to enable optimal control with great
data efficiency and robust control performance. Utilizing Kleinman algorithm
structures allows IPA to provide theoretical guarantees of learning convergence,
solution optimality, and closed-loop stability. Furthermore, we demonstrate the
effectiveness of IPA on three CT-RL environments including hypersonic vehicle
(HSV) control, which has additional challenges caused by unstable and nonmini-
mum phase dynamics. As a result, we demonstrate that the IPA method leads to
new, SOTA control design and performance in CT-RL.

1 INTRODUCTION

Many important applications such as flight control (Stengel, 2022), robotics (Craig, 2005), process
control (Morari & Zafiriou, 1989), and waste water treatment (Yang et al., 2022) are inherently
continuous-time in their dynamics and require real-time high performance controls. However, an
accurate dynamic model is required in the traditional classical control methods. This poses great
challenges, for example, in the HSV context, for which aeroproprolsive/aeroelastic effects are ex-
ceptionally difficult to model (Bolender & Doman, 2006b; Dickeson et al., 2009b). This modeling
challenge extends to almost all control applications, as modeling complex systems perfectly is not
feasible. Reinforcement learning control designs have provided a new way of circumventing this
stringent requirement, as RL can learn from data to accommodate unmodeled dynamics.

Currently, there are two major classes of algorithms for continuous-time RL (CT-RL). The SOTA
deep RL (DRL) Fitted Value Iteration (FVI) methods (Lutter et al., 2021; 2023b), which have
achieved some of the greatest empirical successes in CT-RL to-date, require data from over
5,000,000 simulations to solve the simple inverted pendulum control task (cf. Section 5). For
mission-critical applications like HSVs, achieving millions of test flights is impossible – typically
only a few test flights can be conducted. Thus, the large data requirements of deep CT-RL methods
presents great challenges to many real-world applications where simulation data from hardware is
expensive to collect and limited in quantity. The adaptive dynamic programming (ADP) methods
represented by seminal works of (Vrabie & Lewis, 2009; Vamvoudakis & Lewis, 2010; Jiang &
Jiang, 2014; Yang et al., 2024) (cf. Appendix M) have achieved promising theoretical results and
attracted substantial research attention since about fifteen years ago. Yet, even though the body
of literature on the subject is large, few have resulted in meaningful controllers, as evaluations of
those methods have been limited to simple toy problems with closed-form solutions known a priori
(Wallace & Si, 2024).

Even though discrete-time (DT) RL algorithms (Sutton & Barto, 2018; Lewis et al., 2012b; Si et al.,
2004; Bertsekas, 2017) have demonstrated extensive theoretical guarantees and demonstrations in
applications, CT-RL algorithms have only developed a handful of results. One approach to CT-RL
discretizes the CT environment and/or value integral in order to approximate a CT problem by a
DT one (Kim et al., 2021; Yildiz et al., 2021). Discretization of CT environments, however, may
cause acute numerical issues for real-world systems, especially ones with complex dynamics like
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the HSV (Chen & Francis, 1995). Even if a discretization can be formed, this casts the problem into
a completely different class of DT control problem. The CT HJB equation (a first-order nonlinear
PDE) is not equivalent to the DT Bellman equation (a difference equation). For additional discus-
sion, see (Wallace & Si, 2024; Cao & Pan, 2024). Another approach resorts to LQR/linearization to
eliminate the nonlinearity challenge, as in seminal works (Bradtke et al., 1994) and subsequent ADP
(Jiang & Jiang, 2012; Jha et al., 2019) and Q-learning-based methods (Possieri & Sassano, 2022).
A third approach addresses CT-RL problems under general nonlinear (non-affine) dynamics (Yildiz
et al., 2021; Sandoval et al., 2023). However, fully-nonlinear algorithms are at an early stage. The
existing evaluations study simple cart/pendulum variant systems and second-order academic exam-
ples. Comprehensive theoretical results and meaningful designs without stringent assumptions are
yet to be developed. Perhaps the most studied fourth approach deals with affine nonlinear sys-
tems, including the aforementioned ADP works and deep CT-RL continuous fitted value iteration
(cFVI) (Lutter et al., 2021) and robust FVI (rFVI) (Lutter et al., 2023b). While both ADP works and
FVIs require an affine-nonlinear model, the FVIs have demonstrated learning with low variance and
meaningful control performance, thus standing as SOTA in CT-RL.

From an applications standpoint of CT-RL, take HSVs as an example. CT-RL methods have been
developed for HSVs, yet these studies are of limited scope as they do not address the model un-
certainty of HSVs and consequently their controls. For instance, Zhao et al. (2023) develops a
composite RL/observer-based attitude control method for HSVs. However, the HSV model used
is a simplified approximation of the standard Wang and Stengel model (Wang & Stengel, 2000;
Marrison & Stengel, 1998; Shaughnessy et al., 1990) in which Mach dependencies are neglected, a
significant limitation in the high-Mach hypersonic regime. The neural control methods in (Xu et al.,
2013; 2015) use this same simplified model. Along a similar vein, the developed stability results of
many RL HSV works (Zhao et al., 2023; Xu et al., 2013; 2015; Bu et al., 2019; Bu & Qi, 2022; Qiao
et al., 2019) which are essential in flight control applications require that multiple complex stability
inequalities hold simultaneously along trajectories, and no constructive method is provided for en-
suring that the inequalities are met. As such, the inability to verify these HSV structural constraints
prevents these RL methods from obtaining meaningful results. Furthermore, these RL-based HSV
control works do not provide substantive generalization studies to unmodeled dynamics.

A realistic HSV control problem is challenging, as these high-performance aircraft fly 20 times
faster than commercial jets. Their long shape and rearward-set propulsion systems give HSVs a
nose-up pitch instability (placing hard lower bounds on how “slow” the HSV can be controlled).
Meanwhile, the parasitic coupling from upward deflections of the tail causing a temporary dip in
altitude results in nonminimum phase behavior (placing hard upper bounds on how “fast” the HSV
can be controlled) (Bolender & Doman, 2006a). The combination of these two constraints makes
HSV control exceptionally challenging (Rodriguez et al., 2008).

Contributions. We propose a new model-based CT-RL learning method that leads to the following
three contributions: 1) Our novel IPA CT-RL design approach takes advantage of an affine nonlinear
dynamic model of the environment and a quadratic cost performance structure, thus to exploit the
Kleinman’s solution framework. By using state-action data-driven learning, we address unmodeled
dynamics with great data efficiency and robust control performance. 2) We provide theoretical
guarantees of IPA CT-RL learning convergence, solution optimality, and system stability alongside
comprehensive evaluations and comparisons to demonstrate IPA-enabled SOTA CT-RL results in
optimal control problems. 3) We demonstrate, perhaps for the first time, that a CT-RL method (IPA)
has successfully addressed the challenging optimal control of HSVs.

2 METHOD

The IPA method takes advantage of an affine nonlinear model of the environment, which is usually
not an accurate representation of the physical environment, and utilizes state-action data with learn-
ing to accommodate uncertainties. It is therefore an organic integration of classical control design
principles and RL for adaptive optimal control. We assume an affine nonlinear environment of form:

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn is the state, u ∈ Rm is the control, f : Rn → Rn, and g : Rn → Rn×m. As
standard, we assume f and g are Lipschitz on a compact set Ω ⊂ Rn containing the origin x = 0 in
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its interior, and that f(0) = 0. We consider the infinite-horizon undiscounted cost

J(x0) =
∫∞
0

(xTQx+ uTRu) dτ, (2)

where Q ∈ Rn×n, Q = QT ≥ 0 and R ∈ Rm×m, R = RT > 0 are the state and control penalties.

2.1 THE IPA ALGORITHM

Bellman Optimality for Continuous-Time Systems: The HJB Equation. Consider the control
affine nonlinear dynamics of (1), and the infinite-horizon undiscounted performance index of (2).
CT-RL and CT optimal control both aim to solve the common HJB equation for optimal value (a
continuous-time analogy of the Bellman equation in discrete time), from which an optimal control
is computed. We begin with the system Hamiltonian function (Lewis et al., 2012a).

H(x, u, ∂V∂x ) = (f(x) + g(x)u)T ∂V
∂x + xTQx+ uTRu. (3)

The goal of CT-RL is to find the optimal control policy µ∗ which minimizes the value in (2), yielding
the optimal value V ∗. Such a solution can be obtained from the necessary condition based on
Pontryagin’s minimum principle: ∂H

∂u = 0. Plugging in Pontryagin’s minimum principle to the
Hamiltonian H (3) in the case of affine nonlinear dynamics reduces to:

0 = ∂H
∂u

∣∣
u=µ∗(x)

= gT (x)∂V
∗

∂x (x) + 2Rµ∗(x) =⇒ µ∗(x) = − 1
2R

−1gT (x)∂V
∗

∂x (x). (4)

Note that we are able to reach this nice, closed-form control solution for the optimal nonlinear policy
µ∗ given the optimal value V ∗ because of the quadratic cost structure in the performance index (2)
in combination with the control affine nonlinearity in the form of (1). Plugging now the closed-form
optimal policy µ∗ (4) into the Hamiltonian H (3) and applying Pontryagin’s minimum principle
∂H
∂u = 0, we arrive at the HJB equation for affine nonlinear systems (Figure 1, Block #1):

0 = H(x, µ∗(x), ∂V
∗

∂x ) = fT (x)∂V
∗

∂x − 1
4
∂V ∗T

∂x g(x)R−1gT (x)∂V
∗

∂x + xTQx. (5)

Our focus now is to solve for V ∗ from the HJB (5), in turn yielding the optimal policy µ∗ from (4).

Setting up Critic Value and Respective Policy Based on Generalized HJB Equation. We now
inspect the value V (critic value) from a perspective of the generalized HJB (GHJB) equation (Beard
& McLain, 1998) below. Here, the goal of the critic value V̂ is to approximate the cost index J in (2)
achieved when the control u = µi(x) is applied to the nonlinear system. A function V approximates
the cost J of current policy µi if and only if V satisfies the GHJB:

(f + gµi)
T ∂V

∂x + xTQx+ µT
i Rµi = 0. (6)

This is a differential equivalent to the value integral in (2); indeed, given any function V and policy
µi with cost J (2), V = J if and only if V satisfies the GHJB (6) (Beard & McLain, 1998).

CT Temporal Difference Equation. Let µi be the control policy at the i-th iteration with respective
value V . Given the performance index (2), re-written below in the current context for convenience,

V (x(t)) =
∫∞
t

(xTQx+ µT
i (x)Rµi(x)) dτ, (7)

we can obtain the following CT temporal difference equation (Figure 1, Block #4), analogous to the
discrete-time Bellman equation as follows,

V (x(t0))− V (x(t1)) =
∫ t1
t0
xTQx+ µT

i (x)Rµi(x) dτ, (8)

where in the above, the left-hand side is the CT temporal value difference, and the right-hand side is
called the integral reinforcement signal – note that it requires requires only state-action data.
Just as in discrete time where the temporal difference points to the stage cost, in CT the temporal
difference becomes an integral reinforcement signal. Similarly to DT, Bellman’s optimality principle
from the HJB (5) dictates that the optimal cost V (x(t0)) at time t0 is the same as minimizing the cost
accrued over the interval [t0, t1] plus the optimal cost V (x(t1)) at time t1. Analogous to discrete
time TD, we use CT TD to learn the value function in (7). Given the time indices t0 < t1, we
examine the CT temporal value difference V (x(t0)) − V (x(t1)) (Figure 1, Block #2), the integral
reinforcement signal

∫ t1
t0
xTQx+ µT

i (x)Rµi(x) dτ , and the quadratic cost (2) (Figure 1, Block #3)
to develop a CT learning rule for solving for V from the HJB equation (Figure 1, Block #1).
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fT ∂V ∗

∂x
− 1

4
∂V ∗T

∂x
gR−1gT ∂V ∗

∂x
+ xTQx = 0

HJB Equation (5) 1
V (x(t0))− V (x(t1))

CT Temporal
Value Difference 2

J(x0) =
∫∞
0

xTQx+ uTRudτ

Performance Index
(Quadratic Q-R Cost) 3

V (x(t0))− V (x(t1)) =
∫ t1
t0

xTQx+ µT
i (x)Rµi(x) dτ

CT Temporal Difference Equation 4

V̂ (x) = ΦT (x, x)ci = xTPix

Critic w/ Quadratic Bases 5

∫ t1
t0

xTQx+ µT
i Rµidτ ≈

∫ t1
t0

xT
(
Q+

∂µT
i

∂x
R ∂µi

∂x

)
x dτ

Integral Performance Approximation (IPA) 6

xT (t0)Pix(t0)− xT (t1)Pix(t1) ≈
∫ t1
t0

xT
(
Q+

∂µT
i

∂x
R ∂µi

∂x

)
x dτ

CT Temporal Difference by IPA 7

Θi ci = Ξi

Critic Weight ci
Learning Update 8

µi+1 = − 1
2
R−1gT ∂V

∂x

Closed-Form
Policy Update 10

µi+1

Actual Environment
w/ Uncertainty 9

(x, u)

Trajectory
Data

ci = v(Pi) (11)

IPA Learning Structure

IPA Learning Loop

Figure 1: IPA algorithm block diagram. IPA RL begins with the HJB equation (Block #1), which
when combined with the CT temporal value difference (Block #2) and IPA’s quadratic Q-R cost
index (Block #3) yields the CT temporal difference (TD) equation (Block #4). When IPA’s critic
with quadratic bases (Block #5) is combined with the novel integral performance approximation
scheme (Block #6), this yields the IPA continuous-time TD (Block #7), which in turn forms the
basis of the IPA critic weight learning update (Block #8). IPA learning occurs in a closed loop
with the actual physical process with model uncertainty (Block #9), which supplies state-action data
(x, u) for the IPA critic weight update (Block #8). IPA updates its policy via the closed-form HJB-
based update (Block #10), from which a new weight update is constructed, and so on.

The Critic and its Bases. We construct the critic network as in (9) below,

V̂ (x) = ΦT (x, x)ci. (9)

Here, ci ∈ Rn, n ≜ n(n+1)
2 , are the critic weights at the i-th iteration. We have chosen quadratic

bases Φ(x, x) ∈ Rn as approximation features of the value V to leverage the quadratic Q-R cost
structure in (2), and we define these bases as

Φ(x, y) = 1
2

[
2x1y1, x1y2 + x2y1, . . . , x1yn + xny1, 2x2y2, . . . , 2xnyn

]T
. (10)

To further see that our choice of bases is quadratic, the critic V̂ (9) can be represented equivalently
by the following quadratic form ci ↔ Pi, Pi = PT

i ∈ Rn×n (Figure 1, Block #5):

V̂ (x) = ΦT (x, x)ci = ΦT (x, x)v(Pi) = xTPix, (11)

where for a symmetric matrix P = PT ∈ Rn×n, define its “vectorization” v(P ) ∈ Rn as

v(P ) =
[
p11, 2p12, . . . , 2p1n, p22, 2p23, . . . , 2pn−1,n, pnn

]T
. (12)

Indeed, quick linear algebra shows that for each critic weight vector ci ∈ Rn, there exists a unique
symmetric matrix Pi = PT

i such that ci = v(Pi). The last equality in (11) is also quick algebra.

4
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Equation (11) renders a quadratic function as an approximant of the integral cost (2), which is of
the Q-R form. It is well-known in control theory and engineering that this Q-R cost structure is an
appropriate form to be used as feedback control design objective, as it leads to physical insights of
system performance (Lewis et al., 2012a; Beard & McLain, 1998).

Integral Performance Approximation (IPA). Now, define the following matrices to be used for
integral performance approximation only (these are not the IPA policies):

Ki ≜ − ∂
∂x{µi(x)}

∣∣
x=0

. (13)

Then µi(x) ≈ −Kix, to first order; more precisely, µi(x) = −Kix + o(∥x∥), where the residual
o(∥x∥) satisfies lim∥x∥→0

∥µi(x)−Kix∥
∥x∥ = 0. We may then approximate the integral reinforcement

signal (8) with what we term integral performance approximation (IPA) (Figure 1, Block #6):∫ t1

t0

xTQx+ µT
i (x)Rµi(x) dτ ≈

∫ t1

t0

xT
(
Q+KT

i RKi

)
x dτ, (to o(∥x∥2)). (14)

CT Temporal Difference by IPA. Now, substituting the quadratic bases (11) as the TD on the
left-hand side of the CT TD equation (8), and substituting the IPA scheme (14) as the integral
reinforcement signal in the right-hand side of (8), we get the CT TD by IPA (Figure 1, Block #7):

xT (t0)Pix(t0)− xT (t1)Pix(t1) ≈
∫ t1

t0

xT
(
Q+KT

i RKi

)
x dτ, (to o(∥x∥2)). (15)

With the above equation, and since Pi is related to the critic weights ci as discussed in the above,
we have now reached the basis of the IPA learning algorithm. As will be seen, its quadratic structure
enables our suite of theoretical guarantees (Section 3) as well as high data efficiency (Section 5).

IPA for Critic Learning. We now use IPA-facilitated CT temporal difference in (15) (which com-
prises a single trajectory sample) to construct a value function weight update. To solve for the
weights ci, we use l ∈ N trajectory samples. The update rule proceeds by a designer first selecting
a sequence of sample instants {tk}lk=0, and reference command input r(t) for exploration (see Ap-
pendix F). We apply r(t) to the actual environment (Figure 1, Block #9) under an initial stabilizing
policy µ0, to collect the resulting state-action trajectory data

{(
x(t), u(t)

)}
t∈[t0,tl]

. Applying (15)

at the sample instants {tk}lk=0, we arrive at the learning update (Figure 1, Block #8):
Θi ci = Ξi. (16)

The exact form of the matrices Θi ∈ Rl×n, Ξi ∈ Rl and their algebraic derivation are provided in
Appendix C. In essence, the matrices capture the IPA CT temporal difference features in (15) via:

Θici =

 xT (t0)Pix(t0)− xT (t1)Pix(t1)
...

xT (tl−1)Pix(tl−1)− xT (tl)Pix(tl)

 , Ξi =


∫ t1
t0
xT

(
Q+KT

i RKi

)
x dτ

...∫ tl
tl−1

xT
(
Q+KT

i RKi

)
x dτ

 (17)

Policy Update using Closed-Form Formula. As derived in (4), given the affine nonlinear dynamics
(f, g), the optimal policy update can be solved directly from:

µi+1(x) = − 1
2R

−1gT (x)∂V̂∂x (x). (18)
Having solved for the critic weights ci (16), we update the nonlinear control policy µi+1 (Figure 1,
Block #10) via (18), and so on, iteratively learning the optimal policy.

3 THEORETICAL RESULTS

Our choice of critic network structure V̂ (11), nonlinear policy structure µi (18), and use of IPA
(14) allows us to take advantage of classical control results in Kleinman’s well-tested algorithm
(Kleinman, 1968) to be combined with state-action data (x, u) from the actual physical environment
in learning. This enables us to develop our key theoretical guarantees. To state the properties of IPA,
let (A,B) denote the linearization of the affine nonlinearity (f, g) (1). Then for all i ≥ 0

∂
∂x{f(x) + g(x)µi(x)}

∣∣
x=0

= A−BKi. (19)

Similarly, f(x) + g(x)µi(x) = (A − BKi)x + o(∥x∥). Let P ∗ ∈ Rn×n, P ∗ = P ∗T > 0 be the
Riccati equation solution for (A,B) (Rodriguez, 2004), and K∗ ∈ Rn×m the optimal LQR control.
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Theorem 3.1 (Local Convergence, Optimality, Closed-Loop Stability, and Robustness of IPA)
Suppose that the initial policy µ0 stabilizes the system (1), and that the sample instants {tk}lk=0

are chosen such that the IPA matrix I ∈ Rl×n given by

I =
[ ∫ t1

t0
Φ(x, x) dτ · · ·

∫ tl
tl−1

Φ(x, x) dτ
]T

(20)

has full rank n (n being the number of bases in critic approximation). Then identifying the quadratic
form of the bases ci = v(Pi) from (11), IPA produces identical sequences of matrices {Pi}∞i=0,
{Ki}∞i=0 as Kleinman’s algorithm (Kleinman, 1968) to first order if the Kleinman control sequence
is produced based on a linearized actual nonlinear process that is unknown to IPA. Thus:
• Each of the policies {µi}∞i=0 in (18) stabilizes the nonlinear system (f, g) (1) under feedback.
• P ∗ ≤ Pi+1 ≤ Pi for all i ≥ 0, and lim

i→∞
Pi = P ∗. Thus, in the limit the value function V̂ (11) is

optimal to second-order (stronger than first-order); i.e., V̂ (x) = xTPix→ V ∗(x) + o(∥x∥2).
• lim

i→∞
∂
∂xµi =−K∗. Thus, in the limit the nonlinear policies {µi}∞i=0 (18) are optimal to first-

order; i.e., µi(x) → µ∗(x) + o(∥x∥).
As a direct result, IPA inherits the guaranteed stability robustness margins of Kleinman’s algorithm:
∥Su∥H∞ ≤ 0 dB, ∥Tu∥H∞ ≤ 2 dB, where ∥·∥H∞ denotes the H∞ norm, and where Su, Tu denote
the sensitivity and complementary sensitivity closed-loop maps, respectively, at the control loop
breaking point u (Rodriguez, 2004). For definitions and further discussion, see Appendix F.

Proof: An induction argument presented in Appendix D. ■

4 EXPERIMENT SETUP FOR EVALUATIONS

In this section, we show how IPA learning and control performance compares to the two most
promising classes of CT-RL methods: 1) the foundational ADP CT-RL methods as reviewed in
(Wallace & Si, 2024), and 2) the SOTA FVIs (Lutter et al., 2021; 2023b).

We perform in-depth evaluations on three CT-RL environments: 1) a second order system (SOS)
(Vamvoudakis & Lewis, 2010) that is what ADP methods were demonstrated on as being solvable,
however, only in the case of using exact bases induced from a priori knowledge of the solution
(but not solvable if the bases slightly differ from the true structure of the value function, refer to
Appendix M), 2) a pendulum that was extensively evaluated in (Lutter et al., 2021; 2023b), the
results of which stand as SOTA in current CT-RL, and 3) a hypersonic vehicle (HSV) (Wang &
Stengel, 2000; Shaughnessy et al., 1990) that, for the first time, is being extensively evaluated in this
study, which is considered a SOTA environment that has ever been studied in CT-RL.

Due to ADP’s inability to solve even SOS under realistic conditions (see evaluations in Appendix
M), this study focuses mainly on IPA and the FVIs for extensive and systematic evaluations. All
implementation details and hyperparameter selections for these studies can be found in Appendix
H. The dynamics, physical insights, and realistic modeling discrepancy issues of the environments
are provided in Appendices J, K, L for the SOS, pendulum, and HSV, respectively.

Baseline Methods. These include ADP and FVIs with a strong focus on FVIs, as they have
successfully synthesized meaningful controllers for the environments being evaluated:
• “Continuous FVI (cFVI)”: SOTA deep CT-RL method (Lutter et al., 2021).
• “Robust FVI (rFVI)”: Robust variant of SOTA FVI (Lutter et al., 2023b).

Questions Addressed. Our evaluations aim to quantitatively address the following:
Q1: How does IPA CT-RL learning performance (average cost, learning speed and variance, and
success rate) compare to baseline FVIs?
Q2: How time/data efficient is IPA compared to FVIs?
Q3: How does IPA learning performance generalize to environment uncertainty compared to FVIs?
Q4: How does IPA cost performance generalize to environment uncertainty compared to FVIs?
Q5: How does IPA critic estimation generalize to environment uncertainty compared to FVIs?
Q6: How do IPA time responses generalize to environment uncertainty compared to FVIs?

Remark on Simulating Unmodeled Dynamics. For Q3–Q6 above, in order to simulate uncertainty
present in the actual physical process, we study the performance of the algorithms under systematic

6
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variations of a model uncertainty parameter ν (nominally 1) inserted in the dynamics. For a de-
tailed description of this parameter in relation to each of the three environments studied, please see
Appendices J–L. For details on performance measures, refer to Appendix G.

Remark on Environments. For details on SOTA environments evaluated in leading CT-RL algo-
rithms, please refer to Appendix A, where as shown that the pendulum and the HSV environments
are SOTA. We use the SOS environment because it is the only one that can be successfully solved
by all leading methods: ADP-based (if the bases are selected using a priori knowledge of the value
function structure), FVIs, and the current IPA-based CT-RL.

5 COMPARISONS BETWEEN IPA AND DRL FVIS

This evaluation focuses on comparing IPA to SOTA deep RL cFVI and rFVI (Lutter et al., 2021;
2023b). Training and evaluation procedures are described in detail in Section 4 and Appendix H.
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Figure 2: Learning curves of IPA and FVIs obtained over 20 seeds for the nominal models ν = 0%
of the SOS (left), pendulum (middle) and HSV (right). The shaded area displays the min/max range
among seeds, as in the original works (Lutter et al., 2021; 2023b).
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Figure 3: Closed-loop time-domain responses on nominal models ν = 0%. Left: Swing-up response
of pendulum model θ(t) from hanging pendulum position θ0 = 180◦. Middle: HSV response to 100
ft/s step velocity command. Right: HSV response to 1◦ step FPA command. Overall, IPA exhibits
fast, well-behaved responses. FVIs on the HSV have large oscillatory transients.

Q1: IPA exhibits the fastest learning convergence. Its cost performance and evaluation success
rate meet or exceed FVIs. The learning curves of the tested methods trained to 20 seeds for the
three respective nominal models (model uncertainty level ν = 0%) are plotted in Figure 2, where
IPA exhibits the fastest learning convergence of the three methods on all three environments. Except
for cFVI on the pendulum benchmark, IPA also delivers the lowest cost and variance. The average
cost (closer to 0 is better) of the tested methods is evaluated on the three CT-RL environments in
Table 2, each at three levels of modeling error ν = 0%, 10%, 25%. Success rates are summarized in
Table 3 for evaluations of the three environments and different tasks under three levels of modeling
error. See Table 5 of Appendix G for definitions of task criteria.
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Examining the performance in Figure 2 and Table 3, overall the three methods (IPA, cFVI, rFVI)
perform quite comparably on the baseline SOS environment. However, examining the closed-loop
performance in the pendulum environment swinging up from full free-hanging pendulum displace-
ment (θ0 = 180◦) in Figure 3, one can see that the IPA response is the fastest of the three methods
and is well-behaved with no overshoot. This hence points to a trade-off between lower cost (achieved
by cFVI) and faster swing-up performance (achieved by IPA). Finally, IPA exhibits a clear learning
performance edge over FVIs on the HSV environment, with the fastest convergence, lowest cost,
and 100% evaluation success rate on all tasks (Figure 2, Table 3).

Q2: IPA is 6 orders of magnitude more data efficient and 3 orders of magnitude more time
efficient than FVIs. Due to IPA’s low-dimension quadratic bases enabled by our choice of quadratic
Q-R cost, it achieves substantial learning efficiency compared to the FVIs training deep networks.
Table 1 lists key time/data complexity parameters for IPA and the FVIs. In many cases, IPA exhibits
orders of magnitude less time/data complexity than the SOTA FVI works. To illustrate, we examine
the ratio of IPA/FVI on the HSV model. For number of data samples required: 1/5,750,000, training
episodes required: IPA/FVI = 1/5,250,000, training time: 1/1,500, algorithm iterations: 1/5.

Table 1: Comparison of time/data complexity of IPA and FVIs on 3 environments

Parameter SOS Pendulum HSV
IPA cFVI/rFVI IPA cFVI/rFVI IPA cFVI/rFVI

# Traj. data samples 10 2.88e+7 15 8.63e+7/2.88e+7 30 1.73e+8
# Data episodes 1 6.40e+5 1 2.63e+6/6.40e+5 1 5.25e+6
Avg train time (s) 0.20 1.42e+3/1.41e+3 0.22 1.76e+3/1.46e+3 2.75 4.60e+3/4.79e+3
# Alg. iterations i 5 25 5 25 10 50

Table 2: Average cost at varying modeling error levels ν

ν Cost SOS Pendulum HSV

0%
IPA 0.50±0.65 12.12±17.96 24.69±36.14

cFVI 0.50±0.66 8.99±10.04 29.79±31.51
rFVI 0.50±0.67 16.26±17.61 33.37±36.47

10%
IPA 0.53±0.69 8.48±11.85 27.19±40.63

cFVI 0.53±0.70 7.73±8.70 36.42±36.49
rFVI 0.53±0.70 16.85±17.79 41.54±42.29

25%
IPA 0.58±0.75 5.77±6.31 32.45±50.38

cFVI 0.58±0.78 7.01±7.85 63.80±44.73
rFVI 0.56±0.76 23.15±18.07 74.15±48.64

Q3: IPA learning generalizes the
best on all three environments as
modeling errors are introduced. In
Table 2, we see that regardless of the
environment tested, IPA achieves aver-
age cost that meets or exceeds the FVIs
when modeling error increases. Exam-
ining Table 2 on the HSV at ν = 25%
modeling error, IPA cost (32.45, a 31%
degradation from the nominal model)
far surpasses that of cFVI (63.80, a
114% degradation) and rFVI (74.15,
a 122% degradation). Turning to the
evaluation success rates for the HSV
in Table 3, we see that IPA achieves a
100% success rate on all tasks regard-
less of modeling error severity. FVIs exhibit a high success rate on the lax regulation Tasks 1 and 2;
however, they struggle with the stringent Tasks 3 and 4 for reasons discussed in Q6 below.

Q4: FVIs deliver good cost performance results on the nominal model, but IPA generalizability
is superior. Figure 4 shows the relative cost performance JcFV I−JIPA between cFVI and IPA (left
two plots) and JrFV I − JIPA between rFVI and IPA (right two plots) on the nominal HSV model
ν = 0% and at 25% modeling error. Full plots can be found in Figures 9, 10, and 11 of Appendix
I on the SOS, pendulum, and HSV, respectively. This data is tabulated in Tables 11, 12, and 13 of
Appendix I. On the nominal HSV model (first and third plots of Figure 4), FVIs and IPA perform
comparably near the origin, but IPA begins to outperform FVIs by ≈ 10− 20 in the majority of the
operating region of the states. There are two fringes of the domain (corresponding to large initial
flightpath angle (FPA) displacements γ = ±1 deg) in which FVIs slightly outperform IPA; however,
in the mean IPA outperforms cFVI by 13.14 and rFVI by 16.45 (cf. Table 13). Cost performance
of both FVI algorithms degrades significantly when modeling error is introduced, in particular at
the severe 25% modeling error (second and fourth plots of Figure 4). Here, IPA outperforms FVIs
pointwise, in the mean outperforming cFVI by 34.10 and rFVI by 35.90.
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Table 3: Success rates for different environments and tasks at varying modeling error ν = 0%, 10%,
25% (cf. Table 5 for task criteria)

ν
Success SOS Pendulum HSV HSV HSV HSV HSV HSV HSV

[%] Task 1 Task 1 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

0%
IPA 100 100 100 100 100 100 100 100 100

cFVI 100 100 100 100 31.95 15.30 100 3.90 3.90
rFVI 100 100 100 100 19.20 8.75 100 1.25 1.25

10%
IPA 100 100 100 100 100 100 100 100 100

cFVI 100 100 100 99.50 32.70 9.95 99.50 2.35 2.35
rFVI 100 100 100 100 15.50 7.70 100 1.45 1.45

25%
IPA 100 100 100 100 100 100 100 100 100

cFVI 100 100 100 99.20 48.00 8.30 99.20 4.20 4.20
rFVI 100 100 100 100 16.45 5.70 100 1.95 1.95
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Figure 4: Relative cost performance J⋆FV I − JIPA (⋆ = r or c, > 0 means IPA better) on the HSV
environment. Left to right: cFVI 0% uncertainty, cFVI 25% uncertainty, rFVI 0% uncertainty, rFVI
25% uncertainty. FVIs exhibit slightly higher cost on average than IPA on the nominal model, and
the performance gap increases significantly when environment uncertainty is introduced.

Q5: IPA exhibits more consistent critic approximation behavior as environment uncertainty is
introduced. Figure 5 shows the critic network error J − V̂ for IPA (left column), cFVI (middle col-
umn), and rFVI (right column) on the nominal HSV model ν = 0% (top row) and at 25% modeling
error (bottom row). Full plots can be found in Figures 12, 13, and 14 of Appendix I on the SOS, pen-
dulum, and HSV, respectively. On the nominal HSV model ν = 0% (left column of Figure 14), one
can see that both cFVI and rFVI struggle with overestimation in the band γ ∈ [−0.5◦, 0.5◦], in par-
ticular for large velocity displacements V = ±100 ft/s. IPA approximation error remains lower and
more consistent in this region. Furthermore, rFVI begins to underestimate policy performance for
large FPA displacements γ = ±1◦, where cFVI performs comparably better. Overall, approxima-
tion performance significantly degrades for FVIs. Here, both FVI algorithms begin to overestimate
policy performance to a large degree. Where rFVI begins underestimates policy performance on the
nominal model near γ = ±1◦, it performs comparably better than cFVI at 25% modeling error. This
suggests that rFVI’s adversarial input successfully improves generalization properties of this robust
variant somewhat. By comparison, IPA’s approximation error remains at comparable levels and in a
similar radial pattern to its performance on the nominal model.

Q6: IPA exhibits the fastest closed-loop performance with least overshoot on all environments,
performance advantage retained with modeling error. Figure 3 plots the closed-loop time re-
sponses of the tested methods on the nominal model for 1) the pendulum swing-up task (left), 2)
HSV 100 ft/s step velocity command issued from trim (middle), and 3) HSV 1◦ step FPA command
issued from trim (right). Full plots for the SOS, pendulum, and HSV can be found in Figures 15, 16,
and 17 of Appendix I, respectively. The trends are similar as modeling error is introduced. On the
pendulum, we can see that the IPA swing-up is more responsive than either of the FVI methods. For
the HSV velocity response (middle plot of Figure 3), we can see that both FVI algorithms have large
overshoot compared to IPA. Furthermore, the FVI responses exhibit pronounced and slow-decaying
transients about the 100 ft/s reference command setpoint. Similar transients are seen in the HSV
FPA response for the two FVIs (right plot of Figure 3). Such oscillations in FPA (i.e., in deflec-
tion the vehicle velocity vector) are highly undesirable in flight control settings, as they cause wear
on the fuselage and may excite the HSV flexible modes (Bolender & Doman, 2006a). This time-
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Figure 5: Critic NN approximation error J(x)− V̂ (x) of nominal HSV model (top row) and at 25%
modeling error (bottom row) for IPA (left), cFVI (middle), and rFVI (right). IPA exhibits consistent
approximation performance, and the FVIs struggle to generalize.

domain behavior is also a clear visual indicator of why FVIs struggle with evaluation success rate
in the more stringent HSV regulation Tasks 3 and 4 (cf. Table 3). By comparison, IPA exhibits less
overshoot, faster settling time, and a well-behaved system response without oscillatory transients.

6 CONCLUSION AND DISCUSSION

We introduce IPA, a new, model-based CT-RL control method which innovatively combines a
partially-known affine nonlinear dynamic model of the actual nonlinear environment, state-action
trajectory data, Kleinman control structures, and reference control input for learning exploration.
These give our IPA method significant data efficiency, as we have summarized in comparison to the
FVIs in Table 1. When compared to the FVIs, IPA offers substantial theoretical guarantees, and its
learning performance at least matches, and often outperforms, the SOTA FVIs in terms of average
return, evaluation success rate, critic network approximation accuracy, closed-loop time-domain per-
formance, and generalization to unmodeled dynamics. The IPA performance advantage observed on
the HSV control task demonstrates that IPA achieves SOTA results in both the domains of learning
and dynamical control. Finally, we would like to point out the need of spending extra time to tune
the FVIs for convergence on the HSV environment (for detailed discussions and implementation,
see Remark H.1 of Appendix H).

Limitations of this Study. The theoretical guarantees and design of IPA are based on an affine
nonlinear model, not the general nonlinear systems as in some recent works (Yildiz et al., 2021;
Sandoval et al., 2023). However, as discussed in Section 1, fully-nonlinear algorithms are at an early
stage. Comprehensive theoretical results and meaningful designs without stringent assumptions are
still under development. As a result, few methods have synthesized meaningful controllers. For
example, the ADP CT-VI for general nonlinear systems (Appendix M) fails to synthesize for simple
second-order systems with known closed-form solutions (Wallace & Si, 2024).

Reproducibility Statement. All IPA code and all datasets for this study are available in Supple-
mental and at (Anonymized, 2024). All FVI results (Lutter et al., 2021; 2023b) are generated by
the open-source code developed by the authors available at Lutter et al. (2023a). For an in-depth
discussion of our setup and a complete list of numerical hyperparameter selections, see Section 4
and Appendix H. All theoretical assumptions can be found in our method setup of Section 2, and all
proofs of theoretical results can be found in Appendix D.
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APPENDIX A ENVIRONMENTS STUDIED AND KEY THEORETICAL
ASSUMPTIONS REQUIRED BY LEADING AND SOTA CT-RL
WORKS

We provide an overview of the environments studied in the evaluations of the leading and SOTA
CT-RL works in Table 4 below as discussed in Section 4.

Table 4: Environments in SOTA CT-RL evaluations
Alg System Order # inputs Source of model parameters

IPA

SOS −→ −→ Identical to SPI as benchmark
Pendulum −→ −→ Identical to FVIs as benchmark
HSV 5 2 NASA Langley aeropropulsive data

(Shaughnessy et al., 1990)
Unstable, nonminimum phase, complex

FVIs
Pendulum 2 1 Quanser STEM curriculum
Cart Pendulum 4 1 resources (Quanser, 2018)
Furatura Pendulum 4 1

IRL SOS 2 1 Non-physical, optimal known a priori
SOS 2 1 Non-physical, optimal known a priori

SPI Simple Linear 3 1 Non-physical LQR example
SOS 2 1 Non-physical, optimal known a priori

RADP Simple Engine 2 1 Non-physical for illustration
Simple Power Bus 2 1 Non-physical for illustration

CT-VI SOS 2 1 Non-physical, optimal known a priori
Simple Robot Arm 4 2 Non-physical for illustration

Theoretical Assumptions Required by Leading CT-RL Works. As shown below, IPA is among
the least restrictive in CT-RL in its theoretical assumptions. As a note, all methods require that be
Lipschitz near origin to assure well-posedness of solutions to the system differential equations. Also
note that none of the ADP designs resulted in meaningful controllers, please refer to (Wallace & Si,
2024).

• IPA (present work):

– Linearization of nonlinear system (A,B) stabilizable and (Q1/2, A) detectable (for
well-posedness and definiteness of regulation problem)

– Full column rank n ≜ n(n+1)
2 of the IPA matrix I ∈ Rl×n (20). This assumption is

easy to satisfy, as the algorithm can continue to collect l > n samples until it is met. It
is also virtually instantaneous to verify (matrix rank calculation). We observe no issue
satisfying this assumption on the complex HSV in practice

– Initial stabilizing nonlinear policy µ0

• FVIs (Lutter et al., 2021; 2023b):

– f and g are smooth in their partial derivatives in the state x and model uncertainty
parameters θ, and these partials are all known a priori

– Undiscounted problem γ = 1 can be approximated by discounted problem 0 < γ < 1

– Discrete-time running cost r(x, u) can be approximated by continuous-time counter-
part: r(x, u) = ∆t rc(x, u) with sample time ∆t

– Strict convexity of action penalty gc
– Availability of convex conjugate function to action penalty gc
– Higher-order terms in Taylor series expansion of optimal value V ∗ are negligible
– Existence of an a priori state grid x ∈ D to contain trajectories to for fitting procedure
– Trajectories leaving the grid x ∈ D can be instantaneously re-initialized to the previ-

ous position inside the grid
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• IRL (Vrabie & Lewis, 2009):

– There exists a sequence of sampling instants t0 < t1 < · · · < tl such that the IRL
regression matrix has full rank. This assumption is qualitatively similar to IPA, but the
method does not lead to meaningful controllers in practice, as there is no constructive
method to ensure the full rank condition (Wallace & Si, 2024)

– Chosen basis functions approximate optimal value and its gradient uniformly on com-
pact sets

– Basis functions for critic network are linearly-independent
– Initial stabilizing policy

• SPI (Vamvoudakis & Lewis, 2010):

– Existence and uniqueness of least-squares solution to approximate HJB equation
– PE assumption on various learning signals
– Chosen basis functions approximate optimal value and its gradient uniformly on com-

pact sets
– Chosen basis functions approximate optimal policy uniformly on compact sets
– Basis functions for critic network are linearly-independent
– Basis functions for actor network are linearly-independent
– Initial stabilizing policy

• RADP (Jiang & Jiang, 2014):

– Optimal value can be bounded from above and below by a priori known class K∞
functions

– Existence of a priori known compact set Ω0 for which the closed-loop system under
the initial policy is invariant with respect to the probing noise d

– PE assumption on various learning signals
– Chosen basis functions approximate optimal value and its gradient uniformly on com-

pact sets
– Chosen basis functions approximate optimal policy uniformly on compact sets
– Basis functions for critic network are linearly-independent
– Basis functions for actor network are linearly-independent
– Initial stabilizing policy

• CT-VI (Bian & Jiang, 2022):

– Existence and uniqueness of solutions to an uncountable family of finite-horizon HJB
equations

– Properness of each solution to the finite-horizon HJB equation
– Convergence of family of solutions of finite-horizon HJB equation to the infinite-

horizon HJB solution
– Invariance of closed-loop state/action trajectory to compact set with respect to the

probing noise d
– Initial globally asymptotically stabilizing policy
– PE assumption on various learning signals
– Chosen basis functions approximate optimal value and its gradient uniformly on com-

pact sets
– Chosen basis functions approximate optimal policy uniformly on compact sets
– Chosen basis functions approximate optimal Hamiltonian uniformly on compact sets
– Basis functions for critic network are linearly-independent
– Basis functions for actor network are linearly-independent
– Basis functions for Hamiltonian network are linearly-independent
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APPENDIX B KLEINMAN’S ALGORITHM FOR LINEAR SYSTEMS
(KLEINMAN, 1968)

We adapt some successive approximation concepts from Kleinman’s algorithm to the proposed non-
linear IPA algorithm for data efficiency. Classical Kleinman’s algorithm considers the linear time-
invariant system ẋ = Ax+ Bu. We assume that (A,B) is stabilizable and (Q1/2, A) is detectable,
for well-posedness (Rodriguez, 2004). Kleinman’s algorithm iteratively solves for the optimal LQR
control K∗ = R−1BTP ∗, where P ∗ ∈ Rn×n, P ∗ = P ∗T > 0 is the solution of the Riccati
equation (Rodriguez, 2004), as follows. For iteration i = 0, 1, . . . , on the current policy Ki, let
Pi ∈ Rn×n, Pi = PT

i > 0 be the solution of the algebraic Lyapunov equation (ALE)

(A−BKi)
TPi + Pi(A−BKi) +KT

i RKi +Q = 0. (21)

Then, Pi solved from (21) leads to the new policy Ki+1 ∈ Rm×n as

Ki+1 = R−1BTPi. (22)

The following theorem is needed to prove the theoretical results of Section 3.

Theorem B.1 (Convergence, Optimality, and Closed-Loop Stability of Kleinman’s
Algorithm (Kleinman, 1968)) Suppose the initial policyK0 is such thatA−BK0 is Hurwitz. Then
we have the following:

(i) A−BKi is Hurwitz for all i ≥ 0.

(ii) P ∗ ≤ Pi+1 ≤ Pi for all i ≥ 0, and lim
i→∞

Pi = P ∗, lim
i→∞

Ki = K∗.

APPENDIX C ADDITIONAL DERIVATIONS OF IPA METHOD (SECTION 2)

The following algebraic manipulation of the IPA CT temporal difference equation (15) is necessary
in order to 1) cast it into the form for a learning update (16), which requires that all terms pertaining
to the value function weights ci appear as regression parameters, and 2) accommodate when the con-
trol input u(t) includes excitation signals. The integral reinforcement (8) and surrounding equations
only hold if the control u(t) = µi(x(t)) is applied without excitation signals, yet these excitation
signals are necessary for good data/learning quality and thus need to be accommodated by the IPA
framework. First, we must formally establish some of the properties of the operators v (12) and Φ
(10):

Proposition C.1 The operators v (12) and Φ (10) satisfy the following:

(i) The restriction of v to the symmetric matrices is a linear isomorphism; thus, for each c ∈ Rn,
there exists a unique P ∈ Rn×n, P = PT such that

c = v(P ). (23)

(ii) Whenever P ∈ Rn×n, P = PT , the following identity holds

ΦT (x, y)v(P ) = xTPy, ∀ x, y ∈ Rn. (24)

We are now ready to proceed with the derivation. Beginning with the i-th iteration policy µi, we
first note that as x→ 0, we have

f(x) + g(x)µi(x) −→ ξ(x) ≜ Ax+Bµi(x) (25)

at a rate o(∥x∥), where (A,B) denotes the linearization of (f, g) (1). Combining the quadratic value
function approximator structure V (x) = xTPix (11) with the GHJB equation (6) implies to the first
order that

2ξT (x)Pix+ xTQx+ µT
i Rµi = 0. (26)
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Next, we differentiate the value function integral V (x(t)) (7) along the trajectories of the nonlinear
system, yielding

V (x(t1))− V (x(t0)) =

∫ t1

t0

d

dτ
{V (x)} dτ =

∫ t1

t0

(f(x) + g(x)u)T
∂V

∂x
(x) dτ. (27)

The crux of the CT temporal difference formulation in (27) is that it accommodates arbitrary control
signals u. In terms of the quadratic bases chosen (11), we can express (27) as

xT (t1)Pix(t1)− xT (t0)Pix(t0) = 2

∫ t1

t0

(f(x) + g(x)u)T Pix dτ. (28)

Next, we need to re-introduce the integral reinforcement signal
∫ t1
t0
xTQx + µT

i (x)Rµi(x)dτ as it
is found in the original CT TD equation (8) back into the CT TD formulation (28) so that IPA (14)
may be applied to (28). To do so, we add an integral reinforcement constant based on ξ (25) to both
sides of (28):

xT (t1)Pix(t1)− xT (t0)Pix(t0)− 2

∫ t1

t0

ξT (x)Pix dτ = 2

∫ t1

t0

(f(x) + g(x)u− ξ(x))T Pix dτ.

(29)
Plugging the approximate GHJB equation (26) into (29) and rearranging, we have

− 2

∫ t1

t0

(f(x) + g(x)u− ξ(x))T Pix dτ +
[
xT (t1)Pix(t1)− xT (t0)Pix(t0)

]
≈ −

∫ t1

t0

xTQx+ µT
i (x)Rµi(x) dτ. (30)

Finally, by using the identification ci = v(Pi) and algebraic identities from Proposition 2.1, in
particular with ci = v(Pi) and the bilinear algebra of Φ:

xT (t1)Pix(t1)− xT (t0)Pix(t0) = [ΦT (x(t1), x(t1))− ΦT (x(t0), x(t0))]ci

= ΦT
(
x(t1) + x(t0), x(t1)− x(t0)

)
ci, (31)

then (30) becomes[
− 2

∫ t1

t0

Φ
(
f(x) + g(x)u− ξ(x), x

)
dτ +Φ

(
x(t1) + x(t0), x(t1)− x(t0)

)]T
ci

= −
∫ t1

t0

xTQx+ µT
i (x)Rµi(x) dτ ≈ −

∫ t1

t0

xTQx+ xTKT
i RKix dτ. (32)

Here, the last approximation in (32) is precisely IPA (14). Equation (32) is of the final form required
for a learning update, as all terms pertaining to the value function V via the weights ci now appear
as a regression to update the critic network weights, and the control u(t) has been kept arbitrary so
as to accommodate excitation signals r(t) for training. The learning update matrices in (16) now
follow directly from applying (32) at the sample instants {tk}lk=0:

Θi =


−2

∫ t1
t0

ΦT
(
f(x) + g(x)u− ξ(x), x

)
dτ

+ΦT
(
x(t1) + x(t0), x(t1)− x(t0)

)
...

−2
∫ tl
tl−1

ΦT
(
f(x) + g(x)u− ξ(x), x

)
dτ

+ΦT
(
x(tl) + x(tl−1), x(tl)− x(tl−1)

)

 , I ≜


∫ t1
t0

ΦT (x, x) dτ
...∫ tl

tl−1
ΦT (x, x) dτ

 ∈ Rl×n,

(33)

Ξi = −I v
(
Q+KT

i RKi

)
. (34)

Remark C.1 (IPA Increases Data Efficiency) IPA via (33) allows the current policy informa-
tion to be pulled out of the integral reinforcement signal, enabling re-use of a single trajectory
{x(t)}t∈[t0,tl] from the real environment, which may include nonlinearity, uncertainty, and unmod-
eled dynamics.This single trajectory can now generate all of the critic weights {ci}∞i=0 and policy
iterates {µi}∞i=0 from a single integration matrix I ∈ Rl×n, without having to re-integrate the inte-
gral reinforcement signal at each iteration i. For this reason, we call I (33) the IPA matrix. The IPA
matrix has further structural significance to the IPA algorithm; indeed, its full rank forms the basis
of our theoretical guarantees (cf. Section 3).
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APPENDIX D PROOF OF THEOREM 3.1

Suppose that the sample count l ∈ N and sample times {tk}lk=0 are such that I (20) has full rank n.
We now proceed by induction on i.

Suppose it has been proven for iteration i ≥ 0 that A− BKi is Hurwitz and that K0, . . . ,Ki agree
as generated from Kleinman’s algorithm and IPA via (13). We claim that K0, . . . ,Ki+1 agree.

We first establish that the least-squares matrix Θi ∈ Rl×n (16) has full column rank n. For suppose
v(P ) ∈ Rn is such that Θiv(P ) = 0. Examining (32), and proceeding through the derivation in
Section 2 and Appendix C, after applying the identity (24) we note for any symmetric matrix that
Θiv(P ) = Iv(N), where N ∈ Rn×n, N = NT is given by

N = (A−BKi)
TP + P (A−BKi). (35)

However, (35) is an ALE. Since N = NT and since it’s been established that A−BKi is Hurwitz,
(35) has the unique solution P =

∫∞
0
e(A−BKi)

T t(−N)e(A−BKi)t dt (Rodriguez, 2004). Now, full
rank of I and that Iv(N) = 0 imply v(N) = 0, whenceN = 0. ThatN = 0 now implies v(P ) = 0
by the above. We have shown that Θi has trivial right null space, hence full column rank n.

Having established that Θi has full rank, we now claim that Pi ∈ Rn×n, Pi = PT
i > 0 uniquely

solves the ALE (21) if and only if ci = v(Pi) satisfies the regression (16). The forward direction was
already proved in the derivation (8)–(32) of Section 2 and Appendix C. Conversely now, suppose
that v(P ) ∈ Rn minimizes the regression (16). Since it has been established that Θi has full column
rank, v(P ) ∈ Rn is unique. Next, letting Pi = PT

i > 0 be the unique solution of the ALE (21), the
forward direction establishes that v(Pi) ∈ Rn satisfies (16) at equality. Thus, v(P ) = v(Pi), and as
a result P = Pi (Proposition C.1). The result is proved.

Having established the preceding, the proof now follows by induction on the algorithm iteration
i = 0, 1, . . . . ■

APPENDIX E DECENTRALIZABLE ENVIRONMENT FOR FURTHER DATA
EFFICIENCY

Consider a decentralized environment (f, g) (1) with N distinct control loops. To illustrate, we
present N = 2 loops; however, results readily generalize to N > 2 loops:[

ẋ1
ẋ2

]
=

[
f1(x)
f2(x)

]
+

[
g11(x) g12(x)
g21(x) g22(x)

] [
u1
u2

]
. (36)

No assumptions are made on dynamic coupling between the loops; i.e., the loops may be coupled.
Here, we define xj ∈ Rnj , uj ∈ Rmj (j = 1, . . . , N) with

∑N
j=1 nj = n and

∑N
j=1mj = m.

Such partitions appear in a variety of real-world applications, in particular, for the aircraft control
problem studied (Stengel, 2022). In fact, decentralization is a standard practice in control of HSVs
(Dickeson et al., 2009a;b), so we refer the reader to these references for further details. Furthermore,
such partitions can be found in robotics (Craig, 2005; Dhaouadi & Abu Hatab, 2013), helicopters
(Enns & Si, 2002; 2003b;a), and UAVs (Wang et al., 2016). In this case, the IPA learning (16) occurs
in a decentralized fashion in each of the loops, thus reducing problem dimensionality. Note that the
IPA method holds for general affine nonlinear systems (1) without decentralization. If the physics
of the environment permit decentralization, it only helps further improve solution efficiency.

APPENDIX F REFERENCE COMMAND INPUT AND IPA ROBUSTNESS

F.1 REFERENCE COMMAND INPUT

Many SOTA ADP CT-RL algorithms require the persistence of excitation (PE) condition in proofs
of algorithm properties (Wallace & Si, 2024). PE is an analytical condition, but it is not construc-
tive, nor is there a verification procedure for PE. In essence, PE is in alignment with the notion of
exploration to enable learning and convergence. To achieve PE, it is standard practice to apply a
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probing noise d to the system (1) in a feedback control of the form u = µ(x)+d. According to clas-
sical feedback control principles, a good feedback control attenuates plant input disturbances; thus,
plant-input probing noise excitation is an inherently problematic practice (Rodriguez, 2004). Its
consequence and insights on why such excitation signals may cause learning issues are thoroughly
analyzed in (Wallace & Si, 2024). We instead propose a reference command input solution to excite
the closed-loop system at the favorable reference command r. Critically, reference command input
is compatible with current RL formulations and is of the required form u = µ(x) + d. Thus, refer-
ence command input can improve learning of existing CT-RL algorithms. We have included a block
diagram illustrating reference command input in a standard negative feedback structure (Rodriguez,
2004) in Figure 6. Standard in ADP CT-RL is to apply the control u = µ(x) + d as shown in Figure
6 (i.e., with no reference command r(t) ≡ 0 and output y = x). Instead, we form an error signal
e = r−y from a user-designed reference command input r in order to improve excitation properties.

r

reference
command

input

e

error
µ

Control Policy

u

control

d
probing

noise
input

plant
input

up

ẋ = f(x) + g(x)u

Nonlinear Environment

y

environment
output−

Figure 6: Reference command input in standard negative feedback structure.

To illustrate the issue with inserting probing noise d alone, we first define a few closed-loop maps.
Definition F.1 (Closed-Loop Maps (Rodriguez, 2004)) Examining Figure 6, we define:

• Su ≜ Td→up
(sensitivity at the controls u): The closed-loop map from plant input distur-

bance d to control u.

• Tu ≜ Td→u (complementary sensitivity at the controls u): The closed-loop map from plant
input disturbance d to plant input up.

• Se ≜ Tr→e (sensitivity at the error e): The closed-loop map from reference command r to
error e.

• Te ≜ Tr→y (complementary sensitivity at the error e): The closed-loop map from reference
command r to plant output y.

• PSu ≜ Td→y (P -sensitivity): The closed-loop map from plant input disturbance d to plant
output y.

To illustrate typical input/output behavior, Figure 7 shows these two closed-loop frequency re-
sponses for the HSV. Let us examine the frequency response in loop j = 2 of the HSV (associated
with flightpath angle y2 = γ, yellow dashed curve). Since probing noise is inserted at the plant in-
put, the effective closed-loop map from probing noise d to output y is the P -sensitivity Td→y . Thus,
one glance at the yellow dashed SISO Td→y response in Figure 7a reveals issues: Any probing noise
will be attenuated by at least −25 dB (a factor of about 20) at best-case. Furthermore, any probing
noise frequency content below 10−1 rad/s and above 2.5 rad/s will be attenuated by more than −40
dB, or a factor of 100. In light of this simple analysis, it is clear that achieving sufficient system
excitation via probing noise injection alone proves to be a significant issue for learning the nonlinear
flightpath angle dynamics.
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Figure 7: Closed-loop frequency responses: The probing noise injection issue visualized. (a): P -
sensitivity Td→y . (b): Complementary sensitivity Tr→y .

F.2 IPA ROBUSTNESS

Theorem 3.1 shows that IPA inherits the guaranteed stability robustness margins of Kleinman’s
algorithm. These are, repeated here:

• ∥Su∥H∞ ≤ 0 dB,

• ∥Tu∥H∞ ≤ 2 dB,

where ∥·∥H∞ denotes the H∞ norm, and where Su, Tu denote the sensitivity and complementary
sensitivity closed-loop maps at the controls u, respectively (see Definition F.1). These stability
robustness margins are substantial, as they offer theoretical guarantees of stability to disturbances
inserted in the feedback loop in Figure 6.

For example, let P denote the plant map up → y in Figure 6, P0 be the nominal model of the actual
plant P , and consider a model uncertainty ∆ of the nominal model P0 satisfying ∥∆∥H∞ ≤ M for
someM > 0, but which is otherwise arbitrary. Then given each of the following uncertainty models,
no such uncertainties ∆ can destabilize the closed-loop system under the IPA policy provided the
following stability robustness test holds:

Uncertainty Type Uncertainty Model Stability Robustness Test
Multiplicative P = P0[I +∆] ∥Tu∆∥H∞ < 1

M
Divisive P = P0[I +∆]−1 ∥Su∆∥H∞ < 1

M

owing to the small gain theorem (Rodriguez, 2004).

APPENDIX G PERFORMANCE MEASURES

In these studies, we provide comprehensive evaluations of standard performance measures in: aver-
age cost, learning success rate, and generalization with respect to system ICs and modeling error. In
addition, we analyze performance with respect to the following learning control measures:
• Cost Performance: The infinite-horizon cost J(x0) obtained via the integral (2) delivered by the
policy in the nonlinear optimal control task. As a note, in controls conventions the cost J(x0) > 0
is a positive number to be minimized (lower is better).
• Relative Cost Performance: The difference J⋆FV I(x)− JIPA(x) between the cost performance
of the respective FVI algorithm (i.e., ⋆ = c or r) and IPA (Note: > 0 means IPA is better; i.e., lower
cost).
• Estimation Error: The difference J(x)− V̂ (x) between the cost J(x) (2) and the value function
approximation V̂ (x) (11) at x ∈ Rn.
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Learning Trial Success. In this work, we study 9 different closed-loop evaluation tasks on the three
environments tested. A policy achieves a “success” in each of these tasks if its closed-loop time
response satisfies the respective criteria defined in Table 5.

Table 5: Definitions of closed-loop evaluation tasks
Task Description Definition
SOS Task 1 State x1 regulation x1(t) within ± 0.1 at t = 5 s
Pendulum Task 1 Pendulum angle θ regulation θ(t) within ± 5 deg at t = 5 s
HSV Task 1 Lax velocity V regulation V (t) within ± 10 ft/s at t = 50 s
HSV Task 2 Lax FPA γ regulation γ(t) within ± 0.1 deg at t = 50 s
HSV Task 3 Strict velocity V regulation V (t) within ± 1 ft/s at t = 25 s
HSV Task 4 Strict FPA γ regulation γ(t) within ± 0.01 deg at t = 25 s
HSV Task 5 Lax V and γ regulation HSV Tasks 1 and 2 satisfied
HSV Task 6 Strict V and γ regulation HSV Tasks 3 and 4 satisfied
HSV Task 7 Lax and strict V and γ regulation HSV Tasks 1, 2, 3, and 4 satisfied

APPENDIX H ADDITIONAL IMPLEMENTATION DETAILS

Hardware. We use PyTorch 1.13.1 for FVI implementations, and MATLAB R2022b for IPA im-
plementations. All results are obtained on an NVIDIA RTX 2060, Intel i7 (9th Gen) processor.

Software: All Code/Data Available. All IPA and FVI code and datasets developed for this work
is available in Supplemental and at (Anonymized, 2024). FVI results (Lutter et al., 2021; 2023b)
were generated from the open-source repository developed by the authors (Lutter et al., 2023a)
implemented on the three environments studied.

H.1 ADDITIONAL TRAINING/EVALUATION PROCEDURE DETAILS

This section provides additional implementation details for the training/evaluation procedures dis-
cussed in Section 4.

Training Procedure. An episode is initialized by resetting the environment and terminated at time
T of the training horizon for collecting the state-action trajectory data (x, u). A trial is a complete
training process that contains a series of consecutive episodes.

IPA learning requires state-action trajectory data from a single episode which usually has on the
order of l = 100 total samples for the three evaluated environments. This low data complexity
allows IPA to learn online from the actual physical process. Deep RL FVIs require training data
from over 1 million episodes (cf. Table 1), for details see (Lutter et al., 2021; 2023b). As a result, the
only practical means of training FVI is in simulation. Since the modeling error ν for a given system
is not known a priori, this means that FVI must train on the nominal model (modulo adversary
perturbations in the rFVI case (Lutter et al., 2023b)).

Random Seeds. Training and evaluation for each of the methods are based on 20 seeds for random
number generation (RNG): 0–19 for training, and 100–119 for evaluation. In the case of the FVIs,
the seeds are used in the environment, Numpy, and PyTorch for number generation. In the case of
IPA, we have set MATLAB’s master RNG seed for number generation.

Network Weight Initialization. For FVIs’ deep networks, we use the identical network initializa-
tion procedure as in the original works (Lutter et al., 2021; 2023b); namely, Xavier normal distribu-
tion. The initialization gains of the layers used on each system can be found in Table 8 of Appendix
H.2, the same as in previous studies (Lutter et al., 2021; 2023b).

For IPA’s simpler quadratic network structure, we need only initialize the critic weights c0 in (11).
We initialize each element of the critic weight vector c0 ∈ Rl in the following uniform distributions
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for the SOS, pendulum, and HSV, respectively:

c0 ∼ U(−15, 15), (37)
c0 ∼ U(−25, 25), (38)

c0 ∼
{
U(−30, 30), for weights in translational loop j = 1

U(−10, 10), for weights in rotational loop j = 2
. (39)

Initializing the Environments. System initial conditions (ICs) for training and evaluation are gen-
erated using uniform distributions U , where the ranges for the SOS, pendulum, and HSV cover the
dynamics broadly, well beyond their linear regimes.

System Initial Condition Generation – Training. System ICs for training and evaluation are
generated using uniform distributions U , where the ranges for the SOS, pendulum, and HSV cover
the dynamics broadly, well beyond their linear regimes. We use the following uniform distributions
U for the SOS, pendulum, and HSV, respectively:

x0 ∼ U(±1,±1), (40)
x0 ∼ U(±π/2 rad,±π rad/s), (41)
x0 ∼ U(±150 ft/s,±1.5 deg,±5 deg,±5 deg/s,±0.01 ft). (42)

where these distributions are centered about the respective system equilibrium point xe (cf. Appen-
dices J–L for discussion of equilibria of each system).

System Initial Condition Generation – Evaluation. For the learning curves plotted in Figure
2, at each algorithm iteration the return of the trained policies is evaluated over 100 episodes of
the environment. For evaluation, system ICs for training are generated via the following uniform
distributions U for the SOS, pendulum, and HSV, respectively:

x0 ∼ U(±1,±1), (43)
x0 ∼ U(±π rad,±π/4 rad/s), (44)
x0 ∼ U(±100 ft/s,±1 deg,±0.01 deg,±0.01 deg/s,±0.01 ft). (45)

For display purposes of generating the surface plots in Figures 4 and 5, we evaluate the final polices
of a single trial for each method over the following evaluation grids x ∈ Gx for the SOS, pendulum,
and HSV, respectively:

Gx = linspace(−1, 1, 150)× linspace(−1, 1, 150), (46)
Gx = linspace(−π, π, 150) rad × linspace(−π/4, π/4, 150) rad/s, (47)
Gx = linspace(−100, 100, 150) ft/s × linspace(−1, 1, 150) deg/s, (48)

where all other ICs on the higher-order HSV environment are set to their equilibrium values xe.
Note that we choose the bounds of these grids the same as the bounds of the respective evaluation IC
distributions U in (43)–(45). This is done for illustration purposes to display the policy performance
over the evaluation regime. It is these grids which are used to generate the surface plots of Figures
4 and 5 of the manuscript.

Modeling Error Generation. In the modeling error generalization studies of Section 5, modeling
error ν is tested at three severity levels: ν = 0% (corresponding to the nominal model), ν = 10%,
and ν = 25% modeling error. Please see Appendices J–L for an in-depth discussion of the modeling
error parameters ν studied for each system. These are summarized in Table 6.

Table 6: Modeling error parameters studied
Environment Parameter Equation Reference
SOS ẋ2 unstable nonlinearity ψ(x) (57)
Pendulum Pendulum length L (59)
HSV Lift coefficient CL (65)
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H.2 HYPERPARAMETER SELECTIONS

H.2.1 SHARED HYPERPARAMETERS

For the SOS, we use identical penalty selections to those in the original ADP study (Vamvoudakis
& Lewis, 2010); namely,

Q1 = I2, R1 = 1. (49)

For the pendulum, we use identical penalty selections to those in the original FVI studies (Lutter
et al., 2021; 2023b); namely,

Q1 = diag(1, 0.1), R1 = 0.5. (50)

For the HSV, consider the decentralized design framework described in Appendix L.2. We choose
the following cost structure

Q1 = diag(2, 2), R1 = 2.5,

Q2 = diag(2.5, 5, 0.05, 0), R2 = 1. (51)

H.2.2 IPA

For sake of illustration, on IPA we use simple LQ initial policies µ0. We make the note that, of
course, IPA accommodates nonlinear initial policies µ0. However, to illustrate the practicality of
our implementations for real-world design problems, we choose LQ initial policies as a natural
designer first-choice. For the SOS, we use the initial stabilizing policy

µ0(x) = −K0x, K0 = [ 3.1952 6.7099 ] , (52)

which we obtained from cost structure selections Q1 = diag(0.5, 0.25), and R1 = 0.01. For the
pendulum, we use the initial stabilizing policy

µ0(x) = −K0x, K0 = [ 13.5108 5.8316 ] , (53)

which we obtained from cost structure selections Q1 = diag(0.5, 0.25), and R1 = 0.01. For the
HSV in loop j (j = 1, 2), we use the initial stabilizing policies

µ0,1(x1) = −K0,1x1, K0,1 = [ 0.8944 2.7117 ] , (54)

µ0,2(x2) = −K0,2x2, K0,2 = [ 1.5811 6.7007 0.8837 0.7135 ] , (55)

which we obtained from a decentralized design with cost structure selections (51). The remainder
of the IPA hyperparameter selections can be found in Table 7.

Table 7: IPA hyperparameter selections

Hyperparameter SOS Pendulum HSV
Loop j = 1 Loop j = 1 Loop j = 1 Loop j = 2

Sample Period Ts,j (s) 0.1 1 6 2
Number of Samples lj 10 15 15 15

Final Iteration i∗j 5 5 10 10
Ref Cmd rj sin(5t) 10 sin( 2π10 t) 50 sin( 2π

100 t) 0.25 sin( 2π
100 t)

([-] | deg | ft/s, deg) +5 sin( 2π5 t) +5 sin( 2π25 t) +0.5 sin(2π15 t)
+5 cos( 2π10 t) +0.03 cos( 2π6 t)

Initial Policy µ0,j (52) (53) (54) (55)

H.2.3 CFVI, RFVI

Hyperparameter selections for cFVI and rFVI can be found in Table 8. These parameter selections
are overall quite standard and have indeed demonstrated great learning performance successes on
second-order, unstable systems in previous studies (Lutter et al., 2021; 2023b).
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Remark H.1 (FVI Implementation Challenges on HSV System) The FVIs hyperparameter se-
lections for the HSV in Table 8 are a result of a search over the hyperparameter space in order
to achieve the best policy performance possible. This process took approximately two weeks of
trial and error. We find that FVIs struggle to converge on the HSV environment, likely due to its
higher order, complex nonlinear structure, and its unstable, nonminimum-phase dynamics. In order
to achieve FVI convergence, we found it necessary to initialize the weights to a policy trained on 40
iterations with the same hyperparameters given in Table 8, except at a lower learning rate of 1e-7.
In order to make IPA’s learning procedure more analogous to FVI’s on the HSV, we thus center its
uniform initial weight distribution (39) about the weights of a nominal LQR policy performed on
the nominal linearized dynamics (A,B).

As with our selections of the pendulum model structure and parameters (cf. Appendix K), for our
pendulum studies we have selected hyperparameters identical to those of the original cFVI/rFVI
evaluations (Lutter et al., 2021; 2023b), with two exceptions. In (Lutter et al., 2021; 2023b), the au-
thors use a logcos control penalty function scaled so that its curvature at the origin u = 0 is 2R; i.e.,
so that its curvature agrees with that of a quadratic penalty uTRu. In order to make comparisons
consistent across the methods studied, and in order to produce a more widely-applicable perfor-
mance benchmark for real-world designers, we have decided to apply the standard quadratic control
penalty uTRu for all methods. Likewise, the authors in (Lutter et al., 2021; 2023b) wrap the penalty
function of the pendulum angle state to be periodic in [0, 2π), a practice which we have dropped for
consistency of comparison and generalizability of benchmarking. Finally, due to these changes we
observed that more iterations were necessary for rFVI to converge in training the pendulum system
(cf. Figure 2), so we increased its iteration count from 100 previously (Lutter et al., 2021; 2023b) to
150 here (cf. Table 8).

Table 8: cFVI, rFVI hyperparameter selections

Hyperparameter SOS Pendulum HSV
cFVI rFVI cFVI rFVI cFVI rFVI

Time Step (s) 0.008 0.008 0.008 0.008 0.04 0.04
Time Horizon (s) 5 5 5 5 20 20

Discounting γ 0.99 0.99 0.99 0.99 0.99 0.99
Network Dimension [3× 96] [3× 96] [3× 96] [3× 96] [3× 96] [3× 96]

# Ensemble 4 4 4 4 4 4
Activation Tanh Tanh Tanh Tanh Tanh Tanh

Learning Rate 1e-6 1e-6 1e-5 1e-5 1e-4 1e-4
Weight Decay 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6

Hidden Layer Gain 1.41 1.41 1.41 1.41 1.41 1.41
Output Layer Gain 1.00 1.00 1.00 1.00 1.00 1.00
Output Layer Bias -0.1 -0.1 -0.1 -0.1 -0.1 -0.1

Diagonal Softplus Gain βL 1.0 1.0 1.0 1.0 7.5 7.5
Batch Size 128 128 256 128 256 256
# Batches 200 200 200 200 200 200

Eligibility Trace 0.85 0.85 0.85 0.85 0.95 0.95
n-step Trace Weight 1e-4 1e-4 1e-4 1e-4 1e-3 1e-3

# Iterations 25 25 25 25 50 50
# Epochs/Iteration 20 20 20 20 20 20

State Adversary ∥ξx∥max 0.0 0.025 0.0 0.025 0.0 0.001
Action Adversary ∥ξu∥max 0.0 0.1 0.0 0.1 0.0 0.05
Model Adversary ∥ξθ∥max 0.0 0.15 0.0 0.15 0.0 0.125

Obs Adversary ∥ξo∥max 0.0 0.025 0.0 0.025 0.0 0.01
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APPENDIX I EVALUATIONS: QUANTITATIVE COMPARISONS BETWEEN IPA
& FVIS

In this section, we examine the effects of modeling error ν on 1) policy cost performance J , 2) critic
network approximation error J− V̂ , and 3) closed-loop performance. All hyperparameter selections
can be found in Appendix H.

I.1 AVERAGE COST AND EVALUATION SUCCESS RATE GENERALIZATION

IPA, cFVI, and rFVI are trained with trajectory data generated by the same training uniform IC
distribution for each of the respective environments, and the average return is then evaluated over
the respective evaluation uniform IC distribution. These distributions are given in Appendix H. The
learning curves are plotted in Figure 2 over 20 training seeds. The corresponding average return and
variance is tabulated in Table 9, and the corresponding evaluation success rate in Table 10.

Table 9: Average cost at varying modeling error ν = 0%, 10%, 25%

ν
Cost SOS Pendulum HSV[µ± 2σ]

0%
IPA 0.50±0.65 12.12±17.96 24.69±36.14

cFVI 0.50±0.66 8.99±10.04 29.79±31.51
rFVI 0.50±0.67 16.26±17.61 33.37±36.47

10%
IPA 0.53±0.69 8.48±11.85 27.19±40.63

cFVI 0.53±0.70 7.73±8.70 36.42±36.49
rFVI 0.53±0.70 16.85±17.79 41.54±42.29

25%
IPA 0.58±0.75 5.77±6.31 32.45±50.38

cFVI 0.58±0.78 7.01±7.85 63.80±44.73
rFVI 0.56±0.76 23.15±18.07 74.15±48.64

Table 10: Success rates for different environments and tasks at varying modeling error ν = 0%,
10%, 25% (cf. Table 5 for task criteria)

ν
Success SOS Pendulum HSV HSV HSV HSV HSV HSV HSV

[%] Task 1 Task 1 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

0%
IPA 100 100 100 100 100 100 100 100 100

cFVI 100 100 100 100 31.95 15.30 100 3.90 3.90
rFVI 100 100 100 100 19.20 8.75 100 1.25 1.25

10%
IPA 100 100 100 100 100 100 100 100 100

cFVI 100 100 100 99.50 32.70 9.95 99.50 2.35 2.35
rFVI 100 100 100 100 15.50 7.70 100 1.45 1.45

25%
IPA 100 100 100 100 100 100 100 100 100

cFVI 100 100 100 99.20 48.00 8.30 99.20 4.20 4.20
rFVI 100 100 100 100 16.45 5.70 100 1.95 1.95

Average Cost Performance. The learning curves of the tested methods trained to 20 seeds are
plotted in Figure 8. The average cost of the tested methods is evaluated on three CT-RL environments
in Table 9 at three levels of modeling error ν = 0%, 10%, 25%. We include the evaluation success
rates with respect to the closed-loop control tasks for the three environments and three levels of
modeling error in Table 10 (cf. Table 5 for definitions of task criteria). Examining Figure 8, we see
that IPA exhibits the fastest learning convergence of the methods tested, converging in 5 iterations
or less for all three environments. By comparison, FVIs converge at a similar rate on the simpler
SOS benchmark but require ≈ 10 iterations to converge on the pendulum and 30 iterations on the
HSV. With the exception of cFVI on the pendulum, IPA also exhibits the lowest cost and variance
between seeds.

Average Cost Performance/Success Rate – SOS. Turning to Table 9, we first see that all three
methods perform comparably on the SOS benchmark, exhibiting similar average and standard de-
viation evaluated cost at all three modeling error levels ν. Similarly, all methods achieve 100%
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evaluation success on the SOS regardless of modeling error severity (cf. Table 10). Thus, all meth-
ods successfully generalize with respect to modeling error for this system.

Average Cost Performance/Success Rate – Pendulum. Examining Figure 8, we see that cFVI out-
performs IPA in terms of average cost and variance on the nominal model ν = 0%. However, we
would like to highlight this result in the context of the closed-loop performance observed of these
two methods. We examine the swing-up performance of the pendulum beginning from full pendu-
lum displacement θ0 = 180◦ in Figure 16. As can be seen, the IPA response is the fastest of the three
methods and is well-behaved with no overshoot. This hence points to a trade-off between lower cost
(achieved by cFVI) and faster swing-up performance (achieved by IPA). Furthermore, IPA exhibits
the best modeling error generalization on the pendulum (cf. Table 9), eventually outperforming
cFVI in terms of average cost and variance when modeling error is increased. By comparison, rFVI
exhibits the highest cost on the nominal pendulum model and struggles to generalize (cf. Table 9).
However, all methods achieve a 100% success rate in the pendulum angle regulation task regardless
of modeling error severity (cf. Table 10).

Average Cost Performance/Success Rate – HSV. On the flagship HSV environment, IPA exhibits
a clear cost and evaluation success advantage over both FVI methods as well as the best modeling
error generalization. Examining Table 9 the nominal model, IPA has the lowest average policy cost
(24.69), followed by cFVI (29.79) and rFVI (33.37). The performance discrepancy increases with
modeling error. At ν = 25%, IPA cost (32.45, a +31% degradation from nominal) far surpasses that
of cFVI (63.80, a +114% degradation) and rFVI (74.15, a +122% degradation).

Turning to the evaluation success rates for the HSV in Table 10, we see that IPA achieves a 100%
success rate on all tasks regardless of modeling error severity. FVIs exhibit a 100% success rate
on the lax velocity regulation Task 1, and (with the exception of > 99% of cFVI at ν = 10% and
25% modeling error) 100% success on the lax FPA regulation Task 2. However, FVIs struggle with
the stringent velocity regulation Task 3 and FPA regulation Task 4. As will be examined shortly
(cf. Figure 17 and surrounding discussion), FVIs struggle with evaluation success rate due to slow-
decaying transients in their closed-loop time-domain responses, which prevent them from falling
within the regulation thresholds.
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Figure 8: Learning curves of IPA and FVIs obtained over 20 seeds for the nominal models ν = 0%
of the SOS (left), pendulum (middle) and HSV (right). The shaded area displays the min/max range
among seeds, as in the original works (Lutter et al., 2021; 2023b).

I.2 MODELING ERROR GENERALIZATION: COST PERFORMANCE

Figure 9 shows the cost difference JcFV I − JIPA between cFVI and IPA (first row), and the differ-
ence JrFV I − JIPA between rFVI and IPA (second row) for the nominal SOS model ν = 0% (left
column), a 10% modeling error ν = 10% (middle column), and a 25% modeling error ν = 25%
(right column). Note that wherever this difference is positive, IPA delivers better performance than
the respective FVI algorithm. Table 11 presents the corresponding min, max, average, and standard
deviation data. Figure 10 and Table 12 are laid out analogously for the pendulum, and Figure 11 and
Table 13 are laid out analogously for the HSV.

Cost Performance – SOS. Overall, the three methods tested perform comparably with respect to
cost on the SOS benchmark. However, IPA exhibits a slight performance edge, achieving the lowest
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cost pointwise regardless of modeling error level. The most pronounced performance difference
occurs with cFVI at ν = 25% modeling error (cf. top right plot of Figure 9). Here, one can see
two distinct regions corresponding to large initial displacements in the state x2 for which cFVI has
higher cost than IPA. As a note, this result is intuitive given that the modeling error parameter ν (57)
selected primarily affects the unstable x2 dynamics (cf. Appendix J for discussion). Meanwhile,
we can see that rFVI manages to successfully generalize to the modeling error, exhibiting similar
performance to IPA even at the severe 25% modeling error.

Cost Performance – Pendulum. Examining the performance on the nominal model in Figure 10,
we see that cFVI performs quite well on the pendulum benchmark. IPA outperforms cFVI in a
large region around the origin; however, cFVI outperforms IPA on the fringes of the state domain
near full pendulum displacement θ = ±180◦. Once modeling error is introduced, the performance
advantage of cFVI erodes; in the mean, cFVI and IPA perform almost comparably at 10% modeling
error, while IPA outperforms cFVI at 25% modeling error (cf. Table 12). Thus, we conclude that
IPA generalizes better with respect to modeling error than cFVI on this benchmark.

Meanwhile, rFVI performs worse than cFVI on the pendulum overall and struggles to generalize.
On the nominal model (bottom left plot of Figure 10), IPA outperforms rFVI in the same regions
where it outperforms cFVI to a larger degree, and the regions in which rFVI outperforms IPA are
limited to the very corners of the state domain. IPA outperforms rFVI in the mean for all modeling
error levels ν, and the performance discrepancy increases by a large degree from 4.99 nominally
ν = 0% to 19.02 at ν = 25% modeling error (cf. Table 12). This degradation is corroborated
visually in Figure 10 (cf. bottom row, moving left to right).

Cost Performance – HSV. On the flagship HSV model, IPA exhibits the lowest mean cost regard-
less of the modeling error, and a distinct generalization advantage as the modeling error severity
increases. On the nominal model (left column of Figure 11), FVIs and IPA perform comparably
near the origin, but IPA begins to outperform FVIs by ≈ 10−20 in the majority of the state domain.
There are two fringes of the domain (corresponding to large initial FPA displacements γ = ±1 deg)
in which FVIs slightly outperform IPA; however, in the mean IPA outperforms cFVI by 13.14 and
rFVI by 16.45 on the nominal model ν = 0%.

Cost performance of both FVI algorithms degrades significantly when modeling error is introduced,
in particular at the severe 25% modeling error (right column of Figure 11). Here, IPA outperforms
FVIs pointwise, in the mean outperforming cFVI by 34.10 and rFVI by 35.90.
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Figure 9: Cost performance results of SOS model. First row: cFVI cost difference JcFV I − JIPA

(2). Second row: rFVI cost difference JrFV I − JIPA (2). Left: Nominal model ν = 0%. Middle:
10% modeling error ν = 10%. Right: 25% modeling error ν = 25%.

Table 11: SOS training cost/approximation data

Function Data ν
0% 10% 25%

JcFV I − JIPA

min 1.34e-06 1.80e-06 3.24e-06
max 0.03 0.04 0.09
avg 0.01 0.01 0.02
std 0.01 0.01 0.02

JrFV I − JIPA

min 2.29e-06 1.71e-06 1.99e-06
max 0.05 0.04 0.04
avg 0.01 0.01 0.01
std 0.01 0.01 0.01

J − V̂ IPA
min -0.01 -0.01 -0.01
max -9.16e-08 0.03 0.10
avg -6.28e-04 0.01 0.03
std -6.83e-04 0.01 0.02

J − V̂ cFVI
min 2.51e-06 6.53e-06 1.28e-05
max 0.06 0.14 0.30
avg 0.02 0.05 0.10
std 0.01 0.03 0.08

J − V̂ rFVI
min -0.11 -0.06 -8.88e-03
max -3.24e-06 -3.67e-07 0.12
avg -0.03 -0.01 0.03
std 0.03 0.01 0.03

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

-180-135 -90 -45 0 45 90 135 180
-45

-30

-15

0

15

30

45

-10

0

10

20

30

40

-180-135 -90 -45 0 45 90 135 180
-45

-30

-15

0

15

30

45

-10

0

10

20

30

40

Figure 10: Cost performance results of pendulum model. First row: cFVI cost difference JcFV I −
JIPA (2). Second row: rFVI cost difference JrFV I − JIPA (2). Left: Nominal model ν = 0%.
Middle: 10% modeling error ν = 10%. Right: 25% modeling error ν = 25%.

Table 12: Pendulum training cost/approximation data

Function Data ν
0% 10% 25%

JcFV I − JIPA

min -18.53 -10.21 -3.33
max 10.17 9.05 8.91
avg -3.04 -0.52 1.48
std 6.43 3.91 2.87

JrFV I − JIPA

min -14.25 -4.94 -2.68
max 27.36 31.35 48.74
avg 4.99 9.39 19.02
std 8.54 8.87 12.40

J − V̂ IPA
min -40.61 -35.84 -26.20
max 4.78e-05 0.04 1.44
avg -9.88 -8.79 -5.59
std 11.13 9.91 7.63

J − V̂ cFVI
min -8.90 -9.17 -9.15
max 10.71 6.85 5.20
avg -0.02 -1.31 -2.06
std 4.02 3.40 3.17

J − V̂ rFVI
min -27.49 -26.56 -23.22
max 13.71 15.33 43.98
avg -7.07 -6.48 0.40
std 9.11 9.19 13.87
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Figure 11: Cost performance results of HSV model. First row: cFVI cost difference JcFV I − JIPA

(2). Second row: rFVI cost difference JrFV I − JIPA (2). Left: Nominal model ν = 0%. Middle:
10% modeling error ν = 10%. Right: 25% modeling error ν = 25%.

Table 13: HSV training cost/approximation data

Function Data ν
0% 10% 25%

JcFV I − JIPA

min -11.16 -8.51 19.18
max 13.14 21.77 45.83
avg 5.63 9.76 34.10
std 5.23 5.60 5.56

JrFV I − JIPA

min -6.92 -2.90 23.61
max 16.45 21.75 49.97
avg 7.24 11.37 35.90
std 4.13 4.60 4.54

J − V̂ IPA
min -46.62 -50.55 -56.11
max -1.83e-03 0.02 0.20
avg -13.04 -14.76 -17.66
std 9.61 10.87 13.10

J − V̂ cFVI
min -49.48 -37.75 -0.63
max 28.33 31.21 56.68
avg -7.77 -0.96 29.12
std 17.15 14.22 10.53

J − V̂ rFVI
min -92.74 -79.03 -41.03
max 27.66 30.60 57.32
avg -25.27 -18.46 11.81
std 29.52 26.41 21.36
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I.3 MODELING ERROR GENERALIZATION: APPROXIMATION PERFORMANCE

Figures 12, 13, and 14 show the critic network error J − V̂ for IPA (first row), cFVI (second row),
and rFVI (third row) for the SOS, pendulum, and HSV systems, respectively. The corresponding
data is tabulated in Tables 11, 12, and 13, respectively. In general, it is desirable for the critic
approximation error J − V̂ to be as small in magnitude as possible (so the critic is accurate).
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Figure 12: Critic NN approximation error J − V̂ of SOS model. Left: Nominal model ν = 0%.
Middle: 10% modeling error ν = 10%. Right: 25% modeling error ν = 25%. First row: IPA.
Second row: cFVI (Lutter et al., 2021). Third row: rFVI (Lutter et al., 2023b).

Approximation Performance – SOS. Examining Figure 12, IPA exhibits the lowest critic network
approximation error regardless of modeling error severity and the best generalization overall. As
is the case with cost performance, cFVI struggles the most to generalize on the SOS. Meanwhile,
rFVI tends to underestimate policy performance on the nominal model and exhibits slightly higher
approximation error than IPA when modeling error increases.
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Figure 13: Critic NN approximation error J−V̂ of pendulum model. Left: Nominal model ν = 0%.
Middle: 10% modeling error ν = 10%. Right: 25% modeling error ν = 25%. First row: IPA.
Second row: cFVI (Lutter et al., 2021). Third row: rFVI (Lutter et al., 2023b).

Approximation Performance – Pendulum. Examining Figure 13, IPA approximation error in-
creases in the fringes near full pendulum displacement θ = ±180◦, where IPA cost performance
also struggles (cf. Figure 10). However, IPA exhibits low approximation error in a wide band
around the origin encompassing the majority of the state domain, meeting or outperforming cFVI
in this region. Furthermore, IPA estimation error improves as modeling error is introduced, demon-
strating good generalization. Nevertheless, cFVI performs the best overall in terms of estimation
error on the pendulum benchmark, exhibiting both excellent performance on the nominal model
and generalization to modeling error. Meanwhile, rFVI performs worse on the nominal model and
struggles to generalize in comparison to IPA or cFVI.
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Approximation Performance – HSV. As is the case with cost performance, IPA exhibits a pro-
nounced approximation performance advantage on the nominal HSV model and the best generaliza-
tion to modeling error. On the nominal HSV model ν = 0% (left column of Figure 14), one can see
that both cFVI and rFVI struggle with overestimation in the band γ ∈ [−0.5◦, 0.5◦], in particular
for large velocity displacements V = ±100 ft/s. IPA approximation error remains lower in this
region. Furthermore, rFVI begins to underestimate policy performance for large FPA displacements
γ = ±1◦, where cFVI performs comparably better.

Approximation performance significantly degrades for FVIs, in particular at the 25% modeling error
(right column of Figure 14). Here, both FVI algorithms begin to overestimate policy performance to
a large degree. Where rFVI begins underestimates policy performance on the nominal model near
γ = ±1◦, it performs comparably better than cFVI at 25% modeling error. This suggests that rFVI
adversarial input successful improves generalization properties of this robust variant somewhat. By
comparison, IPA’s approximation error remains at comparable levels and in a similar radial pattern
to its performance on the nominal model.
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Figure 14: Critic NN approximation error J − V̂ of HSV model. Left: Nominal model ν = 0%.
Middle: 10% modeling error ν = 10%. Right: 25% modeling error ν = 25%. First row: IPA.
Second row: cFVI (Lutter et al., 2021). Third row: rFVI (Lutter et al., 2023b).
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I.4 MODELING ERROR GENERALIZATION: CLOSED-LOOP PERFORMANCE

We examine the closed-loop time-domain responses of all three environments at 0%, 10%, and 25%
modeling error ν. The associated plots for the SOS, pendulum, and HSV can be found in Figures
15, 16, and 17, respectively.

Closed-Loop Performance – SOS. In Figure 15, we plot the closed-loop regulation responses of
the tested methods to the initial condition x0 = [1, 1]T . As can be seen, regardless of the modeling
error severity IPA and the FVIs perform very similarly. This corroborates the cost and approximation
results in Figures 9, 12, and Table 11, which establish that these methods successfully learn the same
optimal policy.
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Figure 15: Closed-loop response x1(t) of SOS model to initial condition x0 = [1, 1]T . Left:
Nominal model ν = 0%. Middle: 10% modeling error ν = 10%. Right: 25% modeling error
ν = 25%.

Closed-Loop Performance – Pendulum. We examine the swing-up performance of the pendulum
beginning from full pendulum displacement θ0 = 180◦ in Figure 16. As can be seen, the IPA
response is the fastest of all three methods regardless of the modeling error tested. We would like to
highlight this result in the context of the cost and approximation performance of IPA illustrated in
Figures 10 and 13, respectively. In these two figures, it can be seen that IPA struggles for large initial
pendulum displacements θ = ±180◦; however, Figure 16 shows that IPA’s swing-up performance
at full pendulum displacement θ0 = 180◦ is the most responsive of the three methods. This hence
points to a trade-off between lower cost/approximation error (achieved by FVIs) and faster swing-
up performance (achieved by IPA). This trade-off is corroborated between the FVIs themselves.
Comparing FVIs in 16, we see that rFVI exhibits a faster response than cFVI; meanwhile, examining
the state x = [θ, θ̇]T = [180◦, 0]T in Figures 10 and 13, we see that cFVI achieves lower cost and
approximation error than rFVI at this same initial condition.
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Figure 16: Swing-up closed-loop response of pendulum model θ(t) from hanging pendulum position
θ0 = 180◦. Left: Nominal model ν = 0%. Middle: 10% modeling error ν = 10%. Right: 25%
modeling error ν = 25%.
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Closed-Loop Performance – HSV. We examine the closed-loop performance on the HSV in Figure
17, issuing a 100 ft/s step velocity command (top row) and a 1◦ step FPA command (bottom row).
Beginning on the velocity response (top row of Figure 17), we can see that both FVI algorithms have
large overshoot compared to IPA. Furthermore, the FVI responses exhibit pronounced and slow-
decaying transients about the 100 ft/s reference command setpoint. This time-domain behavior is a
clear visual indicator of why FVIs struggle with evaluation success rate in velocity regulation (cf.
Table 3, HSV Tasks 1 and 3). By comparison, IPA exhibits less overshoot, faster settling time, and
a well-behaved system response without oscillatory transients.

Examining the FPA response (bottom row of Figure 17), we see that IPA and FVIs yield similar FPA
overshoot. However, FVIs exhibit similar oscillatory transients as in the velocity response, giving
IPA faster settling time. It is because of these oscillations that FVIs struggle with evaluation success
rate in FPA regulation (cf. Table 3, HSV Tasks 2 and 4). Furthermore, such oscillations in FPA (i.e.,
in deflection the vehicle velocity vector) are highly undesirable in flight control settings, as they
cause wear on the fuselage and may excite the HSV flexible modes (Bolender & Doman, 2006a).
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Figure 17: Closed-loop responses of HSV model. Top row: 100 ft/s step velocity V command.
Bottom row: 1◦ step FPA γ command. Left: Nominal model ν = 0%. Middle: 10% modeling error
ν = 10%. Right: 25% modeling error ν = 25%.

Time/Data Efficiency. Table 14 lists key algorithm complexity parameters for IPA and FVI. In many
cases, IPA exhibits orders of magnitude less time/data complexity than the SOTA FVI works. To
illustrate, we examine the ratio of IPA/FVI on the HSV model. For number of data samples required:
1/5,750,000, training episodes required: IPA/FVI = 1/5,250,000, training time: 1/1,500, algorithm
iterations: 1/5.
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Table 14: Comparison of time/data complexity of IPA and FVIs on 3 environments

Parameter SOS Pendulum HSV
IPA cFVI/rFVI IPA cFVI/rFVI IPA cFVI/rFVI

# Trajectory Data Samples 10 2.88e+07 15 8.63e+07 30 1.73e+08
/2.88e+07

# Episodes (Data Collection) 1 6.40e+05 1 2.63e+06 1 5.25e+06
/6.40e+05

Avg Training Time (s) 0.20 1.42e+03 0.22 1.76e+03 2.75 4.60e+03
/1.41e+03 /1.46e+03 4.79/e+03

# Algorithm Iterations i 5 25 5 25 10 50

APPENDIX J SECOND ORDER ACADEMIC EXAMPLE (VAMVOUDAKIS &
LEWIS, 2010)

J.1 SECOND ORDER SYSTEM (SOS) MODEL

We consider the identical second order system (SOS) model used in the seminal ADP work
(Vamvoudakis & Lewis, 2010), which has the following dynamics[

ẋ1
ẋ2

]
=

[
−x1 + x2

−0.5x1 − 0.5ψ(x)

]
+

[
0

cos(2x1) + 2

]
u, (56)

ψ(x) ≜ ν ψ0(x), ψ0(x) ≜ x2
(
1− (cos(2x1) + 2)2

)
. (57)

The function ψ (57) contributes to the nonlinearity in the ẋ2 drift dynamics f(x) for this system. It
also determines the stability properties of the origin equilibrium xe = 0. This system is open-loop
unstable, and as the modeling error parameter ν (57) increases above its nominal value ν = 1, the
system nonlinearity grows stronger and the SOS becomes more unstable. We have included the
eigenvalues of the open-loop linearization of the SOS in Table 15. Thus, in this study we examine
the more challenging perturbation direction ν > 1.

Table 15: SOS instability versus modeling error parameter ν (57)
ν (57) Unstable Pole Location
1 (nom, = 0%) 3.8979
1.1 (= 10%) 4.3058
1.25 (= 25%) 4.9155

APPENDIX K PENDULUM MODEL & DESIGN FRAMEWORK

K.1 PENDULUM MODEL

We consider the identical pendulum model used in the cFVI evaluations (Lutter et al., 2021; 2023b)
for this work, which has the following dynamics

θ̇ = ω,

ω̇ =
mgL

2I
sin θ +

1

I
τ, (58)

where θ is the pendulum angle (measured zero pointing upward, positive counterclockwise), ω is the
pendulum angular velocity, and τ is the torque applied to the pendulum base. The numerical values
of all model constants are chosen identical to the cFVI evaluations (Lutter et al., 2021; 2023b)
and are available in Table 16. We examine the upright pendulum equilibrium xe = [θe, ωe]

T
=

[0 rad, 0 rad/s]T . This equilibrium is naturally unstable (upright pendulum instability).
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Table 16: Pendulum model parameters
Definition Symbol Value
Pendulum length L L0 = 1 m (nominal)
Pendulum mass m 1 kg
Gravitational field constant g 9.81 m/s2

Pendulum moment of inertia I 1
3mL

2

The pendulum length L is a central physical parameter in the dynamics (58), as it determines the
severity of the upright pendulum instability. In the studies conducted in this work, we will focus on
how modeling errors in the pendulum length L affect the pendulum dynamics and learning perfor-
mance. Specifically, we study modeling errors of the form

L = ν L0, (59)
where L0 ∈ R is a nominal value of the pendulum length, and ν ∈ R is the modeling error parameter
(nominally 1). As ν < 1 decreases, L < L0 decreases. Table 17 shows the inverted pendulum
instability as a function of the modeling error ν (59). As can be seen, the pendulum becomes more
unstable with decreasing pendulum length L. Thus, the modeling error perturbation direction ν < 1
(59) is studied in this work.

Table 17: Pendulum instability and control effectiveness versus modeling error parameter ν (59)
ν (59) Unstable Pole Location
1 (nom, = 0%) 3.8360
1.1 (= 10%) 3.6575
1.25 (= 25%) 3.4310

APPENDIX L HSV MODEL AND DECENTRALIZED DESIGN FRAMEWORK

L.1 HSV MODEL

The HSV model used in this study is the standard Wang and Stengel model developed in (Wang
& Stengel, 2000; Marrison & Stengel, 1998) based on NASA Langley’s winged-cone tabular aero-
propulsive data (Shaughnessy et al., 1990). This model has served as a standard testbed for HSV
control development and has since been used in seminal classically-based works such as (Xu et al.,
2003; 2004), and simplified variants of it have been used in state-of-the-art RL-based control works
such as (Zhao et al., 2023; Xu et al., 2013; 2015):

V̇ =
T cosα−D

m
− µ sin γ

r2
,

γ̇ =
L+ T sinα

mV
− (µ− V 2r) cos γ

V r2
,

θ̇ = q,

q̇ =
M
Iyy

,

ḣ = V sin γ. (60)

The HSV (60) is fifth-order, with states x = [V, γ, θ, q, h]
T . Here, V is the vehicle airspeed, γ the

flightpath angle (FPA), α the angle of attack (AOA), θ ≜ α + γ the pitch attitude, q the pitch rate,
and h the vehicle altitude. In addition, r(h) = h + RE is the total distance from the earth’s center
to the HSV, RE = 20, 903, 500 ft is earth’s radius, and µ ≜ GmE = 1.39 × 1016 ft3/s2, where G
is Newton’s gravitational constant and mE is the earth’s mass. As a note, the notation µ in (60) is
standard in flight control literature and is not to be confused with the learning community’s use of µ
to denote a control policy. L,D, T,M are the lift, drag, thrust, and pitching moment, respectively,
and are given by

L =
1

2
ρV 2SCL, D =

1

2
ρV 2SCD, T =

1

2
ρV 2SCT , M =

1

2
ρV 2ScCM, (61)
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where ρ is the local air density, S = 3603 ft2 is the wing planform area, and c = 80 ft is the mean
aerodynamic chord of the wing. Air density ρ and speed of sound a are modeled as functions of
altitude h by

ρ = 0.00238e−
h

24,000 , (62)

a = 8.99× 10−9h2 − 9.16× 10−4h+ 996, (63)

and Mach number M ≜ V
a . The aerodynamic coefficients CL, CD, CM, and CT are heavily

nonlinear functions of the flight condition as follows

CL = CL,α + CL,δE , (64)

CL,α = ν CL,α0, CL,α0 ≜ α

(
0.493 +

1.91

M

)
, (65)

CL,δE =
(
−0.2356α2 − 0.004518α− 0.02913

)
δE , (66)

CD = 0.0082
(
171α2 + 1.15α+ 1

) (
0.0012M2 − 0.054M + 1

)
, (67)

CM = CM,α + CM,q + CM,δE , (68)

CM,α = 10−4
(
0.06− e−

M
3

) (
−6565α2 + 6875α+ 1

)
, (69)

CM,q =

(
qc

2V

)
(−0.025M + 1.37)

(
−6.83α2 + 0.303α− 0.23

)
, (70)

CM,δE = 0.0292(δE − α), (71)

CT =

{
0.0105

(
1 + 17

M

)
(1 + 0.15)δT , δT < 1

0.0105
(
1 + 17

M

)
(1 + 0.15δT ), δT ≥ 1,

(72)

where δE is the elevator setting, δT is the throttle, and ν ∈ R is the modeling error parameter
(nominally 1) in the basic lift increment coefficient CL,α (65). The controls are given by u =

[δT , δE ]
T , and we examine the outputs y = [V, γ]

T . As in (Wang & Stengel, 2000; Marrison &
Stengel, 1998), we examine a level flight condition qe = 0, γe = 0◦, at Me = 15, he = 110, 000
ft, which corresponds to an airspeed Ve = 15, 060 ft/s. At this flight condition, the vehicle is
equilibrated at αe = 1.7704◦ by the controls δT,e = 0.1756 (Te = 4.4966 × 104 lb), δE,e =
−0.3947◦.

HSV Dynamical Challenges. The HSV is a significant control challenge due to its dynamical
features. First, the HSV is open-loop unstable. Linearization of the model about the equilibrium
(xe, ue) has eigenvalues at s = −0.8291, 0.7165 (short-period modes), s = −0.00001 ± 0.0276j
(phugoid modes), and s = 0.0005 (altitude mode). The unstable short-period mode at s = 0.7165
is associated with the vehicle pitch-up instability (long vehicle forebody, aftward-set center of
mass due to propulsion system). As is common with tail-controlled aircraft, the elevator-FPA map
is nonminimum phase (Bolender & Doman, 2005). The linearization has transmission zeros at
s = 8.3938,−8.4620, the right half plane zero at s = 8.3938 attributed to the elevator-FPA map
(parasitic negative lift increment due to pitch-up elevator deflections).

Reducing the lift coefficient ν < 1 (65) represents degraded lift efficiency and a more difficult
vehicle to control dynamically. We have calculated the unstable pole location and right-half-plane
zero location as a function of the modeling error parameter ν (65) in Table 18. As can be seen,
the system instability decreases slightly with increasing modeling error, but the nonminimum phase
zero gets closer to the origin. Thus, the pole/zero ratio drops from 11.72 nominally (ν = 0%), to
11.36 (ν = 10%), to 10.88 (ν = 25%), presenting a greater control design challenge. Thus, we
study the modeling error perturbation direction ν < 1 in this study.

Table 18: HSV instability and nonminimum phase zero versus modeling error parameter ν (65)
ν (65) Unstable Pole Location Nonminimum Phase Zero Location
1 (nom, = 0%) 0.7165 8.3938
0.9 (= 10%) 0.7011 7.9619
0.75 (= 25%) 0.6681 7.2664

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

L.2 HSV DECENTRALIZED CONTROL FRAMEWORK

This work implements a decentralized design methodology inspired by (Dickeson et al., 2009a) de-
veloped for HSVs and extensively tested on HSVs. Here, policies are designed separately for the
velocity loop (associated with the airspeed V and throttle control δT ) and rotational loop (associated
with the FPA γ, attitude θ, q, and elevator control δE). As in (Dickeson et al., 2009a), for controlla-
bility reasons we do not feed back altitude h in the learning control, though altitude is still included
in the nonlinear simulation. To reduce overshoot due to step reference commands r and initial con-
dition x0 transients, we include in the design a reference command pre-filter outside the feedback
loop (a standard control design practice for HSVs, for further discussion see, e.g., (Dickeson et al.,
2009a)).

In order to achieve zero steady-state error to step reference commands, we augment the plant at the
output with the integrator bank z =

∫
y dτ = [zV , zγ ]

T
=

[∫
V dτ,

∫
γ dτ

]T
. For decentralization,

the state/control vectors are thus partitioned as x1 = [zV , V ]
T , u1 = δT (n1 = 2, m1 = 1) and

x2 = [zγ , γ, θ, q]
T , u2 = δE (n2 = 4, m2 = 1).

APPENDIX M ADP-BASED LEADING CT-RL DESIGN INSIGHTS AND
PERFORMANCE LIMITATIONS

ADP approaches have been developed largely within the scope of seminal works such as inte-
gral reinforcement learning (IRL) (Vrabie & Lewis, 2009), synchronous policy iteration (SPI)
(Vamvoudakis & Lewis, 2010), robust ADP (RADP) (Jiang & Jiang, 2014), and continuous-time
value iteration (CT-VI) (Bian & Jiang, 2022). These methods achieve substantial theoretical results.
As a result of ADP’s theoretical frameworks in adaptive and optimal control, Lyapunov arguments
are available to prove qualitative properties including weight convergence and closed-loop stabil-
ity results. However, the results require restrictive theoretical assumptions. For a complete list of
assumptions required by 1) IPA, 2) leading ADP CT-RL works (see above), and 3) the SOTA FVI
works (Lutter et al., 2021; 2023b), please see Appendix A. In the case of ADPs, these are difficult
to satisfy for even simple academic examples, and as a result these methods exhibit empirical issues
(Wallace & Si, 2024). These issues impede algorithm performance long before the methods may be
substantively evaluated for generalization to varying system ICs and modeling error, as we do for
IPA and FVIs in Section 5. The in-depth numerical studies in (Wallace & Si, 2024) find that these
methods fail to synthesize controls for simple second-order systems with known closed-form solu-
tions. A small change in the basis of such small problem led to learning failure. We will illustrate
this same phenomenon in the coming evaluation.

M.1 SYSTEM AND ABLATION OF CRITIC BASES

Second Order System (SOS) Studied (Vamvoudakis & Lewis, 2010). In order to illustrate these
empirical issues, we will study the performance of the four seminal ADP works on the academic
second order system (SOS) studied in this work (cf. Appendix J). The SOS is a suitable benchmark
environment for these ADP methods; indeed, the model was originaly developed for evaluation in
the SPI work (Vamvoudakis & Lewis, 2010). The dynamics of the SOS are given in Equation (56).
The SOS is an academic example constructed such that, for the nominal model ν = 1 and with the
choice of state and control penalties Q = I2, R = 1 given in (49), the optimal value V ∗ and optimal
policy µ∗ are known a priori in analytic form as

V ∗(x) =
1

2
x21 + x22, (73)

µ∗(x) = −(cos(2x1) + 2)x2. (74)
As is the case with all classes of learning algorithms, a central hyperparameter of ADPs is the basis
functions chosen for the critic neural network. The seminal ADPs all study a linear approximation
structure of the following form

V̂ (x) = ϕT (x)c, (75)

where ϕ(x) = [ ϕ1(x) ϕ2(x) . . . ϕM (x) ]
T ∈ RM is the critic bases consisting of M ∈ N

basis functions, and c ∈ RM is the critic weight vector.
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Ablation: Critic Bases. In this study, we will demonstrate ablation sensitivity of the ADPs with
respect to the following two natural choice of critic bases:

ϕ(x) =
[
x21 x1x2 x22

]T
, (76)

ϕ(x) =
[
x21 x1x2 x22 x41 x31x2 x21x

2
2 x1x

3
2 x42

]T
, (77)

The first choice of bases ϕ (76) is identical to the choice of bases in the original SPI study for
this system (Vamvoudakis & Lewis, 2010). The second choice of bases ϕ (77) contains the first as a
subset, and it is chosen for illustration because it is identical to the choice of bases in the original IRL
study (Vrabie & Lewis, 2009) on a similar academic example. Thus, these bases are well-motivated
choices for study and have been demonstrated previously by the leading ADP works.

Crucially, both choices of bases ϕ (76), (77) can achieve exact approximation of the optimal value
V ∗, and inspection of (73) shows that the optimal critic weights c∗ for the bases (76), (77) are given
respectively as

c∗ =
[

1
2 0 1

]T
, (78)

c∗ =
[

1
2 0 1 0 0 0 0 0

]T
, (79)

M.2 SETUP AND IMPLEMENTATION

M.2.1 NETWORKS AND INITIALIZATION

Initial Stabilizing Policy. For all methods, we initialize the critic weights to c0 = [1, 0, 4]T for
(76) and c0 = [1, 0, 4, 0, 0, 0, 0, 0]T for (76). These critic weights were chosen to implement the
same initial stabilizing policy µ0 for all works, given by

µ0(x) = −4(cos(2x1) + 2)x2

= −1

2
R−1gT (x)

∂

∂x
{ϕT (x)c0} (80)

This policy µ0 was chosen so that it can be implemented in the single-network control policy struc-
tures used by IRL (Vrabie & Lewis, 2009) and SPI (Vamvoudakis & Lewis, 2010).

Actor Neural Network: RADP and CT-VI. Of the four seminal ADPs, the RADP (Jiang & Jiang,
2014) and CT-VI (Bian & Jiang, 2022) methods make use of a self-standing actor neural network,
whose basis functions we will denote ψ(x). For these networks, we choose the minimal bases
required to approximate the optimal policy µ∗ (74) and in order to implement the common initial
stabilizing policy µ0 (80):

ψ(x) = [ x1 x2 cos(2x1)x1 cos(2x1)x2 ]
T
. (81)

For reference, the optimal actor network weights w∗ ∈ R4 for this problem are w∗ =
[0, −2, 0, −1]T .

Hamiltonian Neural Network: CT-VI. The CT-VI method makes use of a novel network to ap-
proximate the optimal Hamiltonian function, for details see the original work (Bian & Jiang, 2022)
and subsequent discussions in (Wallace & Si, 2024). We shall denote the basis functions of the
Hamiltonian network by θ(x), and likewise we use minimal bases to approximate the Hamiltonian:

θ(x) =
[
x22 cos

2(2x1) x22 cos(2x1) x21 x22
]T
. (82)

For reference, the optimal Hamiltonian network weights v∗ ∈ R4 for this problem are v∗ =
[1, 4, −1, 3]T .

M.2.2 HYPERPARAMETER SELECTIONS

All ADPs collect state-action data under a feedback control of the form u = µ(x) + d, where d is
a probing noise excitation. The policy µ may be kept constant at the initialization µ0, or it may be
updated online (for specific details, see the respective reference of each method).
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Algorithm Hyperparameters. We choose hyperparameters for the ADPs with the following con-
siderations: 1) The selections reflect in-depth quantitative hyperparameter ablation studies con-
ducted on these algorithms previously (Wallace & Si, 2024), 2) The selections reflect those of the
original ADP studies (Vrabie & Lewis, 2009; Vamvoudakis & Lewis, 2010; Jiang & Jiang, 2014;
Bian & Jiang, 2022), 3) The selections are kept constant across methods wherever possible for
sake of consistent benchmarking, and 4) The selections represent natural designer first-choices to
illustrate key design insights in the algorithm empirical behavior. For descriptions of the algorithm
hyperparameters and learning procedure, see the respective development work

All methods except IRL accommodate probing noise. For SPI, RADP, and CT-VI, we use the prob-
ing noise d(t) = 5 cos(t). For these three methods, we initialize the state to the origin x0 = 0.
Since IRL does not accommodate probing noise, its only means of excitation is through the initial
condition, which we set to x0 = [10, 10]T . For IRL, we run i∗ = 5, collecting l = 15 data samples
at a sample period Ts = 0.1 s. For SPI, which tunes its weights dynamically online, we tune the
weights for tf = 500 s, with tuning gains α1 = α2 = 10, F1 = 0, and F2 = 5IM . For RADP,
we run i∗ = 10 iterations, collecting l = 15 data samples at a sample period Ts = 1 s. For CT-VI,
which tunes its weights dynamically at an independent time s to the simulation time t, we collect
data for tf = 50 s and tune for sf = 50 s.

M.3 ABLATION STUDY

We first run each algorithm using the tuning hyperparameters discussed in Appendix M.2 on the
minimal basis ϕ (76). The results of this training can be found in the top row of Figure 18, which
plots the critic weight responses for the four seminal ADP algorithms. As can be seen, all methods
successfully converge to the optimal weights c∗ (78) for the small basis ϕ (76). For SPI in par-
ticular, this is an independent validation of the convergence results established in the original study
(Vamvoudakis & Lewis, 2010). Thus, we have established a performance baseline: All methods suc-
cessfully converge for these hyperparameters and choice of critic bases. The critic weight responses
are well-behaved and exhibit fast convergence.

We then run all four algorithms with the same hyperparameters on the slightly expanded basis ϕ
(77) and plot the resulting critic weight responses in the bottom row of Figure 18. All methods fail
to converge to the optimal weights c∗ (79) for the expanded basis ϕ (77), even though this basis can
achieve exact approximation of the known optimal value V ∗ (73).

We now turn to the bottom row of Figure 18 for an analysis of the failure modes of each algorithm.
For IRL (Vrabie & Lewis, 2009), the weights diverge after i = 2 iterations. For SPI (Vamvoudakis
& Lewis, 2010), one can see that the weights do not diverge. However, the weight values c(t)
after t ≈ 6.75 s for SPI fail to stabilize the closed-loop system. To see this, we have plotted the
corresponding state response x(t) of SPI’s training in Figure 19. As can be seen, the state diverges
due to the destabilizing SPI policy. For RADP (Jiang & Jiang, 2014), the weights successfully
converge; however, RADP fails to converge to the optimal weights c∗ (79); indeed, elements c∗4 =
· · · = c∗8 = 0, yet examination of the RADP response in Figure 18 reveals that RADP zeros none
of these weights. Finally, for CT-VI (Bian & Jiang, 2022), the weights diverge. These weight
divergence issues have been exhibited by CT-VI in previous evaluations (Wallace & Si, 2024).

Conclusion. The elegant results of ADP-based leading CT-RL methods have made significant con-
tributions to CT-RL. However, further algorithm development work is required to enable these al-
gorithms to synthesize for meaningful applications, beyond second order academic examples with a
priori known optimal solutions.
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Figure 18: Critic weight responses of ADP methods for minimal basis ϕ (76) (top row) and expanded
basis ϕ (77) (bottom row). First column: IRL, second column: SPI, third column: RADP, fourth
column: CT-VI. All methods successfully converge to the optimal weights c∗ (78) for the small basis
ϕ (76), but all fail to converge to the optimal weights c∗ (79) for the expanded basis ϕ (77).
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Figure 19: State response x(t) of SPI when training on the expanded basis ϕ (77). The state diverges
after t ≈ 6.75 s as the SPI weights fail to stabilize the closed-loop system.
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