
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Parallel Online Similarity Join over Trajectory Streams
Anonymous Author(s)

Abstract
Trajectory Similarity Join (TS-Join), as a fundamental operation in
trajectory data analytics, has been extensively investigated by existing
studies in data science community. However, existing solutions are
almost designed for offline static trajectories, which cannot guaran-
tee real-time feedback. In addition, the join results retrieved from
existing solutions generally contains a large proportion of out-of-date
similar pairs, making them inapplicable to evolving trajectories. In
this light, we study a novel problem of online time-aware trajectory
similarity join: Given a stream of evolving trajectories, we aim to
dynamically discover trajectory pairs whose spatio-temporal similar-
ity is no less than a specified threshold in a real-time manner. We
innovatively introduce a time-aware exponential-decaying similar-
ity function to eliminate out-of-date results. To support real-time
querying over large populations of trajectories, we develop a Parallel
Online Trajectory Similarity Join (POTSJ) framework incorporating
with well-designed workload balancing techniques. We further en-
hance join efficiency through effective pruning strategies and tailored
approximation techniques. The POTSJ framework we propose, which
incorporates these elements, is capable of processing online TS-Join
while simultaneously satisfying three key objectives: real-time result
updates, comprehensive trajectory evaluation, and scalability. Exten-
sive experiments on real-world datasets validate the efficiency and
scalability superiority of our POTSJ framework in processing online
TS-Join.

1 Introduction
Due to the increasing popularity of GPS-enabled devices and location-
based services, the volume of trajectory data has experienced sky-
rocketing growth. Efficiently processing and analyzing large-scale tra-
jectory data via fundamental operations such as trajectory similarity
search [8, 12, 18, 24, 28] and similarity join [2, 3, 5, 7, 16, 17, 20, 26]
have become a major research direction in the data science commu-
nity. These efforts lay the foundations for a variety of location-based
services, such as anomaly detection [23, 29], ride-sharing recom-
mendation [18, 19] and location-based data cleaning [2].

In recent years, the maturation and widespread deployment of
real-time data processing frameworks have led to a significant shift
in the utilization of trajectories. The prevailing paradigm now em-
phasizes real-time collection, processing, and feedback. Researchers
no longer focus solely on achieving effective offline batch processing
of trajectories; instead, they increasingly leverage parallel computing
resources to facilitate online computations with low latency and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

high throughput as primary objectives. Some studies have developed
in-memory online search algorithms for trajectory similarity queries
and similarity joins [9–11, 14].

In existing trajectory similarity joins, the similarity between two
trajectories is determined and not updated when their locations are
not updated. All trajectory pairs whose similarities once exceed the
given threshold are stored in the join result. As the processing clock
(i.e., current timestamp) advances, the join results retrieved from
these solutions inevitably contains a large proportion of out-of-date
similar pairs, making them ineffective to evolving trajectories. To
eliminate outdated results while maintaining real-time joins, online
trajectory similarity joins are proposed.

Figure 1: Example of online trajectory similarity join

Let us consider Figure 1 as an example. There are 4 trajectories
with source locations marked with stars and destination locations
marked with pentagons, denoted by 𝜏1, 𝜏2, 𝜏3, and 𝜏4. Assume that
location samples of all trajectories are updated per 5 minutes. A time-
stamped location sample consists of a location 𝑝 and a timestamp 𝑡

when this location is reported, denoted as a tuple < 𝑝, 𝑡 >. We can
observe that trajectories 𝜏3 and 𝜏4 are spatially and temporally similar
to each other. Assume that similarity of 𝜏3 and 𝜏4 exceeds the given
threshold when the processing clock advances to 40. As a result, the
trajectory pair (𝜏3, 𝜏4) is recorded in join result. Existing solutions do
not update the similarity between 𝜏3 and 𝜏4 after clock advanced to
40, because no new location sample is further reported for 𝜏3 and 𝜏4.
As a result, the trajectory pair (𝜏3, 𝜏4) will be constantly included in
the join result. However, it is meaningless and memory-consuming to
maintain such pairs if their locations are not updated for a sufficiently
long time. In contrast, their similarity is expected to decay as the
processing clock progresses, and be excluded from the join result
eventually. Let us consider 𝜏1 and 𝜏2 then. Before the processing clock
advances to 130, they are almost spatially and temporally coincident.
Assume that the similarity of 𝜏1 and 𝜏2 exceeds the given threshold
when clock advances to 130. Even though 𝜏1 and 𝜏2 toward opposite
direction after this moment, existing solutions may maintain this pair
in the join result for a considerable long period. In online context, we

1

https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

concern more with the similarity between the most recently updated
trajectories. It is expected to eliminate pair (𝜏1, 𝜏2) from the result set
after a short period after 130 due to their dramatic dissimilarity.

In this light, we define and study a novel problem of online Tra-
jectory Similarity Join (online TS-Join): Given a stream of evolving
trajectories, we target to dynamically discover all trajectory pairs
whose spatio-temporal similarity is no less than a pre-defined thresh-
old in a real-time manner. We incorporate exponential decaying
into similarity function to meet the real-time requirements in online
settings, thus addressing the deficiency confronted in the example
above. We formally define a purposeful similarity metric to evaluate
the similarity between two trajectories by taking into consideration
all trajectory points both spatially and temporally. To serve appli-
cations well, online TS-Join must be efficient and must scale to
massive populations. An effective online TS-Join approach must
meet the following three requirements. (1) Real-time updates. As
the trajectories evolve, the approach is able to dynamically update
join results in a real-time manner. (2) Comprehensive evaluation. To
ensure promising similarity joins, it is crucial to consider both the
spatial and temporal proximity of all trajectory points. (3) Scalability.
The approach scales to massive-scale evolving trajectories and ensure
real-time result updates.

Existing studies on online trajectory search (e.g., [11, 14]) employ a
sliding window to delimit a pre-defined time range over the trajectory
stream and perform similarity joins within this window, thereby
ignoring trajectory points outside this window. The query efficiency
heavily relies on the window size. However, it is non-trivial to provide
an exact window length beforehand in real-world applications. In
cases like detecting co-movement patterns of animal migration or
tropical cyclones, where trajectories are observed over a long period
of time. Due to their limited scalability, they are computational
prohibited if the window size is too large. As a result, they cannot
support real-time updates or scale to massive-scale populations.
Additionally, they do not consider the time-aware decaying of these
outdated trajectory pairs. Therefore, their solutions cannot be directly
used to solve our problem under exponential-decaying setting.

To answer the online TS-Join while ensuring real-time updates,
comprehensive evaluation, and scalability simultaneously, we pro-
pose a Parallel Online Trajectory Similarity Join (POTSJ) framework.
First, we develop a matrix-based approach that allows for efficient
parallel joins. Trajectory points are divided into several indepen-
dent partitions. A two-stage load balancing mechanism is employed
that ensures both dynamic load balance and the effectiveness of
join results. Next, multi-level prune techniques are developed for
incremental similarity computation, allowing both global and local
prune when dealing with massive evolving trajectory data. Finally,
we propose an approximate algorithm to optimize the computation
process when merging trajectory similarities. The main contributions
of this paper can be summarized as follows.

• We define and study a novel problem of online TS-Join, in
which a time-aware exponential-decaying similarity function
is tailored.

• We propose a Parallel Online Trajectory Similarity Join
(POTSJ) framework to process online TS-Join while si-
multaneously ensuring real-time updates, comprehensive
evaluation, and scalability.

• We devise a matrix-based partition scheme and propose a
two-stage load balancing algorithm that ensure both dynamic
load balance and the completeness of join results.

• We propose an incremental similarity calculation algorithm
with multi-level pruning techniques.
• We develop an approximate algorithm to further improve

join efficiency with high recall.
• Extensive experiments are conducted on two real-world

datasets to demonstrate the efficacy and efficiency of the
POTSJ framework.

2 Problem Statement
In this section, we cover some essential concepts, online trajectory
similarity measurement and formal problem statement.

2.1 Preliminaries
Definition 1: Time-stamped location. A time-stamped location
𝑝 is defined as a tuple (𝑠, 𝑡), where 𝑠 is the spatial coordinate (e.g.,
longitude, latitude), and 𝑡 is the time when this location is visited.
Definition 2: Trajectory. A trajectory 𝜏 of a moving object 𝑜 is
defined as a finite, time-ordered location sequence that can be rep-
resented as ⟨𝑝(𝜏,1), 𝑝(𝜏,2), . . . , 𝑝(𝜏, |𝜏 |)⟩, where 𝑝(𝜏,𝑗), 𝑗 ∈ {1, 2, . . . , |𝜏 |}
is the 𝑗-𝑡ℎ time-stamped location of trajectory 𝜏 , and |𝜏 | is the length
of trajectory 𝜏 .
Definition 3: Trajectory location stream. Given a trajectory set 𝑇 ,
the trajectory location stream of 𝑇 , denoted by 𝑆𝑇 , is an unbounded,
infinite sequence of sample locations, which consists of sample
locations collected from various moving objects in an online fashion.

A trajectory location stream generated by moving objects 𝑜1, 𝑜2
and 𝑜3 is ⟨𝑝(𝜏1,1), 𝑝(𝜏2,1), 𝑝(𝜏3,1), · · · , 𝑝(𝜏2,12), 𝑝(𝜏1,11), 𝑝(𝜏3,10), · · ·⟩. Note
that sample locations collected from a specific moving object are time-
ordered, while the order of sample locations in a stream collected
from different moving objects may not be strictly preserved. For ease
of presentation, we use 𝑝𝜏𝑖 to denote a sample location in trajectory
𝜏𝑖 when the context is clear.

2.2 Similarity Measurement
To focus on the similarity between the most recently updated trajec-
tories, we incorporate a time-aware exponential-decaying multiplier
into the trajectory similarity measure. The time-aware exponential-
decaying multiplier is defined in Definition 4.
Definition 4: Time-aware exponential-decaying multiplier. Given
a time offset ∆ and an exponential-decaying factor 𝜆, the time-aware
exponential-decaying multiplier 𝑓 (∆) is defined by Equation 1.

𝑓 (∆) = 𝑒−𝜆 ·∆ (1)

Intuitively, a greater 𝜆 and a greater ∆ both result in faster decay.
Definition 5: Location-to-Trajectory similarity. Given a location
𝑝𝜏𝑖 and a trajectory 𝜏 𝑗 , the spatial distance 𝑑𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗) and temporal
distance 𝑑𝑡 (𝑝𝜏𝑖 , 𝜏 𝑗) between 𝑝𝜏𝑖 and 𝜏 𝑗 are defined by Equations 2
and 3. On top of Equations 2 and 3, we define the spatial and
temporal similarity between a location 𝑝𝜏𝑖 to a trajectory 𝜏 𝑗 , denoted
as 𝑆𝑖𝑚𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗) and 𝑆𝑖𝑚𝑡 (𝑝𝜏𝑖 , 𝜏 𝑗), which are defined by Equation 4
and 5, respectively.

𝑑𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗) = 𝑚𝑖𝑛𝑝𝜏𝑗 ∈𝜏 𝑗
{
| |𝑝𝜏𝑖 .𝑠 − 𝑝𝜏 𝑗 .𝑠)| |

}
(2)

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Parallel Online Similarity Join over Trajectory Streams Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

𝑑𝑡 (𝑝𝜏𝑖 , 𝜏 𝑗) = 𝑚𝑖𝑛𝑝𝜏𝑗 ∈𝜏 𝑗
{��𝑝𝜏𝑖 .𝑡 − 𝑝𝜏 𝑗 .𝑡 ��} (3)

𝑆𝑖𝑚𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗) = 𝑓 (∆𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗)) · 𝑒−𝑑𝑠 (𝑝𝜏𝑖 ,𝜏 𝑗) (4)

𝑆𝑖𝑚𝑡 (𝑝𝜏𝑖 , 𝜏 𝑗) = 𝑓 (∆𝑡 (𝑝𝜏𝑖 , 𝜏 𝑗)) · 𝑒−𝑑𝑡 (𝑝𝜏𝑖 ,𝜏 𝑗) (5)
Here, function 𝑒−𝑑 maps distance to similarity while maintaining
a negative correlation between them, constraining similarity to
the range (0, 1]. Factors ∆𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗) and ∆𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗) are employed to
measure the temporal offset of the latest 𝑑𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗) and 𝑑𝑡 (𝑝𝜏𝑖 , 𝜏 𝑗)
with respect to the current system clock, which is defined as follows:

∆𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗) = 𝑡𝑐𝑙𝑜𝑐𝑘 − 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 (𝑑𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗)) (6)

∆𝑡 (𝑝𝜏𝑖 , 𝜏 𝑗) = 𝑡𝑐𝑙𝑜𝑐𝑘 − 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 (𝑑𝑡 (𝑝𝜏𝑖 , 𝜏 𝑗)) (7)
where 𝑡𝑐𝑙𝑜𝑐𝑘 is current system clock, and 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 (𝑑𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗)) and
𝑡𝑢𝑝𝑑𝑎𝑡𝑒 (𝑑𝑡 (𝑝𝜏𝑖 , 𝜏 𝑗)) are the latest update timestamps of 𝑑𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗)
and 𝑑𝑡 (𝑝𝜏𝑖 , 𝜏 𝑗) respectively. Under this definition, as the streaming
computation progresses, those not updated location-to-trajectory
similarity for a long term share a relatively small weight on the
trajectory similarity calculations, and vice versa.
Definition 6: Exponential-decaying trajectory similarity. Given
trajectories 𝜏𝑖 and 𝜏 𝑗 , the spatial and temporal similarities between
them, denoted as 𝑆𝑖𝑚𝑠 (𝜏𝑖 , 𝜏 𝑗) and 𝑆𝑖𝑚𝑡 (𝜏𝑖 , 𝜏 𝑗), are defined as follows.

𝑆𝑖𝑚𝑠 (𝜏𝑖 , 𝜏 𝑗) =
∑
𝑝𝜏𝑖 ∈𝜏𝑖 𝑆𝑖𝑚𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗)

|𝜏𝑖 |
+

∑
𝑝𝜏𝑗 ∈𝜏 𝑗 𝑆𝑖𝑚𝑠 (𝑝𝜏 𝑗 , 𝜏𝑖)��𝜏 𝑗 �� (8)

𝑆𝑖𝑚𝑡 (𝜏𝑖 , 𝜏 𝑗) =
∑
𝑝𝜏𝑖 ∈𝜏𝑖 𝑆𝑖𝑚𝑡 (𝑝𝜏𝑖 , 𝜏 𝑗)

|𝜏𝑖 |
+

∑
𝑝𝜏𝑗 ∈𝜏 𝑗 𝑆𝑖𝑚𝑡 (𝑝𝜏 𝑗 , 𝜏𝑖)��𝜏 𝑗 �� (9)

Note that spatial and temporal similarities are in the range (0, 2].
Finally, we linearly combine them to comprehensively measure
the spatio-temporal similarity between two trajectories, denoted as
𝑆𝑖𝑚𝑠𝑡 (𝜏𝑖 , 𝜏 𝑗), which is calculated by Equation 10.

𝑆𝑖𝑚𝑠𝑡 (𝜏𝑖 , 𝜏 𝑗) = 𝛼 · 𝑆𝑖𝑚𝑠 (𝜏𝑖 , 𝜏 𝑗) + (1 − 𝛼) · 𝑆𝑖𝑚𝑡 (𝜏𝑖 , 𝜏 𝑗) (10)

Here, parameter 𝛼 ∈ [0, 1] serves as a user-defined parameter adjust-
ing the weights of spatial and temporal similarity. Note also that
the range of 𝑆𝑖𝑚𝑠𝑡 is (0, 2]. The value of 𝑆𝑖𝑚𝑠𝑡 is symmetric (i.e.,
𝑆𝑖𝑚𝑠𝑡 (𝜏𝑖 , 𝜏 𝑗) = 𝑆𝑖𝑚𝑠𝑡 (𝜏 𝑗 , 𝜏𝑖)).

Our modeling of trajectory similarity aligns with existing studies
(e.g, [16]), which distinguishes itself by additionally imposing a
time-aware exponential-decaying multiplier. Introducing exponen-
tial decaying allows us to focus more on those latest updated and
generated trajectories when conducting online trajectory similarity
join. Parameter 𝜆 can be specified to application scenarios. When 𝜆

is zero, the similarity measure degenerates to those used by offline
settings with static trajectories. Note that our time-aware exponential-
decaying multiplier can be extended to other popular similarity
measurements in an online setting (e.g., DTW [25], EDR[4]).

2.3 Problem Statement
In this section, we formally define the problem of Online Trajectory
Similarity Join (Online TS-Join). Let 𝑃 and 𝑄 be two distinct trajec-
tory sets.
Definition 7: Online TS-Join. Given two evolving trajectory location
streams 𝑆𝑃 and 𝑆𝑄 , and a similarity threshold 𝜃 , the online TS-Join
dynamically maintain a set 𝐴 of all trajectory pairs from sets 𝑃 and
𝑄 whose exponential-decaying trajectory similarity no smaller than

𝜃 , i.e., ∀(𝜏𝑖 , 𝜏 𝑗) ∈ (𝑃 ×𝑄) \𝐴(𝑆𝑖𝑚𝑠𝑡 (𝜏𝑖 , 𝜏 𝑗) ≤ 𝜃). Note that the set 𝐴
is dynamically updated as trajectory locations are evolving.

Unlike offline trajectory join problems, the online trajectory
similarity join problem defined in this paper is based on dynamically
generated trajectory streams, in which trajectory location involves in
a real-time, continuous and iterative fashion.

3 Framework Overview
Figure 2 illustrates an overview of our Parallel Online Trajectory
Similarity Join (POTSJ) framework, which consists of three main
components, namely workload partition & dynamic adjustment,
incremental similarity update, and result merge.

For workload partition and balance, we use a matrix-based par-
tition scheme to partition evolving trajectory location stream 𝑆𝑃
and 𝑆𝑄 . Each matrix element corresponds to a parallel thread con-
ducting downstream similarity update. As shown in the first part,
suppose the matrix size is 3 × 3, 9 threads are employed to update
location-to-trajectory similarity incrementally downstream.

To enable incremental similarity updates, we introduce a module
for dynamic workload adjustment, allowing real-time monitoring
and redistributing new data to lower-load threads when imbalances
occur. This ensures both data independence across partitions and
completeness of the similarity join results. As the input stream
evolves, location-to-trajectory similarities are incrementally updated
in parallel across partitions. When a new sample location arrives,
many location-to-trajectory updates are triggered within its parti-
tion. To eliminate unqualified trajectory pairs at an early stage, we
implement a multi-level pruning technique that maintains upper
bounds of spatio-temporal similarities. Trajectory pairs with upper
bounds below the threshold 𝜃 are pruned globally. For the remaining
pairs, local pruning strategies, including grid neighborhood search
and dimensional linear pruning, are developed to further reduce
unnecessary updates.

Finally, we merge the upstream updated location-to-trajectory
similarity into spatio-temporal similarity (cf. Equations 8 and 9).
As each processing clock update incurs exponential decay, which is
computationally expensive. We propose an approximate algorithm
to merge similarity by interval update. Note that similarity merge
among trajectory pairs are independent and thus can be parallelized.
Finally, by comparing 𝑆𝑖𝑚𝑠𝑡 with 𝜃 , the final join results can be
obtained.

We proceed to introduce the details of workload partition & bal-
ance, incremental similarity update, and result merge in Sections 4, 5,
and 6, respectively.

4 Workload Partition & Dynamic Adjustment
An effective partition scheme is expected to achieve the following
three fundamental objectives: (1) Independence, whereby the data
within each partition should be sufficient to fulfill the computational
task without inter-partition communication; (2) Completeness, en-
suring that the merge of computation results from various partitions
guarantees an accurate final outcome; (3) Balance, signifying that
the data volume processed by each partition should be maintained as
evenly as possible. A matrix-based partition scheme with a tailored
dynamic workload adjustment technique is proposed to achieve the
aforementioned objectives.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: Parallel online trajectory similarity join (POTSJ)
framework

4.1 A Matrix-Based Partition Approach
An existing solution [14] directly assigns sample locations from 𝑆𝑃
and 𝑆𝑄 in a cyclic manner by column and row, achieving a natural
balance regarding the number of trajectory locations in each partition.
However, it may cause scattered sample locations in each partition
and cannot satisfy independence and completeness requirements.

To address this, we propose a matrix-based partition scheme. Let
#𝑇ℎ𝑟𝑒𝑎𝑑𝑠 be the number of available threads for trajectory similarity
join downstream. Assume that #𝑇ℎ𝑟𝑒𝑎𝑑𝑠 is a perfect square. We
construct a partition matrix with size

√
#𝑇ℎ𝑟𝑒𝑎𝑑𝑠 ×

√
#𝑇ℎ𝑟𝑒𝑎𝑑𝑠, in

which each element represents a partition. Each partition consists
of two groups of location streams from a subset of 𝑆𝑃 and a subset
of 𝑆𝑃 , respectively. Unlike the partition approach in [14], we adopt
trajectory as the fundamental unit for distribution, ensuring each
partition contains entire trajectory for further validation. In our
settings, locations in 𝑆𝑃 are distributed in a column-wise cyclic
manner, while locations in 𝑆𝑄 is distributed in a row-wise cyclic
manner. For a trajectory 𝜏 ∈ 𝑃 , if any location of 𝜏 has already been
distributed to the partitions in a certain column of the matrix before,
then all subsequent locations of 𝜏 will be assigned to the partitions
in the same column. Otherwise, we assign the locations of 𝜏 to the
column based on two cases: if current partition matrix still results in
balanced workloads, then we assign incoming locations in a cyclic
manner. Else, we assign incoming locations to the column with the
minimal workloads. The same is true when handling locations in 𝑆𝑄 .

Figure 3 illustrates a partition example with matrix size 2 × 2. Let
trajectory sets𝑃 be {(𝜏1, 𝜏5), (𝜏3, 𝜏7)} and𝑄 be {(𝜏2, 𝜏6), (𝜏4, 𝜏8)}, which
have been divided into 2 subsets. Given trajectory location streams
𝑆𝑃 = ⟨𝑝(𝜏1,1), 𝑝(𝜏3,1), 𝑝(𝜏5,1), 𝑝(𝜏7,1), . . .⟩, and 𝑆𝑄 = ⟨𝑝(𝜏2,1), 𝑝(𝜏4,1),
𝑝(𝜏6,1), 𝑝(𝜏8,1), . . .⟩, a partition example can be easily obtained by

joining each two subsets of 𝑃 and 𝑄 . In our partition scheme, each
trajectory pair < 𝜏𝑖 , 𝜏 𝑗 > (𝜏𝑖 ∈ 𝑃, 𝜏 𝑗 ∈ 𝑄) is processed within one and
only one partition (e.g., < 𝜏5, 𝜏6 > is constantly validated in the last
partition in Figure 3), which ensures independence.

The union of join results from all partitions equals the complete
Cartesian product of trajectories from 𝑆𝑃 and 𝑆𝑄 , which ensures
completeness. The matrix-based partition approach we propose,
which incorporates these advantages, allows for efficient parallel
processing while guaranteeing the result correctness.

Figure 3: Example of Matrix-based Stream Partition

4.2 Two-Phase Dynamic Load Balance
While the number of trajectories within each partition is balanced,
uneven load distribution between partitions arises when there exists
a substantial disparity in the number of sample locations between
trajectories due to different lifespans. However, the lifespan of a
trajectory is unpredictable and cannot be determined in advance.
To enhance workload balance, we introduce a two-stage adjustment
algorithm, namely dynamic load monitoring and adjustment.

To consistently monitor the workload of each partition, we initial-
ize a workload matrix 𝐿 with the same size as the partition matrix.
Each individual matrix element records the load of corresponding
partition. Once a new location is dispatched to a partition, the work-
load of this partition increases accordingly. To quantify the partition
imbalance of columns and rows, we define two unbalanced factors
𝑈𝐵𝐹𝑐𝑜𝑙 and𝑈𝐵𝐹𝑟𝑜𝑤 by Equation 11. Here, 𝑖, 𝑗, 𝑡, 𝑘 ∈ [1,

√
#𝑇ℎ𝑟𝑒𝑎𝑑𝑠].

Notations 𝐿𝑐𝑜𝑙 [𝑖] and 𝐿𝑟𝑜𝑤[𝑗] denote the sum of workloads within
partitions in 𝑖−𝑡ℎ column and 𝑗−𝑡ℎ row of the load matrix, calculated
as follows.

𝑈𝐵𝐹𝑐𝑜𝑙 =
max {𝐿𝑐𝑜𝑙 [𝑖]}
min {𝐿𝑐𝑜𝑙 [𝑗]}

;𝑈𝐵𝐹𝑟𝑜𝑤 =
max {𝐿𝑟𝑜𝑤[𝑡]}
min {𝐿𝑟𝑜𝑤[𝑘]} (11)

𝐿𝑐𝑜𝑙 [𝑖] =
𝑛∑︁

𝑘=1
𝐿(𝑗, 𝑖);𝐿𝑟𝑜𝑤[𝑗] =

𝑛∑︁
𝑘=1

𝐿(𝑗, 𝑖), 𝑘 ∈ [1, 𝑛] (12)

Note that the unbalanced factors vary as the the influx of incoming
trajectory locations. Once 𝑈𝐵𝐹𝑐𝑜𝑙 or 𝑈𝐵𝐹𝑟𝑜𝑤 reaches the given
threshold 𝜖, the dynamic workload adjustments are triggered to
ensure workload balance.

Specifically, if𝑈𝐵𝐹𝑐𝑜𝑙 reaches the threshold 𝜖, we find the column
with the minimum workload 𝐿𝑐𝑜𝑙 . For a new trajectory 𝜏𝑖 ∈ 𝑃 ,
the subsequent incoming locations from 𝑆𝑃 will be assigned to all
partitions in this column. We iteratively perform aforementioned
assignment until 𝑈𝐵𝐹𝑐𝑜𝑙 falls below the threshold 𝜖. If 𝑈𝐵𝐹𝑟𝑜𝑤
reaches 𝜖, we find the row with the minimum workload 𝐿𝑟𝑜𝑤 to
perform the aforementioned operations.

For an incoming location 𝑝𝜏𝑖 from 𝑆𝑃 , there are three partition
cases: (i) If 𝜏𝑖 has already been assigned to a certain column, then

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Parallel Online Similarity Join over Trajectory Streams Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝑝𝜏𝑖 is assigned to the partitions with the same column. Otherwise,
(ii) If𝑈𝐵𝐹𝑐𝑜𝑙 is less than 𝜖, 𝜏𝑖 and 𝑝𝜏𝑖 are distributed in columns in a
cyclic manner. (iii). If 𝑈𝐵𝐹𝑐𝑜𝑙 is greater than 𝜖, both 𝜏𝑖 and 𝑝𝜏𝑖 are
distributed to the column with the minimal workload.

The pseudo code of detailed dynamic workload adjustment algo-
rithm is presented in Appendix C.1.

5 Incremental Similarity Update
Once an incoming location 𝑝𝜏𝑖 ∈ 𝑆𝑃 is assigned to a certain column
(or row), the trajectory similarity updates between 𝜏𝑖 and 𝜏 𝑗 ∈ 𝑆𝑄
within this column (or row) are triggered. Specifically, two groups of
similarity updates are required: (a) the spatial and temporal distance
between 𝑝𝜏𝑖 and other trajectories 𝜏 𝑗 within the partition, and (b) the
spatial and temporal distance between sample locations 𝑝𝜏 𝑗 belonging
to other trajectories 𝜏 𝑗 and the trajectory 𝜏𝑖 to which 𝑝𝜏 𝑗 belongs.
A straightforward approach involves traversing all sample locations
within the partition, which is time-consuming when processing
massive-scale locations.

To enable efficient similarity updates, we propose an incremental
similarity update approach, in which some effective pruning strategies
are employed. A grid-neighborhood round search and a dimensional
linear pruning methods are proposed to process group updates (a)
and (b), respectively.

The pseudo code of overall incremental similarity update, spatial
neighborhood search and dimensional linear prune is presented in
Appendices C.2, C.3 and C.4 respectively.

5.1 Global Pruning Strategy
Lemma 1. Given any two trajectories 𝜏𝑖 and 𝜏 𝑗 , an upper bound of
𝑆𝑖𝑚𝑠 (𝜏𝑖 , 𝜏 𝑗) is defined by Equation 13.

𝑆𝑖𝑚𝑠 (𝜏𝑖 , 𝜏 𝑗).𝑢𝑏 =
∑
𝑝𝜏𝑖 ∈𝜏𝑖 𝑒

−𝑑𝑠 (𝑝𝜏𝑖 ,𝜏 𝑗)

|𝜏𝑖 |
+𝑒−𝑚𝑖𝑛𝑝𝜏𝑖 ∈𝜏𝑖 {𝑑𝑠 (𝑝𝜏𝑖 ,𝜏 𝑗)} (13)

Similarly, an upper bound of temporal similarity between two
trajectories is defined by Equation 14. By combining 𝑆𝑖𝑚𝑠 (𝜏𝑖 , 𝜏 𝑗).𝑢𝑏
and 𝑆𝑖𝑚𝑡 (𝜏𝑖 , 𝜏 𝑗).𝑢𝑏, an upper bound of the spatio-temporal similarity
between two trajectories is calculated by Equation 15. With this
upper bound, we develop a global pruning strategy as follows: If
𝑆𝑖𝑚𝑠𝑡 (𝜏𝑖 , 𝜏 𝑗).𝑢𝑏 < 𝜃 , then pair (𝜏𝑖 , 𝜏 𝑗) cannot be a join result, thus
we can safely prune (𝜏𝑖 , 𝜏 𝑗) at an early stage. Proof of Lemma 1 is
presented in Appendix A.1.

𝑆𝑖𝑚𝑡 (𝜏𝑖 , 𝜏 𝑗).𝑢𝑏 =
∑
𝑝𝜏𝑖 ∈𝜏𝑖 𝑒

−𝑑𝑡 (𝑝𝜏𝑖 ,𝜏 𝑗)

|𝜏𝑖 |
+𝑒−𝑚𝑖𝑛𝑝𝜏𝑖 ∈𝜏𝑖 {𝑑𝑡 (𝑝𝜏𝑖 ,𝜏 𝑗)} (14)

𝑆𝑖𝑚𝑠𝑡 (𝜏𝑖 , 𝜏 𝑗).𝑢𝑏 = 𝛼 · 𝑆𝑖𝑚𝑠 (𝜏𝑖 , 𝜏 𝑗).𝑢𝑏 + (1 − 𝛼) · 𝑆𝑖𝑚𝑡 (𝜏𝑖 , 𝜏 𝑗).𝑢𝑏 (15)

Let 𝜏∗
𝑖

and 𝜏𝑖 denote the same trajectory before and after a new
location 𝑝𝜏𝑖 is issued. In previous similarity computations, the
distances between all locations in 𝜏∗

𝑖
and all other trajectories within

the same partition have already been calculated and cached, and
can be directly retrieved. Assume that the number of trajectories
within this partition is 𝑁 . The time complexity of obtaining the
upper bound 𝑆𝑖𝑚𝑠𝑡 (𝜏𝑖 , 𝜏 𝑗).𝑢𝑏 is 𝑂(𝑁), while calculating the exact
similarity 𝑆𝑖𝑚𝑠𝑡 (𝜏𝑖 , 𝜏 𝑗) requires𝑂(𝑁 2) time. By leveraging our global
pruning strategy, we can safely prune unqualified pairs at an early

stage, thus avoiding exact similarity computations and improving
efficiency. Only for these few retained candidate trajectories, their
exact similarities will be calculated downstream.

To obtain the the upper bound 𝑆𝑖𝑚𝑠𝑡 (𝜏𝑖 , 𝜏 𝑗).𝑢𝑏, the nearest location-
to-trajectory distances𝑑𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗) and𝑑𝑡 (𝑝𝜏𝑖 , 𝜏 𝑗) are required, in which
we have to identify the nearest location of trajectory 𝜏 𝑗 to the location
𝑝𝜏𝑖 within the same partition (cf. Equation 13). We proceed to
introduce some fine-grained local prune methods to speed up this
process.

5.2 Grid-Neighborhood Round Search
Recall that two groups of similarity updates are required if a new
location 𝑝𝜏𝑖 is issued. In essence, the update process of group (a) is
the nearest neighbor search from location 𝑝𝜏𝑖 to locations of other
trajectories within the same partition. In this section, we propose a
grid-neighborhood round search with multi-level pruning techniques
to update group (a) efficiently.

Given a 2D spatial plane that represents underlying space of
trajectory locations, we gradually split the plane into equal-size grid
cells with a side length of 𝑅, which is based on the distribution of the
input locations. Initially, we consider the first issued location, denoted
as 𝑝𝑐 (𝑥𝑐 , 𝑦𝑐), as the central location. A central grid cell of dimension
𝑅 × 𝑅 is formed by extending from this central location in all four
directions by 𝑅

2 . Let [[𝑥𝑠 , 𝑥𝑒) , [𝑦𝑠 , 𝑦𝑒)] denote the boundaries of the
central grid. As new locations are issued, iterative expansions along
each of the four axes from the edges of this grid ultimately split
entire spatial space into equal-size grids. Each distinct location falls
exclusively within a unique grid. Specifically, for a new generated
sample location 𝑝(𝑥𝑖 , 𝑦𝑖), the boundaries of the grid to which 𝑝

belongs, denoted as
[[
𝑥 ′𝑠 , 𝑥

′
𝑒

)
,
[
𝑦′𝑠 , 𝑦

′
𝑒

)]
is computed as follows.

𝑥 ′𝑠 = 𝑥𝑒 +
⌊𝑥𝑖 − 𝑥𝑒

𝑅

⌋
× 𝑅, 𝑥 ′𝑒 = 𝑥 ′𝑠 + 𝑅 (16)

𝑦′𝑠 = 𝑦𝑒 +
⌊𝑦𝑖 − 𝑦𝑒

𝑅

⌋
× 𝑅,𝑦′𝑒 = 𝑦′𝑠 + 𝑅 (17)

Given a new issued location 𝑝𝜏𝑖 , let 𝑆𝑒𝑡𝑇 be the set of trajectory 𝜏 𝑗
within the same partition as 𝑝𝜏𝑖 . To update 𝑑𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗) efficiently, our
two-phase approaches work as follows. Assume that 𝑝𝜏𝑖 falls within
the grid cell 𝑔.

In Phase 1, a concentric round search based on grid units are
conducted. Let 𝐶 be the number of concentric circles. During the
period of round search, we begin with searching the grid 𝑔 containing
𝑝𝜏𝑖 , then expand layer by layer until all grids within a square region
centered at 𝑔 with side length (2𝐶 + 1) · 𝑅 are evaluated. Through
multi-level concentric round search, the minimum distances from
𝑝𝜏𝑖 to these evaluated trajectories are obtained. Assume that current
search depth is 𝑘 . We use 𝑆𝑒𝑡𝑘 to denote the set of locations covered
by the current search layer’s grids. If there exists a location 𝑝𝜏 𝑗 ∈ 𝑆𝑒𝑡𝑘
that satisfies 𝑑𝑠 (𝑝𝜏 𝑗 , 𝑝𝜏𝑖) < 𝑑𝑠 (𝑔, 𝑝𝜏𝑖) + 𝑘 × 𝑅, then 𝑝𝜏 𝑗 is the location
of 𝜏 𝑗 closest to 𝑝𝜏𝑖 . Here, 𝑔 represents the grid to which 𝑝𝜏𝑖 belongs,
𝑑𝑠 (𝑔, 𝑝𝜏𝑖) represents the minimum distance from 𝑝𝜏𝑖 to the four edges
of𝑔.𝑑𝑠 (𝑔, 𝑝𝜏𝑖) is equivalent to the minimum radius of a circle centered
at 𝑝𝜏𝑖 that is tangent to at least one edge of 𝑔. Note that once 𝜏 𝑗 ’s
closest location to 𝑝𝜏𝑖 has been identified, there is no need to search
for the remaining locations of 𝜏 𝑗 , thus 𝜏 𝑗 can be removed from 𝑆𝑒𝑡𝑇 .
As a result, the number of trajectories that need to be further probed
are continuously reduced during the process of round search.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

In Phase 2, for these retained trajectories that are not probed in
phase 1, one-to-one distance computation is required to seek the
minimum distances from 𝑝𝜏𝑖 to these retained trajectories, which
requires huge computational efforts, especially for long trajectories.
To tackle it, we use a grid-based strategy to further prune candidates.
Let 𝑆 𝑗 be the set of grids that cover at least one locations of 𝜏 𝑗 .
To compute the distance from 𝜏 𝑗 to 𝑝𝜏𝑖 , we calculate the radius
of a circular region centered at 𝑝𝜏𝑖 , ensuring it covers at least one
complete grid in 𝑆 𝑗 . The closest location in 𝜏 𝑗 to 𝑝𝜏𝑖 must fall within
a certain grid 𝑔 ∈ 𝑆 𝑗 that overlaps with the circular region. We record
these candidate grids, and search them one-by-one to find the nearest
location 𝑝𝜏 𝑗 to 𝑝𝜏𝑖 .

Figure 4 demonstrates an example of our spatial grid-neighborhood
search with the maximum depth 𝐶 = 3. In Phase 1, we conduct a
3-round search centered on the blue grid where 𝑝𝜏𝑖 is located. The
first round examines the blue grid, followed by searches of annular
regions formed by green and orange grids. After each round, the
nearest locations of these trajectories within red-circled grids are
identified. In Phase 2, we focus on trajectories that have not been
probed in Phase 1. For long trajectories, we record grids traversed
by the trajectory as candidate grids (e.g., These grids fall within
the black circle and shaded areas), where the nearest location may
exist. Finally, we search for the nearest location to 𝑝𝜏𝑖 within these
candidate grids.

Figure 4: Example of Spatial Grid-Neighborhood Search

5.3 Dimensional Linear Pruning
In this section, we introduce a dimensional linear pruning strategy to
update group (b) by effectively reusing previous computation results.
Lemma 2. Let 𝑝∗𝜏𝑖 be the closest location in 𝜏𝑖 to 𝑝𝜏 𝑗 before the
new location 𝑝𝜏𝑖 is issued. The midlocation 𝑀 of 𝑝∗𝜏𝑖 and 𝑝𝜏𝑖 lies
on the perpendicular bisector 𝐻 of the segment 𝑝∗𝜏𝑖𝑝𝜏𝑖 , dividing the
plane into two regions. For any 𝑝 on the side of 𝐻 near 𝑝∗𝜏𝑖 , we have
| |𝑝, 𝑝∗𝜏𝑖 | |< | |𝑝, 𝑝𝜏𝑖 | |, thus can be safely pruned.

Proof of Lemma 2 is presented in Appendix A.2. To implement
this, we first perform a coarse-grained pruning at the grid level,
removing all grids on the side of 𝐻 closer to 𝑝∗𝜏𝑖 . Afterward, the
remaining grid locations are verified for necessary updates.

Let us consider Figure 5 as an example of updating𝑑𝑠 (𝑝𝜏 𝑗 , 𝜏𝑖) when
a new location 𝑝𝜏𝑖 arrives. There are two trajectories 𝜏𝑖 and 𝜏 𝑗 . We
can observe that before 𝑝𝜏𝑖 is issued, 𝑝∗1𝜏𝑖 is the closest location of 𝜏𝑖
to 𝑝(𝜏 𝑗 ,1), 𝑝(𝜏 𝑗 ,2), and 𝑝(𝜏 𝑗 ,3), while 𝑝∗2𝜏𝑖 is the closest to the remaining

locations of 𝜏 𝑗 . Here, Perpendicular lines 𝐻1 and 𝐻2 from 𝑝𝜏𝑖 to 𝑝∗1𝜏𝑖
and 𝑝∗2𝜏𝑖 are calculated. According to the Lemma 2, only locations
at the right of both 𝐻1 and 𝐻2 require updates (i.e.,𝑑𝑠 (𝑝(𝜏 𝑗 ,7), 𝜏𝑖) and
𝑑𝑠 (𝑝(𝜏 𝑗 ,8), 𝜏𝑖)), while the shaded grids can be safely pruned.

Figure 5: Example of Spatial Linear Pruning

Similarly, for a new issued location 𝑝𝜏𝑖 , a one-dimensional linear
pruning approach is applied to update temporal distance 𝑑𝑡 (𝑝𝜏 𝑗 , 𝜏𝑖)
based on Lemma 3.
Lemma 3. A lower bound and an upper bound for 𝑝𝜏𝑖 ’s times-
tamp whose 𝑑𝑡 (𝑝𝜏 𝑗 , 𝜏𝑖) needs to be updated are defined by Equa-
tions 18 and Equation 19, respectively, where 𝑝(𝜏𝑖 ,𝑘) .𝑡 <= 𝑝𝜏𝑖 .𝑡 and
𝑝(𝜏𝑖 ,𝑘) .𝑡 > 𝑝𝜏𝑖 .𝑡 . Here, 𝑝(𝜏𝑖 ,𝑘) represents the other sample locations
in 𝜏𝑖 , excluding the newly arrived location 𝑝𝜏𝑖 .

(𝑝𝜏 𝑗 .𝑡).𝑙𝑏 = max
𝑝(𝜏𝑖 ,𝑘)∈𝜏𝑖

(
𝑝𝜏𝑖 .𝑡 − 𝑝(𝜏𝑖 ,𝑘) .𝑡

2
) (18)

(𝑝𝜏 𝑗 .𝑡).𝑢𝑏 = min
𝑝(𝜏𝑖 ,𝑘)∈𝜏𝑖

(
𝑝(𝜏𝑖 ,𝑘) .𝑡 − 𝑝𝜏𝑖 .𝑡

2
) (19)

Proof of Lemma 3 is presented in Appendix A.3. Based on Lemma
3, trajectory locations with timestamps less than the lower bound or
exceeds the upper bound can be safely pruned.

6 Similarity Decaying & Merge
In Section 5, we propose several pruning methods to update Location-
to-Trajectory similarities. Next, we need to compute decaying factor
for each location-to-trajectory similarity pair and merge it to the
spatio-temporal similarity defined as Equation 10. This helps deter-
mine if non-pruned trajectory pairs meet the similarity threshold.

6.1 Exact Algorithm for Similarity Merge
To obtain the trajectory similarity, we merge spatial and temporal
Location-to-Trajectory similarities as defined in Equations 8 and 9.

With exponential decaying, each new tuple < 𝑝𝜏𝑖 , 𝜏 𝑗 , 𝑠𝑖𝑚 > from
an upstream operator updates the similarity 𝑆𝑖𝑚𝑠/𝑡 (𝑝𝜏𝑖 , 𝜏 𝑗), affecting
the similarity between trajectories 𝜏𝑖 and 𝜏 𝑗 . As new data arrives, the
decaying factors for all Location-to-Trajectory pairs in the current
partition also change due to the system clock’s progression.

Thus, with the arrival of each new data, all Location-to-trajectory
similarities must be traversed, decaying factors recalculated, and
trajectory-to-trajectory similarities updated. This requires re-computation
of all trajectory similarities from scratch, potentially causing a per-
formance bottleneck.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Parallel Online Similarity Join over Trajectory Streams Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

6.2 Approximate Algorithm by Interval Update
Our approach divides the time axis into equal intervals, assigning data
to the corresponding interval based on their entry time. Each interval
uses its midlocation as the representative timestamp, replacing their
individual timestamps. As time progresses, the decaying factors of
older intervals approach zero. To handle data overflow, we set a
small threshold, like 10−9, for interval expiration. When an interval’s
decaying factor drops below this threshold, it expires, and the data
within it becomes invalid.

The decaying factor is used to reduce the influence of older data on
current similarity calculations. By expiring intervals, we eliminate
the impact of early records on trajectory similarity. The expiration
threshold is adjustable; setting it to zero prevents expiration and
ensures complete similarity results and comprehensive trajectory
evaluation. With each timestamp advance, only valid intervals need
updating, keeping the number of intervals small and fixed. In contrast,
the exact algorithm requires updating #𝑆𝑖𝑚𝑃𝑎𝑖𝑟𝑁𝑢𝑚, which grows
over time. The pseudo code of similarity merge by interval update is
presented in Appendix C.5.

7 Experiments
7.1 Experiment Settings

Datasets. We use two real-world datasets: the Beijing Taxi Dataset
(BTD) [27] and the New York Taxi Dataset (NTD)1. BTD includes
10,357 trajectories with about 17 million sample locations collected
over 7 days at a rate of 1,686 locations per minute. NTD contains 2
million trajectories and approximately 4 million locations over 45
days, with a sampling rate of 61 locations per minute. BTD mainly
features long trajectories, while NTD has mostly short ones.

Evaluation Metrics. We use the following metrics to evaluate
our model’s efficiency and effectiveness: (a) Average Latency, the
average time taken to compute and return a result for each trajectory
pair after reading a location. (b) Average Throughput, the average
number of trajectory pairs processed per unit of time. (c) Accuracy,
the ratio of the spatio-temporal similarity 𝑆𝑖𝑚𝑠𝑡 calculated with
interval updates to the exact 𝑆𝑖𝑚𝑠𝑡 , measuring the accuracy loss due
to interval updates.

Compared methods. We evaluate the performance of four meth-
ods: three iterative versions of our proposed framework and a variant
of the Ghost framework from [11], the SOTA online trajectory
similarity search framework:

• Ori-POTSJ: Straightforward method for online TS-Join.
• LP-POTSJ: POTSJ with only local prune techniques (Sec-

tions 5.2 and 5.3)
• GP-POTSJ: Full POTSJ framework with both global and

local prune techniques (Sections 5.1, 5.2 and 5.3)
• Ghost*: An extended version of the original Ghost frame-

work adapted for our problem. Ghost* removes the win-
dow constraint to ensure both real-time performance and
completeness by considering all trajectory points. Addi-
tionally, we integrated a new module to support for the
spatio-temporal similarity metric used here.

1https://data.cityofnewyork.us/Transportation/2016-Green-Taxi-Trip-Data/hvrh-
b6nb/about_data

Implementation. All algorithms were implemented in Java using
the Flink 1.13.0 stream processing framework for parallel execution.
Experiments ran on a server with two Intel Xeon Gold 5128R proces-
sors (2.10 GHz) and 128 GB of memory, with 60 task slots sharing
the memory. All trajectory data, index structures, and intermediate
results were memory-resident. Results are averaged over multiple
independent runs. Our model’s code is available 2. The parameter
settings are listed in Table 1.

Table 1: Parameter Settings

BTD NTD
|𝑃 | 1M-4M/ default 1M 0.5M-2M/ default 1M
𝑅 0.001-0.007/default 0.001 0.001-0.007/default 0.001
𝜃 1.80-1.95/default 1.90 1.00-1.95/default 1.90
𝛼 0.3-0.9/ default 0.5 0.3-0.9/ default 0.5
𝜆 0.50-1.25/default 0.50 0.50-1.25/default 0.50
𝜎 0-10−4/ default 10−9 0-10−4/ default 10−9

Thread Count 24-60/ default 60 24-60/ default 60

7.2 Efficiency Study
Effect of cardinality of trajectory locations |𝑃 |. As the number of

trajectory locations |𝑃 | increases, the computational cost for similarity
join rises. To evaluate the model’s efficiency, we vary the dataset
size and measure the average latency and throughput of four baseline
methods. Figures 6(a) and 6(c) show that for both NTD and BTD
datasets, average latency increases with dataset size, but GP-POTSJ
exhibits a significantly smaller increase and is over a hundred times
more efficient than the other baselines. LP-POTSJ is also several
times more efficient than Ori-POTSJ and Ghost*, with lower latency
growth as |𝑃 | increases. Ori-POTSJ and Ghost* perform similarly
since they lack optimizations for similarity computation and suffer
rapid efficiency degradation with larger datasets.

Figures 6(b) and 6(d) demonstrate that GP-POTSJ outperforms
the other methods in throughput. However, due to the predominance
of short trajectories in NTD, the global and grid-based local prun-
ing methods used by LP-POTSJ and GP-POTSJ are less effective,
reducing their efficiency compared to when processing BTD.

Effect of thread counts. We evaluate the framework’s scalability
by varying the number of threads used for computational tasks and
measuring the average latency and throughput. As shown in Figure 7,
increasing the thread count reduces latency and improves throughput
across all baselines, demonstrating efficient scalability.

Note that parameter sensitivity study is presented in Appendix B

7.3 Effectiveness Study
Effect of interval expiration threshold 𝜎 . Applying interval update

introduces accuracy loss. To assess its impact, we vary the interval
expiration threshold 𝜎 while keeping the interval length fixed at
1000 ms and measure the effect on ST-similarity accuracy (defined
in Section 7.1). Ori-POTSJ does not use interval updates, so this
experiment focuses on comparing the accuracy of GP-POTSJ and LP-
POTSJ. As shown in Figure 8, increasing 𝜎 causes a slight decrease
in accuracy, but it remains above 95%, which is acceptable.
2https://anonymous.4open.science/r/POTSJ-2828

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) BTD (b) BTD (c) NTD (d) NTD

Figure 6: Effect of cardinality of trajectory locations |𝑃 |

(a) BTD (b) BTD (c) NTD (d) NTD

Figure 7: Effect of thread counts

(a) BTD (b) NTD

Figure 8: Effect of interval expiration threshold 𝜎

8 Related Work
We review the literature regarding offline&online trajectory similarity
analytics, and emphasize how our method distinguishes itself.

Offline trajectory analytics. Offline trajectory analytics [13, 20,
26], including similarity search [2, 6, 8, 12, 15, 18, 19, 24, 28] and
similarity join [3, 5, 7, 16, 17, 21, 26] have been extensively stud-
ied. Shang et al.[16] proposed a two-phase parallel framework for
spatial-temporal similarity join, employing deep pruning techniques
for fast large-scale trajectory processing. In [20], they introduced a
Spark-based in-memory framework with comprehensive APIs for tra-
jectory similarity join. Yuan et al.[26] defined a trajectory similarity
function based on road networks, using a filter-refine framework and
a distributed memory system to achieve load balancing and efficient
trajectory partitioning. Chen et al.[5] addressed semantic trajectory
similarity join by incorporating textual data into a two-phase parallel
matching approach. However, these methods rely on static, fixed tra-
jectory datasets and are not suitable for dynamic, evolving trajectory
scenarios, making them inapplicable to the problem addressed in
this paper.

Online trajectory analytics. Online trajectory similarity analytics
has gained popularity in recent years. Pan et al. [14] employed spatial
distance measures such as Hausdorff [1], DTW [25], and LCSS [22],
and proposed a matrix-based method to partition trajectory points
evenly. Using window constraints, their algorithm identifies trajecto-
ries for similarity join but recomputes similarity from scratch each
time the window slides, leading to redundant calculations. Fang et
al. [11] support various spatial distance measures. Their framework
also uses time windows but optimizes each measure and computes
similarity incrementally, avoiding redundant recalculations. They
propose a unified similarity definition and pruning techniques, sig-
nificantly reducing time overhead. However, these window-based
approaches are unsuitable for the problem addressed in this work
because they compromise the completeness of join results and cannot
provide fine-grained real-time feedback.

9 Conclusion
To the end, we propose the POTSJ framework to address a novel
problem of online time-aware trajectory similarity join. By introduc-
ing a time-aware exponential decay factor into the spatio-temporal
similarity function, we ensure real-time, dynamic updates that elimi-
nate outdated results. Our matrix-based partitioning scheme, coupled
with dynamic load balancing, effectively partitions trajectory streams
while minimizing data redundancy. To enhance efficiency, we imple-
ment multi-level pruning techniques across both spatial and temporal
dimensions, accelerating similarity calculations. Additionally, an
approximate algorithm refines the merge of decaying similarity.
Extensive experiments on real-world datasets validate that POTSJ
achieves superior efficiency and scalability.

References
[1] Stefan Atev, Grant Miller, and Nikolaos Papanikolopoulos. 2010. Clustering of

Vehicle Trajectories. IEEE Transactions on Intelligent Transportation Systems 11

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Parallel Online Similarity Join over Trajectory Streams Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

(2010), 647–657.
[2] Petko Bakalov, Marios Hadjieleftheriou, Eamonn J. Keogh, and Vassilis J. Tsotras.

2005. Efficient trajectory joins using symbolic representations. In Proceedings of
the 6th international conference on Mobile data management. 86–93.

[3] Petko Bakalov and Vassilis J. Tsotras. 2008. Continuous Spatiotemporal Trajectory
Joins. In GeoSensor Networks. 109–128.

[4] Lei Chen, M. Tamer Özsu, and Vincent Oria. 2005. Robust and fast similarity
search for moving object trajectories. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data. 491–502.

[5] Lisi Chen, Shuo Shang, Christian S. Jensen, Bin Yao, and Panos Kalnis. 2020.
Parallel Semantic Trajectory Similarity Join. 2020 IEEE 36th International
Conference on Data Engineering (ICDE) (2020), 997–1008.

[6] Lisi Chen, Shuo Shang, Christian S. Jensen, Bin Yao, Zhiwei Zhang, and Ling
Shao. 2019. Effective and Efficient Reuse of Past Travel Behavior for Route Rec-
ommendation. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 488–498.

[7] Yun Chen and Jignesh M. Patel. 2009. Design and evaluation of trajectory
join algorithms. In Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. 266–275.

[8] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, Yu Zheng, and Xing Xie. 2010.
Searching trajectories by locations: an efficiency study. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data. 255–266.

[9] Jiafeng Ding, Junhua Fang, Zonglei Zhang, Pengpeng Zhao, Jiajie Xu, and
Lei Zhao. 2019. Real-Time Trajectory Similarity Processing Using Longest
Common Subsequence. 2019 IEEE 21st International Conference on High Per-
formance Computing and Communications; IEEE 17th International Conference
on Smart City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS) (2019), 1398–1405.

[10] Junhua Fang, Pengpeng Zhao, An Liu, Zhixu Li, and Lei Zhao. 2019. Scalable
and Adaptive Joins for Trajectory Data in Distributed Stream System. Journal of
Computer Science and Technology 34 (2019), 747 – 761.

[11] Ziquan Fang, Shenghao Gong, Lu Chen, Jiacheng Xu, Yunjun Gao, and Christian S.
Jensen. 2023. Ghost: A General Framework for High-Performance Online
Similarity Queries over Distributed Trajectory Streams. In Proceedings of the
ACM on Management of Data, Vol. 1. 1 – 25.

[12] Satoshi Koide, Chuan Xiao, and Y. Ishikawa. 2020. Fast subtrajectory similarity
search in road networks under weighted edit distance constraints. Proceedings of
the VLDB Endowment 13 (2020), 2188 – 2201.

[13] Haoda Li, Guoliang Li, Jiayang Liu, Haitao Yuan, and Haiquan Wang. 2019. Ratel:
Interactive Analytics for Large Scale Trajectories. In Proceedings of the 2019
International Conference on Management of Data. 1949–1952.

[14] Zhicheng Pan, Pingfu Chao, Junhua Fang, Wei Chen, Zhixu Li, and An Liu. 2020.
TraSP: A General Framework for Online Trajectory Similarity Processing. In
WISE. Springer, 384–397.

[15] Shuo Shang, Lisi Chen, Christian S. Jensen, Ji-Rong Wen, and Panos Kalnis. 2017.
Searching Trajectories by Regions of Interest. IEEE Transactions on Knowledge
and Data Engineering 29 (2017), 1549–1562.

[16] Shuo Shang, Lisi Chen, Zhewei Wei, Christian S. Jensen, Kai Zheng, and Panos
Kalnis. 2017. Trajectory Similarity Join in Spatial Networks. Proceedings of the
VLDB Endowment 10, 11 (2017), 1178–1189.

[17] Shuo Shang, Lisi Chen, Zhewei Wei, Christian S. Jensen, Kai Zheng, and Panos
Kalnis. 2018. Parallel trajectory similarity joins in spatial networks. The VLDB
Journal 27 (2018), 395 – 420.

[18] Shuo Shang, Ruogu Ding, Bo Yuan, Kexin Xie, Kai Zheng, and Panos Kalnis.
2012. User oriented trajectory search for trip recommendation. In Proceedings of
the 15th international conference on extending database technology. 156–167.

[19] Shuo Shang, Ruogu Ding, Kai Zheng, Christian S. Jensen, Panos Kalnis, and
Xiaofang Zhou. 2014. Personalized trajectory matching in spatial networks. The
VLDB Journal 23 (2014), 449–468.

[20] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. 2018. DITA: Distributed In-
Memory Trajectory Analytics. Proceedings of the 2018 International Conference
on Management of Data (2018), 725–740.

[21] Na Ta, Guoliang Li, Yongqing Xie, Changqi Li, Shuang Hao, and Jianhua
Feng. 2017. Signature-Based Trajectory Similarity Join. IEEE Transactions on
Knowledge and Data Engineering 29, 4 (2017), 870–883.

[22] Michail Vlachos, George Kollios, and Dimitrios Gunopulos. 2002. Discovering
similar multidimensional trajectories. In Proceedings 18th international conference
on data engineering. IEEE, 673–684.

[23] Jingwei Wang, Yun Yuan, Tianle Ni, Yunlong Ma, Min Liu, Gaowei Xu, and
Weiming Shen. 2020. Anomalous Trajectory Detection and Classification Based
on Difference and Intersection Set Distance. IEEE Transactions on Vehicular
Technology 69, 3 (2020), 2487–2500.

[24] Dong Xie, Feifei Li, and J. M. Phillips. 2017. Distributed Trajectory Similarity
Search. Proceedings of the VLDB Endowment 10, 11 (2017), 1478–1489.

[25] Byoung-Kee Yi, Hosagrahar V Jagadish, and Christos Faloutsos. 1998. Efficient
retrieval of similar time sequences under time warping. In Proceedings 14th
International Conference on Data Engineering. IEEE, 201–208.

[26] Haitao Yuan and Guoliang Li. 2019. Distributed In-memory Trajectory Similarity
Search and Join on Road Network. 2019 IEEE 35th International Conference on
Data Engineering (ICDE) (2019), 1262–1273.

[27] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong
Sun, and Yan Huang. 2010. T-drive: driving directions based on taxi trajectories.
In Proceedings of the 18th SIGSPATIAL International conference on advances in
geographic information systems. 99–108.

[28] Kai Zheng, Shuo Shang, Nicholas Jing Yuan, and Yi Yang. 2013. Towards efficient
search for activity trajectories. 2013 IEEE 29th International Conference on Data
Engineering (ICDE) (2013), 230–241.

[29] Yue Zhou, Shuicheng Yan, and Thomas S. Huang. 2007. Detecting Anomaly
in Videos from Trajectory Similarity Analysis. In 2007 IEEE International
Conference on Multimedia and Expo. 1087–1090.

A Theorem Proof
A.1 Proof of Lemma 1
Proof: Let 𝑝∗𝜏 𝑗 be the location in 𝜏 𝑗 spatially closest to 𝑝𝜏𝑖 . We
have 𝑑𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗) = 𝑑𝑠 (𝑝𝜏𝑖 , 𝑝∗𝜏 𝑗). According to Equation 2, we have
𝑑𝑠 (𝑝∗𝜏 𝑗 , 𝜏𝑖) = min𝑝𝜏𝑖 ∈𝜏𝑖 {𝑑𝑠 (𝑝∗𝜏 𝑗 , 𝑝𝜏𝑖)} ≤ 𝑑𝑠 (𝑝𝜏𝑖 , 𝑝∗𝜏 𝑗) = 𝑑𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗). It
follows that∀𝑝𝜏𝑖 ∈ 𝜏𝑖 ,𝑑𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗) ≥ 𝑑𝑠 (𝑝∗𝜏 𝑗 , 𝜏𝑖) ≥ 𝑚𝑖𝑛𝑝𝜏𝑗 ∈𝜏 𝑗

{
𝑑𝑠 (𝑝𝜏 𝑗 , 𝜏𝑖)

}
.

By replacing 𝑑𝑠 (𝑝𝜏𝑖 , 𝜏 𝑗) with𝑚𝑖𝑛𝑝𝜏𝑗 ∈𝜏 𝑗 {𝑑𝑠 (𝑝𝜏 𝑗 , 𝜏𝑖)}, we have:

𝑆𝑖𝑚𝑠 (𝜏𝑖 , 𝜏 𝑗) ≤
∑
𝑝𝜏𝑖 ∈𝜏𝑖 𝑒

−𝑑𝑠 (𝑝𝜏𝑖 ,𝜏 𝑗)

|𝜏𝑖 |
+

∑
𝑝𝜏𝑗 ∈𝜏 𝑗 𝑒

−𝑑𝑠 (𝑝𝜏𝑗 ,𝜏𝑖)

|𝜏 𝑗 |

≤
∑
𝑝𝜏𝑖 ∈𝜏𝑖 𝑒

−𝑑𝑠 (𝑝𝜏𝑖 ,𝜏 𝑗)

|𝜏𝑖 |
+ 𝑒
−𝑚𝑖𝑛𝑝𝜏𝑖 ∈𝜏𝑖 {𝑑𝑠 (𝑝𝜏𝑖 ,𝜏 𝑗)}

(20)

□

A.2 Proof of Lemma 2
Proof: Let the coordinates of location 𝑝∗𝜏𝑖 be (𝑥1, 𝑦1) and the coor-
dinates of location 𝑝𝜏𝑖 be (𝑥2, 𝑦2). Therefore, the coordinates of the
midlocation 𝑀 are (𝑥1+𝑥2

2 ,
𝑦1+𝑦2

2). The equation of the perpendicular
line 𝐻 can be established as:𝑦 − 𝑦1+𝑦2

2 = − 𝑥2−𝑥1
𝑦2−𝑦1

(𝑥 − 𝑥1+𝑥2
2). Let

location 𝐴 have coordinates (𝑥,𝑦), and we can derive: 𝐴𝑝𝑜 2 −𝐴𝑝𝑖2 =
(𝑥2

1 −𝑥
2
2) + (𝑦2

1 −𝑦
2
2) + 2𝑥 (𝑥2 −𝑥1) + 2𝑦(𝑦2 −𝑦1). For locations𝐴 close

to the side of 𝑝𝑜 or exactly on line 𝐻 , if 𝑦1 ≥ 𝑦2, the condition is
satisfied:𝑦 ≥ − 𝑥2−𝑥1

𝑦2−𝑦1
(𝑥 − 𝑥1+𝑥2

2) + 𝑦1+𝑦2
2 . If𝑦1 ≤ 𝑦2, the condition is

satisfied: 𝑦 ≤ − 𝑥2−𝑥1
𝑦2−𝑦1

(𝑥 − 𝑥1+𝑥2
2) + 𝑦1+𝑦2

2 . Merging equations above,
we obtain:𝐴𝑝𝑜 2 −𝐴𝑝𝑖2 ≤ 0⇒ 𝐴𝑝𝑜 ≤ 𝐴𝑝𝑖 . □

A.3 Proof of Lemma 3
Proof: For 𝑝𝜏 𝑗 ’s timestamps less than 𝐿𝐵, there must exist 𝑝(𝜏𝑖 ,𝑘)

where 𝑝(𝜏𝑖 ,𝑘) .𝑡 < 𝑝𝜏𝑖 .𝑡 , satisfying 𝑝𝜏 𝑗 .𝑡 <
𝑝𝜏𝑖 .𝑡−𝑝(𝜏𝑖 ,𝑘) .𝑡

2 . Therefore,
|𝑝𝜏 𝑗 .𝑡 − 𝑝(𝜏𝑖 ,𝑘) .𝑡 |< |𝑝𝜏 𝑗 .𝑡 − 𝑝𝜏𝑖 .𝑡 |, and thus 𝑝𝜏 𝑗 does not need to be
updated and can be pruned. The proof for𝑈𝐵 is similar. □

B Parameter Sensitivity Study
Effect of grid width 𝑅. . We vary the grid width used for splitting

the spatial plane to examine its impact on model performance. As
shown in Figure 9, Ori-POTSJ, which lacks grid-based local pruning,
is unaffected by the parameter 𝑅. However, LP-POTSJ and GP-
POTSJ, which utilize local pruning, are significantly sensitive to grid
width. On BTD (Figures 9(a) and 9(b)), as grid width increases, the
average latency of LP-POTSJ and GP-POTSJ initially decreases but
then sharply rises, while throughput first improves and then drops.
A similar, though less pronounced, pattern occurs on NTD, due to

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

(a) BTD (b) BTD (c) NTD (d) NTD

Figure 9: Effect of grid width 𝑅

(a) BTD (b) BTD (c) NTD (d) NTD

Figure 10: Effect of similarity threshold 𝜃

NTD containing mostly short trajectories. The grid-based pruning
method primarily benefits longer trajectories. Selecting an optimal
grid width between 0.001 and 0.005 enhances efficiency, as smaller
widths generate too many grids, increasing pruning overhead, while
larger widths raise the cost of searching within grids.

Effect of similarity threshold 𝜃 . . We vary the similarity join
threshold 𝜃 to assess its impact on POTSJ. As shown in Figure 10,
GP-POTSJ, which uses global pruning, is sensitive to 𝜃 . Its average
latency increases slightly with higher 𝜃 , while throughput decreases
slightly. In contrast, LP-POTSJ and Ori-POTSJ, which lack global
pruning, are unaffected by 𝜃 , showing stable performance across met-
rics. This occurs because a lower 𝜃 allows early pruning of trajectory
pairs, reducing the need for precise ST-similarity calculations.

Effect of spatial weight 𝛼 . . We vary the spatial weight to evaluate
its effect on the framework. As shown in Figure 11, both average
latency and throughput remain stable across different similarity
weights. Additionally, pruning-based methods show a clear perfor-
mance advantage. Overall, the framework is not sensitive to the
parameter 𝛼 .

(a) BTD (b) NTD

Figure 11: Effect of spatial weight 𝛼

Effect of exponential decaying parameter 𝜆. . We vary the expo-
nential decay parameter 𝜆 from Equation 4 to assess its impact on the
framework. Figure 12 shows that average latency across all baselines
remains stable as 𝜆 changes, indicating the framework’s insensitivity
to this parameter. Thus, adjusting 𝜆 can control the focus on recent
data, allowing for flexibility in different processing scenarios.

(a) BTD (b) NTD

Figure 12: Effect of exponential decaying parameter 𝜆

C Pseudo Code of Detailed Algorithms
C.1 Dynamic Workload Adjustment

Algorithm details. Algorithm 1 presents the pseudo code of
the dynamic workload adjustment algorithm. The input consists
of an incoming sample location 𝑝𝜏𝑖 , trajectory to partition map
𝑀 containing the mapping relationship of all trajectories in 𝑆𝑃
and their corresponding partition columns, the workload array 𝐿𝑐𝑜𝑙
corresponding to each column, the column index used by previous
cyclic partitioning 𝑐𝑖 and a threshold 𝜖. The output is an updated
partition index 𝐼∗.

For simplicity, we consider a online self-join (i.e., 𝑆𝑃 = 𝑆𝑄) here.
Note that our solution supports non-self joins as well. Firstly, if 𝑀
contains the partition column index corresponding to 𝜏𝑖 , it indicates

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Parallel Online Similarity Join over Trajectory Streams Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Algorithm 1: Dynamic Workload Adjustment
Data: Sample location 𝑝𝜏𝑖 , trajectory to partition map 𝑀 ,

column workload array 𝐿𝑐𝑜𝑙 , the column index used by
previous cyclic partitioning 𝑐𝑖 , unbalanced factor
threshold 𝜖

Result: reallocated location partition index 𝐼∗

1 if 𝑀.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝜏𝑖) then
2 𝐼∗ ← 𝑀.𝑔𝑒𝑡 (𝜏𝑖);
3 else if 𝑈𝐵𝐹𝑐𝑜𝑙 < 𝜖 then
4 𝐼∗ ← (𝑐𝑖 + 1)%𝐿𝑐𝑜𝑙 .𝑠𝑖𝑧𝑒();
5 𝑐𝑖 ← 𝑐𝑖 + 1;
6 𝑀.𝑝𝑢𝑡 (𝜏𝑖 , 𝐼∗);
7 else
8 𝐼∗ ← 𝐼𝑚𝑖𝑛 ;
9 𝑀.𝑝𝑢𝑡 (𝜏𝑖 , 𝐼∗);

10 for each partition load 𝑙 (𝑖) in 𝐿𝑐𝑜𝑙 do
11 if 𝑖 = 𝐼∗ then
12 𝑙 (𝑖) ← 𝑙 (𝑖) + 𝐿𝑐𝑜𝑙 .𝑠𝑖𝑧𝑒() + 1;
13 else
14 𝑙 (𝑖) ← 𝑙 (𝑖) + 1;
15 𝑈𝐵𝐹𝑐𝑜𝑙 ←𝑚𝑎𝑥 (𝐿𝑐𝑜𝑙)/𝑚𝑖𝑛(𝐿𝑐𝑜𝑙);
16 𝐼𝑚𝑖𝑛 ← arg min𝐼 𝐿𝑐𝑜𝑙 [𝐼]

that 𝜏𝑖 is not a new trajectory and 𝑝𝜏𝑖 should be assigned to the
column corresponding to 𝜏𝑖 (Lines 1–2). Otherwise, it indicates that
𝜏𝑖 is a brand new trajectory. If𝑈𝐵𝐹𝑐𝑜𝑙 < 𝜖, the algorithm is in Phase
1 monitoring work load, and 𝑝𝜏𝑖 should be assigned to the column
in a cyclic manner (Lines 3–6). Else, the dynamic load adjustment
phase has been triggered and the algorithm enters Phase 2, 𝑝𝜏𝑖 should
be assigned to the column with the lowest load 𝐼𝑚𝑖𝑛 (Lines 7–9).
Subsequently, the workload of all column partitions is updated. In
the case of self-join, a same sample location is distributed once
in both column and row. The load of column to which 𝐼∗ belongs
should be incremented by the matrix dimension plus 1, while work
load of the remaining columns should be incremented by 1 (Lines
10–14). Finally, value of𝑈𝐵𝐹𝑐𝑜𝑙 is updated, along with the index of
the column with the smallest load 𝐼𝑚𝑖𝑛 (Lines 15–16).

C.2 Overall Incremental Similarity Update
Algorithm details. Algorithm 2 presents the pseudo code of the

overall incremental similarity update. This algorithm updates all
Location-to-Trajectory similarities resulting from the generation of
𝑝𝜏𝑖 . First, it updates the spatial and temporal similarities between
𝑝𝜏𝑖 and each trajectory 𝜏 𝑗 (excluding 𝜏𝑖) using spatial neighborhood
search (Line 2) and binary search (Line 5). Then, it updates the
global upper bound of the spatio-temporal similarity between 𝜏𝑖 and
𝜏 𝑗 . If this upper bound is below the similarity threshold 𝜃 , the pair
𝜏𝑖 and 𝜏 𝑗 is unlikely to be similar and is added to the pruned set 𝐴𝑝

(Lines 6–8). Finally, it updates the similarity between 𝜏𝑖 and all other
locations in the partition using dimensional linear pruning (Line 9).

C.3 Spatial Neighborhood Search
Algorithm details. Algorithm 3 presents the pseudo code of the

grid-neighborhood round search algorithm. Starting from the grid

Algorithm 2: Incremental Similarity Update
Data: Newly coming trajectory location 𝑝𝜏𝑖 , the grid 𝑝𝜏𝑖

belongs to 𝐺𝑝𝜏𝑖
, in partition sample location set 𝑃 , in

partition trajectory set 𝑇 , in partition grid set 𝐺 , round
search depth 𝐶, grid width 𝑅, spatio-temporal
similarity threshold 𝜃

Result: Pruned trajectory pair set 𝐴𝑝

1 𝐴𝑝 ← ∅;
2 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑆𝑒𝑎𝑟𝑐ℎ(𝑝𝜏𝑖 ,𝐺𝑝𝜏𝑖

,𝑇 ,𝐶, 𝑅);
3 for each 𝜏 𝑗 ∈ 𝑇 do
4 if 𝜏𝑖 ̸= 𝜏 𝑗 then
5 𝑏𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑎𝑟𝑐ℎ(𝑝𝜏𝑖 , 𝜏 𝑗);
6 compute 𝑆𝑖𝑚𝑠𝑡 (𝜏𝑖 , 𝜏 𝑗).𝑈 𝐵;
7 if 𝑆𝑖𝑚𝑠𝑡 (𝜏𝑖 , 𝜏 𝑗).𝑈 𝐵 < 𝜃 then
8 𝐴.𝑎𝑑𝑑(< 𝜏𝑖 , 𝜏 𝑗 , 𝑓 𝑎𝑙𝑠𝑒 >);
9 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝐿𝑖𝑛𝑒𝑎𝑟𝑃𝑟𝑢𝑛𝑒(𝑝𝜏𝑖 ,𝐺, 𝑃);

10 return 𝐴𝑝 ;

Algorithm 3: Spatial Neighborhood Search
Data: Newly coming sample location 𝑝𝜏𝑖 , the grid 𝑝𝜏𝑖

belongs to 𝐺𝑝𝜏𝑖
, in partition trajectory set 𝑇 , round

search depth 𝐶, grid width 𝑅

Result: Update similarity set 𝑄
1 𝑄 ← ∅; 𝑘 ← 0; 𝑆𝑒𝑡𝜏 ← 𝑇 ; 𝑀 ← ∅;
2 while 𝑘 < 𝐶 do
3 𝐺 ← 𝑔𝑒𝑡𝐺𝑟𝑖𝑑𝑠𝐼𝑛𝐷𝑒𝑝𝑡ℎ(𝑘,𝐺𝑝𝜏𝑖

);
4 for each sample location 𝑝𝜏 𝑗 in 𝐺 do
5 if 𝜏 𝑗 ∈ 𝑆𝑒𝑡𝜏 then
6 𝑑 ← 𝑑𝑠 (𝑝𝜏 𝑗 , 𝑝𝜏𝑖);
7 if 𝑀.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝜏 𝑗) then
8 if 𝑑 < 𝑀.𝑔𝑒𝑡 (𝜏 𝑗).𝑑𝑠 then
9 𝑀.𝑟𝑒𝑚𝑜𝑣𝑒(𝜏 𝑗);

10 𝑀.𝑝𝑢𝑡 (𝜏 𝑗 , < 𝑝𝜏 𝑗 , 𝑑𝑠 , 𝑓 𝑎𝑙𝑠𝑒 >);
11 else
12 𝑀.𝑝𝑢𝑡 (𝜏 𝑗 , < 𝑝𝜏 𝑗 , 𝑑𝑠 , 𝑓 𝑎𝑙𝑠𝑒 >);
13 for each 𝜏 𝑗 in 𝑀.𝑘𝑒𝑦𝑆𝑒𝑡 () do
14 if 𝑀.𝑔𝑒𝑡 (𝜏 𝑗).𝑑𝑠 < 𝑚𝑖𝑛

{
𝑑𝑠 (𝐺𝑝𝜏𝑖

, 𝑝𝜏𝑖) + 𝑘 × 𝑅
}

then
15 𝑀.𝑔𝑒𝑡 (𝜏 𝑗).𝑓 𝑙𝑎𝑔← 𝑡𝑟𝑢𝑒;
16 𝑆𝑒𝑡𝑡 .𝑟𝑒𝑚𝑜𝑣𝑒(𝜏 𝑗);
17 𝑘 ← 𝑘 + 1;
18 for each 𝜏 𝑗 in 𝑀.𝑘𝑒𝑦𝑆𝑒𝑡 () do
19 if 𝑀.𝑔𝑒𝑡 (𝜏 𝑗).𝑓 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 then
20 𝑄.𝑎𝑑𝑑(< 𝑝𝜏𝑖 , 𝑝𝜏 𝑗 , 𝑀.𝑔𝑒𝑡 (𝜏 𝑗).𝑑𝑠 >);
21 for each 𝜏 𝑗 in 𝑆𝑒𝑡𝜏 do
22 if |𝜏 𝑗 |≤ 40 then
23 𝑄.𝑎𝑑𝑑(𝑏𝑟𝑢𝑡𝑒𝐹𝑜𝑟𝑐𝑒(𝑝𝜏𝑖 , 𝜏 𝑗));
24 else
25 𝑆𝑒𝑡 𝑗 = 𝑔𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐺𝑟𝑖𝑑𝑠(𝜏 𝑗);
26 𝑄.𝑎𝑑𝑑(𝑆𝑒𝑎𝑟𝑐ℎ(𝑝𝜏𝑖 , 𝑆𝑒𝑡 𝑗));
27 return 𝑄;

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

where 𝑝𝜏𝑖 is located, initiate a round search. First, determine the set
of grids 𝐺 to be searched in the 𝑘-th round (Line 3). Then, traverse
all sample locations in 𝐺 to find the closest location to 𝑝𝜏𝑖 in each
trajectory, record the shortest distance, and mark it as false (Lines
4–12). Check if the location 𝑝𝜏 𝑗 is the closest in 𝜏 𝑗 to 𝑝𝜏𝑖 . If the
distance from 𝑝𝜏 𝑗 to 𝑝𝜏𝑖 is less than the radius of the smallest circle
centered at 𝑝𝜏𝑖 tangent to a grid edge in 𝐺 , mark 𝑝𝜏 𝑗 as the closest
location in 𝜏 𝑗 (Lines 13–16). Repeat this process until 𝑘 = 𝐶 (Line
17). For unprobed trajectories, handle short trajectories by directly
using brute force to find the closest location in 𝜏 𝑗 and add it to set 𝑄
(Lines 22–23). For long trajectories, draw a minimum circular region
centered at 𝑝𝜏𝑖 that fully covers at least one grid passed through by
𝜏 𝑗 . Filter out all grids within this region and traversed by 𝜏 𝑗 , then
search for the closest location in 𝜏 𝑗 to 𝑝𝜏𝑖 in this candidate grid set
and add it to set 𝑄 (Lines 24–26).

C.4 Dimensional Linear Prune
Algorithm details. Algorithm 4 presents the pseudo code of

the dimensional linear pruning algorithm. First, we compute the
perpendicular bisectors between 𝑝𝜏𝑖 and all other sample locations
in 𝜏𝑖 and store them in set 𝐻 (Lines 2–3). Then, we calculate the
lower bound (𝐿𝐵) and upper bound (𝑈𝐵) of the timestamp for the
location 𝑝𝜏 𝑗 to be updated (Lines 4–7). Next, we iterate through all
grids (Line 8). If a grid lies on the same side of all bisectors in 𝐻 as
𝑝𝜏𝑖 (Line 9), all sample locations in that grid require updating. If a
grid is on the opposite side, no update is needed. If a grid intersects
any bisector in 𝐻 , we verify the spatial relationship between its
sample locations and 𝑝𝜏𝑖 . Locations on the same side as 𝑝𝜏𝑖 are
updated and added to the result set (Lines 10–12). Finally, we update
the temporal Location-to-Trajectory distance from locations with
timestamps between 𝐿𝐵 and𝑈𝐵 with respect to 𝑝𝜏𝑖 (Lines 13–15).

Algorithm 4: Dimensional Linear Prune
Data: Newly coming trajectory location 𝑝𝜏𝑖 , in partition grid

set 𝐺 , in partition sample location set 𝑃
Result: Update similarity set 𝑄

1 𝑄 ← ∅; 𝐻 ← ∅; 𝐿𝐵 ← −1;𝑈𝐵 ← +∞;
2 for each 𝑝(𝜏𝑖 ,𝑘) ∈ 𝜏𝑖 do
3 𝐻.add(mid perpendicular of 𝑝𝜏𝑖 and 𝑝(𝜏𝑖 ,𝑘));
4 if 𝑝(𝜏𝑖 ,𝑘) .𝑡 ≤ 𝑝𝜏𝑖 .𝑡 then
5 𝐿𝐵 = 𝑚𝑎𝑥 (𝐿𝐵, 𝑝𝜏𝑖 .𝑡−𝑝(𝜏𝑖 ,𝑘) .𝑡

2);
6 else
7 𝑈𝐵 = 𝑚𝑖𝑛(𝑈𝐵,

𝑝(𝜏𝑖 ,𝑘) .𝑡−𝑝𝜏𝑖 .𝑡
2);

8 for each 𝑔 ∈ 𝐺 do
9 if 𝑔 and 𝑝𝜏𝑖 is on the same side of 𝐻 or 𝑔

is overlapped by 𝐻 then
10 for each sample location 𝑝𝜏 𝑗 in 𝑔 do
11 if 𝑝𝜏 𝑗 and 𝑝𝜏𝑖 is on the same side of 𝐻 then
12 𝑄.add(< 𝑝𝜏 𝑗 , 𝑝𝜏𝑖 , 𝑑𝑠 (𝑝𝜏 𝑗 , 𝑝𝜏𝑖) >);
13 for each 𝑝𝜏 𝑗 ∈ 𝑃 do
14 if 𝑝𝜏 𝑗 .𝑡 ≥ 𝐿𝐵 and 𝑝𝜏 𝑗 .𝑡 ≤ 𝑈𝐵 then
15 𝑄.add(< 𝑝𝜏 𝑗 , 𝑝𝜏𝑖 , 𝑑𝑡 (𝑝𝜏 𝑗 , 𝑝𝜏𝑖) >);
16 return 𝑄;

C.5 Similarity Merge By Interval Update
We present the pseudo-code of approximate algorithm in Algorithm 5.
Each new data entry triggers similarity updates and system clock
progression. We establish the first time interval upon partition
initialization, and subsequently, a new interval is created at preset
intervals (Lines 2–5). Thus, each Location-to-Trajectory similarity
pair belongs to a unique interval. When similarity update occurs for
a Location-to-Trajectory pair cached before, the outdated similarity
is removed from the original interval, and the updated similarity is
added to the corresponding new interval (Lines 6–14). Additionally,
after the clock progresses, we need to determine if any interval
expiration. If expiration occurs, all data from the old interval is
cleared (Lines 17–18). After the interval operations, we calculate
the decaying factor corresponding to each interval, as well as the
sum of all Location-to-trajectory similarities within each interval
(Lines 15–20). Then spatio-temporal similarity can be obtained using
Equation 10.

Algorithm 5: Similarity Merge By Interval Update
Data: New Location-to-Trajectory similarity 𝑠(𝑝𝜏𝑖 , 𝜏 𝑗),

interval array 𝐴𝐼 , interval length 𝑙 , interval expiration
threshold 𝜎

Result: Updated Similarity 𝑆

1 𝑆 ← 0; 𝑐 ← current clock;
2 if 𝐴𝐼 .𝑠𝑖𝑧𝑒() = 0 then
3 𝐴𝐼 .𝑎𝑑𝑑(new Interval from 𝑐 to 𝑐 + 𝑙);
4 𝐴𝐼 .𝑡𝑎𝑖𝑙 ().𝑎𝑑𝑑(𝑠(𝑝𝜏𝑖 , 𝜏 𝑗));
5 return 𝑠(𝑝𝜏𝑖 , 𝜏 𝑗) ∗ 𝑔𝑒𝑡𝐷𝑒𝑐𝑎𝑦𝐹𝑎𝑐𝑡𝑜𝑟 (𝑙2);
6 else
7 if 𝐴𝐼 .𝑖𝑠𝐸𝑥𝑖𝑠𝑡𝑠(𝑠(𝑝𝜏𝑖 , 𝜏 𝑗)) then
8 𝐴𝐼 .𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑠(𝑝𝜏𝑖 , 𝜏 𝑗)).𝑟𝑒𝑚𝑜𝑣𝑒(𝑠(𝑝𝜏𝑖 , 𝜏 𝑗));
9 if 𝑐 < 𝐴𝐼 .𝑡𝑎𝑖𝑙().𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 then

10 𝐴𝐼 .𝑡𝑎𝑖𝑙 ().𝑎𝑑𝑑(𝑠(𝑝𝜏𝑖 , 𝜏 𝑗));
11 else
12 𝑐𝑒 ← 𝐴𝐼 .𝑡𝑎𝑖𝑙 ().𝑒𝑛𝑑𝑇𝑖𝑚𝑒;
13 𝐴𝐼 .𝑎𝑑𝑑(new Interval from 𝑐𝑒 to 𝑐𝑒 + 𝑙);
14 𝐴𝐼 .𝑡𝑎𝑖𝑙 ().𝑎𝑑𝑑(𝑠(𝑝𝜏𝑖 , 𝜏 𝑗));
15 for each 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑖 in 𝐴𝐼 do
16 𝑑 𝑓 ← 𝑔𝑒𝑡𝐷𝑒𝑐𝑎𝑦𝐹𝑎𝑐𝑡𝑜𝑟 (𝑐 − 𝑖 .𝑒𝑛𝑑𝑇𝑖𝑚𝑒−𝑖 .𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒

2);
17 if 𝑑 𝑓 < 𝜎 then
18 𝐴𝐼 .𝑟𝑒𝑚𝑜𝑣𝑒(𝑖);
19 else
20 𝑠 ← 𝑠 + 𝑑 𝑓 × 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 .𝑠𝑢𝑚();
21 return 𝑆;

12

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Preliminaries
	2.2 Similarity Measurement
	2.3 Problem Statement

	3 Framework Overview
	4 Workload Partition & Dynamic Adjustment
	4.1 A Matrix-Based Partition Approach
	4.2 Two-Phase Dynamic Load Balance

	5 Incremental Similarity Update
	5.1 Global Pruning Strategy
	5.2 Grid-Neighborhood Round Search
	5.3 Dimensional Linear Pruning

	6 Similarity Decaying & Merge
	6.1 Exact Algorithm for Similarity Merge
	6.2 Approximate Algorithm by Interval Update

	7 Experiments
	7.1 Experiment Settings
	7.2 Efficiency Study
	7.3 Effectiveness Study

	8 Related Work
	9 Conclusion
	References
	A Theorem Proof
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2
	A.3 Proof of Lemma 3

	B Parameter Sensitivity Study
	C Pseudo Code of Detailed Algorithms
	C.1 Dynamic Workload Adjustment
	C.2 Overall Incremental Similarity Update
	C.3 Spatial Neighborhood Search
	C.4 Dimensional Linear Prune
	C.5 Similarity Merge By Interval Update

