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Abstract

Graph neural networks (GNNs) have achieved remarkable success in various do-
mains but typically rely on centralized, static graphs, which limits their applicability
in distributed, evolving environments. To address this limitation, we define the
task of Federated Continual Graph Learning (FCGL), a paradigm for incremen-
tal learning on dynamic graphs distributed across decentralized clients. Existing
methods, however, neither preserve graph topology during task transitions nor
mitigate parameter conflicts in server-side aggregation. To overcome these chal-
lenges, we introduce MOTION, a generalizable FCGL framework that integrates two
complementary modules: the Graph Topology-preserving Multi-Sculpt Coarsening
(G-TMSC) module, which maintains the structural integrity of past graphs through
a multi-expert, similarity-guided fusion process, and the Graph-Aware Evolving
Parameter Adaptive Engine (G-EPAE) module, which refines global model updates
by leveraging a topology-sensitive compatibility matrix. Extensive experiments on
real-world datasets show that our approach improves average accuracy (AA) by an
average of 30% ↑ over the FedAvg baseline across five datasets while maintaining
a negative ↓ average forgetting (AF) rate, significantly enhancing generalization
and robustness under FCGL settings. The code is available for anonymous access
at https://github.com/GuanchengWan/MOTION.

1 Introduction

Graph neural networks (GNNs) [27, 63] provide a powerful framework for exploiting relational
information in graph-structured data for various learning tasks. Their ability to model complex
interdependencies between entities has driven notable progress in domains such as recommendation
systems [4], social network analysis [45], and digital marketing optimization [19]. However, existing
graph learning methods [72, 63, 68] assume centralized data storage, where a single institution
collects and manages the evolving graph, which often fails in real-world scenarios. To address
these limitations, researchers have integrated federated learning frameworks with GNNs to develop
Federated Graph Learning (FGL) [14, 29, 40, 52]. FGL enables efficient learning on distributed
graph data and supports knowledge extraction across decentralized sources.

Graph-structured data in modern systems is inherently dynamic, with continuously adding nodes and
edges reflecting changing structures and behaviors [11, 25, 69]. Moreover, storing or accessing exten-
sive historical node profiles and topologies is impractical due to client-side storage limits, edge device
constraints, and limited database resources. These constraints prevent edge devices from maintaining
a complete history of the evolving graph. Consequently, graph models must incrementally incorporate
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new classes into a growing graph distributed across decentralized clients. We refer to this process as
Federated Continual Graph Learning (FCGL), which addresses storage and edge device limita-
tions. Existing FGL methods [7, 31, 62] assume shared graph data across clients, and current continual
graph learning (CGL) approaches [70, 6, 75] focus on static or locally evolving graphs within a
single client. The core difficulty unique to FCGL lies in the interplay between local CL limitations
and federated aggregation challenges, amplified by client heterogeneity in both data and temporal
evolution. Therefore, we define the FCGL task as constructing a global model that generalizes ef-
fectively to distributed graphs in an incremental learning framework. A key research question emerges:
How can we design an FGL framework tailored for continuously evolving streaming data?

Existing CGL methods mainly address node- or class-incremental scenarios [69, 74, 13] and often
struggle to preserve the inherent graph topology [12, 67, 51], that is, the structural properties of each
local graph such as node centrality and subgraph patterns. In addition, methods such as memory
replay [75, 58, 42] or parameter regularization [30, 8, 57, 9] must work under the constraint that
clients only have partial and changing graph views with limited resources. As a result, preserving
topological integrity, namely the consistent maintenance of these structural properties across tasks
during continual updates, remains difficult. This difficulty arises because similarity metrics [48, 57]
or criteria [26, 3] computed locally often fail to capture important global relational patterns. This
limitation raises a critical question: I) How can we effectively preserve the topological information
of previous tasks under FCL constraints?

Figure 1: Problem Illustration. We describe the chal-
lenges FCGL encounters. Local updates cause catas-
trophic forgetting, while global aggregation creates pa-
rameter conflicts.

In the FGL setting, client-specific updates re-
flect heterogeneous objectives and graph struc-
tures [34, 76, 60], which can lead to conflict-
ing parameter updates during aggregation. Stan-
dard averaging strategies [36] may dilute task-
specific knowledge and destabilize the global
model, reducing its ability to accommodate new
tasks without forgetting previous ones. Al-
though several advanced aggregation methods,
such as clustered FL [43], attentive aggrega-
tion [23], and weight regularization [1], have
been proposed to mitigate client heterogeneity,
they still fail to resolve the fundamental issue
of update conflicts when task distributions or
graph structures diverge substantially [22, 20].
This observation leads to a second question: II)
How can we capture and leverage correla-
tions between the existing parameters of the
global model and the client-updated param-
eters when learning new tasks?

To address these challenges, we present the first comprehensive study of FCGL. We propose the
Multi-Sculpt EvOluTIONary Coarsening (MOTION) framework for FCGL. To address Problem I), we
develop Graph Topology-preserving Multi-Sculpt Coarsening (G-TMSC). This method mitigates
forgetting by preserving the key topological structures of previous task graphs. Inspired by a multi-
expert paradigm, we introduce a scoring mechanism that computes node similarity and importance to
guide the coarsening process. This mechanism enhances both feature and topology replay, allowing
clients to retain critical information from earlier tasks. On the server side, to address Problem II), we
propose the Graph-Aware Evolving Parameter Adaptive Engine (G-EPAE). Each client generates
topology-sensitive parameter increments that reflect local graph evolution. The server constructs a
graph compatibility matrix to measure the alignment between these increments and the global model
across parameter dimensions. Aggregation rates are then adjusted dynamically so that increments
with high compatibility receive greater weight to capture essential patterns while those with low
compatibility are down-weighted to reduce conflicts. All adjusted increments are integrated into the
global model without fine-tuning dynamically. This approach achieves balanced evolution that adapts
to new structures while preserving historical knowledge securely.

Our principal contributions are summarized as follows:
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❶ Problem Identification. We formally characterize the main challenges in FCGL: maintaining
graph-topological integrity and preserving task-relevant information during CL, while avoiding
conflicts in knowledge transfer to ensure robust global generalization.

❷ Practical Solution. We design a client-side G-TMSC guided by learned similarity scores to merge
new and historical subgraphs, and we develop a server-side G-EPAE that dynamically adjusts
aggregation weights to reduce interference and improve coherence.

❸ Experimental Validation. We conduct comprehensive experiments on multiple benchmark graph
datasets to demonstrate that MOTION outperforms existing methods under FCGL settings.

2 Preliminaries

2.1 Notations

Continual Learning. CL involves updating a model sequentially on a series of tasks, where each
task introduces new information while requiring the retention of knowledge from previous tasks. The
primary objective is to mitigate catastrophic forgetting, in which the model’s performance on earlier
tasks deteriorates as it learns new ones. Formally, let the model encounter a sequence of task-specific
datasets Dt = {Xt, Yt}, where Xt denotes the input data and Yt the corresponding labels for task
t. The model parameters θ are updated by balancing the acquisition of new information with the
preservation of prior knowledge. This trade-off can be expressed as:

Ptotal(θ) =

T∑
t=1

Pt(θ) + λR(θ), (1)

where Pt(θ) represents the update term for task t,R(θ) serves as a regularization term that preserves
knowledge from previously learned tasks, and the hyperparameter λ modulates the trade-off between
learning new tasks and reducing catastrophic forgetting.

In practice, only the data from the current task DT is accessible during training. Therefore, the
objective at step T is formulated as:

LT (θ) = PT (θ) + λTR(θ), (2)

which highlights the central challenge in CL, namely achieving high performance on the current task
while preserving knowledge acquired from earlier tasks through regularization.

Problem Formulation. In the FCGL framework, a central server coordinates distributed learning
across K clients, denoted C = {C1, . . . , CK}. Each client Ck maintains an evolving graph Gt

k =
(V t

k , E
t
k) for task t, with adjacency matrix At

k. Each node vi ∈ V t
k has an associated feature vector

xk,t
i and label yk,ti . The goal is to learn new tasks incrementally while preserving prior knowledge

to ensure the stability of the global model. To this end, each client k trains a local model Fθt
k

with parameters θtk and periodically transmits its updates to the central server. The global model
parameters ϕ are optimized by minimizing the weighted sum of local losses:

min
ϕ

K∑
k=1

N t
k

Nt
Lt
k(ϕ), (3)

where N t
k = |V t

k | is the number of nodes in the graph of client k at task t, Nt =
∑K

k=1 N
t
k is the

total number of nodes across all clients at task t, and Lt
k(ϕ) denotes the expected loss over Gt

k under
the global model parameters ϕ. FCGL unifies FCL and CGL by enabling incremental task learning
and knowledge preservation while protecting data privacy through distributed model aggregation.

2.2 Motivation

This paper systematically examines the challenges of maximizing the generalization performance of
the global model in FCGL. Traditional FCL and CGL methods, such as Experience Replay [75] and
Gradient Episodic Memory [33], were designed for image-based tasks and do not deliver comparable
performance on graph-structured data. These methods suffer from three main shortcomings. First,
they cannot effectively capture graph topological information [56, 32, 54]. Second, they require
excessive storage [58, 75] for node replay buffers. Third, they introduce severe parameter conflicts
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during aggregation, as heterogeneous local updates push the global model in divergent directions [55,
53, 49]. By relying on simple empirical node replay, these methods ignore the structural relationships
that encode critical topological patterns. This increases misalignment between client and server,
destabilizes training, and accelerates catastrophic forgetting. As shown in Figure 1, nodes exhibit
substantial heterogeneity in connectivity patterns and neighborhood distributions. Therefore, local
training in FCGL must minimize storage requirements while preserving graph topology and node
information to support incremental learning without loss of prior knowledge. We formalize this
objective as:

{θt∗k , M t∗
k } = arg min

θt
k,M

t
k

K∑
k=1

[
E(x,y)∼Dk

t
ℓ
(
Fθt

k
(x), y

)
+ λLret

(
θtk;G

1:t−1
k

)]
s.t. |M t

k| ≤ B,

(4)
where ℓ is the per-sample classification loss, Lret enforces topology-preserving replay, λ balances
new-task learning and forgetting, and B bounds each client’s replay memory capacity.

After local training effectively mitigates knowledge forgetting, we subsequently integrate client-
trained parameters into the global model Fϕ during the server-side aggregation phase, ensuring a
conflict-free aggregation process that faithfully preserves the knowledge previously acquired:

ϕ∗ = argmin
ϕ

K∑
k=1

Eĝk∼Rk
φ

[
T
(
Fϕ(ĝk), Fθt

k
(ĝk)

)]
, (5)

where Rk
φ produces replay samples for client k, and T (·, ·) measures the discrepancy between global

and local model outputs. This approach ensures retention of previously accumulated knowledge.

Based on these objectives, we therefore comprehensively outline the systematically derived key
design principles for a generalizable FCGL pipeline:

Generalizable FCGL Design Principles: Storage Efficiency: preserve critical topological
structures and key node information while reducing memory requirements; Knowledge Re-
tention: track changes in graph topology and node information across tasks without losing
previously learned knowledge; Knowledge Integration: aggregate client updates into the global
model with minimal conflicts to ensure effective knowledge transfer and mitigate forgetting.

In the subsequent sections, we describe how our approach effectively implements these design
principles. Specifically, we minimize client-side storage, prevent catastrophic knowledge loss, and
seamlessly integrate updates into the global model with reduced parameter conflicts.

3 Methodology

3.1 Framework Overview

In this section, we briefly present an overview of our framework. On the client side, we apply G-TMSC
to accurately preserve the critical topological structures from previous task graphs. G-TMSC uses
a multi-expert scoring mechanism to estimate node similarity precisely and guide structural fusion.
On the server side, we employ G-EPAE to mitigate conflicts in the task space during aggregation.
G-EPAE adjusts parameter aggregation rates dynamically based on a graph compatibility matrix that
measures the alignment between client updates and the global model. Moreover, a diagrammatic
representation of the framework is provided in Figure 2.

3.2 Graph Topology-preserving Multi-Sculpt Coarsening (G-TMSC)

Dynamic Graph Merging. To integrate graph data across successive tasks, we introduce Dynamic
Graph Merging, which constructs a progressively evolving knowledge graph. For client k at task t,
let Gt

k = (V t
k , E

t
k) be the local graph. Each node vi ∈ V t

k is assigned a unique global identifier by
fusing its semantic feature xk,t

i with the task identifier taskt:

ẑi = Fuse(xk,t
i , taskt), (6)

where Fuse(·) denotes a task-aware embedding fusion module. All global identifiers are stored in a
centralized node mapping table IG to ensure consistent entity referencing across tasks. To prevent
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Figure 2: Architecture illustration of MOTION. (a) The left part shows the Graph Topology-preserving
Multi-Sculpt Coarseing (G-TMSC) on the client side. (b) The right part presents Graph-Aware
Evolving Parameter Adaptive Engine (G-EPAE) on the server side.

identity drift across tasks, we maintain two mappings: a many-to-one mappingMcoarse→original

from merged to original nodes, and a one-to-one mappingMoriginal→coarse for traceability. This
dual mapping supports dynamic node aggregation while preserving entity fidelity.

At initialization (t = 1), we construct a base graph using the node and edge mappings of G1
k. For each

subsequent task t = 2, . . . , T , we apply an incremental merging strategy: unseen nodes vj /∈ IG are
identified by global hashing and assigned embeddings ẑj . This selective update avoids exponential
growth in computation from naive accumulation of all previous graphs and improves scalability. Thus,
each client k refines its evolving graph Gt

k, capturing long-range dependencies via coarsening and
mapping, and progressively unifies knowledge across tasks.

For edges Et
k, we transform the local adjacency matrix At

k into a unified matrix Ât
k defined by

Ât
k(i, j) =

{
1, if (vi, vj) ∈ Et

k and vi, vj ∈ IG,
0, otherwise,

(7)

which preserves structural integrity while reducing redundant computation overhead. Therefore,
task-specific representations are continuously integrated with explicit preservation of graph topology
and node semantics, ensuring historical knowledge retention and new information assimilation.

Multi-Sculpt Coarsening. Sculpting in graph coarsening refers to the precise selective removal
of non-essential or peripheral elements to preserve the fundamental core structural integrity of a
graph. Inspired by the Mixture-of-Experts (MoE) paradigm, our approach employs a collaborative
multi-expert framework in which each expert specifically applies a distinct evaluation criterion, such
as topological centrality, local substructure decomposition, and semantic similarity. By integrating
these expert assessments, the Multi-Sculpt Coarsening framework systematically prunes extraneous
redundant nodes and suppresses noise, thereby significantly reducing storage and computational
demands while preserving semantic fidelity and essential graph properties.

First, we compute a diverse set of topological features for each node. Degree centrality quantifies
immediate connectivity: Degree(vi) =

∑
vj∈V t

k
At

k(i, j), while betweenness centrality identifies

critical bridges: BC(vi) =
∑

s̸=i ̸=t
σ
(k,t)
st (vi)

σ
(k,t)
st

. The clustering coefficient further measures community

compactness via C(vi) =
2T

(k,t)
i

ki (ki−1) , where T
(k,t)
i is the number of triangles through vi and ki =

Degree(vi). Additionally, global metrics such as eigenvector centrality and closeness centrality
further enrich the feature set. To model diffusion, we apply PageRank:

PR(vi) =
1− d

N t
k

+ d
∑

vj∈N (vi)

PR(vj)

Degree(vj)
, (8)
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with damping factor d and neighborhood N (vi). We also derive degree-based heterogeneity and a
community index to capture neighborhood diversity and cohesion.

For fine-grained analysis, we decompose the graph into 1-hop and 2-hop subgraphs. We compute the
average degree k̄sub = 1

|Vsub|
∑

v∈Vsub
kv and measure subgraph diameter Dsub. Subgraph clustering

coefficients and densities further characterize community cohesiveness.To comprehensively represent
each node, we introduce a position-aware degree embedding scheme employing multi-frequency
sinusoidal encodings to capture structural variations:

PEk(d) =

{
sin

(
d/100002k/F

)
, k even,

cos
(
d/100002k/F

)
, k odd,

(9)

where d is the node degree and F is the embedding dimension.

In our proposed framework, the similarity assessment module employs statistical metrics. Maximum
mean discrepancy (MMD) detects distributional shifts:

MMD2(X,Y ) =
∥∥∥ 1
m

m∑
i=1

ϕ(xi)− 1
n

n∑
j=1

ϕ(yj)
∥∥∥2, (10)

while Mahalanobis distance identifies statistical outliers via DM (x) =
√

(x− µ)⊤Σ−1(x− µ). We
subsequently compute Pearson correlation and cosine similarity metric via CosSim(x, y) = x·y

∥x∥∥y∥ ,
to capture both functional and semantic alignments.

Based on these features, we implement a multi-expert decision mechanism where each expert
specializes in a distinct feature domain. Employing a sparse activation strategy selects the top-K
experts dynamically, and introduces controlled random noise perturbation along with the coefficient
of variation squared CV2 = σ2

µ2 to ensure balanced and equitable expert utilization. Subsequently,
we aggregate experts’ normalized importance scores to prioritize nodes for preservation, then map
removed nodes to their semantically closest preserved counterparts to minimize information loss.

To merge features in the coarsened graph, we apply simple yet robust arithmetic averaging at both the
raw feature and respective latent representation levels:

xmerged =
1

n

n∑
i=1

xi, hmerged =
1

n

n∑
i=1

hi, (11)

ensuring unbiased aggregation and retention of semantic and structural integrity.

Finally, we introduce a reservoir sampling–based dynamic memory mechanism that blends selected
nodes from historical tasks with new samples. This mechanism mitigates gradient shocks, stabilizes
convergence, and enhances robustness by regulating the mixing ratio between past and new nodes.

3.3 Graph-Aware Evolving Parameter Adaptive Engine (G-EPAE)

Graph Compatibility Matrix. Upon completion of local training, each client k ∈ C transmits its
updated parameters θk to the central server. The server then computes a topology-sensitive parameter
increment: ∆θk = θk − ϕ, where ϕ denotes the current global parameters of Fϕ. This increment
implicitly captures structural changes in the local graph Gt

k = (V t
k , E

t
k), since GNN parameter

updates reflect variations in the adjacency matrix At
k through neighborhood aggregation.

To integrate these heterogeneous updates, we introduce a graph compatibility matrix Mk ∈ Rd×d that
quantifies the alignment between local and global update dynamics. Unlike traditional aggregation
methods (e.g., FedAvg), which weight updates solely by data volume, our matrix incorporates both
directional consistency and relative magnitude of each client’s update:

Mk = ∆θkdir ◦∆θkmag, (12)

where ◦ denotes the Hadamard product. The directional component is obtained by L2 normalization:

∆θkdir =
∆θk

∥∆θk∥2
, (13)
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which isolates the update direction from its scale. The magnitude component is defined as:

∆θkmag =
∥∆θk∥2∑
j∈C ∥∆θj∥2

, (14)

providing a normalized importance score that emphasizes clients with larger topological contributions.

By incorporating Mk into the aggregation process, we enable a topology-aware and contribution-
sensitive update mechanism. The directional component ∆θkdir ensures that the global model aligns
more closely with structurally consistent client updates, which reduces the cancellation effect caused
by conflicting update directions. At the same time, the magnitude component ∆θkmag emphasizes
clients whose updates reflect more substantial topological shifts in their local graphs. The Hadamard
combination then produces a compatibility matrix that softly reweights each update. This conflict-
aware integration retains essential task-specific knowledge and improves global model stability.

Elastic Regulation Fusion. Building on compatibility-guided aggregation principle, we introduce an
elastic regulation fusion mechanism to further enhance both adaptability and long-term stability in
global model synchronization for FCGL. This mechanism applies a dynamic gating function g(Mk)
to appropriately scale aggregation weights nonlinearly:

αk =

{
exp(Mk), Mk ≥ τ,

γMk, otherwise,
(15)

where τ is the compatibility threshold, γ ∈ (0, 1) is a linear decay factor, and αk regulates the
contribution of each local update ∆θk to the global model. To suppress instability from incompatible
updates, we introduce an adaptive regularization term:

R(θ) = λ
∥∥∆θd

∥∥2
2
, ∆θd = {∆θki |Mk(i) < τ}, (16)

which selectively truncates gradients of poor compatibility parameters. The global model is then
updated by integrating the filtered and scaled local updates:

∆ϕ =

K∑
k=1

αk ∆θk, ϕ← ϕ+ η∆ϕ. (17)

This update enables Fϕ to assimilate emerging structural patterns from clients while preserving
representations learned in previous tasks. From a mathematical perspective, the fusion strategy
performs adaptive filtering in parameter space: tensor level aggregation is jointly governed by
directional alignment via normalized updates ∆θkdir and compatibility driven scaling αk, allowing
fine-grained, client specific fusion across both parameter dimensions and client axes.

The proposed method offers two primary benefits in FCGL. First, it enhances the responsiveness
of the model to dynamic topological changes through Mk-guided integration. Second, it ensures
minimal conflict during parameter evolution across tasks. These benefits collectively enable robust
and scalable continual learning in dynamic graph environments.

4 Experiment

In this section, we comprehensively evaluate MOTION through four axes: Q1 (Superiority), Q2
(Resilience), Q3 (Effectiveness), Q4 (Sensitivity).

4.1 Experimental Setup

Datasets. To effectively evaluate the performance of our approach, we employed five benchmark
graph datasets of various scales and distributions, including Cora [35], CiteSeer [16], PubMed [5],
Amazon-Photo, and Coauthor-CS [44]. Detailed descriptions and dataset splits are provided in
Appendix C.1. Moreover, implementation details and parameter settings are given in Appendix C.6.

Counterparts. We compare MOTION against the following representative baselines covering classical
FL, FGL, FCL, and CGL methods: (1) FedAvg [ASTATS17] [36], (2) FedDc [CVPR22] [15], (3)
FedDyn [ICLR21] [2], (4) FedSSL [IJCAI24] [21], (5) FedSSP[NeurIPS24] [50], (6) FedTpp
[ICML24] [41], (7)SEA-ER [CoLLAs24][47], and (8) FedPowde [NeurIPS24] [38]. Detailed
descriptions are provided in Appendix C.2.
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Table 1: Comparison with the state-of-the-art methods on five real-world datasets. We report
node-classification Average Accuracy (AA) (%) and Average Forgetting (AF) (%) for our downstream
tasks. Green indicate improvements over the FedAvg baseline, while red denote performance
declines. Meanwhile, ↑ denotes an increase in the value, whereas ↓ denotes a decrease. The best and
second results are highlighted with bold and underline, respectively.

Cora CiteSeer PubMed Amz-Photo Coauthor-CS
Category Methods

AA ⇑ AF ⇓ AA ⇑ AF ⇓ AA ⇑ AF ⇓ AA ⇑ AF ⇓ AA ⇑ AF ⇓

FL

FedAvg [ASTATS17] 23.57 56.30 16.67 69.01 33.33 50.42 18.43 54.74 12.15 65.78

FedDc [CVPR22] 25.64↑2.07 58.32↑2.02 21.12↑4.45 43.60↓25.41 33.25↓0.08 50.00↓0.42 21.08↑2.65 42.22↓12.52 10.42↓1.73 49.79↓15.99

FedDyn [ICLR21] 18.93↓4.64 71.07↑14.77 13.59↓3.08 67.52↓1.49 26.19↓7.14 55.44↑5.02 18.48↑0.05 36.32↓18.42 9.19↓2.96 45.19↓20.59

FGL
FedSSL [IJCAI24] 20.14↓3.43 29.27↓27.03 15.80↓0.87 39.14↓29.87 33.34↑0.01 25.08↓25.34 32.31↑13.88 9.76↓44.98 7.28↓4.87 14.77↓51.01

FedSSP [NeurIPS24] 25.76↑2.19 26.60↓29.70 21.83↑5.16 16.11↓52.90 38.54↑5.21 31.36↓19.06 14.09↓4.34 13.39↓41.35 10.22↓1.93 14.10↓51.68

CGL
FedTpp [ICML24] 53.63↑30.06 19.88↓36.42 27.67↑11.00 55.80↓13.21 49.02↑15.69 3.09↓47.33 29.75↑11.32 38.22↓16.52 19.15↑7.00 58.28↓7.50

SEA-ER [CoLLAs24] 20.05↓3.52 69.17↑12.87 31.38↑14.71 47.26↓21.75 55.79↑22.46 1.77↓48.65 15.21↓3.22 48.93↓5.81 6.88↓5.27 82.62↑16.84

FCL FedPowde [NeurIPS24] 19.05↓4.52 71.32↑15.02 20.93↑4.26 47.99↓21.02 33.42↑0.09 49.87↓0.55 22.73↑4.30 50.85↓3.89 10.39↓1.76 64.09↓1.69

FCGL MOTION 62.66↑39.09 −8.34↓64.64 49.08↑32.41 −16.78↓85.79 59.48↑26.15 −24.17↓74.59 79.09↑60.66 −5.32↓60.06 22.26↑10.11 −11.62↓77.40

4.2 Superiority

To address Q1, we analyze the superior performance of MOTION on node classification across multiple
real-world graph datasets. The overall Average Accuracy (AA↑) and Average Forgetting (AF↓) results

are summarized in Table-1. Here, AA = 1
T

∑T
j=1 aT,j , AF = 1

T

∑T
j=1

(
maxl∈{1,...,T} al,j−aT,j

)
,

where T is the total number of tasks and ai,j is the performance of the global model on task j after
training on task i. From these experiments, we derive three key observations.

Obs.❶ MOTION consistently achieves the highest accuracy on all evaluated datasets, demonstrating
notably higher AA and negative AF values. Negative AF indicates not only preservation but also
reinforcement of prior knowledge. On Amazon-Photo, MOTION outperforms the second-best baseline,
FedTPP, by 48.34% in AA and yields a negative AF, highlighting its strong capabilities for knowledge
consolidation and conflict mitigation. The G-TMSC module preserves critical topological patterns,
and the G-EPAE module reduces parameter conflicts between clients and server. Together, these
components enable MOTION to capture fine-grained structural knowledge across heterogeneous tasks.

Obs.❷ Traditional FL and FGL methods tend to overfit to the current task, which leads to catastrophic
forgetting and prevents clients from retaining prior knowledge. Moreover, the server encounters
significant difficulty in resolving parameter conflicts, resulting in substantial performance degradation.

Obs.❸ Both FCL and CGL approaches struggle under the FCGL paradigm. CGL methods cannot
resolve server-side parameter conflicts, and FCL techniques fail to capture essential topological
structures. Among the baselines, FedTPP and FedPowde deliver the next-best AA; however, FedTPP
still exhibits high AF due to aggregation-induced conflicts, and FedPowde’s weaker structural
modeling leads to lower AA and increased forgetting. Consequently, neither method supports
efficient, continuous knowledge sharing across heterogeneous clients.

4.3 Resilience

To address Q2, we evaluate MOTION on the Cora and CiteSeer datasets. We vary the Dirichlet
concentration parameter α from 1 to 9 to control data heterogeneity and assess performance with 2 to
6 clients. Figure 3 shows that MOTION achieves robust gains across all client scales and α values. On
CiteSeer, MOTION outperforms FedAvg by an average of 29.11% and exceeds the strongest competing
baseline by at least 18.11%. These findings confirm that MOTION adapts effectively to diverse FCGL
scenarios and maintains stable performance under severe client heterogeneity.
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(a) Analysis on Cora (b) Analysis on CiteSeer
Figure 3: Resilience study of hyperparameters Reduction Rate and Experts Selected with datasets
including Cora and CiteSeer. Please refer to Sec. 4.3 for further analysis.

(a) Figure of effective study

(b) Detailed data display

Cora CiteSeer
Method

AA AF AA AF

w/o Mul.-Ex. 56.62 −5.69 40.58 18.27

w/o Para.-Al. 60.05 3.69 43.15 2.16

w/o Gra.-Co. 25.43 24.48 27.54 18.49

MOTION 64.57 −8.37 48.45 −0.15

Figure 4: Effectiveness study of G-TMSC and G-EPAE on Cora and CiteSeer. For an in-depth study,
see Sec. 4.4.

4.4 Effectiveness

To address Q3, we conduct an ablation study to evaluate the contributions of key components
on both client and server sides. In Figure 4, we first isolate the effects of the Graph-Coarsening
mechanism (w/o Gra.-Co.) and the Multi-Expert strategy (w/o Mul.-Ex.). Removing the Graph-
Coarsening mechanism alone causes a significant performance decrease, and further exclusion of
the Multi-Expert strategy amplifies this decline. These results demonstrate that both components
are crucial for capturing diverse structural patterns and mitigating knowledge forgetting. We then
assess the Parameter-Alignment mechanism (w/o Para.-Al.) within the G-EPAE module. Its absence
intensifies client–server parameter conflicts and increases update drift, confirming its essential role in
harmonizing model updates and enabling continuous knowledge accumulation during FCGL.

4.5 Sensitivity

To investigate hyperparameter sensitivity for Q4, we conduct a systematic study on MOTION. As
shown in Figure 5, we examine two key parameters: the graph reduction rate r and the number of
selected experts s. We vary r from 0.1 to 0.9 in increments of 0.2 and adjust s from 2 to 10 in steps of
2. The results show that model performance varies modestly across this parameter range, indicating
strong robustness. On Cora, AA and AF exhibit variances of 0.49 and 1.84, respectively. On CiteSeer,
the variances are 0.70 for AA and 0.44 for AF. To balance compression and information retention, we
set r=0.5 and s = 3, which promotes effective multi-expert collaboration while minimizing storage.

(a) Analysis on Cora (b) Analysis on CiteSeer
Figure 5: Sensitivity Study of hyperparameters Reduction Rate and Experts Selected. Please refer to
Sec. 4.5 for further analysis.
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5 Conclusion

In this paper, we propose MOTION, a unified FCGL framework that simultaneously preserves historical
graph structures and mitigates aggregation conflicts in decentralized, evolving environments. On the
client side, our G-TMSC module integrates multiple structural metrics through a multi-sculpt scheme
inspired by MOE, in which each expert applies a distinct evaluation criterion and the results are fused
via similarity-guided merging. On the server side, our G-EPAE module adjusts aggregation weights
based on a topology-sensitive compatibility matrix to align heterogeneous client updates while
maintaining task-specific knowledge. Extensive experiments on five real world graph benchmarks
demonstrate that MOTION consistently outperforms state-of-the-art baselines in both generalization
performance and robustness to catastrophic forgetting. Comprehensive empirical evaluations across
diverse datasets validate the robustness and efficacy of MOTION.
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A Notations

We present a comprehensive review of the commonly used notations and their definitions in Tab. 2.

Table 2: Notation and Definitions
Notation Definition
G Graph data.
V The node set of G.
E The edge set of G.
Dt Task-specific dataset for task t.
Xt Input data for task t.
Yt Lables corresponding to the input data Xt for task t.
T The number of tasks.
K The number of clients.
θk The parameters of the local model Fθk of client k.
Fϕ The global model.
ϕ The parameters of the global model.
Pt(θ) The parameter update for task t.
R(θ) The regularization term for parameters updated in CL.
λ Trade-off hyperparameter.
C The set of all clients.
k The index of a specific client in C.
Gt

k The evolving graph maintained by client k for task t.
At

k The adjacency matrix corresponding to the graph Gt
k.

vi A node in the graph Gt
k, where vi ∈ V t

k .
xk,t
i The feature vector associated with node vi in client k’s graph for task t.

yk,ti The label associated with node vi in client k’s graph for task t.
Fθt

k
The local model trained by client k for task t.

θtk The parameters of the local model Fθt
k

of client k for task t.
ϕ The parameters of the global model shared across all clients.
Lt
k(·) The local objective function for client k’s graph Gt

k at task t.
N t

k The number of nodes in client k’s graph Gt
k at task t.

Nt The total number of nodes across all clients’ graphs for task t.
ẑi Global unique ID for node vi, fusing xk,t

i and taskt.
IG Centralized table indexing global IDs for consistent entity referencing.
Mcoarse→original Many-to-one mapping from merged to original nodes.
Moriginal→coarse One-to-one mapping preserving traceability to merged nodes.
σ
(k,t)
st From s to t shortest paths in Gt

k.
T

(k,t)
i Number of triangles through vi.

PR(vi) PageRank score of vi.
N (vi) Neighbors of vi.
Mk: Graph compatibility matrix for client k.
∆θkdir Directional component of client k’s update (normalized).
∆θkmag Magnitude-aware component of client k’s update.
αk Aggregation coefficient for client k based on compatibility score
γ Linear decay factor for low-compatibility updates
g(Mk) Dynamic gating function applied to compatibility matrix
Mk(i) Compatibility value for parameter i from client k
Lret(θ

t
k;G

1:t−1
k ) Replay regularization to preserve prior task knowledge.

B Memory budget constraint for client local replay buffer.
Rk

φ Replay buffer for client k.
ĝk A replayed sample from client k’s replay buffer.
T (·, ·) Discrepancy loss function between two models.
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B Related Work

Federated Continual Learning (FCL). FCL [65, 46, 73, 71] integrates federated learning with con-
tinual learning to enable clients to train on private task streams sequentially while retaining historical
knowledge without accessing past data or exchanging raw inputs—thereby mitigating both temporal
and spatial catastrophic forgetting. Existing FCL methods generally employ regularization-based
techniques, such as FedCurv [66], which adapts Elastic Weight Consolidation to penalize deviations
in parameters critical for previous tasks, or rehearsal-based strategies [77, 10] like FedPMR [61],
which maintains a compact exemplar buffer and aligns probability distributions via replay.

Continual Graph Learning (CGL). CGL [24, 64, 18, 17] addresses the challenge of incrementally
updating models on evolving graph-structured data, where nodes, edges or labels may change over
time, without reaccessing all past data. Existing CGL methods generally adopt one of two paradigms.
Isolation-based approaches, such as Progressive Graph Networks [59], allocate task-specific sub-
modules to prevent interference between new and old tasks. In contrast, replay-based frameworks
like GraphReplay [39] maintain a buffer of historical graph snapshots for rehearsal.

Federated Continual Graph Learning (FCGL) . FCGL enables decentralized, incremental training
on evolving graph-structured data across multiple clients. Existing FGL methods typically assume
access to a centralized graph, whereas CGL approaches focus on static or single-client graphs,
often sacrificing topological fidelity and exacerbating forgetting through naive parameter averaging.
Moreover, the unrefined integration of these two mechanisms erodes task-specific knowledge and
introduces parameter conflicts, thereby accelerating structural forgetting and destabilizing the global
model. To address these limitations, we propose MOTION, the first framework to integrate hierarchical
structure-preserving aggregation into FCGL.

C Experimental Details.

C.1 Dataset Details

To evaluate the effectiveness of MOTION, we conduct extensive experiments on eight real-world graph
datasets spanning multiple domains: the citation networks Cora, CiteSeer, and PubMed; the product
co-purchasing network Amazon-Photo; and the academic collaboration network CoAuthor-CS,
among others. Each dataset is partitioned into fixed subsets of 20% for training, 40% for validation,
and 40% for testing. Table 3 summarizes the key statistics of these datasets. Detailed descriptions
follow:

• Cora/CiteSeer/PubMed. These standard citation network benchmarks represent scientific publica-
tions as nodes and directed citation links as edges. Each paper is described by high-dimensional
bag-of-words features derived from its text and labeled according to research topics. Their sparse
connectivity and rich feature spaces make them foundational testbeds for node classification and
scalability evaluations of GNNs.

• Amazon-Photo. Derived from Amazon’s co-purchasing data, this network connects photography-
related products that are frequently bought together. Nodes encode visual feature descriptors
extracted from product images, and the classification task predicts product categories. This dataset
challenges models to handle non-textual, image-based features in a commercial recommender
context.

• CoAuthor-CS. This academic collaboration network links co-authored computer science papers via
undirected edges. Node features combine title and abstract embeddings with publication metadata,
requiring models to capture interdisciplinary research themes for topic classification. The network’s
moderate density and heterogeneous feature types test the ability to integrate semantic and structural
information.

C.2 Counterpart Details.

This section presents a detailed overview of the baseline methods employed in our experiments.

• FedAvg [ASTATS’17] [36] .The seminal framework for federated learning, which orchestrates
synchronous parameter updates through iterative client–server interactions. Each client performs
local training epochs on its private data and transmits gradient updates rather than raw inputs to
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Table 3: Statistics of datasets used in experiments.
Dataset #Nodes #Edges #Classes #Features

Cora 2,708 5,278 7 1,433
Citeseer 3,327 4,552 6 3,703
Pubmed 19,717 44,324 3 500

Amz-Photo 7,650 287,326 8 745
Coauthor-CS 18,333 327,576 15 6,805

preserve data sovereignty. The central server aggregates these updates by performing a weighted
average proportional to client dataset sizes, refining the global model while reducing communication
overhead. Despite its efficiency, FedAvg’s convergence guarantees weaken under non-IID data
heterogeneity [28], particularly when client distributions exhibit diverging class priors [37].

• FedDC [CVPR’22] [15]. A federated learning algorithm that tackles statistical heterogeneity by
decoupling and correcting local drift at the client side. Each client learns an auxiliary local drift
variable that tracks the parameter gap between its local model and the global model, and then
bridges this gap via a penalized consistency term and a gradient correction term in its local objective.
By integrating drift correction into the training phase (orthogonal to improved aggregation schemes
like FedAdam or FedYogi), FedDC achieves significantly faster convergence and higher accuracy
across diverse image-classification benchmarks—including MNIST, Fashion-MNIST, CIFAR-
10/100, EMNIST-L, Tiny ImageNet, and a synthetic dataset—while remaining robust under partial
participation and large-scale non-IID deployments.

• FedDyn [ICLR’21] [2]. A dynamic-regularization–based FL method that resolves the fundamental
mismatch between device-level and global optima by augmenting each local objective with a
per-round linear and quadratic penalty term, ensuring that, in the limit, local minima coincide with
stationary points of the global empirical loss. FedDyn achieves an O(1/T ) convergence rate in
both convex and nonconvex settings under partial participation, massive device counts, unbalanced
data, and heterogeneity, while requiring only model transmissions (unlike gradient-augmented
schemes such as SCAFFOLD). Empirically, it yields substantial communication savings over
FedAvg, FedProx, and SCAFFOLD on benchmarks including MNIST, EMNIST-L, CIFAR-10/100,
and Shakespeare.

• FGSSL [IJCAI’24] [21]. A federated graph learning framework that decouples non-IID hetero-
geneity into node-level semantic bias and graph-level structural bias, and corrects both during
local training. It introduces Federated Node Semantic Contrast (FNSC), which pulls local node
embeddings toward global same-class embeddings and pushes them away from different-class ones,
and Federated Graph Structure Distillation (FGSD), which aligns local adjacency-based similarity
distributions to those of the global model—all without extra communication rounds or sharing
sensitive priors. FGSSL consistently outperforms FedAvg, FedProx, FedOpt, and FedSage on Cora,
Citeseer, and Pubmed by up to 4% accuracy under various non-IID settings, while achieving faster,
more stable convergence.

• FedPowder [ICML’24] [41]. A prompt-based federated continual learning algorithm that fosters
dual knowledge transfer along temporal (within-client) and spatial (across-client) dimensions
through a two-step prompt aggregation framework: global prompt aggregation via a task corre-
lation matrix to capture relevant cross-task information, and top-k correlated prompt selection
to optimize communication efficiency; complemented by a correlation-weighted dual distillation
loss to preserve transferred knowledge and mitigate catastrophic forgetting. Powder achieves
positive forward and backward transfer, substantially lowers communication and storage overhead,
and outperforms rehearsal-based, rehearsal-free, and prompt-based baselines on ImageNet-R and
DomainNet benchmarks.

• FedTPP [NeurIPS’24] [38]. A replay-and-forget-free graph class-incremental learning framework
that resolves both inter-task class separation and catastrophic forgetting via two complementary
modules: Laplacian smoothing-based task profiling, which yields 100% task ID prediction accuracy
by modeling each graph task with a smoothed prototype, and graph prompt learning, which
employs a frozen GNN backbone and a small, learnable prompt per task to capture task-specific
discriminative information without any data replay. This design achieves zero average forgetting
(AF=0) and outperforms state-of-the-art baselines by at least 18% in average accuracy across four
large GCIL benchmarks (CoraFull, Arxiv, Reddit, Products).

• FedSSP[NeurIPS’24] [50].A federated graph learning algorithm that tackles structural heterogene-
ity in cross-domain settings by sharing generic spectral knowledge and adjusting client-specific
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preferences. Each client retains non-generic spectral components locally while contributing generic
spectral encoders to global collaboration, and employs a personalized preference module with
regularization to align extracted features with its own graph structure. By integrating spectral
knowledge sharing with preference adjustment—orthogonal to existing federated aggregation
schemes—FedSSP achieves superior accuracy and stability across diverse graph-classification
benchmarks, including molecular, bioinformatics, social, and vision datasets, while remaining
robust under strong non-IID and multi-domain deployments.

• SEA-ER [CoLLAs’24] [47].A graph continual learning framework that addresses catastrophic
forgetting under structural shifts by analyzing the theoretical learnability of GNNs and introducing
a structure-aware replay mechanism. The paper first proves that GNNs may become unlearnable
in node-wise continual learning when evolving graph structures induce large distributional shifts,
highlighting the central role of topological integrity. To mitigate this, it proposes Structure-
Evolution-Aware Experience Replay (SEA-ER), which selects representative samples via topology-
aware structural similarity and reweights them through structural alignment in the replay phase. By
integrating these strategies into the training process (orthogonal to architectural advances in GCN,
GAT, or SAGE), SEA-ER achieves markedly higher stability and accuracy across real-world and
synthetic benchmarks—including OGB-Arxiv, Reddit, and CoraFull—while remaining effective
under evolving graph dynamics and large-scale non-IID continual learning deployments.

C.3 Ablation study of conflicts in parameter aggregation.

We conducted a systematic evaluation of parameter similarity across clients by measuring the cosine
similarity of their update vectors on the Cora dataset. As shown in Table 4, the results indicate
substantial divergence among client parameters, reflected in both their spatial distribution and update
directions. This confirms the presence of parameter conflicts caused by statistical heterogeneity
during federated aggregation. From the perspective of parameter similarity, these findings motivate
the integration of the G-EPAE module on the server side. By constructing a graph-structured
compatibility matrix, G-EPAE adaptively identifies and reconciles discrepancies in client updates,
thereby reducing aggregation conflicts and improving both the generalization ability and training
stability of the global model.

Table 4: Ablation study on the Cora dataset of conflicts in parameter aggregation.
Cos similarity Client1 Client2 Client3 Client4 Client5

Client1 1.00 0.63 0.57 0.55 0.61
Client2 0.63 1.00 0.56 0.56 0.65
Client3 0.57 0.56 1.00 0.60 0.54
Client4 0.55 0.56 0.60 1.00 0.50
Client5 0.61 0.65 0.54 0.50 1.00

C.4 Discussion of long-range temporal retention.

In the context of FCGL, preserving long-range knowledge is critically important. To evaluate the
ability of the model to retain early-task information over extended sequences, we tracked task-specific
classification accuracy at each time step. As shown in Table 5, the accuracy trajectories demonstrate
that performance on early tasks exhibits only negligible degradation as the task sequence grows,
and in some cases even improves. This suggests that sequence length does not impose a substantial
negative impact on the accuracy of MOTION and, in fact, reveals a trend of sustained optimization
for certain tasks. We attribute this stability and improvement mainly to the design of the G-TMSC
module. By employing a multi-expert, topology-aware coarsening strategy, the module preserves and
amplifies critical structural information from early tasks within the compressed graphs. As a result,
these topological signals are consistently retained and reinforced during subsequent incremental
updates, which not only mitigates knowledge drift but also enables, to some extent, the positive
consolidation of prior knowledge.

C.5 Discussion of compatibility with GNN architectures

MOTION is model-agnostic, as it operates at both the parameter update level and the structural
summary level. This design allows seamless integration with various GNN architectures, such as
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Table 5: Accuracy evolution of tasks over time steps on Cora dataset.
Accuracy Task1 Task2 Task3 Task4 Task5 Task6 Task7
TimeStep1 0.70 0.00 0.00 0.00 0.00 0.00 0.00
TimeStep2 0.72 0.66 0.00 0.00 0.00 0.00 0.00
TimeStep3 0.75 0.68 0.36 0.00 0.00 0.00 0.00
TimeStep4 0.74 0.86 0.37 0.51 0.00 0.00 0.00
TimeStep5 0.85 0.84 0.42 0.64 0.54 0.00 0.00
TimeStep6 0.82 0.81 0.57 0.66 0.55 0.53 0.00
TimeStep7 0.82 0.79 0.58 0.65 0.57 0.54 0.60

GCN and GAT. In our experiments 1, we primarily adopted GAT for consistency with baselines.
However, as shown in Table 6, we also evaluated MOTION with GCN on three datasets, where it
achieved comparable performance gains, further confirming its broad compatibility across GNN
architectures.

Table 6: Compatibility of MOTION with GNN architectures.
Cora CiteSeer PubMedMethod

AA AF AA AF AA AF
FedPowde[NeurIPS24] 0.14 0.73 0.15 0.56 0.41 0.30

FedTpp[ICML24] 0.26 0.27 0.17 0.24 0.39 0.10
MOTION 0.63 -0.09 0.52 -0.09 0.61 -0.13

C.6 Implementation Details.

All experiments were conducted on a system equipped with an NVIDIA GeForce RTX 3090 GPU
(24 GB), an Intel Xeon Gold 6330 CPU @ 2.00 GHz (14 cores, 28 threads), and 90 GB of RAM,
running Ubuntu 22.04 with Python 3.12, PyTorch 2.3.0, and CUDA 12.1. We employed the Graph
Attention Network (GAT) as our base model and evaluated federated graph learning on five benchmark
datasets: Cora, CiteSeer, PubMed, Amazon-Photo, and CoAuthor-CS. The federated setup comprised
two clients participating in a single communication round using the FedAvg algorithm. To induce label
skew, we partitioned each dataset’s eight classes across clients according to a Dirichlet distribution
with concentration parameter α = 5.0. Our GAT architecture consisted of three attention layers
with a hidden dimension of 64, a dropout rate of 0.3, a learning rate of 0.005, and a weight decay of
4× 10−4. We split each dataset into 20% training, 40% validation, and 40% test subsets, fixed the
random seed at 4 for reproducibility, and performed all computations on GPU 0.

D Broader impact

Our work represents a pioneering step towards a generalizable FCGL framework that simultaneously
preserves graph-topological integrity and mitigates parameter conflicts in decentralized, evolving
environments. By introducing the MOTION framework, which integrates G-TMSC and G-EPAE,
we enable robust incremental learning across dynamic, distributed graph data. This advancement
enhances the generalization performance and stability of graph neural networks in the FCGL setting
and contributes to the broader objective of developing scalable, privacy-preserving, lifelong graph
intelligence systems.

E Limition

Despite the demonstrated effectiveness of MOTION in addressing the challenges of FCGL, this
framework has certain limitations. The inherent tension between preserving graph–topological
information and ensuring efficient aggregation under extreme client heterogeneity remains an open
research problem within FCGL scenarios. Moreover, our evaluation, although conducted on diverse
benchmark datasets, takes place in controlled settings that may not capture the full complexity
of real-world federated systems, including severe client heterogeneity, unstable participation, and
adversarial behaviors. Future work could investigate more adaptive mechanisms for handling abrupt
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topological changes, develop defense strategies against malicious clients, and validate MOTION in
realistic deployment environments.
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